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Abstract— We study the problem of target stabilization with
robust obstacle avoidance in robots and vehicles that have
access only to vision-based sensors for the purpose of real-
time localization. This problem is particularly challenging
due to the topological obstructions induced by the obstacle,
which preclude the existence of smooth feedback controllers
able to achieve simultaneous stabilization and robust obstacle
avoidance. To overcome this issue, we develop a vision-based
hybrid controller that switches between two different feedback
laws depending on the current position of the vehicle using
a hysteresis mechanism and a data-assisted supervisor. The
main innovation of the paper is the incorporation of suitable
perception maps into the hybrid controller. These maps can
be learned from data obtained from cameras in the vehicles
and trained via convolutional neural networks (CNN). Under
suitable assumptions on this perception map, we establish
theoretical guarantees for the trajectories of the vehicle in
terms of convergence and obstacle avoidance. Moreover, the
proposed vision-based hybrid controller is numerically tested
under different scenarios, including noisy data, sensors with
failures, and cameras with occlusions.

I. INTRODUCTION

During recent years, there has been an increasing num-

ber of works on systems that integrate high-dimensional

inputs, such as images, into feedback control loops. For

example, several successful end-to-end approaches have em-

ployed reinforcement learning (RL), including [1], where

the state-space construction is automated by learning a

state representation directly from camera images. Also, in

[2] the authors introduced deep Q-networks into a control

command, achieving approximate human-level performance.

Other works have used deep generative models to synthesize

controllers with inputs coming from an embedding space

of high-dimensional data, which does not necessarily cor-

respond to an interpretable space (e.g., joint coordinates of

the robot). Some examples in this direction include [3]–

[7]. In other works, such as [5], [8] and [9], the authors

integrated state predictions via robust control tools to handle

approximation errors.

While significant progress has been made in different

communities during the last years, most of the results in the

literature have focused on applications where the feedback

control law α(·) leads to closed-loop systems of the form

ẋ = f(x+ e1, u) + e2, u = α(x+ e3) + e4, (1)
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where f and α are continuous functions, and the signals

ei, for i ∈ {1, 2, 3, 4}, model measurement noise, imple-

mentation errors, or approximation inaccuracies induced by

learning mechanisms such as linear parametric approxima-

tions, neural networks, multi-time scale techniques, etc. For

these perturbed dynamical systems, stability and robustness

results are well established, and they can be characterized

via practical or input-to-state stability results [10], [11].

On the other hand, many robust control problems cannot

be solved via smooth dynamical systems of the form (1).

Typical examples include robust global stabilization prob-

lems on smooth compact manifolds [12], global stabilization

of a disconnected set [13], the asymptotic stabilization of

vehicles with geometric constraints [11], the robust control

of switched systems [14], and the robust stabilization of

targets in obstacle avoidance problems [15], to name just

a few. In the latter problem, the objective is to robustly

stabilize a target point in spaces with global obstacles, i.e.,

the operational space, or “free world”, is a strict subset of Rn.

In this setting, global stabilization using smooth feedback of

the form (1) is precluded by the fact that the domain of

attraction of an asymptotically stable vector field (i.e., the

operational space) must be diffeomorphic to the Euclidean

space, a condition that is not satisfied under global obstacles

[11]. Given that discontinuous controllers have also been

shown to suffer from fundamental robustness limitations

[12], most works have focused on achieving local or almost

global convergence results [16]–[20], which exclude from the

basin of attraction a particular set of measure zero. On the

other hand, the impossibility result for smooth controllers has

also triggered an active line of research on the development

of hybrid control techniques able to achieve robust global

stabilization and obstacle avoidance, e.g., [13], [15], [21],

[22], [23]. However, unlike smooth dynamical systems of

the form (1), establishing suitable robustness guarantees for

hybrid controllers is far from trivial, which motivates current

research on the integration and analysis of learning-based

mechanisms into these types of systems. In particular, to the

best knowledge of the authors, the systematic integration of

hybrid control and data-assisted vision-based mechanisms for

robust stabilization and obstacle avoidance has remained an

open problem.

Contributions: In this work, we develop a vision-based

hybrid controller for robust and resilient obstacle avoidance

in mobile robots. We show that, unlike standard smooth

feedback controllers, the proposed hybrid algorithm can

overcome arbitrarily small and potentially adversarial dis-

turbances, noisy states, sensor failures, as well as camera



occlusions. Our approach synergistically leverages robust

hybrid control theory [14] and recent results in perception-

based control [6], [8], which have studied the incorporation

of perception maps learned from data to predict the states and

dynamics of the system. The proposed hybrid controllers are

suitable for vehicles with vision sensors, such as cameras,

that have access to historical data in order to learn a suitable

perception map via convolutional neural networks (CNNs).

