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Abstract—Covariate software reliability models characterize
defect discovery as a function of test activities and related
software metrics. These models also enable more detailed test
activity allocation problems suitable for process improvement.
However, the mathematical and algorithmic knowledge required
to apply these models deters widespread adoption by software
practitioners. This paper presents the C-SFRAT (Covariate
Software Failure and Reliability Assessment Tool), a free and
open source application to promote the adoption of covariate
software reliability models. The tool is extensible, allowing for the
contributions of new hazard functions, goodness-of-fit measures,
and optimization problems. The steps to add a new hazard
function are described. Application of the C-SFRAT to two data
sets from the literature indicates that, in some cases, newly
incorporated hazard functions perform best.
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I. INTRODUCTION

Non-homogeneous Poisson process (NHPP) software relia-
bility growth models (SRGM) [1] were proposed over 40 years
ago to quantify the improvement in software achieved during
testing with defect discovery and resolution. More recently,
covariate models [2] have emerged as an attractive alternative
to NHPP SRGM because they explicitly link test activities to
model parameters, enabling the assessment of alternative activ-
ities and process improvement. Inferences based on covariate
models [3]] have also been developed to enhance the utility
of these models. NHPP models overemphasized progressively
more complex mathematical forms. Without a structured envi-
ronment to balance focus on models and inferences, covariate
models risk similar distrust from the practitioner community.

Previous tools implementing NHPP SRGM, include
(CASRE) [4]] and the Software Failure and Reliability Assess-
ment Tool (SFRAT) [3]. Existing covariate tools [[6] are not ex-
plicitly open source or were implemented on spreadsheets [[7]
without a standalone graphical user interface. Moreover, these
past covariate tools do not implement optimization problems
to guide ongoing software testing, limiting their utility.

This paper presents the Covariate Software Failure and
Reliability Assessment Tool (C-SFRAT), which implements
the model presented in Nagaraju et al. [3] as well as the model
selection and test activity allocation problems introduced there.
The C-SFRAT is open source, enabling the addition of new

hazard functions, goodness-of-fit measures, and optimization
problems. To simplify the inclusion of new hazard functions,
both numerical and symbolic algebra are employed within
model fitting procedures. The C-SFRAT, therefore, encourages
model extensions to improve predictive capabilities as well as
inferences of interest to software practitioners.

This paper is organized as follows: Section |[I] summarizes
the current functionality of the tool and provides a brief outline
of the software architecture. Section [[II] reviews the Discrete
Cox Proportional Hazard NHPP SRGM. Section presents
the hazard functions implemented in the tool. Section
explains how to contribute a hazard function to the C-SFRAT.
Section [VI] describes how maximum likelihood estimation
is performed in the C-SFRAT. Goodness-of-fit measures are
described in Section Section provides illustrative
examples on two data sets from the literature. Section
concludes and identifies future research directions.

II. SOFTWARE ARCHITECTURE

The C-SFRAT has been implemented in Python 3, with
a graphical user interface in PyQtS. The source code
is available from |https://github.com/LanceFiondella/C-
SFRAT. Example data sets [8] have been prepared
in the C-SFRAT input format and can be obtained
from https://Ifiondella.sites.umassd.edu/research/software-
reliabilityl
The primary functions of the C-SFRAT include:
« Displaying model fit and failure intensity plots of selected
hazard function and covariate combinations
o Prediction of future failures and failure intensity based
on a specified testing activity profile
o Comparison of fitted models based on information theo-
retic and predictive goodness-of-fit measures with user-
defined weighting
« Recommendations for test activity allocation to maximize
defect discovery within a specified budget or minimize
the total testing resources required to discover a specified
number of defects.
Figure [1| shows the C-SFRAT architecture.
To start the application, a user executes the file main.py,
located in the root directory of the project. The core direc-
tory contains mathematical functions used for model fitting,
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Fig. 1: C-SFRAT architecture

goodness-of-fit calculations, effort allocation, and prediction.
The datasets directory contains example data sets. The files
in the wui directory define the layout of the graphical user
interface. Hazard functions are defined in the models directory.

III. DISCRETE COX PROPORTIONAL HAZARD NHPP
SRGM

This section describes the discrete Cox proportional hazard
NHPP SRGM [3] implemented in the C-SFRAT.

