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A R T I F I C I A L  I N T E L L I G E N C E

Manipulation for self-Identification, and  
self-Identification for better manipulation
Kaiyu Hang*, Walter G. Bircher, Andrew S. Morgan, Aaron M. Dollar

The process of modeling a series of hand-object parameters is crucial for precise and controllable robotic in-hand 
manipulation because it enables the mapping from the hand’s actuation input to the object’s motion to be ob-
tained. Without assuming that most of these model parameters are known a priori or can be easily estimated by 
sensors, we focus on equipping robots with the ability to actively self-identify necessary model parameters using 
minimal sensing. Here, we derive algorithms, on the basis of the concept of virtual linkage-based representations 
(VLRs), to self-identify the underlying mechanics of hand-object systems via exploratory manipulation actions and 
probabilistic reasoning and, in turn, show that the self-identified VLR can enable the control of precise in-hand ma-
nipulation. To validate our framework, we instantiated the proposed system on a Yale Model O hand without joint 
encoders or tactile sensors. The passive adaptability of the underactuated hand greatly facilitates the self-identification 
process, because they naturally secure stable hand-object interactions during random exploration. Relying solely 
on an in-hand camera, our system can effectively self-identify the VLRs, even when some fingers are replaced with 
novel designs. In addition, we show in-hand manipulation applications of handwriting, marble maze playing, and 
cup stacking to demonstrate the effectiveness of the VLR in precise in-hand manipulation control.

INTRODUCTION
Manipulation is one of the most common actions for robots to phys-
ically interact with the world. As we see an increasing amount of 
real-world applications being deployed in recent years, robotic ma-
nipulation is still a challenging problem that involves many sub-
problems yet to be addressed, such as complex system dynamics, 
multimodal sensing, planning and control, and hardware design, 
particularly for manipulation in unstructured environments (1–3). 
For grasp-based manipulation, numerous tasks can be achieved pure-
ly through arm motions, such as the most common pick-and-place 
tasks. However, relying only on arm motions is often undesirable 
because it can be energy consuming, unsafe in human-centered envi-
ronments, and unnecessarily complicated (4). To this end, another 
dimension of manipulation, in-hand dexterity, has been explored to 
provide smaller-scaled yet more focused manipulation of objects 
using only finger motions (5). This kind of dexterity is used heavily 
by humans, and that human dexterity has inspired a large number 
of robotic hand designs promising more dexterity from the finger 
motions to the objects in-hand reconfigurations (6). However, de-
spite the large number of degrees of freedom featured by many hand 
designs, coordinating multiple fingers to manipulate objects robust-
ly is a complex system-level problem that still remains open (7).

In this work, to effectively capture the sophisticated mechanics 
of in-hand manipulation and, in the meantime, keep it generaliz-
able across various hardware platforms, we propose the concept of 
virtual linkage-based representations (VLRs) to represent contact 
and linkage-based hand-object systems. On the basis of the VLR, 
which can rely on parameters that are not directly accessible, we de-
rive algorithms for the system to self-identify necessary parameters 
through exploratory hand-object interactions and probabilistic rea-
soning and then, in turn, show that the self-identified VLR endows 
the hand with precise control of in-hand manipulation.

Background, challenges, and beyond
As a prerequisite of in-hand manipulation, grasp planning initializes 
the hand-object system with stable contact configurations (8, 9). Al-
though data-driven approaches have gained great success in generating 
grasps (10–12) and maintaining their stability (13, 14) in challenging 
scenarios, analytical methods are still necessary in modeling many 
aspects of grasping, such as optimality and task requirements (15, 16) 
and kinematic and environmental constraints (17–19). Although learn-
ing has been shown to facilitate in-hand manipulation in a number 
of challenging scenarios—such as highly dexterous hands (20), un-
deractuated hands (21, 22), and even contact-rich grasps (23)—the 
learned models usually do not provide precise control and are not 
easily generalizable across platforms or tasks (24). As such, similar 
to grasp planning, analytical approaches are necessary for dexterous 
manipulation to model system dynamics (25–27), to adapt to general 
task requirements (28), and to deal with unseen objects (29). With the 
aim of precise control of in-hand manipulation, we focus this work 
on the analytical side of hand-object systems.

In our previous work (30), we showed that by using four cameras 
to fully observe relevant parameters, we could learn a regression 
model of the hand-object system to directly map from the hand’s ac-
tuation to the object motion. Under the same setup, by additionally 
deriving a model predictive controller, we achieved significant im-
provement of the motion accuracy on the basis of the learned re-
gression model (31). Alternatively, by using only one camera, we 
achieved automatic estimation of hand-object configurations (32) 
by assuming that the hand model, fingertip contact positions, and 
relevant physical properties (e.g., joint stiffness) are known a priori. 
In this work, rather than use methods that require more sensors to 
be incorporated or more prior knowledge to be available, we aim 
to provide an alternative for robots to self-identify necessary hand-
object parameters using minimal sensing. This can be beneficial from 
a variety of perspectives. First, minimizing the number of sensors in 
a system reduces the requirement of calibrations among all system 
components, avoiding non-negligible accumulated errors. Second, 
the alleviated sensing requirement allows more hardware, especially 
low-cost designs, to provide more complex manipulation skills. Third, 
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a self-identifiable system provides not only similar functionality to 
sensor-rich systems but also higher robustness in complex working 
scenarios.

Furthermore, beyond traditional concerns, we consider the pos-
sibility of recovering hands from damages. As illustrated in Fig. 1, 
when a damaged part of a hand has to be replaced while there are 
no identical spare parts available, using a similar but different re-
placement could be a good backup option. Alternatively, even if self-
healing materials can help (33), it is not guaranteed that the robot 
will recover to the same exact embodiment. In either case, if the sys-
tem relies on prior information of the hand design, it will not be able 
to ideally use the recovered hand, because the new embodiments are 
not necessarily known. In this work, we try to recover the hand’s 
capabilities on the basis of the VLR, which can be self-identified to 
enable the hand to use novel part replacements, without necessarily 
having the full knowledge of their embodiments.