Our main results provide theoretical guarantees, as well as

extensive numerical validations in different scenarios.

II. PRELIMINARIES

Given a compact set A ⊂ R
n and an arbitrary vector

z ∈ R
n, we use |z|A := mins∈A||z − s||2 to denote the

minimum distance from z to A. We use (x, y) to denote the

concatenation of the vectors x and y. A set-valued mapping

M : Rp ⇒ R
n is said to be: a) outer semicontinuous (OSC)

at z if for each sequence {zi, si} → (z, s) ∈ R
p × R

n

satisfying si ∈ M(zi) for all i ∈ Z≥0, we have s ∈ M(z);
b) locally bounded at z if there exists an open neighborhood

Nz ⊂ R
p of z such that M(Nz) is bounded. We use rB to

denote a closed ball in the Euclidean space, of radius r > 0,

and centered at the origin, and we use {p} + rB to denote

the union of all the points pi that satisfy |p− pi| ≤ r. Given

a set B, we use B̄ and bd(B) to denote the closure, and

the boundary, respectively, and we use int(B) to denote its

interior. Given a single-valued or set-valued map f , we use

dom(f) to denote its domain.

In this paper, we will use the formalism of hybrid dy-

namical systems [14] for the synthesis and analysis of

robust vision-based control systems. Specifically, a hybrid

dynamical system (HDS) with state z ∈ R
n is represented

by its data H := {C,F,D,G}, and the dynamics

z ∈ C, ż ∈ F (z), (2a)

z ∈ D, z+ ∈ G(z), (2b)

where the set-valued mappings F : Rn ⇒ R
n and G : Rn ⇒

R
n, called the flow map and the jump map, respectively,

describe the evolution of the state z when it belongs to the

flow set C, and the jump set D, respectively. Solutions to

(2) are defined on hybrid time domains, which, under mild

assumptions on the data H, permits the use of graphical

convergence notions to establish sequential compactness

results for the solutions of (2), e.g., the graphical limit of

a sequence of solutions is also a solution. These sequential

compactness results play an important role in the robustness

analysis of dynamical systems. For a precise definition of

hybrid time-domains and solutions to HDS of the form (2)

we refer the reader to [14, Ch. 2].

To guarantee suitable robustness properties, we will im-

pose the following Basic Conditions on the data H.

Definition 1: The HDS (2) is said to satisfy the Basic

Conditions if: (a) the sets C ⊂ dom(F ) and D ⊂ dom(G)
are closed; (b) F is convex-valued, outer-semicontinuous,

and locally bounded relative to C; (c) G is outer-

semicontinuous and locally bounded relative to D. �

Note that when F is a (single-valued) continuous function,

item (b) of Definition 1 is automatically satisfied.

III. THE OBSTACLE AVOIDANCE PROBLEM:

ROBUSTNESS LIMITATIONS IN SMOOTH VISION-BASED

CONTROL

In this paper, we are interested in the synthesis and analy-

sis of robust feedback controllers able to autonomously steer

a vehicle from any initial position p0 ∈ R
2 to a final target

pT ∈ R
2, by using real-time data provided by a visual sensor

as feedback. Typical examples include cameras and high-

dimensional data generated by the fusion of multiple noisy

sensors. To illustrate our controllers, we will consider simple

velocity actuated vehicle dynamics, given by an integrator

evolving on the plane, of the form

ẋ = ux, ẏ = uy, θ = h(x, y), (3)

where (x, y) are the coordinates in the Cartesian plane, and

θ corresponds to real-time data generated by h, which can

be seen as a map that produces images as functions of the

vehicle’s position. The main goal is to design a feedback

law (ux, uy) such that the trajectories of the vehicle avoid an

obstacle N ⊂ R
2 contained in a sphere of constant radius,

and also converge to an arbitrarily small neighborhood of

the target destination pT ∈ R
2. Such types of navigation

problems have been extensively studied in the literature via

different approaches, including planning and tracking algo-

rithms [24], [25], triangular partitions [26], and barrier func-

tions [27], to name just a few. In contrast to these settings,

in this paper, we are interested in real-time feedback-based

controllers where planning and navigation are simultaneously

executed, and where robustness guarantees can be provided

under arbitrarily small disturbances.

