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ARTIFICIAL INTELLIGENCE

Manipulation for self-lIdentification, and
self-ldentification for better manipulation

Kaiyu Hang*, Walter G. Bircher, Andrew S. Morgan, Aaron M. Dollar

The process of modeling a series of hand-object parameters is crucial for precise and controllable robotic in-hand
manipulation because it enables the mapping from the hand'’s actuation input to the object’s motion to be ob-
tained. Without assuming that most of these model parameters are known a priori or can be easily estimated by
sensors, we focus on equipping robots with the ability to actively self-identify necessary model parameters using
minimal sensing. Here, we derive algorithms, on the basis of the concept of virtual linkage-based representations
(VLRs), to self-identify the underlying mechanics of hand-object systems via exploratory manipulation actions and
probabilistic reasoning and, in turn, show that the self-identified VLR can enable the control of precise in-hand ma-
nipulation. To validate our framework, we instantiated the proposed system on a Yale Model O hand without joint
encoders or tactile sensors. The passive adaptability of the underactuated hand greatly facilitates the self-identification
process, because they naturally secure stable hand-object interactions during random exploration. Relying solely
on an in-hand camera, our system can effectively self-identify the VLRs, even when some fingers are replaced with
novel designs. In addition, we show in-hand manipulation applications of handwriting, marble maze playing, and
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cup stacking to demonstrate the effectiveness of the VLR in precise in-hand manipulation control.

INTRODUCTION

Manipulation is one of the most common actions for robots to phys-
ically interact with the world. As we see an increasing amount of
real-world applications being deployed in recent years, robotic ma-
nipulation is still a challenging problem that involves many sub-
problems yet to be addressed, such as complex system dynamics,
multimodal sensing, planning and control, and hardware design,
particularly for manipulation in unstructured environments (1-3).
For grasp-based manipulation, numerous tasks can be achieved pure-
ly through arm motions, such as the most common pick-and-place
tasks. However, relying only on arm motions is often undesirable
because it can be energy consuming, unsafe in human-centered envi-
ronments, and unnecessarily complicated (4). To this end, another
dimension of manipulation, in-hand dexterity, has been explored to
provide smaller-scaled yet more focused manipulation of objects
using only finger motions (5). This kind of dexterity is used heavily
by humans, and that human dexterity has inspired a large number
of robotic hand designs promising more dexterity from the finger
motions to the objects in-hand reconfigurations (6). However, de-
spite the large number of degrees of freedom featured by many hand
designs, coordinating multiple fingers to manipulate objects robust-
ly is a complex system-level problem that still remains open (7).

In this work, to effectively capture the sophisticated mechanics
of in-hand manipulation and, in the meantime, keep it generaliz-
able across various hardware platforms, we propose the concept of
virtual linkage-based representations (VLRs) to represent contact
and linkage-based hand-object systems. On the basis of the VLR,
which can rely on parameters that are not directly accessible, we de-
rive algorithms for the system to self-identify necessary parameters
through exploratory hand-object interactions and probabilistic rea-
soning and then, in turn, show that the self-identified VLR endows
the hand with precise control of in-hand manipulation.
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Background, challenges, and beyond

As a prerequisite of in-hand manipulation, grasp planning initializes
the hand-object system with stable contact configurations (8, 9). Al-
though data-driven approaches have gained great success in generating
grasps (10-12) and maintaining their stability (13, 14) in challenging
scenarios, analytical methods are still necessary in modeling many
aspects of grasping, such as optimality and task requirements (15, 16)
and kinematic and environmental constraints (17-19). Although learn-
ing has been shown to facilitate in-hand manipulation in a number
of challenging scenarios—such as highly dexterous hands (20), un-
deractuated hands (21, 22), and even contact-rich grasps (23)—the
learned models usually do not provide precise control and are not
easily generalizable across platforms or tasks (24). As such, similar
to grasp planning, analytical approaches are necessary for dexterous
manipulation to model system dynamics (25-27), to adapt to general
task requirements (28), and to deal with unseen objects (29). With the
aim of precise control of in-hand manipulation, we focus this work
on the analytical side of hand-object systems.

In our previous work (30), we showed that by using four cameras
to fully observe relevant parameters, we could learn a regression
model of the hand-object system to directly map from the hand’s ac-
tuation to the object motion. Under the same setup, by additionally
deriving a model predictive controller, we achieved significant im-
provement of the motion accuracy on the basis of the learned re-
gression model (31). Alternatively, by using only one camera, we
achieved automatic estimation of hand-object configurations (32)
by assuming that the hand model, fingertip contact positions, and
relevant physical properties (e.g., joint stiffness) are known a priori.
In this work, rather than use methods that require more sensors to
be incorporated or more prior knowledge to be available, we aim
to provide an alternative for robots to self-identify necessary hand-
object parameters using minimal sensing. This can be beneficial from
a variety of perspectives. First, minimizing the number of sensors in
a system reduces the requirement of calibrations among all system
components, avoiding non-negligible accumulated errors. Second,
the alleviated sensing requirement allows more hardware, especially
low-cost designs, to provide more complex manipulation skills. Third,
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a self-identifiable system provides not only similar functionality to
sensor-rich systems but also higher robustness in complex working
scenarios.

Furthermore, beyond traditional concerns, we consider the pos-
sibility of recovering hands from damages. As illustrated in Fig. 1,
when a damaged part of a hand has to be replaced while there are
no identical spare parts available, using a similar but different re-
placement could be a good backup option. Alternatively, even if self-
healing materials can help (33), it is not guaranteed that the robot
will recover to the same exact embodiment. In either case, if the sys-
tem relies on prior information of the hand design, it will not be able
to ideally use the recovered hand, because the new embodiments are
not necessarily known. In this work, we try to recover the hand’s
capabilities on the basis of the VLR, which can be self-identified to
enable the hand to use novel part replacements, without necessarily
having the full knowledge of their embodiments.

