A HYBRID MODEL FITTING APPROACH INCORPORATING
PARTICLE SWARM OPTIMIZATION AND STATISTICAL
ALGORITHMS*

VIDHYASHREE NAGARAJU

Tandy School of Computer Science, University of Tulsa, OK, USA
email: vidhyashree-nagaraju@utulsa.edu

LANCE FIONDELLA

Department of Electrical and Computer Engineering
University of Massachusetts Dartmouth, MA, USA
email: lfiondella@umassd.edu

This chapter implements experimental methods that combine the global search properties
of particle swarm optimization (PSO) to obtain a near optimal solution, followed by a nu-
merical or statistical method to obtain a precise optimum. Runtime is explicitly considered
in order to identify the number of iterations and PSO population that converge consistently
while minimizing overall runtime. Experiments are performed in the context of a non-
homogeneous Poisson process (NHPP) software reliability growth model (SRGM).

1. Introduction

Software reliability growth models [1] are fit to time series data associated with
failures experienced during testing in order to predict measures such as the time
required to achieve a desired failure intensity or time between failures. Histori-
cally, numerical algorithms such as Newton’s method were employed, which re-
quired good initial parameter estimates and therefore a high-level of expertise to
apply SRGM. Recent approaches to overcome the instability of classical numer-
ical methods include techniques such as swarm intelligence [2], which exhibits
robust global search. However, these techniques can require significant comput-
ing resources and time to converge to a precise optimum, which is important for
SRGM because some model parameters are very sensitive to accurate estimates
of other parameters. Moreover, most past research applying swarm intelligence

*This material is based upon work supported by the National Science Foundation under grant number
(#1749635). any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Corresponding Author

techniques do not consistently consider the runtime required, yet both stability and
performance are important, especially when an algorithm is to be implemented in
a tool so that nonexperts can apply SRGM quickly and confidently without need-
ing to learn the underlying mathematics. To achieve this pragmatic goal, more
comprehensive methods are needed to assess the consistency of convergence as
well as the runtime of these algorithms.

Among existing swarm intelligence methods, particle swarm optimization [3]
has been identified as a stable and efficient algorithm [4] to identify maxi-
mum likelihood estimates of SRGM [2]. The first application of PSO to NHPP
SRGM [2] was motivated by the efficiency of PSO on related software defect
prediction problems. Subsequent studies applying PSO to identify the MLEs of
traditional NHPP SRGM include [5]. Due to the slower runtime of PSO on more
complex models, studies have also compared PSO runtime with alternative algo-
rithms [6].

Numerical and statistical methods for software reliability model fitting in-
clude the expectation-maximization (EM) algorithm [7] and expectation condi-
tional maximization (ECM) algorithm [8,9]. When initial parameter estimates are
far from the maximum, the EM and ECM algorithms are stable, but can exhibit
slow convergence. To overcome these limitations, this paper implements experi-
mental methods that combine the global search properties of PSO to obtain a near
optimal solution, followed by a numerical or statistical methods to obtain a pre-
cise optimum. Runtime is explicitly considered in order to identify the number of
iterations and PSO population that converge consistently while minimizing over-
all runtime. Experiments are performed in the context of a NHPP SRGM [10].
Our results indicate that a hybrid approach converges more rapidly than either
alternative in isolation.

The remainder of the paper is organized as follows: Section 2 reviews soft-
ware reliability growth models, while Section 3 describes parameter estimation
methods. Section 4 presents a sequence of illustrative examples demonstrating
how particle swarm optimization is combined with traditional methods in a man-
ner to conduct rigorous tradeoff assessment between convergence and runtime.
Section 5 offers conclusions and suggests future research.

2. Nonhomogeneous Poisson Process Software Reliability Growth
Models

This section describes nonhomogeneous Poisson process software reliability
growth models. The NHPP [11] counts the number of events that occur by time
t. In the context of SRGM, this counting process N(¢) corresponds to the number

of unique software defects detected by time ¢. The expected value or average of
the counting process is denoted m(t) := E[N(¢)]. For example, the mean value
function of the Weibull SRGM [10] is

m(t) :a<1—e7"t6) (1)

where a represents the number of faults that would be discovered if the testing
was continued indefinitely, while b and ¢ are the scale and shape parameters re-
spectively. Many models may be expressed in the general form a x F(z), where
F(¢) is a cumulative distribution function (CDF).

The instantaneous failure rate of a SRGM is A(¢) := a’;t(t>. Therefore, the
instantaneous failure rate of the Weibull SRGM is
A1) = abet“ e ")

Given vector of failure times T = (1,1, ...,1,), fitting a model requires the
maximization of the log-likelihood function.

LL(6,a) = —m(t,) + ilog (A(#)) (3)
i=1

3. Parameter Estimation Algorithms

This section discusses techniques to establish initial parameter estimates based
on the expectation maximization algorithm as well as a strategy to combine this
technique with particle swarm optimization. Next, methods to precisely identify
the maximum likelihood estimates of model parameters, including the expectation
conditional maximization algorithm are discussed.