Remark 1: Even though, for simplicity, in this paper we

focus on simple velocity actuated dynamics of the form (3),

our results can be easily extended to more complex models,

including nonlinear and nonholonomic dynamics, by using

a multi-time scale approach, where a low-level controller

(smooth, or hybrid, if needed) stabilizes the vehicle with

respect to an external reference, see [15, Sec. VI]. �

Gradient Flows, Anti-Potentials, and Perception Maps

One of the most popular approaches for the solution of

navigation problems in mobile robots is based on implement-

ing navigation functions φ : R2 → R, and gradient-based

feedback laws of the form

ux = kx
∂φ(x, y)

∂x
, uy = ky

∂φ(x, y)

∂y
. (4)

In this setting, a continuously differentiable function φ is

usually designed to have a maximizer at the desired target

point, while also having minimizers at the location of the

obstacles. In this way, the control law (4) incorporates

attractive terms (to converge to the target point) and repulsive

terms (to avoid the obstacles); see [16]–[20]. Note that the

closed-loop dynamics (3)-(4) can be written as ṗ = k∇φ(θ),
with p = (x, y)⊤, evolving in the set R

2\N , where for

simplicity we used kx = ky = k ∈ R>0.



Fig. 1: Closeness between trajectory of the robot and the pre-
dicted states by a learned perception map via convolutional neural
networks (CNN).

To study controllers based on vision-based sensors, and

similar to [8], we will assume the existence of a perception

map ℓ that generates imperfect predictions of the state of

the vehicle using the images θ, namely, ℓ(θ) = Mp + e,

where M ∈ R
2×2 is a constant matrix, and e ∈ R

2 is

the approximation error. Using this perception map to close

the loop between the camera and the vehicle, the resulting

dynamics become

ṗ = k∇φ(ℓ(θ)), p ∈ R
2\N . (5)

To learn the perception map ℓ, in this paper we will use data-

driven techniques that make use of a sequence of labeled

training data T = {pi, θi}Ni=1, to be used in traditional

supervised learning methods (e.g., CNNs), and which is

selected to satisfy the following assumption.

Assumption 1: For each compact set K ⊂ R
2, and each

pair L, ε > 0, there exists a function ℓ learned with training

data T = {pi, θi}Ni=1, such that K ⊂ int(SL
ε ), where SL

ε :=
⋃

(pd,θd)∈T

{p ∈ {pd}+ rB : |ℓ(θd)−Mpd|+ L|p− pd| ≤ ε} .

In words, Assumption 1 guarantees the existence of suffi-

cient data to learn a suitable perception map that can cover

any compact set K of interest. This assumption is standard in

the literature of perception-based control, e.g, [8]. It allows

establishing the following lemma, which will be instrumental

for the characterization of the approximation error of the

perception map learned from the data. The proof follows by

a straightforward application of the triangle inequality.

Lemma 1: Let F (p) := ℓ ◦ h(p)−Mp, and suppose that

Assumption 1 holds and p 7→ F (p) is L-Lipschitz. Then,

|ℓ(θ)−Mp| ≤ ε, for all (p, θ) such that p ∈ SL
ε . �

To illustrate Lemma 1, Figure 1 shows a trajectory of

a vehicle, as well as the predicted states by a perception

map ℓ that satisfies |ℓ(θ) − Mp| ≤ ε on compact sets,

with M being the identity matrix. The perception map was

learned by using a convolutional neural network (CNN).

As observed, the predictions of the perception map remain

in an ε-neighborhood of the actual trajectory. Therefore,

throughout the rest of this document, we will take M = I .

Note that if the learned perception map ℓ satisfies the

conditions of Lemma 1, then the closed-loop system (5)
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Fig. 2: An obstacle avoidance problem with target G and obstacle
N , and the “sensitive” set K.

behaves as the following perturbed dynamical system

ṗ = k∇φ(p+ e), |e| ≤ ε, ∀ p ∈ SL
ε \N , (6)

which has the form of (1). Stability and convergence prop-

erties of perturbed systems of the form (6) have been

extensively studied in the control’s literature [11]. Indeed, as

discussed in [11], [13], and [15], for the obstacle avoidance

problem the disturbance e can have a dramatic effect on the

trajectories of the vehicle. To illustrate this fact, consider

Figure 2, where a vehicle, denoted with a white square,

aims to converge to the target, denoted with a red circle

while avoiding the obstacle N denoted with a white circle.

