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Abstract— We study the solution of time-varying Nash equi-
librium seeking and tracking problems in non-cooperative
games via nonsmooth, model-based and model-free algorithms.
Specifically, for potential and non-potential games, we derive
tracking bounds for the actions of the players with respect
to the Nash Equilibrium Trajectory (NET) of the game using
the property of fixed-time input-to-state stability. We show
that, in the model-based case, traditional pseudo-gradient flows
achieve only exponential tracking with a residual error that is
proportional to the time-variation of the NET. In contrast, exact
and fixed-time tracking can be achieved by using nonsmooth
dynamics with discontinuous vector fields. For continuous but
non-Lipschitz dynamics, we show that the residual tracking er-
ror can be dramatically decreased whenever the learning gains
of the dynamics exceed a particular threshold. In the model-
free case, we derive similar semi-global practical input-to-state
stability bounds using multi-time scale tools for nonsmooth
systems.

I. INTRODUCTION

In many cyber-physical engineering systems a group of
autonomous agents interact in a competitive manner. Typical
examples include smart grids and energy markets, transporta-
tion systems, and autonomous multi-agent robots, to name
just a few, see [1] and references therein. Under lack of co-
operation, agents usually seek to unilaterally minimize their
individual cost functions by controlling their own actions.
In this scenario, a non-cooperative game emerges between
the agents, and a desirable operating point for the multi-
agent system is given by a profile of actions in which each
agent lacks any incentive to change their strategy, also called
a Nash equilibrium (NE) [2]. Algorithms able to guarantee
convergence to NE are well-studied in the literature, see [3]—
[9] and references therein. However, when the cost functions
that describe the game are time-varying, the standard (static)
concept of NE is no longer appropriate. Instead, desirable
action profiles become time-varying trajectories that agents
seek to track. Yet, if the dynamics that govern the time-
variation of the NE are unknown to the agents (as in most
realistic applications), standard feedback control approaches
for tracking problems, such as feedforward control and the
internal model principle, become unfeasible. Instead, agents
will aim to achieve ‘“approximate” tracking of the Nash
Equilibrium Trajectory (NET), accepting a residual error
related to the magnitude of the time-variation of the NET.
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While similar online tracking problems have been studied
in the literature on optimization [10], [11], and extremum
seeking control [7], [12], [13], in the context of time-
varying noncooperative games the NET tracking problem
has remained mostly unexplored, and the existing results
in the literature have been derived mostly for discrete-
time algorithms [14] or dynamics with asymptotic tracking
properties [15], [16].

In this paper, we study the tracking problem of NETs
in non-cooperative games using model-based and model-
free nonsmooth algorithms with high transient performance.
Our algorithms and tracking bounds leverage the properties
of semi-global practical input-to-state stability (ISS) [17],
[18] and semi-global practical ultimate boundedness in non-
Lipschitz dynamical systems to provide explicit transient
and residual bounds for the trajectories of the algorithms.
Our results are inspired by recent model-free algorithms
with semi-global fixed-time stability properties studied for
traditional (model-free) optimization problems in [19] and
[20], and for time-invariant games in [21], [22]. However,
in contrast to these earlier works, in this paper we focus
on the tracking problem for time-varying games, and we
pay special attention to the residual tracking errors of the
algorithms and their relations to the ISS gains. In particular,
we show that in certain cases the ISS gain can be made
equal to zero by relaxing the continuity of the vector field
that describes the dynamics, and by choosing the gain of the
algorithms sufficiently high with respect to the time-variation
of the NET. For continuous but non-Lipschitz vector fields,
we derive non-zero ISS gains that provide better tracking
bounds compared to the traditional linear ISS gains obtained
in standard pseudogradient flows. To our best knowledge,
the results of this paper are the first that provide tracking
bounds for time-varying games using model-free dynamics
with fixed-time stability properties.

The rest of this paper is organized as follows: Section II
presents the preliminaries, Section III introduces the problem
statement, Section IV studies the tracking properties of nom-
inal model-based algorithms, Section V focuses on model-
free algorithms, Section VI presents a numerical example,
and finally Section VII ends with some conclusions.

