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Abstract

Hierarchical Bayesian methods enable information sharing across regression prob-
lems on multiple groups of data. While standard practice is to model regression
parameters (effects) as (1) exchangeable across the groups and (2) correlated to
differing degrees across covariates, we show that this approach exhibits poor statis-
tical performance when the number of covariates exceeds the number of groups.
For instance, in statistical genetics, we might regress dozens of traits (defining
groups) for thousands of individuals (responses) on up to millions of genetic vari-
ants (covariates). When an analyst has more covariates than groups, we argue that
it is often preferable to instead model effects as (1) exchangeable across covariates
and (2) correlated to differing degrees across groups. To this end, we propose a
hierarchical model expressing our alternative perspective. We devise an empirical
Bayes estimator for learning the degree of correlation between groups. We develop
theory that demonstrates that our method outperforms the classic approach when
the number of covariates dominates the number of groups, and corroborate this re-
sult empirically on several high-dimensional multiple regression and classification
problems.

1 Introduction

Hierarchical modeling is a mainstay of Bayesian inference. For instance, in (generalized) linear
models, the unknown parameters are effects, each of which describes the association of a particular
covariate with a response of interest. Often covariates are shared across multiple related groups, but
the effects are typically allowed to vary both by group and by covariate. A classic methodology, dating
back to Lindley and Smith (1972) [44], models the effects as conditionally independent across groups,
with a latent (and learnable) degree of relatedness across covariates. From a practical standpoint,
the model is motivated by the understanding that it “borrows strength” across different groups
[24, Chapter 5.6]. Mathematically, the model is motivated by assuming effects are exchangeable
across groups and applying a de Finetti theorem [44, 35]. The methodology of Lindley and Smith
is ubiquitous when the number of groups is larger than the number of covariates. It is a standard
component of Bayesian pedagogy [[23, Chapter 13.3]; [24, Chapter 15.4]] and software; e.g. it is
used in the mixed modeling package lme4 [5], which has over 16 million downloads at the time of
writing.
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Despite its resounding success when there are more groups than covariates, we show in the present
work that this standard methodology performs poorly when there are more covariates than groups.
To address the many-covariates case, we turn for inspiration to statistical genetics, where scientists
commonly learn linear models relating genetic variants (covariates) to traits (corresponding to
different groups) across individuals (which each exhibit a response). These applications may exhibit
millions of covariates, thousands of responses, and just a handful of groups. In these cases, [39,
12, 56, 69, 46, 53] use a multivariate Gaussian prior akin to that of Lindley and Smith, but assume
conditional independence across covariates and prior parameters that encode correlations across
groups, rather than than the other way around.

As we will see, this alternative modeling approach may be motivated from a Bayesian perspective
when one begins from an assumption of a priori exchangeability of the effects across covariates
(rather than across groups). This exchangeability assumption is reasonable in statistical genetics,
where we have little knowledge to distinguish our expectations about the effects of different genetic
variants; we argue this modeling approach can be effective other modern high-dimensional analyses
of multiple groups of data (beyond statistical genetics) in which large collections of covariates are
frequently treated monolithically, e.g. by applying ridge regression. Namely, when there are more
covariates than groups, we propose to model the effects as exchangeable across covariates (rather
than groups) and learn the degree of relatedness of effects across groups (rather than covariates). In
what follows, we refer to this framework as ECov, for exchangeable effects across covariates, and
distinguish it from exchangeable effects across groups or EGroup.

While the existing methods in statistical genetics for modeling multiple traits obtain as a special case
of ECov, to the best of our knowledge this approach is absent from existing literature on hierarchical
Bayesian regression. Brown and Zidek (1980) [10] and Haitovsky (1987) [28] form two exceptions,
but these two papers (1) consider only the situation in which a single covariate matrix is shared
across all groups (or equivalently, for each data point all responses are observed) and (2) include only
theory and no empirics. While Lindley and Smith (and others) discuss a priori exchangeability across
covariates in the context of analysis of a single group, to our knowledge no other work has pushed
this idea forward to share strength across multiple groups.