Note that, to arrive at the target, the vehicle must choose a

trajectory that goes above the obstacle or below the obstacle.

Let K1 denote the set of initial conditions for which the

closed-loop system (6) converges to the region P from above,

and let K2 denote the initial conditions for which the closed-

loop system (6) converges to the region P from below. It then

follows that there must exist a set K where the vehicle must

make a binary decision. Mathematically, for the obstacle

avoidance problem, this behavior is captured by the following

assumption; see also [13], [15]:

Assumption 2: There exists T > 0 such that for each ρ >
0 and each p̃0 ∈ K, where K := K1 ∩K2, there exist points

p̃1(0), p̃2(0) ∈ {p̃0} + ρB, for which there exist solutions

p̃1 and p̃2 of (6) with e = 0, satisfying p̃1(t) ∈ K1\K and

p̃2(t) ∈ K2\K for all t ∈ [0, T ]. �

Under Assumption 2, the next proposition establishes zero

margins of robustness against small adversarial perturbations

t 7→ e(t) in the closed-loop system (6). The proposition

follows by [28, Thm. 6.5] or [15, Prop. 1]:

Proposition 1: Suppose that Assumption 2 holds. Then

for each ε,ρ′,ρ′′ > 0, and every p̃0 ∈ K + εB such that

p̃0 + ρ′B ⊂ R
2\N and p̃0 + ρ′′B ⊂ (K1 ∪ K2) there exist

a piecewise constant function e : dom(e) → εB and a

(Carathéodory) solution p̃ : dom(p̃) → R
2\N to (6) such

that p̃(t) ∈ (K + εB) ∩ (K1 ∪ K2) ∩ (p̃0 + ρ′B), for all

t ∈ [0, T ′) for some T ′ ∈ (T ∗,∞], where dom p̃ = dom ẽ,

T ∗ = min{ρ′, ρ′′}m−1, and m = sup{1 + |k∇J(η)| : η ∈
p0 + max{ρ′, ρ′′}B}. If T ′ is finite, then limt→T ′ p̃(t) /∈
(K1 ∪ K2) ∪ (p̃(0) + ρ′B). �



The result of Proposition 1 has important implications for

vision-based controllers based on perception maps, operating

under topological obstructions such as obstacles. Namely,

it establishes the existence of a set of points K ⊂ R
2

where arbitrarily small approximations e on the learned

perception map ℓ can have a dramatic effect on the stability

properties of the controller. Given that, in general, the error

in the perception map ℓ can only be guaranteed to be

bounded (see Lemma 1), Proposition 1 establishes that no

robust controller based on smooth vector fields (e.g., based

on navigation functions) exists for the solution of obstacle

avoidance problems with inexact perception maps. Indeed,

for navigation functions that combine attractive fields and

repulsive fields, the set K will contain the spurious critical

points of the navigation function φ, which includes any

saddle-point1. In this case, it is even possible to design

adversarial disturbances t 7→ e(t) in (6) able to stabilize

a spurious equilibrium [15, Ex. 1].

IV. ROBUST VISION-BASED HYBRID CONTROL

To synthesize a hybrid controller that overcomes the

limitations of smooth feedback laws, we first characterize a

class of admissible obstacles. We recall that pT ∈ R
2 denotes

the target point of the robot.

Assumption 3: There exists ρ ∈ R>0 and ε ∈ R>0 such

that the obstacle N ⊂ R
2 satisfies N ⊂ p0 + ρB and (p0 +

2ρ
√
2B) ∩ ({pT }+ εB) = ∅, where p0 = [x0, y0]

T ∈ R
2. �

In words, Assumption 3 considers obstacles that are con-

tained in spheres located sufficiently far away from the target

point. Next, to achieve robust obstacle avoidance, we will

design a switched perception-based controller that imple-

ments different potential fields in different sub-regions of

the operational space of the vehicle. By using this switching

approach, we will be able to rule out the emergence of

problematic sets K such as the one shown in Figure 2. We

note that our approach differs from existing works on hybrid

control [13], [15], [21] due to the use of perception maps

employed by the vehicles to estimate their positions in real-

time. However, we also stress that our methodology can be

naturally extended to other hybrid controllers that are well-

posed in the sense of [14, Ch.7].

