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Abstract— We study the solution of time-varying Nash equi-
librium seeking and tracking problems in non-cooperative
games via nonsmooth, model-based and model-free algorithms.
Specifically, for potential and non-potential games, we derive
tracking bounds for the actions of the players with respect
to the Nash Equilibrium Trajectory (NET) of the game using
the property of fixed-time input-to-state stability. We show
that, in the model-based case, traditional pseudo-gradient flows
achieve only exponential tracking with a residual error that is
proportional to the time-variation of the NET. In contrast, exact
and fixed-time tracking can be achieved by using nonsmooth
dynamics with discontinuous vector fields. For continuous but
non-Lipschitz dynamics, we show that the residual tracking er-
ror can be dramatically decreased whenever the learning gains
of the dynamics exceed a particular threshold. In the model-
free case, we derive similar semi-global practical input-to-state
stability bounds using multi-time scale tools for nonsmooth
systems.

I. INTRODUCTION

In many cyber-physical engineering systems a group of

autonomous agents interact in a competitive manner. Typical

examples include smart grids and energy markets, transporta-

tion systems, and autonomous multi-agent robots, to name

just a few, see [1] and references therein. Under lack of co-

operation, agents usually seek to unilaterally minimize their

individual cost functions by controlling their own actions.

In this scenario, a non-cooperative game emerges between

the agents, and a desirable operating point for the multi-

agent system is given by a profile of actions in which each

agent lacks any incentive to change their strategy, also called

a Nash equilibrium (NE) [2]. Algorithms able to guarantee

convergence to NE are well-studied in the literature, see [3]–

[9] and references therein. However, when the cost functions

that describe the game are time-varying, the standard (static)

concept of NE is no longer appropriate. Instead, desirable

action profiles become time-varying trajectories that agents

seek to track. Yet, if the dynamics that govern the time-

variation of the NE are unknown to the agents (as in most

realistic applications), standard feedback control approaches

for tracking problems, such as feedforward control and the

internal model principle, become unfeasible. Instead, agents

will aim to achieve “approximate” tracking of the Nash

Equilibrium Trajectory (NET), accepting a residual error

related to the magnitude of the time-variation of the NET.
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While similar online tracking problems have been studied

in the literature on optimization [10], [11], and extremum

seeking control [7], [12], [13], in the context of time-

varying noncooperative games the NET tracking problem

has remained mostly unexplored, and the existing results

in the literature have been derived mostly for discrete-

time algorithms [14] or dynamics with asymptotic tracking

properties [15], [16].

In this paper, we study the tracking problem of NETs

in non-cooperative games using model-based and model-

free nonsmooth algorithms with high transient performance.

Our algorithms and tracking bounds leverage the properties

of semi-global practical input-to-state stability (ISS) [17],

[18] and semi-global practical ultimate boundedness in non-

Lipschitz dynamical systems to provide explicit transient

and residual bounds for the trajectories of the algorithms.

Our results are inspired by recent model-free algorithms

with semi-global fixed-time stability properties studied for

traditional (model-free) optimization problems in [19] and

[20], and for time-invariant games in [21], [22]. However,

in contrast to these earlier works, in this paper we focus

on the tracking problem for time-varying games, and we

pay special attention to the residual tracking errors of the

algorithms and their relations to the ISS gains. In particular,

we show that in certain cases the ISS gain can be made

equal to zero by relaxing the continuity of the vector field

that describes the dynamics, and by choosing the gain of the

algorithms sufficiently high with respect to the time-variation

of the NET. For continuous but non-Lipschitz vector fields,

we derive non-zero ISS gains that provide better tracking

bounds compared to the traditional linear ISS gains obtained

in standard pseudogradient flows. To our best knowledge,

the results of this paper are the first that provide tracking

bounds for time-varying games using model-free dynamics

with fixed-time stability properties.

The rest of this paper is organized as follows: Section II

presents the preliminaries, Section III introduces the problem

statement, Section IV studies the tracking properties of nom-

inal model-based algorithms, Section V focuses on model-

free algorithms, Section VI presents a numerical example,

and finally Section VII ends with some conclusions.