Virtual linkage-based representations
Every hand-object system is different. Even for the same object and 
hand, every grasp is different in its contact locations, hand configu-
rations, force distributions, etc., which are essential parameters de-
termining the underlying mechanisms of in-hand manipulation. 
Nonetheless, hand-object systems have many common and invariant 

properties effectively describing the interactions between them, de-
spite the differences in parameter values from case to case. Next, we 
propose to model both hand and object in a unified framework by 
capturing common and essential properties across such systems, in 
terms of kinematic constraints.

Being the case in a variety of dexterous in-hand manipulation 
tasks, we assume fingertip contacts on the object will be maintained 
throughout the entire process. Centered around the contacts, as ex-
emplified in Fig. 2, we can establish virtual linkages between several 
key points in the system. Let us denote by {p1, …, pN} the contact 
points on N fingertips. First, we can create a set of virtual links be-
tween all contacts to geometrically represent the constraints between 
the fingers; i.e., the grasp has to be maintained. Second, suppose that 
we are interested in controlling the motion of a point on the object, 
pobj ∈ SE(3), termed as point of manipulation (POM). An additional 
set of links can be made between the POM and all contacts. Formally, 
these links are written as

	​​ E​​ C​  =  {​ ̄  ​p​ i​​ ​p​ j​​​ ∣ ​p​ i​​, ​p​ j​​  ∈  {​p​ 1​​, … , ​p​ N​​, ​p​​ obj​}∧ i  ≠  j}​	 (1)

Moreover, starting from each contact, we can make virtual links 
to sequentially connect the joints in that finger toward the base joint

	​​ E​i​ 
J​  =  {​ ̄  ​q​i​ 

K​ ​p​ i​​​} ∪  {​ ̄  ​q​i​ 
k​, ​q​i​ 

k+1​​ ∣ k  ≤  K − 1}​	 (2)

where ​​q​i​ 
k​  ∈ ​ ℝ​​ 3​​ is the kth joint, k = 1, …, K, of the ith finger, indexed 

from ​​q​i​ 
1​​ being the base joint.

Figure 2 shows an example of these virtual linkages with three 
fingers and two joints per finger. Assuming that the fingertip con-
tact locations are fixed under local motions, all virtual links, there-
fore, can be considered rigid with constant lengths. As such, the 
angle configuration of the virtual links ​​E​​ J​  = ​ ∪​ i​​ ​E​i​ 

J​​, which are em-
bedded in the fingers, will uniquely describe the motion of POM via 
simple forward kinematics. Let J be the joint configuration of EJ, we 
define VLRs for such systems as

	​ VLR  =  (​E​​ C​ ∪ ​E​​ J​, ​​​ J​)​	 (3)

which is a linkage-based kinematic representation and effective-
ly models the formation and underlying mechanisms of in-hand 

Fig. 1. A robot has broken its finger and needs to replace it with a new one. In 
some scenarios, the replacement is not same as the original. Using our proposed 
VLRs, the robot can pick any replacement candidate and self-identify it via explor-
atory interactive actions.

A B C

Fig. 2. An example of VLRs. (A) A pear is grasped by a robotic hand. The VLRs are 
constructed by virtual linkages between the hand joints, contacts, and the POM on 
the object. VLR 1 (magenta) is an accurate model, whereas VLR 2 (yellow) is inaccu-
rate, exhibiting erroneous contact locations on the fingertips. (B) Given the same 
actuation input, an inaccurate VLR will directly cause errors in modeling system 
motions. (C) The hand-object kinematics can be purely represented by the VLRs, 
without modeling the geometry of the hand or the object.
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manipulation. Different from most traditional approaches, when the 
fingertip contacts are stable on the object, this representation does 
not rely on any geometrical information of the hand or the object 
to describe the system motion; see Fig. 2C.

Note that, as depicted in Fig.  2, VLR is a contact-centered 
representation—the precision of contact locations is crucial for the 
model to correctly reflect the physical system (Fig. 2B). This fact 
poses several major challenges for this representation to be useful. 
First, to generalize VLRs to various platforms, we need to enable the 
system to estimate the contact locations without assuming that 
there are sensors directly providing this information. Furthermore, 
although we assume the contacts are fixed under local motions, we 
should be aware that the contacts do vary when small local motions 
accumulate over time, in the forms of rolling or sliding. Thus, the 
second challenge is that we have to be able to update the virtual links 
and joint configurations of the VLR, to ensure it always reflects the 
true underlying mechanism of the hand-object system over time. 
Third, because the angle configurations of the distal virtual joints 
are contact-dependent, they are different from the joint configura-
tion of the physical hand and hence cannot be directly acquired 
even if there are joint encoders. Last, beyond traditional concerns, 
an extra challenge is how to recover hands by replacing damaged 
parts. On the basis of the VLR, we will next introduce how these 
challenges can be addressed with self-identification.

Self-identification
System identification is often required in the development of math-
ematical models for dynamical systems. On different complexity lev-
els, when the entire or part of the system mechanism, or some of the 
model parameters, are infeasible to be directly derived or acquired, 
system identification aims at modeling and analyzing the relation-
ship between the system inputs and outputs to obtain high-fidelity 
approximations, which can be then used to control the system with-
out fully investigating the underlying dynamics or interworkings of 
the system (34, 35). Because of the nonlinear and stochastic nature of 
many real-world systems, probabilistic filters have been often adopted 
as a major methodology to provide generalizable and robust estima-
tions (36–38). For robotic systems that must operate autonomously, 
especially in uncertain environments, automatic system identifica-
tion is often required and relies heavily on the notion of self.

Self-modeling, self-recognition, or sometimes called self-
identification loosely and on different levels refer to the processes 
where the robot reasons about the existence of its own embodiment, 
the mapping from its motor behaviors to its embodiment move-
ments, and how its motions interact with the world. Being a core 
component of such procedures, interactive perception is often re-
quired for the robot to perceive and analyze itself and the world re-
sulted from its own actions (39, 40). Along this process, a robot can 
iteratively figure out its own embodiments, its mirror reflections, its 
kinematic structures, and even motor behaviors (41–43). In addition, 
by incorporating external objects into the model, interactive per-
ception can further facilitate hand-object configuration estimation 
(32, 44, 45), object segmentation (46), grasp planning (47), manip-
ulation skill learning (48), haptic property estimation (49), and even 
the estimation of complex articulated models (50). Next, on the basis 
of the proposed VLR, we explain how to achieve self-identification 
of hand-object systems using interactive perception.