A. Synthesis of the Controller

To design the covering of the operational space, for each

p0 ∈ R
2 and ρ > 0, define the set Bp0,ρ := {p ∈ R

2 :
||p − p0|| ≤ 2ρ

√
2}, which satisfies {p0} + ρB ⊂ Bp0,ρ ⊂

{p0}+2ρ
√
2B. As in the standard state-based hybrid control

[13], [15], we define the sets:

L1a := {p ∈ R
2 : y < −x+ y0 + x0 − 2ρ

√
2},

L1b := {p ∈ R
2 : y < x+ y0 + x0 + 2ρ

√
2},

L2a := {p ∈ R
2 : y > x+ y0 + x0 − 2ρ

√
2},

L2b := {p ∈ R
2 : y > −x+ y0 + x0 + 2ρ

√
2},

1The existence of such saddle points in navigation functions with attrac-
tive and repulsive fields was established in [16].

Fig. 3: Covering of the operational space of the vehicle. Top: q = 1.
Bottom: q = 2.

as well as the unions O1 := L1a∪L1b, O2 := L2a∪L2b, and

O := O1∪O2. In this way, O = R
2\Bp0,ρ and N∩O = {∅}.

For each of the sets O1 and O2, we will design suitable

potential functions Vq , q ∈ {1, 2}, that can be used in a

gradient-based controller of the form (5). The controller will

then switch between these two potential functions depending

on its current location p generated by a perception map ℓ.
Specifically, the potential functions are defined as

Vq(p) :=

{

φq(p)− φ(p) ∀ p ∈ Oq

∞ ∀ p /∈ Oq,
(7)

where φ and φq satisfy the next assumption.

Assumption 4: The functions {Vq}q∈{1,2} satisfy the fol-

lowing: (a) For each q ∈ {1, 2} there exist functions

α1,q, α2,q ∈ K∞, and proper indicators2 ω̃q of {pT } on Oq ,

such that α1,q(ω̃q(p)) ≤ Vq(p) ≤ α2,q(ω̃q(p)),∀ p ∈ Oq;

(b) For each q ∈ {1, 2}, we have {p∗ ∈ Oq : ∇Vq(p
∗) =

0} = pT ; (c) For each q ∈ {1, 2}, the function Vq(·) is

continuously differentiable in Oq . �

Remark 2: A shown in [15], the conditions of Assumption

4 can be readily satisfied using different classes of functions

φ and φq . For example, they hold when φ is given by

φ = −(x− xT )
2 − (y − yT )

2, and φq is given by φq(p) :=
B(d̃q(p)), where d̃q(p) := |p|2

R2\Oq
, and B(s) := (s −

ρ)2 log
(

1
s

)

, if s ∈ [0, ρ], and B(s) := 0, if s > ρ, with

ρ ∈ (0, 1] being a tunable parameter selected sufficiently

small. Figure 3 shows the geometric structure of both sets

O1 (top plot), and O2 (bottom plot). The level sets of the

2For a compact set A contained in an open set U , a continuous function
ω̃ : U → R≥0 is a proper indicator of A on U if ω̃(z) = 0 if and only if
z ∈ A, and ω̃(zi) → ∞ when i → ∞ if either |zi| → ∞, or the sequence
{zi}

∞
i=1

approaches the boundary of U .
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functions Vq are also shown in Figure 3. Note that in each

of the sets Oq the potential function Vq has a unique critical

point located at the position of the target.

B. Main Results: Stability and Robustness

Using the above construction, we can now formulate the

complete perception-based hybrid control system. Let χ ∈
(1,∞) and λ ∈ (0, χ−1) be tunable parameters. The closed-

loop hybrid system has states (p, q) ∈ R
2 ×Q, where Q =

{1, 2}. The continuous-time dynamics are given by

ṗ = −k∇Vq(ℓ(θ)), q̇ = 0, (8)

which are allowed to evolve in the set

Cp,q :=
{

(ℓ(θ), q) ∈ O ×Q : Vq(ℓ(θ)) ≤ χV3−q(ℓ(θ))
}

.
(9)

The discrete-time dynamics are given by

p+ = p, q+ = 3− q, (10)

which are allowed to evolve in the set

Dp,q :=
{

(ℓ(θ), q) ∈ O ×Q : Vq(ℓ(θ)) ≥ (χ− λ)V3−q(ℓ(θ))
}

.
(11)

Note that in (8), (9), and (11), the position of the vehicle

is given by the perception map ℓ(θ) rather than the state p.