Virtual linkage-based representations

Every hand-object system is different. Even for the same object and
hand, every grasp is different in its contact locations, hand configu-
rations, force distributions, etc., which are essential parameters de-
termining the underlying mechanisms of in-hand manipulation.
Nonetheless, hand-object systems have many common and invariant

Fig. 1. A robot has broken its finger and needs to replace it with a new one. In
some scenarios, the replacement is not same as the original. Using our proposed
VLRs, the robot can pick any replacement candidate and self-identify it via explor-
atory interactive actions.
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properties effectively describing the interactions between them, de-
spite the differences in parameter values from case to case. Next, we
propose to model both hand and object in a unified framework by
capturing common and essential properties across such systems, in
terms of kinematic constraints.

Being the case in a variety of dexterous in-hand manipulation
tasks, we assume fingertip contacts on the object will be maintained
throughout the entire process. Centered around the contacts, as ex-
emplified in Fig. 2, we can establish virtual linkages between several
key points in the system. Let us denote by {p;, ..., pn} the contact
points on N fingertips. First, we can create a set of virtual links be-
tween all contacts to geometrically represent the constraints between
the fingers; i.e., the grasp has to be maintained. Second, suppose that
we are interested in controlling the motion of a point on the object,
p° € SE(3), termed as point of manipulation (POM). An additional
set of links can be made between the POM and all contacts. Formally,
these links are written as

EC = {ITP] | Pi,Pj € {Pl’-“’PN)PObj}/\i # ]} (1)
Moreover, starting from each contact, we can make virtual links
to sequentially connect the joints in that finger toward the base joint

El = {gpuig.q™

|k < K-1} @)

where qf € R’isthekthjoint, k=1, ..., K, of the ith finger, indexed
from g; being the base joint.

Figure 2 shows an example of these virtual linkages with three
fingers and two joints per finger. Assuming that the fingertip con-
tact locations are fixed under local motions, all virtual links, there-
fore, can be considered rigid with constant lengths. As such, the
angle configuration of the virtual links E/ = U, EJ, which are em-
bedded in the fingers, will uniquely describe the motion of POM via
simple forward kinematics. Let 8/ be the joint configuration of F/, we
define VLRs for such systems as

VLR = (ECUE,0)) 3)
which is a linkage-based kinematic representation and effective-
ly models the formation and underlying mechanisms of in-hand
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Fig. 2. An example of VLRs. (A) A pear is grasped by a robotic hand. The VLRs are
constructed by virtual linkages between the hand joints, contacts, and the POM on
the object. VLR 1 (magenta) is an accurate model, whereas VLR 2 (yellow) is inaccu-
rate, exhibiting erroneous contact locations on the fingertips. (B) Given the same
actuation input, an inaccurate VLR will directly cause errors in modeling system
motions. (C) The hand-object kinematics can be purely represented by the VLRs,
without modeling the geometry of the hand or the object.
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manipulation. Different from most traditional approaches, when the
fingertip contacts are stable on the object, this representation does
not rely on any geometrical information of the hand or the object
to describe the system motion; see Fig. 2C.

Note that, as depicted in Fig. 2, VLR is a contact-centered
representation—the precision of contact locations is crucial for the
model to correctly reflect the physical system (Fig. 2B). This fact
poses several major challenges for this representation to be useful.
First, to generalize VLRs to various platforms, we need to enable the
system to estimate the contact locations without assuming that
there are sensors directly providing this information. Furthermore,
although we assume the contacts are fixed under local motions, we
should be aware that the contacts do vary when small local motions
accumulate over time, in the forms of rolling or sliding. Thus, the
second challenge is that we have to be able to update the virtual links
and joint configurations of the VLR, to ensure it always reflects the
true underlying mechanism of the hand-object system over time.
Third, because the angle configurations of the distal virtual joints
are contact-dependent, they are different from the joint configura-
tion of the physical hand and hence cannot be directly acquired
even if there are joint encoders. Last, beyond traditional concerns,
an extra challenge is how to recover hands by replacing damaged
parts. On the basis of the VLR, we will next introduce how these
challenges can be addressed with self-identification.

Self-identification
System identification is often required in the development of math-
ematical models for dynamical systems. On different complexity lev-
els, when the entire or part of the system mechanism, or some of the
model parameters, are infeasible to be directly derived or acquired,
system identification aims at modeling and analyzing the relation-
ship between the system inputs and outputs to obtain high-fidelity
approximations, which can be then used to control the system with-
out fully investigating the underlying dynamics or interworkings of
the system (34, 35). Because of the nonlinear and stochastic nature of
many real-world systems, probabilistic filters have been often adopted
as a major methodology to provide generalizable and robust estima-
tions (36-38). For robotic systems that must operate autonomously,
especially in uncertain environments, automatic system identifica-
tion is often required and relies heavily on the notion of self.

Self-modeling, self-recognition, or sometimes called self-
identification loosely and on different levels refer to the processes
where the robot reasons about the existence of its own embodiment,
the mapping from its motor behaviors to its embodiment move-
ments, and how its motions interact with the world. Being a core
component of such procedures, interactive perception is often re-
quired for the robot to perceive and analyze itself and the world re-
sulted from its own actions (39, 40). Along this process, a robot can
iteratively figure out its own embodiments, its mirror reflections, its
kinematic structures, and even motor behaviors (41-43). In addition,
by incorporating external objects into the model, interactive per-
ception can further facilitate hand-object configuration estimation
(32, 44, 45), object segmentation (46), grasp planning (47), manip-
ulation skill learning (48), haptic property estimation (49), and even
the estimation of complex articulated models (50). Next, on the basis
of the proposed VLR, we explain how to achieve self-identification
of hand-object systems using interactive perception.