II. PRELIMINARIES

In this paper, we will model our algorithms using the
framework of constrained dynamical systems [23], where
x € R"” is the state of a dynamical system evolving as

reC, &=F(z), (1)



where C C R"™ is a closed set, and F' : R* — R"
is a measurable bounded function. For functions F' that
are discontinuous, system (1) should be replaced by its
Krasovskii regularization [23, Def. 4.13]. A solution x to
(1) is an absolutely continuous function z : dom(z) — R™
that satisfies: a) z(0) € C; b) z(t) € C, V t € dom(z);
and ¢) #(t) = F(x(t)) for almost all ¢ € dom(z). A
solution is said to be complete if dom(z) = [0, 00). System
(1) is said to render a compact set A C R™ uniformly
globally asymptotically stable (UGAS) if there exists a class
KL function S such that every solution of (1) satisfies
lz(t)|a < B(lx(0)|a,t), V t € dom(z). When 3 T* > 0
such that B(r,s) = 0 for all » > 0 and s > T™ we say
that A is globally fixed-time stable. We also consider e-
perturbed or parameterized dynamical systems of the form
x € C, & = F.(x), where F; is a function parameterized
by a positive number € > 0. For these systems, we say
that the compact set A C C is Semi-Globally Practically
Asymptotically Stable (SGPAS) as € — 0%, if there exists a
class KL function 3 such that V § > v > 0, 3 ¢* > 0 such
that V ¢ € (0,e*) every solution x with |z(0)| 4 < J satisfies
|z(t)|a < B(|z(0)|4,t) + v, ¥ t € dom(z). The notion of
SGPAS can be extended to systems that depend on multiple
parameters € = [e1,€9,...,&¢] . We use S! C R? to denote
the unit circle centered at the origin, and T = S* x ... x S!
to denote the n'"*-Cartesian product of S'.

III. PROBLEM STATEMENT

We consider time-varying noncooperative games char-
acterized by a finite collection of players ¢ € V :=
{1,2,...,n}. Each player has an individual action u; € R,
and a real-valued, smooth cost function ¢;(u, ;) that de-
pends on the overall vector of actions v := [ug, ug, . .., un]T,
and on a local time-varying parameter 6; : R>o — R.
For simplicity, we consider scalar individual actions and
parameters, but our results can easily be extended to the
vectorial case. The goal of each agent 7 is to individually
minimize ¢; by controlling w,;. Under this noncooperative
setting, a desirable operating point for the system is a Nash
Equilibrium Trajectory (NET), which is a parameterized
profile of actions u*(t) := h(6(t)), where h : R — R",
such that for each given 0(t) = [01(t),02(1),...,0,(t)] €
R™, the following holds for each ¢t > 0:

¢l(uf7ufl,92) = inf ¢i(ui, uii, 91), VieV, 2
u; ER

where u*; € R"! denotes the vector that excludes from
u* the i*" component u;. When the parameters 6; are time-
invariant, i.e., 9} = 0, the NET u* defined by (2) reduces to a
standard static NE. In that case, the NE seeking problem is to
design dynamics for the actions w; such that lim;_, . u(t) =
u*. However, when GZ # 0, and no information on HZ is
available to the agents, the NE seeking problem becomes a
NET tracking problem, where, ideally, the residual tracking

error lim sup,_, . |u(t) — u*(t)| decreases as |6;| — 0.
To impose some regularity on the time-variation of the

Y (supy maxc 6(¢)])

Fig. 1: Approximate tracking of a NET ¢t — u*(t), with
asymptotic gain (-).

NET, we will consider §-dynamics modeled by exosystems

éi = EoHi(ei), 91‘ S 91'7 V { € V’ (3)

where €, > 0 is assumed to be the same for all players
(otherwise one can work with the maximum of all ¢, ;). The
following assumption will provide enough regularity to the
dynamics (3).

Assumption 1: For all i, the set ©; C R is compact, the
mapping I1;(-) is Lipschitz continuous, and the dynamics (3)
render the set ©; forward invariant. O

To study the tracking properties of our algorithms, we will
use the following definition, which is applicable to general
NET tracking dynamics with cost functions driven by (3).

Definition 1: The dynamics (1, 6) are said to have the
(8,7)-NET tracking property if § € KL, v € K, and every
solution ¢ — (u(t), 6(t)) satisfies the bound

lu(t) —u*(t)| <B(Ju(0) —u*(0)[,?)
+ (Oiugtmiax|9i(7)|) , @

for all ¢ € dom(u, 8), u;(0) € R, 6,(0) € ©;, and i € V. O

Remark 1: Note that inequality (4) essentially describes
an input-to-state stability bound with respect to the “input”
max; |6;], see [18] and [24] for related notions. O

The pseudogradient of the time-varying game (2) is de-
fined by the following vector in R™:
G(u,0) = [Vuy ¢1 (u, 01), Vuy §2(u, 02), -, Vouy 6 (0, 00)]

where V., ¢;(u,0;) stands for the partial derivative of ¢;
with respect to wu;. In this paper, we will consider time-
varying games that satisfy the following assumption.