For in-hand manipulation, the VLR alone is merely a kinematic 
description and not sufficient for modeling the control. We need to 

incorporate necessary physical properties, denoted by , into the 
model, so as to eventually establish the mapping from the hand’s ac-
tuation input to the object’s motion, which in its general form can be 
written as

	​  : (​​ t−1​​, ​u​ t​​ ) ↦ ​ ​ t​​​	 (4)

where (⋅) is the system motion function; t = (VLRt, t) is the 
system configuration, in terms of both kinematics and physics, at 
time t; and ut is the actuation input at time t. In practice, depending 
on the hardware platform,  can include friction coefficients, joint 
torque limits, and object weight, as needed for describing the 
hand-object dynamics. Similar to the problem with VLRs, it is pos-
sible that there are parameters in  not directly available. There-
fore, to control the hand-object system in the form of Eq. 4, the 
robot needs to self-identify both the VLR and .

Algorithm 1. Self-identification by particle filtering
Input: Ξt − 1, ut
Output: Ξt

1: for each ​​​t−1​ i  ​  ∈ ​ Ξ​ t−1​​​ do
2:  ​​​t​ 

i ​  ←  (​​t−1​ i  ​, ​u​ t​​)​ 		            ⊳Move particle forward
3:  ​(​​t​ 

i ​, ​​t​ 
i ​ ) ←  (​​t​ 

i ​)​ 		  ⊳Predict particle’s observation
4:  ​(​​t​ 

*​, ​​t​ 
*​ ) ←  Sensors . Get()​ 		    ⊳Read real sensors

5:  ​​​​ i​  ←  Importance(∥(​​t​ 
i ​, ​​t​ 

i ​ ) − (​​t​ 
*​, ​​t​ 

*​ ) ∥)​ 	 ⊳Particle importance
6: end for
7: Ξt ← Resample(Ξt − 1 ∝ {i}) 	 ⊳Importance resampling
8: return Ξt
To this end, let us assume that the pose of the POM,  ∈ SE(3), 

can be directly observed because it is the point being manipulated. 
Moreover, if additional sensors are available to estimate other pa-
rameters of the system—such as joint torque sensors, encoders, or 
tactile sensors—we assume that there is a function mapping the VLR 
and  to their expected corresponding sensor readings

	​  : ​​ t​​  ↦  (​​ t​​, ​​ t​​)​	 (5)

where t denotes all observations from extra sensors. Note that extra 
sensors are not required in our framework and can be left out if not 
available or if the mapping in Eq. 5 cannot be formulated. Basically, 
this mapping requires the system to be able to predict its sensor 
readings in terms of the system configuration. For example, a tactile 
sensor’s output can be predicted if the contact location and the force 
exerted on it can be calculated from the system configuration.

We can now formalize self-identification of the hand-object sys-
tem into a particle filtering framework, which is a form of sequen-
tial importance resampling (51). To figure out the unknowns in the 
VLR and , the hand will execute exploratory interactions with the 
object despite not being fully controlled and, along the process, esti-
mate the unknowns from the observations. Denoted by ​​​t​ 

i ​​, a hypoth-
esis of the system configuration at time t, this process is initialized 
by generating a set of M hypotheses (particles), ​​Ξ​ 0​​  =  {​​0​ 1​, … , ​​0​ M​}​, to 
construct a distribution that covers the true system configuration 
​​​t​ 

*​  =  (​VLR​t​ 
*​, ​​t​ 

*​)​. Note that, although a conservative initialization, e.g., 
a wide distribution, can ensure the coverage of ​​​t​ 

*​​, it is not preferred 
because it can negatively affect the estimation accuracy. Because the 
number of particles is always limited by the computational resources, 
a good initialization should provide a focused distribution around 
the true system configuration ​​​t​ 

*​​ with a relatively higher particle 
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density (52). In practice, if the hypothesis set is incorrectly initialized, 
the filter will fail, and the only way to correct it is to reinitialize (53).

Thereafter, at every time step t − 1, the system will reconfigure 
with an actuation input ut and will observe the true sensor outputs ​
(​​t​ 

*​, ​​t​ 
*​)​. Meanwhile, every hypothesis ​​​t−1​ i  ​  ∈ ​ Ξ​ t−1​​​ will be moved for-

ward to ​​​t​ 
i ​​ via the system motion function Eq. 4, and the sensor read-

ings of each hypothesis, ​(​​t​ 
i ​, ​​t​ 

i ​)​, are in turn predicted by Eq. 5. On 
the basis of the difference between the true sensor readings ​(​​t​ 

*​, ​​t​ 
*​)​ 

and predicted readings ​(​​t​ 
i ​, ​​t​ 

i ​)​, the likelihood i (importance) of each 
​​​t​ 

i ​​ can be calculated, and the particles in Ξt are resampled with prob-
abilities proportional to their importance values.

Iteratively, because the false hypotheses in the distribution tend 
to make incorrect predictions of the sensor readings, they would be 
associated with lower importance values and become less likely to get 
resampled. Eventually, as we keep the size of the hypothesis set, the 
false particles will be filtered out, and the mean ∣Ξt∣ of the hypoth-
esis set will converge toward ​​​t​ 

*​​ (54). One iteration of this procedure 
is summarized in Algorithm 1. Upon convergence, the unknowns 
in both the VLR and  are self-identified, and the system will be 
able to use them for manipulation control based on the system mo-
tion function Eq. 4.

RESULTS
To evaluate and challenge the VLR and its self-identification, we, in 
this work, instantiated the proposed system on a Yale Model O un-
deractuated hand (55). As shown in Fig. 3, this hand has three fin-
gers, with an abduction joint between the left finger and the right 
finger. Each finger has two spring-loaded joints, actuated by only one 
motor through a tendon. While the tendon length is changed by the 
motor actions, the joints are reconfigured accordingly with compli-
ance provided by the springs in each joint.