For in-hand manipulation, the VLR alone is merely a kinematic
description and not sufficient for modeling the control. We need to
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incorporate necessary physical properties, denoted by Q, into the
model, so as to eventually establish the mapping from the hand’s ac-
tuation input to the object’s motion, which in its general form can be
written as
C:(Eepu)e & (4)
where I'(+) is the system motion function; & = (VLR €) is the
system configuration, in terms of both kinematics and physics, at
time ; and u; is the actuation input at time . In practice, depending
on the hardware platform, Q can include friction coefficients, joint
torque limits, and object weight, as needed for describing the
hand-object dynamics. Similar to the problem with VLRs, it is pos-
sible that there are parameters in Q not directly available. There-
fore, to control the hand-object system in the form of Eq. 4, the
robot needs to self-identify both the VLR and Q.
Algorithm 1. Self-identification by particle filtering
Input: B, _ 1, u;
Output: &;
: for each &Ll € By do
: E_>lt « F(E.;It_p ut)
t (0pmy) < ACE)
: (¢:, n:)<— Sensors. Get()

1

2 >Move particle forward
3

4

5 o' « Importance( | (9 11)~(6pn,) )

7

8

>Predict particle’s observation
>Read real sensors
>Particle importance
: end for _
: B < Resample(8;_ =< {0'})
:return E;

To this end, let us assume that the pose of the POM, ¢ € SE(3),
can be directly observed because it is the point being manipulated.
Moreover, if additional sensors are available to estimate other pa-
rameters of the system—such as joint torque sensors, encoders, or
tactile sensors—we assume that there is a function mapping the VLR
and Q to their expected corresponding sensor readings

>Importance resampling

A&~ (96m0) (5)
where 1, denotes all observations from extra sensors. Note that extra
sensors are not required in our framework and can be left out if not
available or if the mapping in Eq. 5 cannot be formulated. Basically,
this mapping requires the system to be able to predict its sensor
readings in terms of the system configuration. For example, a tactile
sensor’s output can be predicted if the contact location and the force
exerted on it can be calculated from the system configuration.

We can now formalize self-identification of the hand-object sys-
tem into a particle filtering framework, which is a form of sequen-
tial importance resampling (51). To figure out the unknowns in the
VLR and €, the hand will execute exploratory interactions with the
object despite not being fully controlled and, along the process, esti-
mate the unknowns from the observations. Denoted by &, a hypoth-
esis of the system configuration at time ¢, this process is initialized
by generating a set of M hypotheses (particles), £ = {Eé, ...,f;g/l}, to
construct a distribution that covers the true system configuration
&t = (VLRt, Qj). Note that, although a conservative initialization, e.g.,
a wide distribution, can ensure the coverage of &,, it is not preferred
because it can negatively affect the estimation accuracy. Because the
number of particles is always limited by the computational resources,
a good initialization should provide a focused distribution around
the true system configuration &, with a relatively higher particle
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density (52). In practice, if the hypothesis set is incorrectly initialized,
the filter will fail, and the only way to correct it is to reinitialize (53).

Thereafter, at every time step ¢ — 1, the system will reconfigure
with an actuation input u; and will observe the true sensor outputs
(0,M;)- Meanwhile, every hypothesis &,_; € &, will be moved for-
ward to &, via the system motion function Eq. 4, and the sensor read-
ings of each hypothesis, (¢;,n), are in turn predicted by Eq. 5. On
the basis of the difference between the true sensor readings ((I):,n:)
and predicted readings (¢;, 1), the likelihood o' (importance) of each
&} can be calculated, and the particles in &, are resampled with prob-
abilities proportional to their importance values.

Iteratively, because the false hypotheses in the distribution tend
to make incorrect predictions of the sensor readings, they would be
associated with lower importance values and become less likely to get
resampled. Eventually, as we keep the size of the hypothesis set, the
false particles will be filtered out, and the mean | Z;| of the hypoth-
esis set will converge toward &, (54). One iteration of this procedure
is summarized in Algorithm 1. Upon convergence, the unknowns
in both the VLR and ( are self-identified, and the system will be
able to use them for manipulation control based on the system mo-
tion function Eq. 4.

RESULTS

To evaluate and challenge the VLR and its self-identification, we, in
this work, instantiated the proposed system on a Yale Model O un-
deractuated hand (55). As shown in Fig. 3, this hand has three fin-
gers, with an abduction joint between the left finger and the right
finger. Each finger has two spring-loaded joints, actuated by only one
motor through a tendon. While the tendon length is changed by the
motor actions, the joints are reconfigured accordingly with compli-
ance provided by the springs in each joint.

To avoid the need for perception from external devices and extra
calibration, we mounted only an in-hand camera to observe the mo-
tion of the POM. As such, different from the example in Fig. 2 where
the POM is on top of the object, the POM for our hand-object systems

Abduction

Fig. 3. Experimental setup. (A) The hand-object system instantiated on a Yale Model O hand. The hand is calibrated
with three side cameras, which are used for tracking the AprilTags on the back of fingertips to collect ground truth
data. (B) The underactuated mechanism of each finger. (C) Five test objects from the YCB dataset (58): apple (#13),

wine glass (#23), toy block (#73), flat screwdriver (#44), and gelatin box (#9).
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is defined as a point at the bottom of the grasped object, observed
via an AprilTag tracker (56). Note that the tag-based POM tracking
can be replaced by other vision-based approaches. In addition, as
shown in Fig. 3, to collect ground truth information, such as joint
configurations, there is an AprilTag attached at the back of each
fingertip. These extra tags are observed by calibrated external cam-
eras and are only used for evaluation purposes.