We suspect that the historical origins of the methodology in statistical genetics may have hindered
earlier expansion of this class of models to a wider audience. In particular, this literature traces back to
mixed effects modeling for cattle breeding [57]; here, an even-earlier notion of the genetic contribution
of trait correlation (i.e. “genetic correlation;” see Hazel (1943) [29]) informs the covariance structure
of random effects. Although genetic correlation is now commonly understood to describe the
correlation of effects of DNA sequence changes on different traits [12], its provenance predates even
the first identification of DNA as the genetic material in 1944 [3]. As such, this older motivation
obviated the need for a more general justification grounded in exchangeability. See Appendix A for
further discussion of related work, including more recent works from within the machine learning
community on sharing strength across multiple groups of data.

In the present work, we propose ECov as a general framework for hierarchical regression when the
number of covariates exceeds the number of groups. We show that the classic model structure from
statistical genetics can be seen as an instance of this framework, much as Lindley and Smith give a
(complementary) instance of an EGroup framework. To make the ECov approach generally practical,
we devise an accurate and efficient algorithm for learning the matrix of correlations between groups.
We demonstrate with theory and empirics that ECov is preferred when the number of covariates
exceeds the number of groups, while EGroup is preferred when the number of groups exceeds
the number of covariates. Our experiments analyze three real, non-genetic groups in regression
and classification, including an application to transfer learning with pre-trained neural network
embeddings. We provide proofs of theoretical results in the appendix.

2 Exchangeability and its applications to hierarchical linear modeling

We start by establishing the data and model, motivating exchangeability among covariate effects
(ECov), and motivating our Bayesian generative model.

Setup and notation. Consider Q groups with D covariates. Let Nq be the number of data points
in group q. For the qth group, the Nq ⇥D real design matrix Xq collects the covariates, and Y q is
the Nq-vector of responses. The nth datapoint in group q consists of covariate D-vector Xq

n and
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scalar response Y q
n . We let D := {(Xq, Y q)}Qq=1 denote the collection of data from all Q groups.

We consider the generalized linear model Y q
n |Xq

n,�
q indep⇠ p(·|Xq>

n �q) with unknown D-vector of
real effects �q . We collect all effects in aD⇥Q matrix � with (d, q) entry �q

d . The linear form of the
likelihood allows interpretation of �q

d as the association between the dth covariate and the response
in group q. In linear regression, the responses are real-valued and the conditional distribution is
Gaussian. In logistic regression, the responses are binary, and we use the logit link. The independence
assumption conflicts with some models that one might use, for example in some cases when the
different groups partially overlap.

Example. As a motivating non-genetics example, consider a study of the efficacy of microcredit.
There are seven famous randomized controlled trials of microcredit, each in a different country [48].
We might be interested in the association between various aspects of small businesses (covariates),
including whether or not they received microcredit, and their business profit (response). In this case,
the dth element of Xq

n would be the dth characteristic of the nth small business in the qth country,
and Y q

n is the profit of this business. See the experiments for additional examples in rates of policing,
web analytics, and transfer learning.

Exchangeable effects across groups (EGroup). To fully specify a Bayesian model, we need
to choose a prior over the parameters �. Lindley and Smith assume the effects are exchangeable
across groups. Namely, for everyQ-permutation �, p(�1,�2, . . . ,�Q) = p(��(1),��(2), . . . ,��(Q)).
Assuming exchangeability holds for an imagined growing Q and applying de Finetti’s theorem
motivates a conditionally independent prior. Concretely, Lindley and Smith take �q i.i.d.⇠ N (⇠,�), for
D-vector ⇠ andD⇥D covariance matrix �. The (d, d0) entry of � captures the degree of relatedness
between the effects for covariates d and d0. Both ⇠ and � may be learned in an empirical Bayes
procedure. However, when D is large relative to Q, learning these parameters can present both
computational and inferential challenges, as the O(D2) degrees of freedom in � outnumber the
O(DQ) effects.

Exchangeable effects across covariates (ECov). We here argue for a complementary approach
in settings where D > Q. In the microcredit example, notice that D > Q will arise whenever
the experimenter records more characteristics of a small business than there are locations with
microcredit experiments; that is, D > 7 in this particular case. Concretely, let �d be the Q-vector
of effects for covariate d across groups. Then, in the ECov approach, we will assume that effects
are exchangeable across covariates instead of across groups. Namely, for every D-permutation �,
p(�1,�2, . . . ,�D) = p(��(1),��(2), . . . ,��(D)). We will see theoretical and empirical benefits to
ECov in later sections, but note that the ECov assumption is often consistent with prior beliefs in
high dimensional settings. For instance, regarding microcredit, we may have no prior knowledge
about how effects differ for distinct small-business characteristics. And we may a priori believe that
different countries could exhibit more similar effects – and wish to learn the degree of relatedness
across those countries.