II. PRELIMINARIES

In this paper, we will model our algorithms using the

framework of constrained dynamical systems [23], where

x ∈ R
n is the state of a dynamical system evolving as

x ∈ C, ẋ = F (x), (1)



where C ⊂ R
n is a closed set, and F : R

n → R
n

is a measurable bounded function. For functions F that

are discontinuous, system (1) should be replaced by its

Krasovskii regularization [23, Def. 4.13]. A solution x to

(1) is an absolutely continuous function x : dom(x) → R
n

that satisfies: a) x(0) ∈ C; b) x(t) ∈ C, ∀ t ∈ dom(x);
and c) ẋ(t) = F (x(t)) for almost all t ∈ dom(x). A

solution is said to be complete if dom(x) = [0,∞). System

(1) is said to render a compact set A ⊂ R
n uniformly

globally asymptotically stable (UGAS) if there exists a class

KL function β such that every solution of (1) satisfies

|x(t)|A ≤ β(|x(0)|A, t), ∀ t ∈ dom(x). When ∃ T ∗ > 0
such that β(r, s) = 0 for all r > 0 and s > T ∗ we say

that A is globally fixed-time stable. We also consider ε-

perturbed or parameterized dynamical systems of the form

x ∈ C, ẋ = Fε(x), where Fε is a function parameterized

by a positive number ε > 0. For these systems, we say

that the compact set A ⊂ C is Semi-Globally Practically

Asymptotically Stable (SGPAS) as ε → 0+, if there exists a

class KL function β such that ∀ δ > ν > 0, ∃ ε∗ > 0 such

that ∀ ε ∈ (0, ε∗) every solution x with |x(0)|A ≤ δ satisfies

|x(t)|A ≤ β(|x(0)|A, t) + ν, ∀ t ∈ dom(x). The notion of

SGPAS can be extended to systems that depend on multiple

parameters ε = [ε1, ε2, . . . , εℓ]
⊤. We use S

1 ⊂ R
2 to denote

the unit circle centered at the origin, and T
n = S

1× . . .×S
1

to denote the nth-Cartesian product of S1.

III. PROBLEM STATEMENT

We consider time-varying noncooperative games char-

acterized by a finite collection of players i ∈ V :=
{1, 2, . . . , n}. Each player has an individual action ui ∈ R,

and a real-valued, smooth cost function φi(u, θi) that de-

pends on the overall vector of actions u := [u1, u2, . . . , un]
⊤,

and on a local time-varying parameter θi : R≥0 → R.

For simplicity, we consider scalar individual actions and

parameters, but our results can easily be extended to the

vectorial case. The goal of each agent i is to individually

minimize φi by controlling ui. Under this noncooperative

setting, a desirable operating point for the system is a Nash

Equilibrium Trajectory (NET), which is a parameterized

profile of actions u∗(t) := h(θ(t)), where h : Rn → R
n,

such that for each given θ(t) = [θ1(t), θ2(t), . . . , θn(t)] ∈
R

n, the following holds for each t ≥ 0:

φi(u
∗
i , u

∗
−i, θi) = inf

ui∈R

φi(ui, u
∗
−i, θi), ∀ i ∈ V, (2)

where u∗
−i ∈ R

n−1 denotes the vector that excludes from

u∗ the ith component ui. When the parameters θi are time-

invariant, i.e., θ̇i = 0, the NET u∗ defined by (2) reduces to a

standard static NE. In that case, the NE seeking problem is to

design dynamics for the actions ui such that limt→∞ u(t) =
u∗. However, when θ̇i 6= 0, and no information on θ̇i is

available to the agents, the NE seeking problem becomes a

NET tracking problem, where, ideally, the residual tracking

error lim supt→∞ |u(t)− u∗(t)| decreases as |θ̇i| → 0+.

To impose some regularity on the time-variation of the

u
∗(t)

γ(supt≥0max |θ̇i(t)|)

t

Fig. 1: Approximate tracking of a NET t 7→ u∗(t), with

asymptotic gain γ(·).

NET, we will consider θ-dynamics modeled by exosystems

θ̇i = εoΠi(θi), θi ∈ Θi, ∀ i ∈ V, (3)

where εo > 0 is assumed to be the same for all players

(otherwise one can work with the maximum of all εo,i). The

following assumption will provide enough regularity to the

dynamics (3).