For achieving dexterous in-hand manipulation using the proposed
VLR, this hand is challenged by three facts: (i) The hand is not able
to directly obtain its joint configuration because of the lack of en-
coders; (ii) it is difficult to acquire contact information, such as lo-
cations, because there are no tactile sensors; and (iii) the hand is
underactuated and does not have individual control over each joint.
Next, we apply the proposed approach to address these challenges
by self-identifying the kinematic VLR and some physical properties
Q. On the basis of the self-identified VLR, we show its in-hand ma-
nipulation ability in various real-world tasks. Last, to enable the hand
to recover from damages, we evaluate how it can self-identify its
VLR with novel finger replacements. In this work, the system was
implemented in Python on a machine with Ubuntu 16.04 running on
an AMD Ryzen Threadripper 1950X 16-core processor, which allows
us to parallelize the self-identification procedure using 32 threads.
In all experiments, 60,000 was set as the number of particles, and
every iteration of the self-identification took about 6 s. Because every
particle is independently processed (see Algorithm 1), the run time
of each iteration is about proportional to the number of particles.

Self-identification of model parameters

In the first experiment, we assume that the hand model is fully known,
including its geometry, kinematics, and all relevant physical prop-
erties. Our task is to establish the VLR for our hand-object system
using limited sensing resources. According to the definitions in Egs. 1
to 3, because the pose of the POM is directly observed by the in-hand
camera and the finger link lengths are known, there are two param-
eters to be self-identified for the VLR: the contact locations and the
joint configuration 6’ of the virtual links.

Note that the VLR is a linkage-based
representation—the contact locations can
be directly obtained from forward kine-
matics if we can acquire relevant linkage
properties, such as the link lengths and
joint configurations. Therefore, in our
implementation, instead of explicitly
modeling the contact locations into self-
identification hypotheses, the self-
identification procedure will estimate
the joint configuration @/, and the virtual

Tendon

link lengths, to indirectly identify con-
tact locations.

First, for an unknown hand-object
system, self-identification was initialized
by generating a set of random hypotheses
representing a distribution of the un-
known joint configurations and virtual
links. An example is shown in Fig. 4A. At
the beginning (iteration = 0), the hy-
pothesized virtual links E/, depicted by
magenta lines, were distributed wide-
ly to ensure that the true model was
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Distal Link
Hypotheses

R Joint
Hypotheses

Proximal Link
Hypotheses

#lter O

#lter 7
-

in our experiment can passively guar-
antee stability (55), our hand-object
system was explored simply by random
actions sampled in a small range. After
each action, all the hypothesized VLR
models were moved forward by the
motion function Eq. 4, and their corre-
sponding sensor outputs were predicted
by Eq. 5. Meanwhile, the true motion of
the POM was observed by the in-hand
camera and compared with the predic-
tions to obtain the importance of each
hypothesis, and then the distribution
was resampled. Iteratively, false hypoth-
eses were removed from the distribu-
tion, and the self-identification finally

converged at iteration 12. In our imple-
mentation, convergence is defined by a
threshold on the average of the 95%
confidence intervals of the joint angles,
which was set to 2° in all experiments.
Note that, although the motion function
Eq. 4 assumes fixed contacts under local
motions, the contact changes cannot
be prevented through the manipulation.

Fortunately, because the system maintains

£73 80 a distribution of contacts represented

:o 60 by the set of hypotheses, the contact

E % 40 - S locations are updated and tracked over

g E ° iterations.

<20 —Thumb 20p =~ e 200 -—Right To quantitatively evaluate the per-
0 2 4 6 8 10120 2 4 6 8 10 120 2 4 6 8 10 12 formance of self-identification, we have

#lterations

Fig. 4. Self-identification of VLR. (A) An example record of the self-identification process with an apple object at
iteration 0, 7, and 12. The magenta lines represent the hypothesized virtual links £ of different joint configurations,
and the blue cylinders indicate the joints of the hypothesized virtual links. The yellow points mark the estimated
contact locations, and the red lines represent the estimated virtual links E€ (Eq. 1). (B) Self-identification examples of
the wine glass, gelatin box, and flat screwdriver converged at iterations 12, 10, and 21, respectively. (C) An example
self-identification process recorded for the angles of proximal joints. The shaded areas show the 95% confidence in-

terval, and the dashed lines mark the ground truth.

contained. The blue cylinders mark the joints connecting each pair
of sampled proximal and distal virtual links. Because the hand’s ge-
ometry is known, all sampled virtual proximal links had the same
length; thus, the hypothesized distal virtual joints (blue) of each fin-
ger were distributed along an arc of the same radius. However, by
definition, the length of a distal virtual link is determined by the
contact locations on the fingertips; its length can actually vary as the
contact location changes. Therefore, the hypothesized virtual distal
links were initially sampled with different lengths in a range, to
make sure that the true contact locations were included in the
sampled F. In the figure, the yellow points depict the contact loca-
tions estimated by averaging all sampled E/. On the basis of the esti-
mated contacts, a complete estimation model of the VLR, although
inaccurate at the beginning, can be established by making additional
virtual links E between the contacts and the POM.

After initialization, following Algorithm 1, the hand has to in-
teract with the object via exploratory actions, so as to iteratively fil-
ter out the false hypotheses. Fortunately, because the hand adopted