The mean value function describes the mean number of
defects detected through the n*" interval, denoted by

n

Hn;wﬂ,ﬂ = wzpi,xi;e,ﬁ (1)

i=1
where w > 0 is the number of defects that can be discovered
with indefinite testing.

The discrete Cox proportional hazards model characterizes
the probability that a defect is discovered in interval 7, given
that it was not discovered in the first (: — 1) intervals

i—1

Dix;;0,8 = (1 - (1- h?;s)g(xi?ﬁ)) H(l — hg;e)g(kuﬁ) 2)
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where h 4 is the baseline hazard function possessing param-
eters 0,

9(xi; B) = exp(frxi1 + Baxia + - - + BpTip), 3

the vector x; = (@1, %i2,...,Ti;), ¢ = 1,2,...,n denotes
the amount of effort dedicated to each of the j software test
activities in the i*” testing interval, and 3 are the parameters
corresponding to each of the test activities.

IV. HAZARD FUNCTIONS

This section presents the eight alternative baseline hazard
functions that are currently implemented in the C-SFRAT. The
first three were originally employed in the covariate software
reliability model of Shibata et al. [§]. The remaining five are
taken from the survey by Bracquemond and Gaudoin [9].

1) Geometric (GM) [8)]:
W = @

where b € (0, 1) is the probability of detecting a fault.

2) Negative binomial of order two (NB2) [§]]:
ib?
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where b € (0,1) and 2 indicates the order.

3) Discrete Weibull of order two (DW2) [8]:

2
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where b € (0,1) and 2 indicates the order.

4) Type Il discrete Weibull (DW3) [10]:
hlg=1—ec"" (7

where ¢ > 0 is the scale parameter and b is the shape
parameter. For b > 0 (b < 0), the failure rate is increasing
(decreasing) and setting b = 0 reduces to geometric.

5) “S” distribution (S) [11)]:

hig = p(1 — ") (8)

where p € (0, 1) is the probability of defect removal and 7 €
(0,1) is the probability of a defect eluding detection in the
first testing interval.

6) Truncated logistic (TL) [12], [13]:

1—e
oo = ———== ©)
1+e 4

which truncates the logistic distribution to ¢ > ¢ and d > 0.

7) IFR Salvia and Bollinger (IFR SB) [14]:
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where ¢ € [0,1] and the distribution exhibits an increasing
failure rate.

8) IFR generalized Salvia and Bollinger (IFRGSB) [10]:

c
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which introduces parameter a > 0 to Equation (I0). Setting
a = 1 reduces to Equation (I0), while setting o = 0 simplifies
to the geometric.



V. CONTRIBUTING A HAZARD FUNCTION

This section describes how to contribute a hazard function
to the C-SFRAT, using the Type III discrete Weibull as an
example. Model fitting is performed using the symbolic meth-
ods contained in the SymEngine package, while the numerical
methods are used to evaluate the fitted model after the model
parameters are identified.

After downloading the source code of the project from
GitHub, the contributor works in the models folder shown
in Figure |I} Each file in the models folder defines a unique
hazard function. To add a hazard function, create a new Python
file (.py) within the models folder. For example, the complete
contents of the type III discrete Weibull file discreteWeibull-
Type3.py implementing Equation (7) is shown below.

import math
import symengine
from core.model import Model

class DiscreteWeibullType3 (Model) :

name = "Type III Discrete Weibull"
shortName = "DW3"

beta0 = 0.01

parameterEstimates = (0.1, 0.5)

def hazardSymbolic(self, i, args):
f = 1 - symengine.exp(-args[0] x*
ix*args[1l])
return f

def hazardNumerical (self, i,
f =1 - math.exp(-args[0]
return f

args) :
* ixxargs[1l])

The contributor must import the Model class from
core/model.py, which contains general definitions for the log-
likelihood and mean value functions that can accept any hazard
function with any number of covariates. Therefore, the only
mathematical function that must be specified by the contributor
is the hazard function itself.

To contribute a hazard function, a class must be defined
that inherits from the base Model class. In the example
implementing the type III discrete Weibull hazard function
above, we name the class DiscreteWeibullType3. The name and
shortName properties are required. They are used to display
the hazard function’s name in the graphical user interface. The
name property is displayed on Tab 1 where the user selects
the hazard functions to perform model fitting with and should
be the full name of the model as a string. The shortName
property, shown in tables and plot labels, is a string defining
an abbreviated name for the hazard function. In the example,
the name property is “Type III Discrete Weibull”, the full name
of the hazard function and the shortName is “DW3”.