To avoid the need for perception from external devices and extra 
calibration, we mounted only an in-hand camera to observe the mo-
tion of the POM. As such, different from the example in Fig. 2 where 
the POM is on top of the object, the POM for our hand-object systems 

is defined as a point at the bottom of the grasped object, observed 
via an AprilTag tracker (56). Note that the tag-based POM tracking 
can be replaced by other vision-based approaches. In addition, as 
shown in Fig. 3, to collect ground truth information, such as joint 
configurations, there is an AprilTag attached at the back of each 
fingertip. These extra tags are observed by calibrated external cam-
eras and are only used for evaluation purposes.

For achieving dexterous in-hand manipulation using the proposed 
VLR, this hand is challenged by three facts: (i) The hand is not able 
to directly obtain its joint configuration because of the lack of en-
coders; (ii) it is difficult to acquire contact information, such as lo-
cations, because there are no tactile sensors; and (iii) the hand is 
underactuated and does not have individual control over each joint. 
Next, we apply the proposed approach to address these challenges 
by self-identifying the kinematic VLR and some physical properties 
. On the basis of the self-identified VLR, we show its in-hand ma-
nipulation ability in various real-world tasks. Last, to enable the hand 
to recover from damages, we evaluate how it can self-identify its 
VLR with novel finger replacements. In this work, the system was 
implemented in Python on a machine with Ubuntu 16.04 running on 
an AMD Ryzen Threadripper 1950X 16-core processor, which allows 
us to parallelize the self-identification procedure using 32 threads. 
In all experiments, 60,000 was set as the number of particles, and 
every iteration of the self-identification took about 6 s. Because every 
particle is independently processed (see Algorithm 1), the run time 
of each iteration is about proportional to the number of particles.

Self-identification of model parameters
In the first experiment, we assume that the hand model is fully known, 
including its geometry, kinematics, and all relevant physical prop-
erties. Our task is to establish the VLR for our hand-object system 
using limited sensing resources. According to the definitions in Eqs. 1 
to 3, because the pose of the POM is directly observed by the in-hand 
camera and the finger link lengths are known, there are two param-
eters to be self-identified for the VLR: the contact locations and the 
joint configuration J of the virtual links.

Note that the VLR is a linkage-based 
representation—the contact locations can 
be directly obtained from forward kine-
matics if we can acquire relevant linkage 
properties, such as the link lengths and 
joint configurations. Therefore, in our 
implementation, instead of explicitly 
modeling the contact locations into self-
identification hypotheses, the self-
identification procedure will estimate 
the joint configuration J, and the virtual 
link lengths, to indirectly identify con-
tact locations.

First, for an unknown hand-object 
system, self-identification was initialized 
by generating a set of random hypotheses 
representing a distribution of the un-
known joint configurations and virtual 
links. An example is shown in Fig. 4A. At 
the beginning (iteration = 0), the hy-
pothesized virtual links EJ, depicted by 
magenta lines, were distributed wide-
ly to ensure that the true model was 

A B

C

Fig. 3. Experimental setup. (A) The hand-object system instantiated on a Yale Model O hand. The hand is calibrated 
with three side cameras, which are used for tracking the AprilTags on the back of fingertips to collect ground truth 
data. (B) The underactuated mechanism of each finger. (C) Five test objects from the YCB dataset (58): apple (#13), 
wine glass (#23), toy block (#73), flat screwdriver (#44), and gelatin box (#9).
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contained. The blue cylinders mark the joints connecting each pair 
of sampled proximal and distal virtual links. Because the hand’s ge-
ometry is known, all sampled virtual proximal links had the same 
length; thus, the hypothesized distal virtual joints (blue) of each fin-
ger were distributed along an arc of the same radius. However, by 
definition, the length of a distal virtual link is determined by the 
contact locations on the fingertips; its length can actually vary as the 
contact location changes. Therefore, the hypothesized virtual distal 
links were initially sampled with different lengths in a range, to 
make sure that the true contact locations were included in the 
sampled EJ. In the figure, the yellow points depict the contact loca-
tions estimated by averaging all sampled EJ. On the basis of the esti-
mated contacts, a complete estimation model of the VLR, although 
inaccurate at the beginning, can be established by making additional 
virtual links EC between the contacts and the POM.

After initialization, following Algorithm 1, the hand has to in-
teract with the object via exploratory actions, so as to iteratively fil-
ter out the false hypotheses. Fortunately, because the hand adopted 

in our experiment can passively guar-
antee stability (55), our hand-object 
system was explored simply by random 
actions sampled in a small range. After 
each action, all the hypothesized VLR 
models were moved forward by the 
motion function Eq. 4, and their corre-
sponding sensor outputs were predicted 
by Eq. 5. Meanwhile, the true motion of 
the POM was observed by the in-hand 
camera and compared with the predic-
tions to obtain the importance of each 
hypothesis, and then the distribution 
was resampled. Iteratively, false hypoth-
eses were removed from the distribu-
tion, and the self-identification finally 
converged at iteration 12. In our imple-
mentation, convergence is defined by a 
threshold on the average of the 95% 
confidence intervals of the joint angles, 
which was set to 2° in all experiments. 
Note that, although the motion function 
Eq. 4 assumes fixed contacts under local 
motions, the contact changes cannot 
be prevented through the manipulation. 
Fortunately, because the system maintains 
a distribution of contacts represented 
by the set of hypotheses, the contact 
locations are updated and tracked over 
iterations.

To quantitatively evaluate the per-
formance of self-identification, we have 
attached an AprilTag to the back of 
each fingertip. On the basis of the tag 
readings and inverse kinematics, we were 
able to calculate the ground truth joint 
angles of all proximal joints. However, 
because the angles of distal joints are 
determined by unknown contact loca-
tions, it was impossible to collect ground 
truth for their angles. Figure 4C shows 