Hang et al., Sci. Robot. 6, eabe1321 (2021) 19 May 2021

attached an AprilTag to the back of
each fingertip. On the basis of the tag
readings and inverse kinematics, we were
able to calculate the ground truth joint
angles of all proximal joints. However,
because the angles of distal joints are
determined by unknown contact loca-
tions, it was impossible to collect ground
truth for their angles. Figure 4C shows
an example record of the self-identified angles of all proximal joints
against their ground truth over 12 iterations. At iteration 0, we can
see that the estimations were off from the truth and that the confi-
dence intervals were large. As the self-identification iterates, the
estimates converge toward the truth, and the confidence intervals
shrink, implying that the system was able to precisely self-identify
and track the angles. Because the Yale Model O hand is nonredun-
dant, this indicates that the self-identification of other joint angles
and contact locations was also accurate; otherwise, it would have
been impossible to only accurately estimate the proximal joint an-
gles. We repeated this experiment five times on each of the four
objects shown in Fig. 4. Because VLRs do not rely on geometrical
information of the object, the objects were just arbitrarily grasped
by the hand without any prior shape information. Statistically, the
estimation errors averaged 1.78" + 0.92°, and the self-identification
process took 15.1 + 3.6 iterations to converge. Here and hereaf-
ter, all statistical results in this work are reported in the form of
mean * SD.
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In addition to purely self-identifying the kinematic VLR, we fur-
ther challenged our system by introducing uncertainties into the
physical properties Q. For the adopted underactuated hand, one
crucial physical parameter is its joint stiffness, which affects the
share of workloads across the joints and determines the hand con-
figuration; see Fig. 3. As such, we replaced the spring of the distal
joint in the thumb with a novel spring and tried to self-identify both
the VLR and the stiffness of that joint simultaneously. For this, in
addition to sampling joint angles and the lengths of virtual links, the
hypothesis set also included a distribution of the joint stiffness. Because
this extra variable directly affects the output of the motion function
Eq. 4, it can be self-identified in the same manner as the VLR. An
example record of this experiment is shown in Fig. 5. On average,
our experiments reported a precision of 0.0026 + 0.0012 N-m/rad
over five repeated trials.

In-hand manipulation

Once the VLR and physical properties Q have been self-identified,
the hand-object system will be able to use the motion function Eq. 4
to explicitly map the system actuation inputs to the motion of the
POM. On another hand, as will be described later, this mapping can
be inversed for the system to plan and control the manipulation; i.e.,
given a desired motion trajectory of the POM, the system determines
the actuation inputs to achieve it. For testing how the VLR-based
in-hand manipulation performs under different task requirements,
we designed three experiments to evaluate its capability in terms of
position control in R3, orientation control in SO(3), and full pose
control in SE(3).

For evaluating position control, the hand was initialized with a
grasp on the apple object, followed by the iterations of self-identification
to acquire the VLR model. Thereafter, on the basis of the VLR,
the hand was positionally controlled to translate the POM through
predefined waypoints, without any imposed orientation constraints.
As shown in Fig. 6A, by traveling through the waypoints, the
hand-object system completed a task of writing a seven-letter
English word at the bottom of the object. The maximum scale of
the English letters was 12 mm in both horizontal and vertical

#lter 7

Joint Stiffness
(N - m / rad)

#lter 10

directions, and the accuracy of our VLR-based position control
averaged 0.42 + 0.34 mm. In another task, Fig. 6B, the hand was
tasked to play a marble maze. Initially, the maze was grasped by the
hand without a marble in it. Once the VLR was self-identified, we
placed the marble into the maze; controlled the orientations, which
were precalculated, of the maze to move the marble through the
desired path; and finally solved it. In this process, there was not any
positional requirement imposed, and the orientation control re-
ported a precision of 1.20° + 1.38".

Last, we designed a cup-stacking task to evaluate the in-hand
manipulation with respect to the control in SE(3). As shown in
Fig. 7, the start configuration of this task has five cups on the table,
and the goal is to pick up four of them in the order of decreasing size
and finally stack them into the target blue cup. To make this task
more challenging, we randomized each grasp by tilting the object
placement with another small object underneath and commanded
the hand to always grasp the cups by approaching them vertically
with respect to the table. As such, the objects were all grasped with
unknown poses, and the hand had to manipulate them to align in
both position and orientation, to successfully stack them. However,
because the hand is underactuated, it was not possible to inde-
pendently control the six dimensions in SE(3) at the same time to
perfectly align the cups. In our implementation, we weighted the
controlled dimensions and prioritized the rotational dimensions as
necessary. Therefore, the performance in this task was not as good
as the above experiments, achieving a positional accuracy of 2.1 +
0.92 mm and a rotational accuracy of 5.16" + 1.83".

Hand recovery with novel designs

So far, we have always assumed that the hand geometry and kine-
matics are known. As previously mentioned and as depicted in
Fig. 1, we also would like to recover damaged hands, particularly by
replacing the damaged parts. However, in practice, it is possible that
the available replacements are different from the original design. In
this case, it would be beneficial if the hand-object system can still
establish its VLR, with the help of self-identification. For this, we
designed an experiment that assumed that there were one, two, and
three fingers broken and needed re-
placement. To make it challenging, we
provided three finger replacements of
very different geometries. As shown in
Fig. 8A, the available replacements are
different in both lengths and geome-
tries. However, we assumed that they
have the same kinematic structure as the
original finger, i.e., each finger has two
spring-loaded joints, actuated by only
one motor through a tendon.

To this end, in addition to the pa-
rameters already included in the previ-
ous hypothesis set, the system needs to
initialize and maintain an extra distri-
bution of unknown virtual link lengths,

#Iterations

Fig. 5. Self-identification of both VLR and joint stiffness. (A) A record of the self-identification process with the toy
block object. The colors for visualization are the same as in Fig. 4. (B) The self-identification process recorded for the
stiffness of the distal joint in the thumb. The shaded area shows the 95% confidence interval, and the dashed line

marks the ground truth.
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which also have to be self-identified to
establish the VLR. On another hand, to
optimize computational resource usage,
if some parameters are already known
to the system, e.g., the lengths of the
original fingers or the stiffness of the
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Fig. 6. In-hand manipulation applications based on VLR and self-identification. (A) The POM of the object was
controlled to move through waypoints to write the English letters: S, C, |, E, N, C, E. (B) The hand played a marble
(green) maze by controlling the orientation of the POM. Complete videos of these experiments can be found in
movie S1.