We may apply a similar rationale as Lindley and Smith to motivate a conditionally independent
model. Analogous to Lindley and Smith, we propose a Gaussian prior: �d

i.i.d.⇠ N (0,⌃). ⌃ is now
a Q⇥Q covariance matrix whose (q, q0) entry captures the similarity between the effects in the q
and q0 groups. For simplicity, we restrict to E[�d] = 0; see Appendix E.3 for discussion. Another
potential benefit to ECov relative to EGroup is that we might expect a statistically easier problem,
with O(Q2) rather than O(D2) values to learn in the relatedness matrix. We provide a rigorous
theoretical analysis in Sections 4 and 5.

3 Our method

We next describe our inference method for specific instances of the exchangeable covariate effects
model of Section 2. We compute the � posterior and take an empirical Bayes approach to estimate ⌃.
We find that an expectation maximization (EM) algorithm estimates ⌃ effectively; Appendix A.2
compares our approach to existing methods for the related problem of estimating � for EGroup.

Notation. We identify estimates of � and ⌃ with hats. For instance, �̂LS is the least squares
estimate, with �̂q

LS := (Xq>Xq)�1Xq>Y q.We will sometimes find it useful to stack the columns
of � or its estimates into a length DQ vector; we denote such vectors with an arrow; for example,
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Algorithm 1 Expectation Maximization for Ex-
changeability Among Covariate Effects
1: // Initialize covariance
2: ⌃(0)  IQ
3: // Run EM algorithm
4: for t = 0, 1, . . . do
5: // Expectation step
6: µ1, . . ., µD, V1, . . ., VD  E_Step(⌃(t))
7:
8: // Maximization step
9: ⌃(t+1)  D�1

PD
d=1(µdµ>

d + Vd)

10:
11: Return ⌃(t+1)

Algorithm 2 E-Step: Linear Regression

1: ~µ, V  E[~�|D,⌃],Var[~�|D,⌃]
2: for d = 1, . . ., D do
3: µd  (ed ⌦ IQ)>~µ
4: Vd  (ed ⌦ IQ)>V (ed ⌦ IQ)

5: Return µ1, . . ., µD, V1, . . ., VD

Algorithm 3 E-Step: Logistic Regression

1: ~µ⇤  argmax~� log p(
~�|D,⌃)

2: V  �[r2
� log p(

~�|D,⌃)
��
~�=~µ⇤ ]

�1

3: for d = 1, . . ., D do
4: µd  (ed ⌦ IQ)>~µ⇤

5: Vd  (ed ⌦ IQ)>V (ed ⌦ IQ)

6: Return µ1, . . ., µD, V1, . . ., VD

~� := [�1>,�2>, . . . ,�Q>]>. For a natural number N, we use IN ,1N , and eN to denote the N ⇥N
identity matrix, N -vector of ones, and N th basis vector, respectively. We use ⌦ to denote the
Kronecker product.

3.1 Posterior inference with a Gaussian likelihood

We first consider a Gaussian likelihood: for each group q and observation n, we take Y q
n |Xq

n,�
q indep⇠

N (Xq>
n �q,�2

q ) where �2
q is a group-specific variance. When the relatedness matrix ⌃ is known, a

natural estimate of � is its posterior mean. We obtain the full posterior, including its mean, via a
standard conjugacy argument; see Appendix B.1:

Proposition 3.1. For each covariate d, let �d
i.i.d.⇠ N (0,⌃) a priori. For each group q

and data point n, let Y q
n |Xq

n,�
q indep⇠ N (Xq>

n �q,�2
q ). Then ~�|D,⌃ ⇠ N (~µ, V ) for ~µ =

V [��2
1 Y 1>X1, . . . ,��2

Q Y Q>XQ]> and V �1 = ⌃�1⌦ID+diag(��2
1 X1>X1, . . . ,��2

Q XQ>XQ),

where diag(��2
1 X1>X1, . . . ,��2

Q XQ>XQ) denotes a DQ⇥DQ block-diagonal matrix.