an example record of the self-identified angles of all proximal joints 
against their ground truth over 12 iterations. At iteration 0, we can 
see that the estimations were off from the truth and that the confi-
dence intervals were large. As the self-identification iterates, the 
estimates converge toward the truth, and the confidence intervals 
shrink, implying that the system was able to precisely self-identify 
and track the angles. Because the Yale Model O hand is nonredun-
dant, this indicates that the self-identification of other joint angles 
and contact locations was also accurate; otherwise, it would have 
been impossible to only accurately estimate the proximal joint an-
gles. We repeated this experiment five times on each of the four 
objects shown in Fig. 4. Because VLRs do not rely on geometrical 
information of the object, the objects were just arbitrarily grasped 
by the hand without any prior shape information. Statistically, the 
estimation errors averaged 1.78∘ ± 0.92∘, and the self-identification 
process took 15.1 ± 3.6 iterations to converge. Here and hereaf-
ter, all statistical results in this work are reported in the form of 
mean ± SD.
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Fig. 4. Self-identification of VLR. (A) An example record of the self-identification process with an apple object at 
iteration 0, 7, and 12. The magenta lines represent the hypothesized virtual links EJ of different joint configurations, 
and the blue cylinders indicate the joints of the hypothesized virtual links. The yellow points mark the estimated 
contact locations, and the red lines represent the estimated virtual links EC (Eq. 1). (B) Self-identification examples of 
the wine glass, gelatin box, and flat screwdriver converged at iterations 12, 10, and 21, respectively. (C) An example 
self-identification process recorded for the angles of proximal joints. The shaded areas show the 95% confidence in-
terval, and the dashed lines mark the ground truth.
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In addition to purely self-identifying the kinematic VLR, we fur-
ther challenged our system by introducing uncertainties into the 
physical properties . For the adopted underactuated hand, one 
crucial physical parameter is its joint stiffness, which affects the 
share of workloads across the joints and determines the hand con-
figuration; see Fig. 3. As such, we replaced the spring of the distal 
joint in the thumb with a novel spring and tried to self-identify both 
the VLR and the stiffness of that joint simultaneously. For this, in 
addition to sampling joint angles and the lengths of virtual links, the 
hypothesis set also included a distribution of the joint stiffness. Because 
this extra variable directly affects the output of the motion function 
Eq. 4, it can be self-identified in the same manner as the VLR. An 
example record of this experiment is shown in Fig. 5. On average, 
our experiments reported a precision of 0.0026 ± 0.0012 N⋅m/rad 
over five repeated trials.

In-hand manipulation
Once the VLR and physical properties  have been self-identified, 
the hand-object system will be able to use the motion function Eq. 4 
to explicitly map the system actuation inputs to the motion of the 
POM. On another hand, as will be described later, this mapping can 
be inversed for the system to plan and control the manipulation; i.e., 
given a desired motion trajectory of the POM, the system determines 
the actuation inputs to achieve it. For testing how the VLR-based 
in-hand manipulation performs under different task requirements, 
we designed three experiments to evaluate its capability in terms of 
position control in ℝ3, orientation control in SO(3), and full pose 
control in SE(3).

For evaluating position control, the hand was initialized with a 
grasp on the apple object, followed by the iterations of self-identification 
to acquire the VLR model. Thereafter, on the basis of the VLR, 
the hand was positionally controlled to translate the POM through 
predefined waypoints, without any imposed orientation constraints. 
As shown in Fig. 6A, by traveling through the waypoints, the 
hand-object system completed a task of writing a seven-letter 
English word at the bottom of the object. The maximum scale of 
the English letters was 12  mm in both horizontal and vertical 

directions, and the accuracy of our VLR-based position control 
averaged 0.42 ± 0.34 mm. In another task, Fig. 6B, the hand was 
tasked to play a marble maze. Initially, the maze was grasped by the 
hand without a marble in it. Once the VLR was self-identified, we 
placed the marble into the maze; controlled the orientations, which 
were precalculated, of the maze to move the marble through the 
desired path; and finally solved it. In this process, there was not any 
positional requirement imposed, and the orientation control re-
ported a precision of 1.20∘ ± 1.38∘.

Last, we designed a cup-stacking task to evaluate the in-hand 
manipulation with respect to the control in SE(3). As shown in 
Fig. 7, the start configuration of this task has five cups on the table, 
and the goal is to pick up four of them in the order of decreasing size 
and finally stack them into the target blue cup. To make this task 
more challenging, we randomized each grasp by tilting the object 
placement with another small object underneath and commanded 
the hand to always grasp the cups by approaching them vertically 
with respect to the table. As such, the objects were all grasped with 
unknown poses, and the hand had to manipulate them to align in 
both position and orientation, to successfully stack them. However, 
because the hand is underactuated, it was not possible to inde-
pendently control the six dimensions in SE(3) at the same time to 
perfectly align the cups. In our implementation, we weighted the 
controlled dimensions and prioritized the rotational dimensions as 
necessary. Therefore, the performance in this task was not as good 
as the above experiments, achieving a positional accuracy of 2.1 ± 
0.92 mm and a rotational accuracy of 5.16∘ ± 1.83∘.

Hand recovery with novel designs
So far, we have always assumed that the hand geometry and kine-
matics are known. As previously mentioned and as depicted in 
Fig. 1, we also would like to recover damaged hands, particularly by 
replacing the damaged parts. However, in practice, it is possible that 
the available replacements are different from the original design. In 
this case, it would be beneficial if the hand-object system can still 
establish its VLR, with the help of self-identification. For this, we 
designed an experiment that assumed that there were one, two, and 

three fingers broken and needed re-
placement. To make it challenging, we 
provided three finger replacements of 
very different geometries. As shown in 
Fig. 8A, the available replacements are 
different in both lengths and geome-
tries. However, we assumed that they 
have the same kinematic structure as the 
original finger, i.e., each finger has two 
spring-loaded joints, actuated by only 
one motor through a tendon.

To this end, in addition to the pa-
rameters already included in the previ-
ous hypothesis set, the system needs to 
initialize and maintain an extra distri-
bution of unknown virtual link lengths, 
which also have to be self-identified to 
establish the VLR. On another hand, to 
optimize computational resource usage, 
if some parameters are already known 
to the system, e.g., the lengths of the 
original fingers or the stiffness of the 
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Fig. 5. Self-identification of both VLR and joint stiffness. (A) A record of the self-identification process with the toy 
block object. The colors for visualization are the same as in Fig. 4. (B) The self-identification process recorded for the 
stiffness of the distal joint in the thumb. The shaded area shows the 95% confidence interval, and the dashed line 
marks the ground truth.
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original joints, those parameters are not being represented by the 
hypotheses distribution. An example is shown in Fig. 8C, in which 
the thumb of the hand was replaced with the novel finger NF1. At 
iteration 0 of self-identification, we can see that the hypotheses of 
NF1’s distal joint (blue) were distributed in a cloud, rather than 
along an arc of known radius, indicating the length of the proximal 
link was also being self-identified. Last at iteration 17, in addition to 
the contact locations and joint configurations, the length of NF1’s 
proximal link was also self-identified. This can be seen by the hy-
potheses of its distal joint (blue), which eventually converged to the 
same point at iteration 17.