\vﬁ'

Start Configuration &

Fig. 7. A cup-stacking task requiring the hand to align both the position and the orientation of cups. The hand
was installed on an arm; the task was to pick up all cups from the table and stack them into the target blue cup. At the
bottom of each cup, there was an AprilTag for the in-hand camera to observe the POM.

these three links, which are 40, 50, and
50 mm, respectively, these errors are
considered in an acceptable range for
in-hand manipulation. In addition, us-
ing the ground truth tags on the back of
the fingertips, the precision of joint
configuration estimation was evaluated
to be 2.58" + 1.20° (NH1), 3.04° + 1.49°
(NH2), and 3.21° + 1.26° (NH3), which
were all a little worse than when the
hand model was fully known. Because the
dimensionality of the self-identification
framework is proportional to the num-
ber of unknown parameters, the de-
crease of the system performance is
attributed to the limited number of parti-
cles. Because of the computational com-
plexity involved, it is infeasible to
always increase the number of particles
to accommodate more unknown pa-
rameters. Therefore, the granularity of
the estimation would decrease when the
system’s dimensionality increases, such
as by introducing novel finger replace-
ments or increasing the number of links
in fingers.

Despite more unknowns being in-
volved, because the lengths of novel vir-
tual links, joint configurations, and
contact locations were self-identified,
we can see that the VLRs can be estab-
lished for the novel hands under the
same framework. This shows that our

original joints, those parameters are not being represented by the
hypotheses distribution. An example is shown in Fig. 8C, in which
the thumb of the hand was replaced with the novel finger NF1. At
iteration 0 of self-identification, we can see that the hypotheses of
NF1’s distal joint (blue) were distributed in a cloud, rather than
along an arc of known radius, indicating the length of the proximal
link was also being self-identified. Last at iteration 17, in addition to
the contact locations and joint configurations, the length of NF1’s
proximal link was also self-identified. This can be seen by the hy-
potheses of its distal joint (blue), which eventually converged to the
same point at iteration 17.

We further challenged our system by replacing more fingers
with novel shapes; see Fig. 8D. Again, without knowing the geome-
tries of the replacements, the VLRs were successfully self-identified
using the same framework. By definition, because the proximal vir-
tual links have the same lengths as their corresponding physical
links, we were able to evaluate the precision of its self-identification
against the ground truth. One example is shown in Fig. 8E, which
was recorded during one run on the Novel Hand 3 (NH3). We re-
peated this test five times on each novel hand, and the precision of
link length estimation for each hand was 2.4 + 2.1 mm (NH1), 2.9 £
1.7 mm (NH2), and 3.4 + 2.3 mm (NH3), respectively. We can see
that the precision was decreasing as the number of novel fingers
increased. However, comparing with the ground truth lengths of
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system provides the possibility for hand

recovery when some parts, e.g., fingers,
have to be replaced by novel designs. On the basis of the self-identified
VLR, a novel hand will be able to manipulate the object with precise
control, in the same way as if the hand model was fully known.

DISCUSSION
We have shown that the VLR representation can be self-identified
and that it can be used to precisely control in-hand manipulation
through challenging tasks. In particular, because self-identification
seeks to estimate the VLR by actively figuring out the mapping from
actuation to the system’s motion, it is able to estimate the underlying
system parameters with very limited sensing capability. For example,
in our experiments, we show that the system can self-identify its joint
configuration, contact locations, and even novel finger replacements
using only an in-hand camera. Because the VLR is a virtual linkage-
based representation, it does not constrain itself to particular kine-
matic structures or actuation types. For example, although our
experiments were conducted only with a three-fingered hand, VLRs
can be constructed with more fingers or more joints in each finger.
To successfully deploy the proposed approach in various scenarios,
we next discuss some important aspects for implementation in
practice, as well as the limitations of our system. Moreover, we ex-
pand our discussion by looking into other potential applications of
our approach, in addition to hand-object systems.
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A NF1

Novel Hand 1

Novel Hand 2

that are unlikely. In our experiments,
being the minimal sensing requirement, we
used only an in-hand camera to track the
motion of the POM. This was challeng-
ing because there was limited information
directly available about the hand-object
configuration, even the hand joint con-

Novel Hand 1 with Unknown Link Lengths ! Novel Hnd 2

figuration had to be self-identified. In
practice, this can be substantially im-
proved if more sensors become avail-
able, because we can potentially obtain
more evidence to reason about the like-
lihoods of VLR hypotheses using Eq. 5.
We observed from the experiments that,
as the number of unknowns in the VLR
increased, e.g., when joint stiffness or link
lengths were unknown, the accuracy of

/4
Novel Hand 3

self-identification accordingly decreased.
This was a result of the decreased sam-
pling resolution. Because the core of self-

E

~ o~

C

£ 50
ms

E‘QO

£8

identification is particle filtering, more
unknowns will increase the dimension-
ality of the hypothesis, which, in turn,

10
#lterations

Fig. 8. Self-identification for hands with novel finger replacements. (A) The three novel replacements. (B) The
three novel hands with one, two, and three fingers replaced. (C) For the novel finger, the lengths of both its proximal
and distal links were sampled and self-identified. The colors for visualization are the same as in Fig.4. (D) The
self-identification results for NH2 and NH3. (E) The self-identification recorded for the length of the proximal link in
NF1.The shaded area shows the 95% confidence interval, and the dashed line marks the ground truth.

Stability of exploratory interactions

As previously mentioned, self-identification is based on the more
general concept of interactive perception. For this, the hand needs
to actively interact with the object, so as to iteratively collect infor-
mation and estimate the unknown parameters. In this process, it is
crucial to guarantee that the interactions will not break the system
formation; i.e., the object has to be stably grasped. In our experi-
ments, although it was challenging to use an underactuated hand
without any encoders or tactile sensors, we could take the advantage
of underactuation to passively guarantee the stability and simply
execute random actions for exploratory interactions.