The term (χ − λ) in (11) guarantees that the intersection

of the sets Cp,q and Dp,q is not empty. Thus, for initial

conditions in Cp,q ∩Dp,q solutions are not unique. The set

Cp,q characterizes the points where the vehicle implements

the controller (8) with constant state q. On the other hand,

the set Dp,q describes the points in the space where the

vehicle toggles the logic state q whenever it approaches

the boundary of the respective set Oq . In particular, note

that since χ > 1 and χ − λ > 1, the robot toggles

the potential field Vq whenever its current value exceeds a

threshold compared to the other potential fields Vq′. After

each jump, the robot flows again using now the new potential

function Vq′, until a new jump (if at all) is triggered. Note

that this switching rule describes a hysteresis property in the

feedback controller based on a supervisor mechanism. Figure

4 presents a schematic representation of the controller.

The following theorem is the main result of this paper.

Theorem 1: Let δ > 0 and K0 ⊂ Cp,q∪Dp,q , where K0 is

compact. Suppose that p 7→ F (p) is L-Lipschitz continuous,

where F is defined in Lemma 1. Then, there exists a

perception map ℓ and training data T = {pi, θi}Ni=1 such

that every trajectory of the vehicle generated by the hybrid

system (8)-(11), with initial condition in K0, is complete and

converges to a δ-neighborhood of the target point pT while

avoiding the obstacle N . �

Proof: Under Assumption 1, and using Lemma 1, for any

compact set K ⊂ R
2, and any pair ε, L ∈ R>0 there exists

a perception map ℓ(θ) satisfying the bound:

|ℓ(θ)− p| ≤ ε, (12)

for all p ∈ SL
ε . It follows that ℓ(θ) ∈ p + εB, ∀ p ∈ SL

ε .
Based on this observation, on compact sets, the solutions of

(8)-(11) are also solutions of the inflated inclusion with state

z = (p, θ):

ż =

(

ṗ

θ̇

)

∈ F (z) :=

(

−k∇Vq(p+ εB)
0

)

(13a)

Cp,q =
{

z ∈ O ×Q : Vq(p+ εB) ≤ χV3−q(p+ εB)
}

+ εB,

(13b)

z+ =

(

p+

θ+

)

∈ G(z) :=

(

p
3− q

)

, (13c)

Dp,q :=
{

z ∈ O ×Q : Vq(p+ εB) ≥

(χ− λ)V3−q(ℓ(θ))
}

+ εB. (13d)

In turn, every solution of (13) is also a solution of an inflated

hybrid system, given by

z ∈ Cε, ż ∈ Fε(z), (14a)

z ∈ Dε, z+ ∈ Gε(z), (14b)

where the data (Cε, Fε, Dε, Gε) is defined as

Cε := {z ∈ R
n : (z + εB) ∩ C 6= ∅},

Fε(z) := co F ((z + εB) ∩ C) + εB

Dε := {z ∈ R
n : (z + εB) ∩D 6= ∅},

Gε(z) := {v ∈ R
n : v ∈ g + εB, g ∈ G((z + εB) ∩D)}.

Based on this observation, in order to establish a stability

property for the closed-loop system (8)-(11), it suffices to

establish a stability result for the inflated system (14). The

following Lemmas will be instrumental for our results.

Lemma 2: The closed-loop hybrid system (13) with ε = 0
satisfies the Basic Conditions. �

Proof: Follows directly by [14, Thm. 6.8]. �

Lemma 3: Consider the HDS (13) with ε = 0. Then,

under Assumption 4, the set {pT } × Q is asymptotically

stable with basin of attraction given by O ×Q.

Proof : The proof follows the same ideas of [28, Sec. 6]

and [15, Thm. 1]. Using Assumption 1, let us define ω̃(z) :=
minq∈Q s.t. p∈Oq

ω̃q(p) for each z ∈ O. We obtain that ω̃ is

a proper indicator of pT on O. Let

α1(s) := min
q∈Q

α1,q(s), α2(s) := max
q∈Q

α2,q(s), (15a)

Using Assumption 4-(a), the function Vq satisfies

α1(ω̃(p)) ≤ Vq(p) ≤ α2(ω̃(p)), ∀ p ∈ O. (16)



During flows of the hybrid system, the time-derivative of Vq

is given by:

V̇q(p) = −k|∇Vq(p)|2 < 0, (17)

for all (p, q) ∈ Cp,q ∩ (O\{pT })× {q}. Inequality (17) im-

plies that, for each q ∈ {1, 2}, the function Vq(z) decreases

outside the target point pT . On the other hand, jumps in the

closed-loop system are allowed only when Vq gets larger or

equal than (χ−λ)V3−q . Since, by construction (χ−λ) > 1,

it follows that during jumps Vq satisfies:

Vq+(p
+) ≤ 1

χ− λ
Vq(p), ∀ (p, q) ∈ Dp,q.