At first glance, the posterior mean ~µ for this model might seem to introduce a computational challenge
because exact computation of V involves an O(D3Q3)-time matrix inversion. Our experiments
(Section 6), however, involve on the order of DQ ⇡ 1,000 parameters, so direct inversion of V
demands less than a single second. Moreover, in much larger problems ~µ may still be computed
very efficiently using the conjugate gradient algorithm [49, Chapter 5], with convergence in a small
number of O(D2Q) time iterations; see Appendix B.2.

3.2 Empirical Bayes estimation of ⌃ by expectation maximization

The posterior mean of � in Proposition 3.1 requires ⌃, which is typically unknown. Accordingly, we
propose an empirical Bayes approach of estimating ⌃ by maximum marginal likelihood:

�̂ECov := E[� | D, ⌃̂] where ⌃̂ := argmax
⌃⌫0

p(D | ⌃). (1)

Equation (1) defines a two step procedure. In the first step, we learn the similarity between groups
via estimation of ⌃. In the second step, we use this similarity to compute an estimate, �̂ECov, that
correspondingly shares strength. Though we have been unable to identify a general analytic form
for ⌃̂, we can compute it with an expectation maximization (EM) algorithm [47, Chapter 1.5].
Algorithm 1 summarizes this procedure; see Appendix B.3 for details.
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3.3 Classification with logistic regression

We can extend the approach above to inference for multiple related classification problems. We
assume a logistic likelihood; for each q and n, Y q

n |Xq
n,�

q indep⇠ Bern[(1 + exp{�Xq>
n �q})�1]. In

the classification case, we cannot use Gaussian conjugacy directly, so we apply an approximation.
Specifically, we adapt the original E-step in Algorithm 3 by using a Laplace approximation to the
posterior [7, Chapter 4.4]. We approximate the posterior mean of � by the maximum a posteriori
value. We leave extensions to other generalized linear models to future work.

4 Theoretical comparison of frequentist risk

In this section, we prove theory that suggests ECov has better frequentist risk than EGroup when
D is large relative to Q. Analyzing �̂ECov directly is challenging due to its non-differentiability
as a function of the data, so we take a multipart approach. First, in Theorem 4.3, we show that an
ECov estimate based on moment-matching (MM), �̂MM

ECov, dominates least squares, �̂LS, when D

is large relative to Q; �̂LS in turn dominates �̂MM
EGroup (a similar estimator for EGroup). Second, in

Theorem 4.5, we show that �̂ECov uniformly improves on �̂MM
ECov.

Setup. Take a fixed value of � and an estimator �̂. We use squared error risk, R(�, �̂) :=

E
h
k�̂ � �k2F | �

i
, as our measure of performance. k · kF is the Frobenius norm of a matrix,

and the expectation is over all observations Y 1, . . . , Y Q jointly. We require the following orthogonal
design condition.
Condition 4.1. For each group q, ��2

q Xq>Xq = ��2ID for some shared variance �2.

Though restrictive, this condition is useful for theory, as other authors have found; see Appendix C.1.
We empirically demonstrate that our theoretical conclusions apply more broadly in Section 6.

ECov vs. EGroup when using moment matching in high dimensions. For ECov, the fol-
lowing estimate for ⌃ is unbiased under correct prior specification: ⌃̂MM := D�1�̂>

LS�̂LS �
D�1diag(�2

1kX1†k2F , . . . ,�2
QkXQ†k2F ), where † denotes the Moore-Penrose pseudoinverse of a

matrix and �̂LS is the least squares estimate. We define �̂MM
ECov := E[�|D, ⌃̂MM] to be the resulting

parameter estimate, and define �̂MM
EGroup analogously for EGroup; see Appendix C.2 for details. While

�̂MM
ECov and �̂MM

EGroup are naturally defined only when D � Q and D  Q, respectively, we find it
informative to compare how their performances depend on D and Q nonetheless.

Before our theorem, a lemma provides concise expressions for the risks of �̂MM
ECov and �̂MM

EGroup.

Lemma 4.2. Under Condition 4.1 and when D � Q, R(�, �̂MM
ECov) = �2DQ � �4D(D � 2 �

2Q)E[k�̂†
LSk2F | �]. Additionally, when D  Q, R(�, �̂MM

EGroup) = �2DQ � �4Q(Q � 2 �
2D)E[k�̂†

LSk2F | �].