Assumption 2: The functions ¢;, h, and G satisfy:

1) For each ¢ € V, the functions ¢;(-,-) and h(-) are
continuously differentiable.
2) There exists £, > 0 such that

|G(u',0) — G(u",0)] < ly|u’ —u"|, (5)

for all v/, u” € R™ and all § € ©.
3) There exists x > 0 such that

(G',0) — Gu",0)) " (v —u") > klu' —u"|?, (6)
for all v/, u” € R™ and all § € ©. O



The properties described in Assumption 2 are fairly stan-
dard in the literature on fast (time-invariant) NE seeking [5],
[9], with the difference that in (5) and (6) the parameters
(L4, k) are assumed to hold uniformly in 6.

In some cases, we will also consider the following as-
sumption, which describes the so-called potential games.

Assumption 3: There exists a function P : R* x R” — R
such that:

1) V,P(u,8) = G(u,8) for all u € R™ and all § € ©.

2) There exists £y > 0 such that

|V9P(u/7 0) - V9P(u//70)| < £9|ul - u”|7 (7)

for all v/, v € R™ and all € ©.
The following lemma will be instrumental for our results.

Lemma 1: Suppose that Assumptions 1-2 hold, and let
II=1II) xIIy x...xII,,and ®© = O x Oy x ... x O,, be
given by (3). Then, there exist constants my, mp > 0 such
that [TI(0)| < mp and |Vh(6)| < my, for all § € ©. O

IV. FIXED-TIME TRACKING BOUNDS:
THE MODEL-BASED CASE

In this Section, we study tracking bounds for NETs given
by (2) driven by the dynamics (3). We first assume that agents
have access to direct measurements of their gradients V,,; ¢;,
and we defer to Section V the model-free case where only
measurements of ¢; are available to the agents.

A. Potential Games

When a potential function exists, we consider the fol-
lowing fixed-time pseudogradient dynamics (FxXTPG) imple-
mented by the i*" player:

2 |V’U«1¢Z(ua ei)‘a ‘Vui¢i(u70i)|_a ’

where k; > 0 is the individual learning gain of each agent,
a € [0, 1], and the right-hand side of (8) is defined to be zero
whenever V,,,¢;(u, ;) = 0. Note that the normalizing term
in (8) is the individual partial derivative of the cost of each
agent, which differentiates (8) from fixed-time gradient flows
studied in the optimization literature [19], [25]. Thus, when
players have access to Oracles that provide measurements
or evaluations of their local gradients, equation (8) can be
implemented in a decentralized way. In fact, when o = 0
system (8) reduces to the standard pseudogradient flow u =
—KG(u,0) [5], [26], where K = diag([k1, ka, ..., kn))-

The following result establishes a tracking bound for
system (8) with a = 0. This bound will serve as a benchmark
for the case o > 0. All the proofs are omited due to space
limitations.

U; =

Proposition 1: Suppose that Assumptions 1-2 hold, and
a = 0. Then, the dynamics (3) and (8) have the (5o, 0)-
NET tracking property with

ko _mxaon g -
BO(ra S) = \/;7"6 2 ) ’70((]) = kq> (9)

where A € (0,1), k = max; k;, k = min; k;, and k =

2mp k>
VIR ([l

The exponential ISS bound of Proposition 1 is a tracking-
like result, similar to existing results in the literature of
optimization [10], [11], [27]. Note that in (9), the ISS
gain 7(+) is linear, which implies that the time-variation of
max; 0; is linearly mapped to the residual tracking error.
Since § € KL, it follows that as ¢ — oo we obtain

2my, k2 i éi t
lim sup |u(t) —u*(t)| < mpk (supt>0 max; |0;( )|> .

t—o0 DY K

Thus, asymptotic tracking is achieved if §(t) — 0 as t — oo.

Next, we consider the case « = 1 in (8). This choice
leads to a discontinuous dynamical system with solutions that
are still well-defined in a generalized sense (in the sense of
Filippov or Krasovskii). In this case, we focus our attention
on potential games.