The beta0 and parameterEstimates properties must be
defined to provide initial estimates for model fitting. The
beta0 property corresponds to the test activity parameters
(B1,B2,-..,0Bp) and should be defined as float. All elements
of the vector 3 use beta0 as an initial estimate. Based on

our experiments, beta0 is set to 0.01 for the example. The
parameterEstimates property is a tuple containing estimates
for the hazard function parameter values as floats. If a hazard
function possesses multiple parameters the contributor may
decide the order of the parameters within the tuple, as long as
this order is used consistently throughout the hazard function
methods. For the example, parameters ¢ and b are the first and
second element of the tuple with values 0.1 and 0.5 respec-
tively. To achieve the best outcome, an individual contributing
a new hazard function should experiment with alternative
initial estimates to determine values that exhibit the best
combination of performance and consistency of convergence
to the maximum likelihood estimate.

As noted above, the hazard function must be defined sym-
bolically and numerically. The symbolic definition enables
generalization to any number of covariates and symbolic dif-
ferentiation prior to model fitting. If the symbolic definition of
the hazard function requires a mathematical function beyond
arithmetic, such as an exponential or logarithm, a method
from the SymEngine package must be used. In the DW3
example, exponentiation is performed with symengine.exp()
rather than math.exp(). If a hazard function does not contain
any advanced mathematical functions, such as GM (Equation
EID, then the hazardSymbolic and hazardNumerical methods
will be the same. The hazardNumerical method is used to
compute numerical values for goodness of fit measures and
graphical plots of fitted models.

When starting, the models/__init__.py file iterates over all
.py files in the models folder. As long as a hazard function
class inherits from the Model class, the hazard function will
be displayed in the tool. The tool will not start if any of the
properties or methods are not defined.

VI. MAXIMUM LIKELIHOOD ESTIMATION

The C-SFRAT estimates the hazard function and other
model parameters according to the maximum likelihood esti-
mation. The likelihood function is the joint distribution of the
covariate data. The general form of the log-likelihood function
implemented in the C-SFRAT is

n n
LL(w,0,8) = —w) pixsep+» viln(w) (12)
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where y; denotes the number of software defects discovered
in the i'" interval.

The log-likelihood function specified in Equation is
reduced from v to (v — 1) parameters by differentiating the
log-likelihood function with respect to w, equating the result
to zero, and solving for w to produce

Z?:1 Yi
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13)



Substituting Equation (I3) into Equation (IZ) produces the
reduced log-likelihood (RLL) function

= —Zyﬂrln(

+ Z Yi In(pix;;0,8) —
i=1

ZZ 1Y )Zyl
’L 1pzx,,9,6

Z In(y;!)
i=1

The maximum likelihood estimates are obtained by solving
the system of equations dgé’: =0 and daLﬁL =0.

C-SFRAT employs the SymEngine package to perform
maximum likelihood estimation with the symbolic imple-
mentation of the reduced log-likelihood function, allowing
symbolic differentiation with respect to each parameter. The
partial derivatives are converted to lambda functions by the
SymEngine lambdify method for evaluation by a numerical
optimization method. The resulting system of equations is
solved using the root method from the SciPy optimize package,
with initial parameter estimates beta0 and parameterEstimates.

RLL(6,

(14)

VII. GOODNESS OF FIT MEASURES

This section summarizes goodness of fit measures to assess
how well a model characterizes a data set, enabling compari-
son of alternative models implemented in the C-SFRAT.

1) Akaike Information Criterion: The AIC quantifies the
tradeoff between model precision and complexity. The AIC of
model 7 is a function of the maximized log-likelihood and the
number of model parameters (v).

AIC; = 2v — 2LL(x;; @, 0, B) (15)
Without loss of generality, model j preserves information

better than model ¢ and is preferred with statistical significance
if AICZ*J = AIC; — AIC] > 2.0.

2) Bayesian Information Criterion: The BIC of model i is
a function of the maximized log-likelihood, number of model
parameters v, and sample size n.
.0, ,@) + vlog(n)

BIC; = —2LL(x;; (16)

3) Sum of Squares Error (SSE): The sum of squares error,
also known as the residual sum of squares, is

n

SSE = (Hiwop—Yi) (17)
i=1
where Y, = Z; 1 y; is the cumulative number of defects

discovered in the first ¢ time intervals.