Lemma 4.2 reveals forms for the risks of �̂MM
ECov and �̂MM

EGroup that are surprisingly simple. The
symmetry between the forms and risks of these estimators, however, is intuitive; under Condition 4.1,
�̂MM
ECov and �̂MM

EGroup can be seen as respectively arising from the same procedure applied to �̂LS and
its transpose.

With Lemma 4.2 in hand, we can now compare the risk of �̂MM
ECov, �̂LS, and �̂MM

EGroup.

Theorem 4.3. Let Condition 4.1 hold. Then (1) if D > 2Q+ 2, �̂MM
ECov dominates �̂LS with respect

to squared error risk. In particular, for any �, R(�, �̂MM
ECov) < R(�, �̂LS). Additionally, (2) if

D > Q/2� 1, �̂MM
EGroup is dominated by �̂LS.

Since �̂LS is minimax [41, Chapter 5], Theorem 4.3 implies that �̂MM
ECov has minimax risk in the

high-dimensional setting. It follows that, regardless of how well the ECov prior assumptions hold,
�̂MM
ECov will not perform very poorly.
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Further improvement with maximummarginal likelihood. The moment based approach analyzed
above has a limitation: with positive probability, ⌃̂MM is not positive semi-definite (PSD). Though
our expression for �̂MM

ECov remains well-defined in this case, this non-positive definiteness obscures
the interpretation of �̂MM

ECov as a Bayes estimate. We next show that performance further improves if
⌃ is instead estimated by maximum marginal likelihood (Equation (1)) and is thereby constrained to
be PSD.

Our next lemma characterizes the form of the resulting estimator, �̂ECov, and establishes a connection
to the positive part James-Stein estimator [4].

Lemma 4.4. Assume D > Q and consider the singular value decomposition �̂LS = V diag(�
1
2 )U>

where V and U satisfy V >V = U>U = IQ, and � is a Q-vector of non-negative reals. Un-
der Condition 4.1, Equation (1) reduces to ⌃̂ = Udiag

⇥
(D�1�� �21Q)+

⇤
U> and �̂ECov =

V diag
h
�

1
2 � (1Q � �2D��1)+

i
U>, where (·)+ is shorthand formax(·, 0) element-wise, � is the

Hadamard (i.e. element-wise) product, and the powers in �
1
2 and ��1 are applied element-wise.

Lemma 4.4 allows us to see �̂ECov as shrinking �̂LS toward 0 in the direction of each singular vector
to an extent proportional to the inverse of the associated singular value. The transition from �̂MM

ECov

to �̂ECov is then analogous to the taking the “positive part” of the James-Stein estimator in vector
estimation, which provides a uniform improvement in risk [4]. Though R(�, �̂ECov) is not easily
available analytically, we nevertheless find that it dominates its moment-based counterpart.

Theorem 4.5. Assume D > Q + 1. Under Condition 4.1 �̂ECov dominates �̂MM
ECov with respect to

squared error loss, achieving strictly lower risk for every value of �.

We establish Theorem 4.5 using a proof technique adapted from Baranchik [4]; see also Lehmann
and Casella [41][Thm. 5.5.4]. The standard approach we build upon is complicated by the fact that
the directions in which we apply shrinkage are themselves random.

Theorem 4.5 provides a strong line of support for using �̂ECov over �̂MM
ECov that does not rely on any

assumption of “correct” prior specification; in particular the risk improves without any subjective
assumptions on �.We discuss related earlier work in Appendix A.4.

5 Gains from ECov in the high-dimensional limit

The results of Section 4 give a promising endorsement of ECov but face two important limitations.
First, the domination results relative to least squares do not directly demonstrate that �̂ECov attains
improvements by leveraging similarities across groups in a meaningful way; indeed for a single group
(i.e. Q = 1) �̂ECov can be understood as a ridge regression estimate [31], and Theorems 4.3 and 4.5
provide that �̂ECov dominates �̂LS for D > 3. Second, domination results reveal nothing about the
size of the improvement or how it depends on any structure of �; intuitively, we should expect better
performance when � is in some way representative of the assumed prior. To address these limitations,
we analyze the size of the gap between the risk of (1) �̂ECov and (2) our method applied to each group
independently (ID), which we denote by �̂ID.1 We will characterize the dependence of this gap on �.