We further challenged our system by replacing more fingers 
with novel shapes; see Fig. 8D. Again, without knowing the geome-
tries of the replacements, the VLRs were successfully self-identified 
using the same framework. By definition, because the proximal vir-
tual links have the same lengths as their corresponding physical 
links, we were able to evaluate the precision of its self-identification 
against the ground truth. One example is shown in Fig. 8E, which 
was recorded during one run on the Novel Hand 3 (NH3). We re-
peated this test five times on each novel hand, and the precision of 
link length estimation for each hand was 2.4 ± 2.1 mm (NH1), 2.9 ± 
1.7 mm (NH2), and 3.4 ± 2.3 mm (NH3), respectively. We can see 
that the precision was decreasing as the number of novel fingers 
increased. However, comparing with the ground truth lengths of 

these three links, which are 40, 50, and 
50 mm, respectively, these errors are 
considered in an acceptable range for 
in-hand manipulation. In addition, us-
ing the ground truth tags on the back of 
the fingertips, the precision of joint 
configuration estimation was evaluated 
to be 2.58∘ ± 1.20∘ (NH1), 3.04∘ ± 1.49∘ 
(NH2), and 3.21∘ ± 1.26∘ (NH3), which 
were all a little worse than when the 
hand model was fully known. Because the 
dimensionality of the self-identification 
framework is proportional to the num-
ber of unknown parameters, the de-
crease of the system performance is 
attributed to the limited number of parti-
cles. Because of the computational com-
plexity involved, it is infeasible to 
always increase the number of particles 
to accommodate more unknown pa-
rameters. Therefore, the granularity of 
the estimation would decrease when the 
system’s dimensionality increases, such 
as by introducing novel finger replace-
ments or increasing the number of links 
in fingers.

Despite more unknowns being in-
volved, because the lengths of novel vir-
tual links, joint configurations, and 
contact locations were self-identified, 
we can see that the VLRs can be estab-
lished for the novel hands under the 
same framework. This shows that our 
system provides the possibility for hand 
recovery when some parts, e.g., fingers, 

have to be replaced by novel designs. On the basis of the self-identified 
VLR, a novel hand will be able to manipulate the object with precise 
control, in the same way as if the hand model was fully known.

DISCUSSION
We have shown that the VLR representation can be self-identified 
and that it can be used to precisely control in-hand manipulation 
through challenging tasks. In particular, because self-identification 
seeks to estimate the VLR by actively figuring out the mapping from 
actuation to the system’s motion, it is able to estimate the underlying 
system parameters with very limited sensing capability. For example, 
in our experiments, we show that the system can self-identify its joint 
configuration, contact locations, and even novel finger replacements 
using only an in-hand camera. Because the VLR is a virtual linkage-
based representation, it does not constrain itself to particular kine-
matic structures or actuation types. For example, although our 
experiments were conducted only with a three-fingered hand, VLRs 
can be constructed with more fingers or more joints in each finger.

To successfully deploy the proposed approach in various scenarios, 
we next discuss some important aspects for implementation in 
practice, as well as the limitations of our system. Moreover, we ex-
pand our discussion by looking into other potential applications of 
our approach, in addition to hand-object systems.

Fig. 6. In-hand manipulation applications based on VLR and self-identification. (A) The POM of the object was 
controlled to move through waypoints to write the English letters: S, C, I, E, N, C, E. (B) The hand played a marble 
(green) maze by controlling the orientation of the POM. Complete videos of these experiments can be found in 
movie S1.

Fig. 7. A cup-stacking task requiring the hand to align both the position and the orientation of cups. The hand 
was installed on an arm; the task was to pick up all cups from the table and stack them into the target blue cup. At the 
bottom of each cup, there was an AprilTag for the in-hand camera to observe the POM.
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Stability of exploratory interactions
As previously mentioned, self-identification is based on the more 
general concept of interactive perception. For this, the hand needs 
to actively interact with the object, so as to iteratively collect infor-
mation and estimate the unknown parameters. In this process, it is 
crucial to guarantee that the interactions will not break the system 
formation; i.e., the object has to be stably grasped. In our experi-
ments, although it was challenging to use an underactuated hand 
without any encoders or tactile sensors, we could take the advantage 
of underactuation to passively guarantee the stability and simply 
execute random actions for exploratory interactions.

However, in practice, this is not a common benefit for most other 
hands. For example, most fully actuated robotic hands will have to 
require active stabilization. It is worthwhile noting that, even for fully 
actuated hands, there will still be many unknown parameters, such as 
the exact contact positions, joint stiffness, and novel links. In such cases, 
before the self-identification process is finished, the system cannot be 
accurately controlled for explicitly providing stable hand-object con-
figurations. To enable exploratory interactions, a potential solution is to 
mimic underactuation by introducing compliance into the grasp control-
ler. For example, based on tactile or joint torque feedback, an impedance 
controller can be implemented to actively adjust contact forces (13).

Observation function and sensing modalities
Once stability is guaranteed, the system will make use of available 
sensing modalities to compare its observations against the predictions 
made by the VLR hypotheses, so as to iteratively filter out those 

that are unlikely. In our experiments, 
being the minimal sensing requirement, we 
used only an in-hand camera to track the 
motion of the POM. This was challeng-
ing because there was limited information 
directly available about the hand-object 
configuration, even the hand joint con-
figuration had to be self-identified. In 
practice, this can be substantially im-
proved if more sensors become avail-
able, because we can potentially obtain 
more evidence to reason about the like-
lihoods of VLR hypotheses using Eq. 5. 
We observed from the experiments that, 
as the number of unknowns in the VLR 
increased, e.g., when joint stiffness or link 
lengths were unknown, the accuracy of 
self-identification accordingly decreased. 
This was a result of the decreased sam-
pling resolution. Because the core of self-
identification is particle filtering, more 
unknowns will increase the dimension-
ality of the hypothesis, which, in turn, 
requires exponentially more particles to 
be sampled to achieve the same sampling 
resolution. In practice, limited by the 
computational power, it is not always 
possible to increase the number of par-
ticles. However, again, if there were more 
sensors, the number of unknowns can be 
decreased, and the hypothesis set can be 
distributed such that it can focus more 