Assumption 1: For all i, the set Θi ⊂ R is compact, the

mapping Πi(·) is Lipschitz continuous, and the dynamics (3)

render the set Θi forward invariant. �

To study the tracking properties of our algorithms, we will

use the following definition, which is applicable to general

NET tracking dynamics with cost functions driven by (3).

Definition 1: The dynamics (u̇, θ̇) are said to have the

(β, γ)-NET tracking property if β ∈ KL, γ ∈ K, and every

solution t 7→ (u(t), θ(t)) satisfies the bound

|u(t)− u∗(t)| ≤β(|u(0)− u∗(0)|, t)

+ γ

(

sup
0≤τ≤t

max
i

|θ̇i(τ)|
)

, (4)

for all t ∈ dom(u, θ), ui(0) ∈ R, θi(0) ∈ Θi, and i ∈ V . �

Remark 1: Note that inequality (4) essentially describes

an input-to-state stability bound with respect to the “input”

maxi |θ̇i|, see [18] and [24] for related notions. �

The pseudogradient of the time-varying game (2) is de-

fined by the following vector in R
n:

G(u, θ) := [∇u1φ1(u, θ1),∇u2φ2(u, θ2), . . . ,∇unφn(u, θn)]
⊤
.

where ∇ui
φi(u, θi) stands for the partial derivative of φi

with respect to ui. In this paper, we will consider time-

varying games that satisfy the following assumption.

Assumption 2: The functions φi, h, and G satisfy:

1) For each i ∈ V , the functions φi(·, ·) and h(·) are

continuously differentiable.

2) There exists ℓu > 0 such that

|G(u′, θ)−G(u′′, θ)| ≤ ℓu|u′ − u′′|, (5)

for all u′, u′′ ∈ R
n and all θ ∈ Θ.

3) There exists κ > 0 such that

(

G(u′, θ)−G(u′′, θ)
)⊤

(u′ − u′′) ≥ κ|u′ − u′′|2, (6)

for all u′, u′′ ∈ R
n and all θ ∈ Θ. �



The properties described in Assumption 2 are fairly stan-

dard in the literature on fast (time-invariant) NE seeking [5],

[9], with the difference that in (5) and (6) the parameters

(ℓu, κ) are assumed to hold uniformly in θ.

In some cases, we will also consider the following as-

sumption, which describes the so-called potential games.

Assumption 3: There exists a function P : Rn ×R
n → R

such that:

1) ∇uP (u, θ) = G(u, θ) for all u ∈ R
n and all θ ∈ Θ.

2) There exists ℓθ > 0 such that

|∇θP (u′, θ)−∇θP (u′′, θ)| ≤ ℓθ|u′ − u′′|, (7)

for all u′, u′′ ∈ R
n and all θ ∈ Θ.

The following lemma will be instrumental for our results.

Lemma 1: Suppose that Assumptions 1-2 hold, and let

Π = Π1 ×Π2 × . . .×Πn and Θ = Θ1 ×Θ2 × . . .×Θn be

given by (3). Then, there exist constants mh,mΠ > 0 such

that |Π(θ)| ≤ mΠ and |∇h(θ)| ≤ mh for all θ ∈ Θ. �

IV. FIXED-TIME TRACKING BOUNDS:

THE MODEL-BASED CASE

In this Section, we study tracking bounds for NETs given

by (2) driven by the dynamics (3). We first assume that agents

have access to direct measurements of their gradients ∇ui
φi,

and we defer to Section V the model-free case where only

measurements of φi are available to the agents.

A. Potential Games

When a potential function exists, we consider the fol-

lowing fixed-time pseudogradient dynamics (FxTPG) imple-

mented by the ith player:

u̇i = −ki

2

( ∇ui
φi(u, θi)

|∇ui
φi(u, θi)|α

+
∇ui

φi(u, θi)

|∇ui
φi(u, θi)|−α

)

, (8)

where ki > 0 is the individual learning gain of each agent,

α ∈ [0, 1], and the right-hand side of (8) is defined to be zero

whenever ∇ui
φi(u, θi) = 0. Note that the normalizing term

in (8) is the individual partial derivative of the cost of each

agent, which differentiates (8) from fixed-time gradient flows

studied in the optimization literature [19], [25]. Thus, when

players have access to Oracles that provide measurements

or evaluations of their local gradients, equation (8) can be

implemented in a decentralized way. In fact, when α = 0
system (8) reduces to the standard pseudogradient flow u̇ =
−KG(u, θ) [5], [26], where K = diag([k1, k2, . . . , kn]).