Therefore, the Lyapunov function decreases during jumps.

The hysteresis mechanism rules out Zeno behavior, and

the decrease of the Lyapunov function during flows and

jumps implies that, for any complete solution of the system,

the position p converges to pT , uniformly on compact sets

in the basin of attraction [14, Prop.7.5]. Completeness of

solutions follows because: a) the system has no finite escape

times; b) solutions cannot stop due to flows leaving the

flow set; c) solutions cannot stop due to jumps leaving

the union of the flow and jump set. This establishes the

stability result. Obstacle avoidance follows by ε-closeness

of solutions between the perturbed dynamics (14) and the

nominal dynamics corresponding to (13) with ε = 0. �

With Lemma 3 at hand, Theorem 1 follows now by a direct

application [14, Thm. 7.21]. �

To the best knowledge of the authors, Theorem 1 is the first

result in the literature that integrates perception-based maps

and hybrid controllers with stability and convergence guaran-

tees. In fact, the previous arguments can be trivially extended

to guarantee robustness with respect to additional external

disturbances, including small measurement noise, sporadic

camera failures, and slowly moving targets (provided they

remain in a compact set), a setting that emerges in leader-

follower systems where the follower tracks the position of

the leader. Figure 5 illustrates this scenario by showing the

level sets of Vq at three different instants of time. Here, the

white triangle denotes the position of the leader, which acts

as a target for the follower, denoted with the green triangle.

V. NUMERICAL EXPERIMENTS

We test the perception-based hybrid controller by training

a perception map using a convolutional neural network. The

model’s architecture consists of three sets of Conv-ReLU-

MaxPool blocks, with a kernel size of 3 × 3 and 2 × 2,

respectively. A dense layer, preceded by a Dropout layer

with probability 0.5, takes the flattened output of the last

Conv-ReLU-MaxPool block of layers and outputs a vector

that imperfectly describes the state information. The model

was trained using Keras. The training took place for 5

epochs, with batch size 128 and input images with shape

(60, 100, 3). The output is a 1 × 2 vector describing the

predicted (x, y)-position of the agent. The optimizer was

Adam with learning rate 0.001. The loss function was the

Mean Squared Error (MSE) between the predicted and real

state of the agent. Mean Absolute Error (MAE) was also used

as a validation metric. To test the controller, we consider

a leader robot (denoted with a white square) aiming to

converge to the static target G while avoiding the obstacle

N . We also consider a follower robot (denoted with a green

square), which tracks the leader. Both employ the hybrid

controller, and the follower robot uses the learned perception

map to approximate the leader’s state. Figure 7 shows the

trajectories obtained in this scenario under two different

initial conditions: (-12, 2) in the left plot, and (-37, -17)

in the right plot. In the simulations, we added noise to

state measurements and we also included sensor failures

(e.g., the camera does not transmit data at each time t with

a certain probability). As observed, the hybrid controller

provides suitable robustness properties. On the other hand,

in Figure 6 we tested the generalization capabilities of the

perception map. Here, we considered images containing

occlusions (simulating, e.g., clouds). The left plot shows the

performance of the hybrid controller when using a perception

map trained on images without occlusions. It can be seen

that the controller successfully handles the increment in

prediction error due to inputs to the vision model being

generated from a different process. The right plot of Figure

6 considers a controller trained on data with occlusions.

VI. CONCLUSIONS

In this paper, we introduced a perception-based hybrid

controller for the robust solution of obstacle avoidance prob-

lems that use vision-based sensors for the purpose of feed-

back. Unlike existing results in the literature, our controller

incorporates a perception map learned by using supervised

learning methods, which provides a suitable approximation

of the position of the vehicle based on images generated by a

camera. By leveraging the structural robustness properties of

the hybrid controller, and the generalization capabilities of

the perception map, we established obstacle avoidance and

convergence to the target point. Future research will focus

on the theoretical guarantees under multiple obstacles.
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