on necessary dimensions with higher sampling resolution.
On another hand, having more sensing modalities can raise new 

challenges at the same time. Under a system configuration, one has 
to formulate all adopted sensing into the observation function Eq. 5, 
which potentially depends on other unknown information. For ex-
ample, assuming we use a hand that has no fingertip tactile sensors 
but torque sensors in all its joints. For deriving its observation func-
tion, we have to obtain a mapping from the system configuration, 
 = (VLR, ), to its corresponding joint torques as required by Eq. 5. 
However, without knowing the contact forces at the fingertips, it is 
generally infeasible to analytically calculate such mappings. In such 
cases, there are two options for implementing the self-identification. 
First, although less sensing information can decrease the system’s 
ability of estimating the likelihoods of hypotheses, we can safely 
leave some sensing modalities out and still achieve the same func-
tionality, as long as the POM can be observed. Nevertheless, if some 
sensing modalities are preferred to be involved for planning or con-
trol purposes, we can include them by partially composing the ob-
servation function in a data-driven manner. This can be done 
offline, and the learned mapping does not even need to be bijective, 
because the iterative self-identification will eventually filter out false 
hypotheses, even if some were incorrectly estimated because of 
some ambiguities given by the learned model.

Point contact model and interaction control
Recall that the VLR representation is contact centered, and the con-
tacts are modeled as point contacts to establish the virtual linkages. 

#Iterations

Fig. 8. Self-identification for hands with novel finger replacements. (A) The three novel replacements. (B) The 
three novel hands with one, two, and three fingers replaced. (C) For the novel finger, the lengths of both its proximal 
and distal links were sampled and self-identified. The colors for visualization are the same as in Fig. 4. (D) The 
self-identification results for NH2 and NH3. (E) The self-identification recorded for the length of the proximal link in 
NF1. The shaded area shows the 95% confidence interval, and the dashed line marks the ground truth.
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Although this is not accurately modeling either the geometries nor 
the dynamics of contact, this is an effective model to describe the 
local interactions at contacts. First, imagine that the object was lo-
cally reconfigured by the hand because of some local contacts roll-
ing. As long as the motion was sufficiently local, it can always be 
modeled by a small rotation around a point, which is the contact 
point being self-identified in the VLR. Second, if the local motion 
was a small contact translation, then it does not matter whether the 
contact was a point or some other geometry, again, as long as the 
motion was sufficiently small. For the same reasons, the point con-
tact model is effective when the local motion is a mix of rolling and 
translation.

In practice, this indicates that, to ensure that the system motion 
function Eq. 4 is valid, we need to control the hand-object interac-
tion so that the above assumption is held. In cases where the contact 
interactions are more complex, e.g., the local geometry of the object 
is complex, the self-identification process should limit its step size 
in the motion function Eq. 4 and increase the observation frequency 
for Eq. 5. Intuitively, this follows the same rule as in many other 
exploratory tasks that, if there are more uncertainties, one needs to 
be more careful by taking actions slowly while observing more often.

Limitations
Hand-object interactions can be achieved in various forms; e.g., as-
suming stable and fingertip-only contacts, we have already shown 
example tasks that require in-hand object translation or reorientation, 
which can be precisely controlled based on VLR self-identification. 
However, because the VLR is a contact-centered representation and 
its self-identification is an iterative process requiring continuous 
updates of the model, it is not able to deal with cases where contacts 
are not stable. For example, as a common practice for largely reori-
enting an object in-hand, palm contacts will be needed to provide 
stable support, whereas the fingers can manipulate the object with-
out dropping it (23). However, in this case, it is impossible to define 
the VLR, because the contacts and virtual linkages can be made, 
broken, and remade constantly through the process. Similarly, 
VLRs are also not suitable in tasks with finger gaiting actions, which 
can suddenly change the VLR and break the consistency of the iter-
ative process. In addition, because VLRs require explicit key points 
to be defined for establishing virtual linkages, they can only be used 
by hands with rigid links and are not feasible for modeling hands 
with soft links or continuum actuators (57).

Beyond hand-object systems
Although we showed only how VLRs can be used to self-identify 
hand-object systems and precisely control the in-hand manipula-
tion, this linkage-based representation is not limited to hand-object 
systems. On various scales, interactions in the physical world can be 
modeled on the basis of some form of linkages. For example, when 
a robot grasps the handle of a door or pushes a shopping cart using 
two arms, virtual linkages can be established between its arms and 
the external objects. Same as the VLRs of hand-object systems, 
those virtual linkages can effectively describe the mapping from 
the robot’s actuation inputs to the motion of the robot-door or 
robot-cart systems.

In scenarios where parameters are unknown, they can be itera-
tively self-identified on the basis of the motion and observation 
functions. For example, the width of the door and the location of 
the hinge can be self-identified by locally wiggling the door while 

observing the door’s motion as evidence. Nonetheless, although the 
linkage-based representation can model a variety of robot-object 
interactions, we need to keep in mind that it can be self-identified 
only if the contacts are stable, because of the same reasons as dis-
cussed for hand-object systems.

MATERIALS AND METHODS
In addition to the introduction of the VLR and its self-identification 
algorithm in their general forms, we next describe the technical de-
tails of the hand-object system implemented in this work. We will 
first derive the hand-object motion model and observation model 
and then explain how to inverse the motion model, so as to enable 
precise planning and control for in-hand manipulation.

Hand-object motion model
The Yale Model O hand used in this work is an underactuated hand. 
As shown in Fig. 3, this hand has three fingers, each of which has 
two spring-loaded joints driven by only one motor through a ten-
don. To enable self-identification, we need a motion function for 
this hand in the form of Eq. 4. Although the hand can passively 
provide stability, because its motors can only control the tendon 
length in each finger, the hand-object motion is actually indirectly 
determined by equilibrium of the grasp. Intuitively, given certain 
tendon lengths and their local changes (actuation inputs), the mo-
tion function should output a new hand-object configuration, so 
that the resulted contact forces provide a new equilibrium. Instead 
of directly deriving a motion function on the basis of forces and ki-
nematics, which is difficult due to underactuation, we, in this work, 
find the equilibrium by modeling the system’s energy.