The following result establishes a tracking bound for

system (8) with α = 0. This bound will serve as a benchmark

for the case α > 0. All the proofs are omited due to space

limitations.

Proposition 1: Suppose that Assumptions 1-2 hold, and

α = 0. Then, the dynamics (3) and (8) have the (β0, γ0)-
NET tracking property with

β0(r, s) :=

√

k̄

k
re−

kκ(1−λ)
2 s, γ0(q) := k̃q, (9)

where λ ∈ (0, 1), k̄ = maxi ki, k = mini ki, and k̃ =
2mhk̄

2

λκk3 . �

The exponential ISS bound of Proposition 1 is a tracking-

like result, similar to existing results in the literature of

optimization [10], [11], [27]. Note that in (9), the ISS

gain γ(·) is linear, which implies that the time-variation of

maxi θ̇i is linearly mapped to the residual tracking error.

Since β ∈ KL, it follows that as t → ∞ we obtain

lim sup
t→∞

|u(t)− u∗(t)| ≤ 2mhk̄
2

λk3

(

supt≥0 maxi |θ̇i(t)|
κ

)

.

Thus, asymptotic tracking is achieved if θ̇(t) → 0 as t → ∞.

Next, we consider the case α = 1 in (8). This choice

leads to a discontinuous dynamical system with solutions that

are still well-defined in a generalized sense (in the sense of

Filippov or Krasovskii). In this case, we focus our attention

on potential games.

Proposition 2: Suppose that Assumptions 1-3 hold, α =
1, and the learning gains satisfy

min
i

ki >
ℓθ
√
2n

κ
max

i
|θ̇i|. (10)

Then, the dynamics (3) and (8) have the (β1, γ1)-NET

tracking property with

β1(r, s) := c1 tan
(

max
{

0,−c2s+ arctan
(

c3r
2
α

)})
α
2

,

(11)

and γ1 := 0, where cj > 0, j ∈ {1, 2, 3}. �

The result of Proposition 2 establishes exact tracking of

the NET under the dynamics (8), provided the minimum

gain used by the players is larger than a particular threshold

proportional to the value of the maximum variation of θi
among all players. This result generalizes the fixed-time

convergence results presented in [22] for static NE seeking

problems. However, note that the discontinuity of the vector

field can induce chattering along the NET and also in the

best response set of each player.

The next proposition considers the case when α ∈ (0, 1),
which eliminates the discontinuity on the right-hand side of

system (8).

Proposition 3: Suppose that Assumptions 1-3 hold and

α ∈ (0, 1). Then, the dynamics (3) and (8) have the

(β01, γ01)-NET tracking property with β01 equal to β1 in

(11), and γ01 given by γ01(q) := ρ−1(q), where ρ−1(·) ∈
K∞ is the inverse of the function ρ : R≥0 → R≥0 given by:

ρ(s) := ǫ1s
1−α + ǫ2s

1+α, (12)

with ǫ1, ǫ2 > 0. �

Remark 2: Note that ρ−1(q) ≈ 0 when α → 1 and

|q| < 1. This provides a substantial attenuation of the residual

tracking error of the NET. �



B. Non-Potential Games

We now focus on games that do not have potential

functions, i.e., Assumption 3 does not hold. In this case,

we consider individual NE tracking dynamics normalized by

the complete pseudogradient of the game:

u̇i = −1

2
kiΨ(u, θ, α)∇ui

φi(u, θi), (13)

where the scalar-valued mapping Ψ is defined as

Ψ(u, θ, α) =
1

|G(u, θ)|α + |G(u, θ)|α. (14)

Similar dynamics for time-invariant, non-potential, strongly

monotone games were studied in [22]. In particular, the next

result generalizes [22, Prop. 3] for time-varying games, and

parallels the tracking bound established in Proposition 2.