Proposition 2: Suppose that Assumptions 1-3 hold, o =
1, and the learning gains satisfy

g(; vV 2n
K

min k; > max |6;]. (10)
Then, the dynamics (3) and (8) have the ((1,71)-NET
tracking property with
Bi(r,s) := ¢ tan (max {0, —c98 4 arctan <03r§> }) ’ ,
(1D
and v, := 0, where ¢; > 0, j € {1,2,3}. O
The result of Proposition 2 establishes exact tracking of
the NET under the dynamics (8), provided the minimum
gain used by the players is larger than a particular threshold
proportional to the value of the maximum variation of 6;
among all players. This result generalizes the fixed-time
convergence results presented in [22] for static NE seeking
problems. However, note that the discontinuity of the vector
field can induce chattering along the NET and also in the
best response set of each player.

The next proposition considers the case when « € (0,1),
which eliminates the discontinuity on the right-hand side of
system (8).

Proposition 3: Suppose that Assumptions 1-3 hold and
a € (0,1). Then, the dynamics (3) and (8) have the
(Bo1,7v01)-NET tracking property with 3y, equal to 51 in
(11), and o1 given by Y01(q) := p~*(q), where p~1(-) €
Koo is the inverse of the function p : R>o — R>( given by:

p(s) = e1s' 7 + exs! T, (12)

with €1,€9 > 0. O

Remark 2: Note that p~1(q) ~ 0 when a — 1 and
lg| < 1. This provides a substantial attenuation of the residual
tracking error of the NET. (|



B. Non-Potential Games

We now focus on games that do not have potential
functions, i.e., Assumption 3 does not hold. In this case,
we consider individual NE tracking dynamics normalized by
the complete pseudogradient of the game:

1
ﬂi = —§ki\IJ(u,9,a)VM¢i(u,6i), (13)
where the scalar-valued mapping W is defined as
1
U(u,d,a) = —— + |G(u, 0)|*. (14)
|G (u, )]

Similar dynamics for time-invariant, non-potential, strongly
monotone games were studied in [22]. In particular, the next
result generalizes [22, Prop. 3] for time-varying games, and
parallels the tracking bound established in Proposition 2.

Proposition 4: Suppose that Assumptions 1-2 hold, a =
1, and the learning gains satisfy

do/m0

min k; >
i 2Kag

max |6;]. (15)
for a given cg, c; > 0. Then, the dynamics (3) and (13) have
the (B1,71)-NET tracking property with (81 given by (11),
and ¥, = 0.

Remark 3: The tracking result of Proposition 4 holds for
smooth strongly monotone games that are not necessarily
potential games, which is why the result is not covered
by existing stability results. While the implementation of
the dynamics requires full information of the game via the
pseudogradient (G, this information can be estimated in a
distributed way by each agent of the system using multi-
time scale consensus-based techniques. This approach will
be studied in the next section. |

We finish this section with a result that holds for the case
a € (0,1).

Proposition 5: Suppose that Assumptions 1-2 hold and
a € (0,1). Then, the dynamics (3) and (13) have the
(3017 %01)-NET tracking property with /3’01 of the form (11),
and Jo1 given by Fo01(q) := p~'(q), where p'(-) € K is
the inverse of the function p : R>g — R>(, which is of the
form (12). O

V. PRACTICAL FIXED-TIME TRACKING
BOUNDS: THE MODEL-FREE CASE

In this section, we leverage Propositions 1-5 to design
model-free implementations of the tracking dynamics studied
in Section IV. In particular, we now consider the scenario
where each player has access only to measurements of
their own cost function ¢;, and, in some cases, to the
states of other neighboring players N; characterized by a
communication graph that is assumed to be undirected and
connected. The model-free dynamics aim to emulate the
behavior of the algorithms (8) and (13).

A. Potential Games

To emulate the behavior of system (8), each player imple-
ments the following multi-time scale model-free dynamics:

fi § i

= —k; [ = 4 > ) i; € R, (162)

(I&Ia |€i|

|

&= . (=& + @i(u, 0;) Mi(pi)), & €R",  (16b)
1

ngﬂmm,mey, (16¢)

P

where the right-hand side of (16a) is defined to be zero when
& = 0. In (16b), M;(u;) := 2, p;q1, and in (16¢) the
matrix R, ; is given by R; = 27[0, &;; —&;, 0] € R?*2, i €
{1,2,...,n}, with &; > 0. The parameter « still satisfies
a € [0, 1], but now the actions u; of the players are updated
as follows:

U = U + Eqfhi1s (17)

The algorithm (16)-(17) is based on ideas of extremum
seeking control [28], [7]. In particular, equation (16¢)
describes a dynamic oscillator evolving on the unit cir-
cle S!, generating periodic dither signals p;1(t) =

1i,1(0) cos (?ﬁl) + p3,2(0) sin (?F;l , with initial con-
ditions satisfying 1;,1(0)? + ;2(0)> = 1. We make the

following assumptions on the parameters of (16c).