Recall that there is a spring in each joint. While the springs pro-
vide torques at the joints, they at the same time store elastic poten-
tial energy. When the tendon lengths change, this spring-based 
system will reconfigure itself until it reaches the lowest potential 
energy possible, which is equivalent to the force equilibrium. There-
fore, the motion function can be derived by finding hand-object 
configurations that minimize the elastic potential energy.

Concretely, for the ith finger, we denote by pi and di the joint 
angles, by kpi and kdi the spring constants, and by rpi and rdi the joint 
radii, for the proximal and distal joints, respectively. The energy 
stored in the ith finger can be calculated by

	​​ U​ i​​  = ​  1 ─ 2 ​(​k​ pi​​ ​​pi​ 2 ​ + ​k​ di​​ ​​di​ 
2 ​)​	 (6)

Independent of the absolute tendon length in the finger, if the mo-
tor’s motion has changed the tendon length by li, the changes of 
joint angles are constrained by

	​  ​l​ i​​  = ​ r​ pi​​  ​​ pi​​ + ​r​ di​​  ​​ di​​​	 (7)

In addition, assuming the fingertip contacts are fixed under local 
motions, there is a constraint imposed by the grasp that the lengths 
of all virtual links in EC (see Eq. 1) should remain constant

	​ ∀ ​e​​ i​  ∈ ​ E​​ C​ : ‖​e​t−1​ i  ​‖ = ‖​e​t​ 
i ​‖​	 (8)

where the subscript t indicates the virtual link ei at different time t.
Under these constraints, an actuation input l will not change 

the virtual linkages of the VLR or the physical properties , and the 

D
ow

nloaded from
 https://w

w
w

.science.org at C
olum

bia U
niversity on June 29, 2022



Hang et al., Sci. Robot. 6, eabe1321 (2021)     19 May 2021

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

10 of 11

system motion will only affect the virtual joint configuration. 
Therefore, we can instantiate the motion function  (Eq. 4) by solving 
the corresponding joint configuration using energy minimization

	​​ ​​ *​  = ​ arg min​ 
​​​ J​

​ ​ ​ ∑ 
i
​ ​​ ​ U​ i​​ s . t. Eqs . 7 and 8​	 (9)

where J is the virtual joint configuration of the VLR composed by 
pi and di of all fingers, as defined by Eq. 3. As such, given any ac-
tuation input l, the motion function will directly output the new 
virtual joint configuration * to stabilize the hand-object system 
with equilibrium.

In addition to the motion function, we need to derive an obser-
vation function to relate the system configuration to its observation. 
Note that the only sensing modality available was from the in-hand 
camera, and the motion of the POM is completely determined by 
the configuration of the VLR. Therefore, the observation function 
, as defined by Eq. 5, is simply a forward kinematics function of J.

In-hand manipulation
Once the VLR is self-identified, given an actuation input, we can 
use the motion function  to calculate the system’s reconfiguration 
and use the observation function  to predict the motion of the 
POM, denoted as . Therefore, by chaining  and , we can obtain 
another function, Υ : l ↦ , that directly maps the system’s actu-
ation input to the motion of the POM, which we want to control. 
However, to derive a controller for in-hand manipulation, we have 
to inverse this mapping so that the desired actuation inputs l can 
be computed to achieve a given goal motion .

Because the forward mapping involves a complex constrained 
optimization problem, it is not easy to analytically inverse it. In-
stead, we derived a Jacobian-based controller to numerically calcu-
late desired actuation inputs and iteratively drive the POM toward 
the goal. Concretely, the Jacobian matrix, J ∈ ℝ6×3, is obtained by

	​​ J  = ​ [​​ ​ ∂Υ ─ ∂ ​l​ 1​​ ​, ​ 
∂Υ ─ ∂ ​l​ 2​​ ​, ​ 

∂Υ ─ ∂ ​l​ 3​​ ​​]​​​​	 (10)

where li denotes the tendon length in the ith finger and each column 
​​∂Υ _ ∂ ​l​ i​​

 ​  ∈  SE(3)​ represents the local motion of the POM determined by 
the actuation input from the ith finger.

On the basis of this numerical Jacobian matrix, we have locally 
inversed the motion function Υ, and the control input is acquired by

	​​ Υ​​ −1​ : ​J​​ T​ ⋅   ↦  l​	 (11)

However, because the hand-object system is highly nonlinear, it 
is unlikely that this Jacobian-based actuation input l can accurate-
ly achieve the motion  in one step. Instead, similar to implement-
ing a proportional controller, we use this inversed mapping to 
iteratively generate actuation inputs while updating the desired 
motion  by tracking the POM using the in-hand camera, until the 
motion has achieved a predefined precision.

Furthermore, dependent on the application requirements, the 
Jacobian matrix can be truncated to partially control the motion of 
the POM in its subdimensions. For example, in the hand-writing 
experiment, the POM was only positionally controlled, whereas in 
the marble maze experiment, the POM was only controlled for re-
orientations. However, because the hand is underactuated, in most 
cases, it is not able to control the POM to achieve high precision in 

all dimensions of SE(3), such as in the cup-stacking experiment. In 
our implementation, we weighted between the positional and rota-
tional dimensions in  to obtain a skewed ′

	​ ​ ′ ​  =  [ ​​ X​​,  ​​ Y​​,  ​​ Z​​,  ​​ roll​​,  ​​ pitch​​,  ​​ yaw​​, ]​	 (12)

where  ∈ ℝ+ is the weight applied on the rotational dimensions. By 
substituting ′ for the  in Eq. 11, we will be able to prioritize the 
precision for certain dimensions in our controller. Note that this 
skewed input only affects the controller when we have to trade-off 
between positional and rotational controls; it will have no effect 
when the system is able to achieve both, i.e., when  = 0. For the 
cup-stacking task, we empirically set  = 9.5 to prioritize the orien-
tation control, to ensure that the upper cup can be stacked success-
fully with an appropriate balance between position and orientation.
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