Proposition 4: Suppose that Assumptions 1-2 hold, α =
1, and the learning gains satisfy

min
i

ki >
d0
√
n

2κa0
max

i
|θ̇i|. (15)

for a given c0, c1 > 0. Then, the dynamics (3) and (13) have

the (β̃1, γ̃1)-NET tracking property with β̃1 given by (11),

and γ̃1 = 0.

Remark 3: The tracking result of Proposition 4 holds for

smooth strongly monotone games that are not necessarily

potential games, which is why the result is not covered

by existing stability results. While the implementation of

the dynamics requires full information of the game via the

pseudogradient G, this information can be estimated in a

distributed way by each agent of the system using multi-

time scale consensus-based techniques. This approach will

be studied in the next section. �

We finish this section with a result that holds for the case

α ∈ (0, 1).

Proposition 5: Suppose that Assumptions 1-2 hold and

α ∈ (0, 1). Then, the dynamics (3) and (13) have the

(β̃01, γ̃01)-NET tracking property with β̃01 of the form (11),

and γ̃01 given by γ̃01(q) := ρ̃−1(q), where ρ̃−1(·) ∈ K∞ is

the inverse of the function ρ̃ : R≥0 → R≥0, which is of the

form (12). �

V. PRACTICAL FIXED-TIME TRACKING

BOUNDS: THE MODEL-FREE CASE

In this section, we leverage Propositions 1-5 to design

model-free implementations of the tracking dynamics studied

in Section IV. In particular, we now consider the scenario

where each player has access only to measurements of

their own cost function φi, and, in some cases, to the

states of other neighboring players Ni characterized by a

communication graph that is assumed to be undirected and

connected. The model-free dynamics aim to emulate the

behavior of the algorithms (8) and (13).

A. Potential Games

To emulate the behavior of system (8), each player imple-

ments the following multi-time scale model-free dynamics:

˙̂ui = −ki

(

ξi

|ξi|α
+

ξi

|ξi|−α

)

, ûi ∈ R, (16a)

ξ̇i =
1

εf
(−ξi + φi(u, θi)Mi(µi)) , ξi ∈ R

n, (16b)

µ̇i =
1

εp
Rκ,iµi, µi ∈ S

1, (16c)

where the right-hand side of (16a) is defined to be zero when

ξi = 0. In (16b), Mi(µi) := 2ε−1
a µi,1, and in (16c) the

matrix Rκ,i is given by Ri = 2π[0, κ̃i;−κ̃i, 0] ∈ R
2×2, i ∈

{1, 2, . . . , n}, with κ̃i > 0. The parameter α still satisfies

α ∈ [0, 1], but now the actions ui of the players are updated

as follows:

ui = ûi + εaµi,1, (17)

The algorithm (16)-(17) is based on ideas of extremum

seeking control [28], [7]. In particular, equation (16c)

describes a dynamic oscillator evolving on the unit cir-

cle S
1, generating periodic dither signals µi,1(t) =

µi,1(0) cos
(

2πt
εp

κ̃i

)

+ µi,2(0) sin
(

2πt
εp

κ̃i

)

, with initial con-

ditions satisfying µi,1(0)
2 + µi,2(0)

2 = 1. We make the

following assumptions on the parameters of (16c).

Assumption 4: For all i ∈ V and j 6= i we have that

κ̃i 6= κ̃j , κ̃i 6= 2κ̃j , κ̃i 6= 3κ̃j . Moreover, κ̃i > 0 is a rational

number. �

In addition to the learning gains ki and the frequencies

κ̃i, the dynamics (16) have three main tunable parameters:

(εa, εf , εp). To simplify the notation we assume that these

parameters are the same for all players, but it is straightfor-

ward to extend our results to dynamics with heterogenous

parameters. The parameter εa corresponds to the amplitude

of the sinusoidal signal added in (17) to ûi. This dither signal

allows players to perform a local exploration of their cost

function in a neighborhood of their current action. The pa-

rameter εp characterizes the time scale of the frequencies of

the dither signals. As εp → 0+, the faster oscillatory behavior

induced by the dither signals will permit the application of

averaging theory to analyze the model-free dynamics. The

parameter εf characterizes the gain of the low pass filter.