3.1. Initial Parameter Estimates

The EM algorithm [7] provides a calculus-based method to obtain initial estimates
of a model. The initial estimate of parameter a is

a% =p @)
The remaining parameters of the distribution function F(e;0) are computed as
0._y 9
0% =) —I1 ;0)]=0
) 55'02l/(:6)] (5)

where 0 is the zero vector of length ||, the number of parameters to be estimated.
Differentiating the portion of Equation (1) that corresponds to F(¢) produces

S (), which is substituted into Equation (5) to obtain,
p0) — _n (6)

n c?
i=11;

and ¢(©) = 1, where ¢ has been set to the feasible initial value one because Equa-
tion (5) lacks a closed form expression, but 0 =1 simplifies to the special case
of the exponential model. These initial estimates can be used with the ECM al-
gorithm, or any other strategy such as particle swarm optimization to maximize
the log likelihood function. For example, we generate initial positions of particles

uniformly at random in (é 61.(0) ,Q (©

)), where o > 1 is a scaling parameter.

3.2. Particle Swarm Optimization (PSO)

Particle swarm optimization [3] is a computational method to iteratively search an
m-dimensional space for the global optimum of an objective function f(x) such
as a log-likelihood function. Toward this end, PSO maintains a population of |p|
candidate solutions (particles), each of which possesses a position and velocity.
The velocity vector of the i’ particle at discrete time step (z + 1) is

Vit = avi 4 cpvi(pi —x) +cava (g — x1) (7

where v is the velocity vector of the particle i at time step #, p; is the best position
visited by the i"” particle in all time steps up to and including the present time so
that f(p;) > f(p}), while g is the global best position visited by any particle
within the population. Since x; denotes the position of the i"" particle at time step
t, (pi —x!) and (g —x!) are the vectors pointing from a particle’s present position
to the direction of the particle and global best respectively.

3.3. Expectation Conditional Maximization (ECM) Algorithin

The expectation conditional maximization algorithm [8,9] simplifies maximum
likelihood estimation by dividing a single M-step of the EM algorithm [9] into
|6| conditional-maximization (CM) steps. EM algorithms apply |0| update rules
in a single M-step, whereas the CM steps of the ECM algorithm update one pa-
rameter at a time holding the || — 1 other parameters constant at their present
values. This reduces maximum likelihood estimation to a sequence of |6 one-
dimensional problems.
The CM-steps of the Weibull software reliability growth model are [8]
n n

b =—————— ®)

n C,
=1l —

= — ©
1 (log(e) (1= b're")) - i toz)

l_eh/tﬁ

4. Illustrations

This section examines several alternative combinations of algorithms to fit tra-
ditional NHPP software reliability growth models. We first conduct a detailed
analysis in the context of particle swarm optimization, studying the tradeoff be-
tween iterations and population size. In light of this analysis, the runtime perfor-
mance and convergence of model fitting algorithms including and excluding PSO
are compared. Three combinations are considered and each is identified with a
unique numeric value referred to as a Design for the sake of clarity.

All designs utilize the EM algorithm to obtain initial estimates because good
initial estimates often accelerate convergence significantly. Designs I and II rep-
resent cases where a single method is employed, including PSO and the expec-
tation conditional maximization algorithm respectively. Design III employ PSO
followed by the expectation conditional maximization algorithm to assess if the
global search properties of PSO coupled with a numerical method lowers the time
to converge to a near optimal solution.

4.1. PSO Tradeoff Analysis

This example assesses the tradeoff between the number of iterations and number
of particles in the swarm.

The examples are performed in the context of the Weibull software reliability
growth model. Specifically, the PSO algorithm is applied to maximize the log-
likelihood function given in Equation (3), after substituting Equations (1) and (2)
for the mean value function and failure intensity respectively. The SYS1 failure
times data set [1], which consists of n = 136 failures is then substituted in for
t;. The PSO parameters (a, ¢y, and c;) were set to 0.5 and the coefficient for
initial positions () to 2.0 was applied to determine initial estimates a%) = 136,
b =4.04 x 1073, and ¢(¥) = 1.0 from Equations (4)-(6) of the EM algorithm.

4.1.1. Constant Number of Function Evaluations

This section explores the tradeoff between the number of iterations and population
size when the number of function evaluations is held constant at 1,024.

Figure 1 shows the average log-likelihood attained after a specified number
of iterations for populations ranging from 1 to 256, where averages in this and
subsequent experiments were computed from 100 independent runs in order to
illustrate trends more clearly. The x-axis shows the number of iterations on an
exponential scale because smaller populations ran for a greater number of itera-
tions such that p x i = 1024. For example, the lower curve shows the average for

the special case possessing a population of one, in which the particle and global
best are the same. Due to the degenerate size of the population, the single particle
is unable to benefit from sharing across particles in the swarm and was therefore
only able to reach an average log-likelihood value of —973. Similarly, the line
above shows the progress made by a population of two particles over 512 itera-
tions. Thus, the right endpoints of the curves for a population of size one and
size two correspond to a total of 1,024 function evaluations. The population of
two ends on average approximately two points higher, suggesting that increasing
the population and decreasing the number of iterations produces a better result,
despite approximately equal work overall. The curves above these two show the
average performance of populations between 4, and 256, decreasing the number
of iterations in order to hold the number of function evaluations constant.