4) Predictive Sum of Squares Error (PSSE): PSSE com-
pares the predictions of a model with data not used to perform
model fitting.

n
PSSE= Y (Hiwep—Y:)’
i=n—k+1

(18)

where the maximum likelihood estimates of the model param-
eters are determined from the first n — k intervals.

A. Critic Method

In addition to providing multiple goodness of fit measures,
the C-SFRAT provides a simple approach based on the critic
method [3] to select models based on a weighted combination
of one or more measures. Given r models and m measures,
let f; ; be the jth measure of the ith model. Each measure is
assigned a normalized score in the interval (0, 1) according to

fZ,j f7
f; =1 - [
where ff ( f;) denotes the best (worst) value of a measure
j across all models. Thus, s; ; indicates how close the jth
measure of model ¢ is to the ideal and a score of 1 (0) is
the best (worst). C-SFRAT implements two ways to select a
model with the critic method. The first computes the mean of
each model’s normalized scores and recommends the model
possessing the highest mean. The second method recommends
a model base on the median of the normalized scores.

19)

Sij =

VIII. ILLUSTRATIONS

This section applies the Discrete Cox Proportional Hazard
NHPP SRGM to two defect discovery data sets [§]] containing
three covariates. Each of the 8 hazard functions described in
Section was applied to all possible combinations of the
covariates. For each data set, the 8 best-fitting hazard function
and covariate combinations are reported. Plots also show the
best-fitting combinations of hazard function and covariates
along with the underlying data.

Table [I] shows the 8 combinations of hazard function and
covariates that performed best on DS1 with the critic method
according to the median of the normalized scores.

TABLE I: Top 8 best-fitting combinations of hazard function
and covariates for DS1

Hazard Cov. LLF AIC BIC SSE  Critic
NB2 E,F,C -2729 6457 68.74 11.89 1.000
NB2 F -28.80 63.60 66.10 2594 0.995
NB2 E,F -28.05 64.10 67.44 1833 0.988
NB2 F, C -2837 6475 68.08 20.76 0.965
DW2 F -2947 6494 6744 4152 0.957
S F -28.72 6544 6877 23.00 0.940
S E,F,C -27.14 6627 7127 9.18 0.937
DW3 E,F -2823 6646 70.62 2250 0.931

Values in bold indicate the combination of hazard function and
covariates that performed best with respect to the goodness-
of-fit measures included in the critic method. In this case,



the negative binomial of order two (NB2) hazard function
originally proposed by Shibata et al. [§] performed best. The
IFR SB hazard function was excluded because it performed
poorly, skewing the critic method of other models toward 1.0.

Figure [2] shows the number of defects discovered in each
interval as well as the three combinations of hazard function
and covariates that performed best according to Table[I]
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Fig. 3: Defects discovered in each interval of DS2

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

Fig. 2: Defects discovered in each interval of DS1

Table [IIl shows the 8 combinations of hazard function and
covariates that performed best on DS2 with the critic method

according to the median of the normalized scores.

TABLE II: Top 8 best-fitting combinations of hazard

function and covariates for DS2

Hazard Cov. LLF AIC BIC SSE Critic
IFRGSB FE C -22.18 5436 57.56 2517 1.000
GM F C -23.01 5403 56.58 48.63 0.999
GM F -2329 5258 5450 49.61 0.996
S F -23.15 5431 5686 50.69 0.992
TL F -2329 5458 57.14  49.61 0.991
GM C -2433  54.65 5657 4425 0.988
GM E,F -2327 5454 57.10 5424 0981
DW3 F -2343 5485 5741 46.32  0.980

The increasing failure rate generalized Salvia and Bollinger
(IFRGSB) hazard function presented here performed best.

Figure 3] shows the number of defects discovered in each
interval as well as the three combinations of hazard function
and covariates that performed best according to Table

IX. CONCLUSION AND FUTURE RESEARCH

The C-SFRAT is an open source software reliability tool that
implements covariate models and supports the addition of new
hazard functions, goodness-of-fit measures, and optimization
problems. Application of the C-SFRAT to two data sets from
the literature indicated that, in some cases, newly incorporated
hazard functions performed best.
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