When εf is small, this filter will permit a transparent stability

analysis by enabling a clean computation of the average

dynamics of (16a)-(16b) along the solutions of (16c) by

removing from the right-hand side of (16a) any dependence

on µ. �

Remark 4: The rationale behind the dynamics (16) is the

following: as εp → 0+ the dynamic oscillator generates a

sinusoidal signal µi with high frequency. Since this signal

is added to the argument of φi via (17), and since φi is

multiplied again by µi via the mapping Mi in (16b), the

resulting signal φiMi generates an approximation of the

derivative ∂φi

∂ûi
, on compact sets. In turn, as εf → 0+, the

state of the low pass filter (16b) converges exponentially fast



γ(supt≥0max |θ̇i(t)|)

t

u
∗(t)

+ν

Fig. 2: Semi-global practical tracking of a NET t 7→ u∗(t).

to the derivative ∂φi

∂ûi
. It then follows that, as (εf , εa) → 0+,

the dynamics (16a) behave similar to (8) on compact sets

and compact time-domains, with a residual error induced by

the fast stable dynamics (16b)-(16c). These arguments can be

formalized using singular perturbation theory and averaging

theory for perturbed nonsmooth systems to establish a “semi-

global practical” fixed-time stability result for the main state

û. �

The following definition will be used to characterize

the stability and convergence properties of the model-free

dynamics.

Definition 2: The dynamics ( ˙̂u, θ̇, ξ̇, µ̇) are said to have

the semi-global practical (β, γ)-NET tracking property if

∃ β ∈ KL, γ ∈ K∞ such that the following holds: ∀
ki, εo > 0 and ∀ ∆ > ν > 0, ∃ ε∗f > 0, such that ∀
εf ∈ (0, ε∗f ), ∃ ε∗a > 0, such that ∀ εa ∈ (0, ε∗a), ∃ ε∗p > 0
such that ∀ εp ∈ (0, ε∗p), all solutions t 7→ (û, θ, ξ, µ) with

initial conditions satisfying:

|û(0)− u∗(0)| ≤ ∆, |ξ(0)| ≤ ∆, µ(0) ∈ T
n, θ(0) ∈ Θ,

also satisfy the following bound for all t ≥ 0:

|û(t)− u∗(t)| ≤ β(|û(0)− u∗(0)|, t) + γ (εo) + ν, (18)

and lim supt→∞ |ξ(t)| ∈ O(γ(εo) + ν + εa). �

The bound (18) describes a semi-global practical bound

with two residual terms: 1) the term γ(ε0), which gauges the

residual tracking error induced by the variation of θ̇, which is

of order O(ε0); 2) the term ν > 0, which is the residual error

induced by the multi-time scale model-free dynamics. The

bound (18) is related to the notions of semi-global practical

ultimate boundedness and semi-global practical input-to-state

stability [29].

The following Theorem is the first main result of this

paper.

Theorem 1: Suppose that Assumptions 1-4 hold. Then,

the dynamics (3) and (16) have the semi-global practical

(β, γ)-NET tracking property. Moreover, the following holds:

1) If α = 0, then (β, γ) are as given by (9).

2) If α = 1 and (15) holds, then β is as given in (11) and

γ is equal to zero.

3) If α ∈ (0, 1), then β is as given by (11), and γ is the

inverse of (12).

B. Non Potential Games

For non-potential games, we seek to emulate the behavior

of the NE tracking dynamics (13), in a distributed and model-

free way. Thus, we consider the following algorithm:

˙̂ui = −ki

(

ξii

|ξi|α2
+

ξii

|ξ|−α
2

)

, (19a)

ξ̇ij =
1

εf

∑

k∈Ni

(

ξkj − ξij

)

+ bij

(

2

εa
φi(u, θi)Mi(µi)− ξij

)

(19b)

µ̇i =
1

εp
Rκ,iµi, µi ∈ S

1, (19c)