However, in practice, this is not a common benefit for most other
hands. For example, most fully actuated robotic hands will have to
require active stabilization. It is worthwhile noting that, even for fully
actuated hands, there will still be many unknown parameters, such as
the exact contact positions, joint stiffness, and novel links. In such cases,
before the self-identification process is finished, the system cannot be
accurately controlled for explicitly providing stable hand-object con-
figurations. To enable exploratory interactions, a potential solution is to
mimic underactuation by introducing compliance into the grasp control-
ler. For example, based on tactile or joint torque feedback, an impedance
controller can be implemented to actively adjust contact forces (13).

Observation function and sensing modalities

Once stability is guaranteed, the system will make use of available
sensing modalities to compare its observations against the predictions
made by the VLR hypotheses, so as to iteratively filter out those

Hang et al., Sci. Robot. 6, eabe1321 (2021) 19 May 2021
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1‘2 1§ f4 f5 requires exponentially more particles to
be sampled to achieve the same sampling
resolution. In practice, limited by the
computational power, it is not always
possible to increase the number of par-
ticles. However, again, if there were more
sensors, the number of unknowns can be
decreased, and the hypothesis set can be
distributed such that it can focus more
on necessary dimensions with higher sampling resolution.

On another hand, having more sensing modalities can raise new
challenges at the same time. Under a system configuration, one has
to formulate all adopted sensing into the observation function Eq. 5,
which potentially depends on other unknown information. For ex-
ample, assuming we use a hand that has no fingertip tactile sensors
but torque sensors in all its joints. For deriving its observation func-
tion, we have to obtain a mapping from the system configuration,
& = (VLR, Q), to its corresponding joint torques as required by Eq. 5.
However, without knowing the contact forces at the fingertips, it is
generally infeasible to analytically calculate such mappings. In such
cases, there are two options for implementing the self-identification.
First, although less sensing information can decrease the system’s
ability of estimating the likelihoods of hypotheses, we can safely
leave some sensing modalities out and still achieve the same func-
tionality, as long as the POM can be observed. Nevertheless, if some
sensing modalities are preferred to be involved for planning or con-
trol purposes, we can include them by partially composing the ob-
servation function in a data-driven manner. This can be done
offline, and the learned mapping does not even need to be bijective,
because the iterative self-identification will eventually filter out false
hypotheses, even if some were incorrectly estimated because of
some ambiguities given by the learned model.

Point contact model and interaction control
Recall that the VLR representation is contact centered, and the con-
tacts are modeled as point contacts to establish the virtual linkages.
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Although this is not accurately modeling either the geometries nor
the dynamics of contact, this is an effective model to describe the
local interactions at contacts. First, imagine that the object was lo-
cally reconfigured by the hand because of some local contacts roll-
ing. As long as the motion was sufficiently local, it can always be
modeled by a small rotation around a point, which is the contact
point being self-identified in the VLR. Second, if the local motion
was a small contact translation, then it does not matter whether the
contact was a point or some other geometry, again, as long as the
motion was sufficiently small. For the same reasons, the point con-
tact model is effective when the local motion is a mix of rolling and
translation.

In practice, this indicates that, to ensure that the system motion
function Eq. 4 is valid, we need to control the hand-object interac-
tion so that the above assumption is held. In cases where the contact
interactions are more complex, e.g., the local geometry of the object
is complex, the self-identification process should limit its step size
in the motion function Eq. 4 and increase the observation frequency
for Eq. 5. Intuitively, this follows the same rule as in many other
exploratory tasks that, if there are more uncertainties, one needs to
be more careful by taking actions slowly while observing more often.

Limitations

Hand-object interactions can be achieved in various forms; e.g., as-
suming stable and fingertip-only contacts, we have already shown
example tasks that require in-hand object translation or reorientation,
which can be precisely controlled based on VLR self-identification.
However, because the VLR is a contact-centered representation and
its self-identification is an iterative process requiring continuous
updates of the model, it is not able to deal with cases where contacts
are not stable. For example, as a common practice for largely reori-
enting an object in-hand, palm contacts will be needed to provide
stable support, whereas the fingers can manipulate the object with-
out dropping it (23). However, in this case, it is impossible to define
the VLR, because the contacts and virtual linkages can be made,
broken, and remade constantly through the process. Similarly,
VLRs are also not suitable in tasks with finger gaiting actions, which
can suddenly change the VLR and break the consistency of the iter-
ative process. In addition, because VLRs require explicit key points
to be defined for establishing virtual linkages, they can only be used
by hands with rigid links and are not feasible for modeling hands
with soft links or continuum actuators (57).

Beyond hand-object systems

Although we showed only how VLRs can be used to self-identify
hand-object systems and precisely control the in-hand manipula-
tion, this linkage-based representation is not limited to hand-object
systems. On various scales, interactions in the physical world can be
modeled on the basis of some form of linkages. For example, when
a robot grasps the handle of a door or pushes a shopping cart using
two arms, virtual linkages can be established between its arms and
the external objects. Same as the VLRs of hand-object systems,
those virtual linkages can effectively describe the mapping from
the robot’s actuation inputs to the motion of the robot-door or
robot-cart systems.

In scenarios where parameters are unknown, they can be itera-
tively self-identified on the basis of the motion and observation
functions. For example, the width of the door and the location of
the hinge can be self-identified by locally wiggling the door while

Hang et al., Sci. Robot. 6, eabe1321 (2021) 19 May 2021

observing the door’s motion as evidence. Nonetheless, although the
linkage-based representation can model a variety of robot-object
interactions, we need to keep in mind that it can be self-identified
only if the contacts are stable, because of the same reasons as dis-
cussed for hand-object systems.