—p=1
—p=2
“'P=4
"'p=8
p=16
p=32
-+-p=64
--p=128
-976 L L L L p=256

. . |)
1 2 4 8 16 32 64 128 256 512 1024
Iterations

Average log-likelihood

Figure 1.: Tradeoff between iterations and population on average log-likelihood
for fixed number of function evaluations (Design I)

Figure 1 also indicates that the marginal utility between a population of two
and four, measured as the difference in log-likelihood at the right endpoints, is
smaller than the increase when the population is doubled from one to two. More-
over, the marginal utility decreases as the population increases from 2/ to 2/+1,
approaching O as the population increases from 16 to 32. Moving left along the
curves that achieve a near optimum (populations of 16 and greater), we see that
it took approximately eight iterations for the population of 16 to reach an average
log-likelihood of approximately —970, whereas a population of 32 took approxi-
mately 4 iterations. Thus, approximately 128 function evaluations were sufficient
to reach a near optimal value, indicating that 7/8ths of the function evaluations
contributed very little to convergence, but consumed nearly 90% of the compu-

tational power and processing time. Moreover, none of these combinations is
sufficient to consistently achieve the maximum likelihood value of —966.0803,
confirming that PSO may be a good global search method, but that classical opti-
mization techniques must also be employed to reach the maximum.

4.2. PSO+ECM performance

Figure 2 shows the average runtime of Design III. The solid vertical line corre-
sponds to the average time required by the ECM algorithm (Design II).

Average runtime (s) (PSO+ECM)

| | |
1 2 4 8 16 32 64 128 256 512 1024
Iterations

Figure 2.: Average runtime of PSO+ECM (Design IV)

Figure 2 illustrates that most combinations of PSO iterations and population sizes
required more time than Design II, which does not employ a PSO stage. However,
a population of p = 4 particles and eight iterations of PSO followed by the expec-
tation maximization algorithm exhibited an average runtime of 0.7345 seconds,
representing a speedup factor of 1.3 (0.9581/0.7345) over Design II. Figure 2
demonstrates that hybrid designs composed of PSO plus a traditional algorithm
can achieve speedup, but that sensible application of PSO must take the additional
runtime into consideration.

5. Conclusion and Future Work

This chapter combined the global search properties of PSO to obtain a near opti-
mal solution, followed by a statistical method to obtain a precise optimum. Run-
time was considered to identify the number of iterations and PSO population that
converged consistently while minimizing overall runtime. Our results indicate that
a hybrid approach can converge more rapidly than either alternative in isolation

and that the approach may be more suitable for models with additional parameters,
which is a subject of future research.

Bibliography

(1]
(2]

(3]

(4]

(5]

(6]

(7]

8]

(91

(10]

(11]

M. Lyu, editor. Handbook of Software Reliability Engineering. McGraw-Hill, New
York, NY, 1996.

A. Sheta. Reliability growth modeling for software fault detection using particle
swarm optimization. IEEE International Conference on Evolutionary Computation,
pages 3071-3078, 2006.

J. Kennedy and R R. Eberhart. Particle swarm optimization (PSO). IEEE Interna-
tional Conference on Neural Networks, Australia, pages 1942—-1948, 1995.

M. Bonyadi and Z. Michalewicz. Analysis of stability, local convergence, and trans-
formation sensitivity of a variant of the particle swarm optimization algorithm. /[EEE
Transactions on Evolutionary Computation, 20(3):370-385, 2015.

I. Altaf, E. Rashid, J. Dar, and M. Rafiq. Survey on parameter estimation in soft-
ware reliability. IEEE International Conference on Soft Computing Techniques and
Implementations, pages 22-27, 2015.

C.Zheng, X. Liu, S. Huang, and Y. Yao. A parameter estimation method for software
reliability models. Procedia Engineering, 15:3477-3481, 2011.

H. Okamura, Y. Watanabe, and T. Dohi. An iterative scheme for maximum likeli-
hood estimation in software reliability modeling. /EEE International Symposium on
Software Reliability Engineering, pages 246-256, 2003.

V. Nagaraju, L. Fiondella, P. Zeephongsekul, C. Jayasinghe, and T. Wandji. Perfor-
mance optimized expectation conditional maximization algorithms for nonhomoge-
neous Poisson process software reliability models. IEEE Transactions on Reliability,
66(3):722-734, 2017.

P. Zeephongsekul, C. Jayasinghe, L. Fiondella, and V. Nagaraju. Maximum like-
lihood estimation of parameters of NHPP software reliability models using ex-
pectation conditional maximization algorithm./EEE Transactions on Reliability,
65(3):1571-1583, 2016.

S. Yamada and S. Osaki. Reliability growth models for hardware and software sys-
tems based on nonhomogeneous Poisson processes: A survey. Microelectronics Re-
liability, 23(1):91-112, 1983.

S. Ross. Introduction to Probability Models. Academic Press, New York, NY, 8th
edition, 2003.