In these dynamics, each player is endowed with three

types of auxiliary states (ûi, ξi, µi), where ξi :=
[ξi1, ξi2, ξi3, . . . , ξiN ]⊤ ∈ R

n is now an individual estimate

of the pseudogradient G. In the consensus mechanism (19b)

the constants bij satisfy bij = 1 if i = j, and bij = 0 for

all i 6= j. Also, as in (16a), the right-hand side of (19a) is

defined to be zero whenever ξ = 0. The individual action

of the players is updated as in (17), and the parameter α

satisfies α ∈ (0, 1].
Remark 5: The NE tracking dynamics (19) follow a simi-

lar rationale as the dynamics (16). Here, the dynamics (19b)

allows players to estimate the overall pseudogradient G in a

distributed way and also on a faster time scale compared to

(19a), parameterized by εf . �

The following Theorem is the second main result of this

paper.

Theorem 2: Suppose that Assumptions 1, 2 and 4 hold.

Then, the dynamics (3) and (19) have the semi-global prac-

tical (β, γ)-NET tracking property. Moreover, the following

holds:

1) If α = 1 and (15) holds, then (β, γ) are as given in

Proposition 4.

2) If α ∈ (0, 1), then (β, γ) are as given by Proposition

5.

VI. NUMERICAL EXAMPLE

To illustrate our theoretical results, we consider a time-

varying duopoly game, similar to the one studied in [5, Sec.

II] for time-invariant games. In a duopoly, two companies

that produce the same good have dominant control over a

market, and compete for profit by controlling their individual

prices ui. The payoffs of the companies are given by Ji =
si(ui − mi), where si is the number of sales of the ith

company, and mi is the marginal cost. The sales si are

modeled as s1 = S − s2 s2 = 1

p
(u1 − u2), where p > 0

is the preference of the consumer for company 1, and S is

the total consumer demand. Given that in problem (2) every

agent minimizes their cost, we define φi = −Ji.

In contrast to [5, Sec. II], we consider time-varying

duopoly games characterized by dynamic demands of the

form S(θ(t)) = 100 + θ(t), where θ(t) = 40 sin(t). This

sinusoidal parameter can be easily generated by a linear

exosystem that satisfies Assumption 1. Note that, in this
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Fig. 3: Evolution in time of the actions of the players via the

model-free NET tracking dynamics, with α = 0 (light color)

and with α = 0.95 (dark color). The dashed black curves

indicate the NET of the time-varying duopoly game.

case it suffices to consider one common parameter θ in both

cost functions. The pseudogradient of the game is given by

G(u, θ) = [−2u1 + u2 + (m1 +S(θ)p),−2u2 + u1 +m2]
⊤,

which satisfies Assumption 2 with ℓu = 3 and κ = 1. This

game also satisfies Assumption 3 since S(θ) appears linearly

in the payoff function. The resulting NET is then given by

u∗
1(t) =

1

3

(

2m1 +m2 + 2pS(θ(t))
)

u∗
2(t) =

1

3

(

m1 + 2m2 + pS(θ(t))
)

.

To track this NET, we implement the decoupled model-free

dynamics (16) with α = 0 (corresponding to [5]) and α =
0.95. The resulting trajectories are shown in Figure 3. The

black dashed line indicates the NET t 7→ u∗(t). It can be

observed that the nonsmooth dynamics (α = 0.95) achieve

much better tracking performance compared to the model-

free pseudogradient flow studied in [5] and corresponding

to α = 0. In all simulations players used the same learning

gains k1 = k2 = 0.2 and also the same frequencies κ̃i and

parameters (εf , εp, εa)

VII. CONCLUSIONS

We studied the tracking problem of Nash equilibrium

trajectories in time-varying non-cooperative games. We char-

acterized different tracking bounds for smooth and nons-

mooth algorithms in potential and non-potential games using

semi-global practical input-to-state stability tools. In the

nonsmooth case, we established semi-global practical fixed-

time ISS, and showed that the ISS gain can dramatically

attenuate the residual tracking error of the algorithms. Future

research directions will focus on incorporating constraints

into the action space of the agents, and designing model-

free NET tracking dynamics using notions of homogeneity.
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[3] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory.

San Diego, CA: Academic Press, 1995.
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