Assumption 4: For all ¢ € V and j # ¢ we have that
Ri # Rj, Ri # 2Rj, R; # 3K;. Moreover, &; > 0 is a rational
number. (]

In addition to the learning gains k; and the frequencies
Ri, the dynamics (16) have three main tunable parameters:
(€as€f,€p). To simplify the notation we assume that these
parameters are the same for all players, but it is straightfor-
ward to extend our results to dynamics with heterogenous
parameters. The parameter €, corresponds to the amplitude
of the sinusoidal signal added in (17) to ;. This dither signal
allows players to perform a local exploration of their cost
function in a neighborhood of their current action. The pa-
rameter €, characterizes the time scale of the frequencies of
the dither signals. As £, — 07, the faster oscillatory behavior
induced by the dither signals will permit the application of
averaging theory to analyze the model-free dynamics. The
parameter £y characterizes the gain of the low pass filter.
When ¢ is small, this filter will permit a transparent stability
analysis by enabling a clean computation of the average
dynamics of (16a)-(16b) along the solutions of (16c) by
removing from the right-hand side of (16a) any dependence
on fi. |

Remark 4: The rationale behind the dynamics (16) is the
following: as £, — 0% the dynamic oscillator generates a
sinusoidal signal yp; with high frequency. Since this signal
is added to the argument of ¢; via (17), and since ¢; is
multiplied again by p; via the mapping M; in (16b), the
resulting signal ¢;M; generates an approximation of the
derivative ggz, on compact sets. In turn, as ¢y — 0T, the
state of the low pass filter (16b) converges exponentially fast
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Fig. 2: Semi-global practical tracking of a NET ¢ — u*(%).

to the derivative %. It then follows that, as (¢f,e,) — 0T,
the dynamics (16a)1 behave similar to (8) on compact sets
and compact time-domains, with a residual error induced by
the fast stable dynamics (16b)-(16¢). These arguments can be
formalized using singular perturbation theory and averaging
theory for perturbed nonsmooth systems to establish a “semi-
global practical” fixed-time stability result for the main state

U. |

The following definition will be used to characterize
the stability and convergence properties of the model-free
dynamics.

Definition 2: The dynamics (i, 6,¢, 1) are said to have
the semi-global practical (B3,7)-NET tracking property if
38 € KL, v € Ks such that the following holds: V
ki,eo > 0and V A > v > 0,35} > 0, such that V
er € (0,e}), Je; > 0, such that V ¢, € (0,¢7), J ¢, > 0
such that V €, € (0,¢5), all solutions ¢ > (4, 6,&, 1) with
initial conditions satisfying:

[(0) — u*(0) < A, [€(0)] < A, p(0) € T", 6(0) € 6,
also satisfy the following bound for all ¢ > 0:

a(t) = u* ()] < B(|a(0) — w™(0)],8) + 7 (e0) + v, (18)

and limsup,_, .. |£(t)] € O(y(e,) + v + €4). O

The bound (18) describes a semi-global practical bound
with two residual terms: 1) the term y(e(), which gauges the
residual tracking error induced by the variation of 0, which is
of order O(gg); 2) the term v > 0, which is the residual error
induced by the multi-time scale model-free dynamics. The
bound (18) is related to the notions of semi-global practical
ultimate boundedness and semi-global practical input-to-state
stability [29].

The following Theorem is the first main result of this
paper.

Theorem 1: Suppose that Assumptions 1-4 hold. Then,

the dynamics (3) and (16) have the semi-global practical
(8,~)-NET tracking property. Moreover, the following holds:
1) If a =0, then (5, ) are as given by (9).
2) If @ =1 and (15) holds, then S is as given in (11) and
v is equal to zero.
3) If a € (0,1), then 8 is as given by (11), and ~ is the
inverse of (12).