MATERIALS AND METHODS

In addition to the introduction of the VLR and its self-identification
algorithm in their general forms, we next describe the technical de-
tails of the hand-object system implemented in this work. We will
first derive the hand-object motion model and observation model
and then explain how to inverse the motion model, so as to enable
precise planning and control for in-hand manipulation.

Hand-object motion model

The Yale Model O hand used in this work is an underactuated hand.
As shown in Fig. 3, this hand has three fingers, each of which has
two spring-loaded joints driven by only one motor through a ten-
don. To enable self-identification, we need a motion function for
this hand in the form of Eq. 4. Although the hand can passively
provide stability, because its motors can only control the tendon
length in each finger, the hand-object motion is actually indirectly
determined by equilibrium of the grasp. Intuitively, given certain
tendon lengths and their local changes (actuation inputs), the mo-
tion function should output a new hand-object configuration, so
that the resulted contact forces provide a new equilibrium. Instead
of directly deriving a motion function on the basis of forces and ki-
nematics, which is difficult due to underactuation, we, in this work,
find the equilibrium by modeling the system’s energy.

Recall that there is a spring in each joint. While the springs pro-
vide torques at the joints, they at the same time store elastic poten-
tial energy. When the tendon lengths change, this spring-based
system will reconfigure itself until it reaches the lowest potential
energy possible, which is equivalent to the force equilibrium. There-
fore, the motion function can be derived by finding hand-object
configurations that minimize the elastic potential energy.

Concretely, for the ith finger, we denote by 6,; and 8, the joint
angles, by ky; and ky; the spring constants, and by r,; and r,; the joint
radii, for the proximal and distal joints, respectively. The energy
stored in the ith finger can be calculated by

Ui = 3(kpi 0, + ki) ©)
Independent of the absolute tendon length in the finger, if the mo-
tor’s motion has changed the tendon length by Al; the changes of
joint angles are constrained by

Ali = rpiAepi+ TdiAedi (7)
In addition, assuming the fingertip contacts are fixed under local
motions, there is a constraint imposed by the grasp that the lengths
of all virtual links in E€ (see Eq. 1) should remain constant

ve' € EC:llel Il = llell (8)
where the subscript ¢ indicates the virtual link ¢’ at different time t.

Under these constraints, an actuation input Al will not change
the virtual linkages of the VLR or the physical properties Q, and the
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system motion will only affect the virtual joint configuration.
Therefore, we can instantiate the motion function I" (Eq. 4) by solving
the corresponding joint configuration using energy minimization

6" = arg min )} Ujs.t. Egs.7 and 8 9)
o/ i

where 6/ is the virtual joint configuration of the VLR composed by
0,; and 0y; of all fingers, as defined by Eq. 3. As such, given any ac-
tuation input Al, the motion function will directly output the new
virtual joint configuration 6* to stabilize the hand-object system
with equilibrium.

In addition to the motion function, we need to derive an obser-
vation function to relate the system configuration to its observation.
Note that the only sensing modality available was from the in-hand
camera, and the motion of the POM is completely determined by
the configuration of the VLR. Therefore, the observation function
A, as defined by Eq. 5, is simply a forward kinematics function of ¢/

In-hand manipulation

Once the VLR is self-identified, given an actuation input, we can
use the motion function I to calculate the system’s reconfiguration
and use the observation function A to predict the motion of the
POM, denoted as A¢. Therefore, by chaining I"and A, we can obtain
another function, Y : Al » A¢, that directly maps the system’s actu-
ation input to the motion of the POM, which we want to control.
However, to derive a controller for in-hand manipulation, we have
to inverse this mapping so that the desired actuation inputs Al can
be computed to achieve a given goal motion A¢.

Because the forward mapping involves a complex constrained
optimization problem, it is not easy to analytically inverse it. In-
stead, we derived a Jacobian-based controller to numerically calcu-
late desired actuation inputs and iteratively drive the POM toward
the goal. Concretely, the Jacobian matrix, J € R®, is obtained by

J = [aY oY aY] (10)

EICIAEL
Where I; denotes the tendon length in the ith finger and each column

9 ¢ SE(3) represents the local motion of the POM determined by
the actuation input from the ith finger.

On the basis of this numerical Jacobian matrix, we have locally
inversed the motion function Y, and the control input is acquired by

Y 'y A0 » Al (11)

However, because the hand-object system is highly nonlinear, it
is unlikely that this Jacobian-based actuation input Al can accurate-
ly achieve the motion A¢ in one step. Instead, similar to implement-
ing a proportional controller, we use this inversed mapping to
iteratively generate actuation inputs while updating the desired
motion A¢ by tracking the POM using the in-hand camera, until the
motion has achieved a predefined precision.

Furthermore, dependent on the application requirements, the
Jacobian matrix can be truncated to partially control the motion of
the POM in its subdimensions. For example, in the hand-writing
experiment, the POM was only positionally controlled, whereas in
the marble maze experiment, the POM was only controlled for re-
orientations. However, because the hand is underactuated, in most
cases, it is not able to control the POM to achieve high precision in
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all dimensions of SE(3), such as in the cup-stacking experiment. In
our implementation, we weighted between the positional and rota-
tional dimensions in A¢ to obtain a skewed A¢’

AY = [AdxAdy, Adz OA Orolt, GA Opitchs oA Oyaws ] (12)

where a € R" is the weight applied on the rotational dimensions. By
substituting A¢’ for the A¢ in Eq. 11, we will be able to prioritize the
precision for certain dimensions in our controller. Note that this
skewed input only affects the controller when we have to trade-off
between positional and rotational controls; it will have no effect
when the system is able to achieve both, i.e., when A¢ = 0. For the
cup-stacking task, we empirically set o = 9.5 to prioritize the orien-
tation control, to ensure that the upper cup can be stacked success-
fully with an appropriate balance between position and orientation.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/6/54/eabe1321/DC1
Movie S1. Method summary and experiment recordings.
Reference (58)
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