B. Non Potential Games

For non-potential games, we seek to emulate the behavior
of the NE tracking dynamics (13), in a distributed and model-
free way. Thus, we consider the following algorithm:

: s &ii
i = —k; -+ — |,
¢ Q&z mz>

§ij = Ei Z <§kj - fz‘j) + bij <52a¢vi(ua 0:) M (i) — fz‘j)

(19a)

f keN;
(19b)
1
fti = —Rpuipti, pi €S (19¢)
€p

In these dynamics, each player is endowed with three
types of auxiliary states (4, &;, i), where & =
[€i1, &2, &3, -+, &n] T € R™ is now an individual estimate
of the pseudogradient G. In the consensus mechanism (19b)
the constants b;; satisfy b;; = 1 if ¢ = j, and b;; = 0 for
all 4 # j. Also, as in (16a), the right-hand side of (19a) is
defined to be zero whenever ¢ = 0. The individual action
of the players is updated as in (17), and the parameter «
satisfies a € (0, 1].

Remark 5: The NE tracking dynamics (19) follow a simi-
lar rationale as the dynamics (16). Here, the dynamics (19b)
allows players to estimate the overall pseudogradient G in a
distributed way and also on a faster time scale compared to
(19a), parameterized by €. ]

The following Theorem is the second main result of this
paper.

Theorem 2: Suppose that Assumptions 1, 2 and 4 hold.
Then, the dynamics (3) and (19) have the semi-global prac-

tical (8,7)-NET tracking property. Moreover, the following
holds:

1) If = 1 and (15) holds, then (3,) are as given in
Proposition 4.

2) If a € (0,1), then (3,~) are as given by Proposition
5.

VI. NUMERICAL EXAMPLE

To illustrate our theoretical results, we consider a time-
varying duopoly game, similar to the one studied in [5, Sec.
II] for time-invariant games. In a duopoly, two companies
that produce the same good have dominant control over a
market, and compete for profit by controlling their individual
prices u;. The payoffs of the companies are given by J; =
si(u; — m;), where s; is the number of sales of the ‘"
company, and m; is the marginal cost. The sales s; are
modeled as s; = S — s 59 = %(ul — ug), where p > 0
is the preference of the consumer for company 1, and S is
the total consumer demand. Given that in problem (2) every
agent minimizes their cost, we define ¢; = —J;.

In contrast to [5, Sec. II], we consider time-varying
duopoly games characterized by dynamic demands of the
form S(6(t)) = 100 + 6(¢), where 6(¢t) = 40sin(¢). This
sinusoidal parameter can be easily generated by a linear
exosystem that satisfies Assumption 1. Note that, in this
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Fig. 3: Evolution in time of the actions of the players via the

model-free NET tracking dynamics, with o = 0 (light color)

and with o = 0.95 (dark color). The dashed black curves

indicate the NET of the time-varying duopoly game.

case it suffices to consider one common parameter 6 in both
cost functions. The pseudogradient of the game is given by
G(u,0) = [~2uy + ug + (mq + S(0)p), —2ug +uy +ma] T,
which satisfies Assumption 2 with ¢,, = 3 and x = 1. This
game also satisfies Assumption 3 since S(6) appears linearly
in the payoff function. The resulting NET is then given by

ui(t) = %(2m1 +my + 2pS(9(t)))

wi(t) = %(m1 + 2my +pS(9(t))).

To track this NET, we implement the decoupled model-free
dynamics (16) with o = 0 (corresponding to [S]) and o =
0.95. The resulting trajectories are shown in Figure 3. The
black dashed line indicates the NET ¢ +— w*(¢). It can be
observed that the nonsmooth dynamics (o = 0.95) achieve
much better tracking performance compared to the model-
free pseudogradient flow studied in [5] and corresponding
to a = 0. In all simulations players used the same learning
gains k1 = ko = 0.2 and also the same frequencies k; and
parameters (€, €p,€q)

VII. CONCLUSIONS

We studied the tracking problem of Nash equilibrium
trajectories in time-varying non-cooperative games. We char-
acterized different tracking bounds for smooth and nons-
mooth algorithms in potential and non-potential games using
semi-global practical input-to-state stability tools. In the
nonsmooth case, we established semi-global practical fixed-
time ISS, and showed that the ISS gain can dramatically
attenuate the residual tracking error of the algorithms. Future
research directions will focus on incorporating constraints
into the action space of the agents, and designing model-
free NET tracking dynamics using notions of homogeneity.
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