Reasoning quantitatively about the dependence of the risk on the unknown parameter poses significant
analytical challenges. In particular, Lemma 4.2 shows that R(�, �̂MM

ECov) depends on � through
E[k�̂†

LSk2F |�]; however, k�̂
†
LSk2F is the sum of the eigenvalues of a non-central inverse Wishart matrix,

a notoriously challenging quantity to work with; see e.g. [42, 30]. To regain tractability, we (1)
develop an analysis asymptotic in the number of covariates D and (2) shift to a Bayesian analysis
in order to sensibly consider a growing collection of covariate effects. In particular, we consider
a sequence of regression problems, with parameters {�d}1d=1 distributed as �d

i.i.d.⇠ ⇡ for some
distribution ⇡. Accordingly, instead of using the frequentist risk as in Section 4, we now use the
Bayes risk to measure performance. Specifically, for a group with D covariates and an estimator �̂,

1 Our approach �̂ECov is well defined in the Q = 1 single group case; for each group q, we obtain �̂q
ID by

computing �̂ECov on the group D = {(Xq, Y q)}.
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the Bayes risk is RD
⇡ (�̂) := E⇡[R(�, �̂)] where R(�, �̂) is the usual frequentist risk. In the following,

we describe the results of this analysis with proofs and additional details left to Appendix D.

For a single metric characterizing the benefits of joint modeling, we will define the asymptotic gain
as the relative performance between our two estimators of interest here, �̂ECov and �̂ID.
Definition 5.1. Consider a sequence of datasets of Q regression problems with an increasing
number of covariates D, {DD}1D=1. Assume that for each group Condition 4.1 is satisfied with
variance �2 and that each �d

i.i.d.⇠ ⇡. The asymptotic gain of joint modeling is Gain(⇡,�2) :=
limD!1(�2DQ)�1[RD

⇡ (�̂ID)� RD
⇡ (�̂ECov)].

The factor of �2DQ in Definition 5.1 puts Gain(⇡,�2) on a scale that is roughly invariant to the
size and noise level of the problem; for example, (�2DQ)�1RD

⇡ (�̂LS) = 1 for any ⇡, D, and Q. In
Appendix D.5 we discuss how this asymptotic formulation may allow relaxation of Condition 4.1
if one considers certain random design matrices; for simplicity, the present analysis considers only
fixed designs.

Our next lemma gives an analytic expression for Gain(⇡,�2) that provides a starting point for
understanding its problem dependence.

Lemma 5.2. Assume ⌃̃ := Var⇡[�1] is finite and has eigenvalues �1, . . . ,�Q. If Condition 4.1
satisfied asymptotically, Gain(⇡,�2) = �2Q�1[

PQ
q=1(�q + �2)�1 �

PQ
q=1(⌃̃q,q + �2)�1].

Lemma 5.2 reveals that the diagonals and eigenvalues and ⌃̃ are key determinants of Gain(⇡,�2),
but does not directly provide an interpretation of when �̂ECov offers benefits over �̂ID. Our next
theorem demonstrates when an improvement can be achieved from joint modeling.

Theorem 5.3. Gain(⇡,�2) � 0, with equality only when ⌃̃ = Var⇡[�1] is diagonal.

Proof. From Lemma 5.2 we see Gain(⇡,�2) is the difference between a strictly Schur-convex
function applied to the eigenvalues of ⌃̃ and to its diagonals (since (x+ �2)�1 is convex on R+). By
the Schur-Horn theorem, the eigenvalues of ⌃̃ majorize its diagonals, providing the result.

Theorem 5.3 tells us that �̂ECov succeeds at adaptively learning and leveraging similarities among
groups in the high-dimensional limit. In particular, Gain(⇡,�2) reduces to zero only when the
eigenvalues of ⌃̃ are arbitrarily close to the entries of its diagonal, which occurs only when the
covariate effects are uncorrelated across groups. However, when covariate effects are correlated, we
obtain an improvement.

Our next theorem quantifies this relationship through upper and lower bounds.

Theorem 5.4. Let �# and `# denote the eigenvalues and diagonals of ⌃̃, respectively, sorted in
descending order. Then Gain(⇡,�2)  2�2Q�1k�k2k`# � �#k2/(�min + �2)3 and Gain(⇡,�2) �
�2Q�1k`# � �#k22/(�max + �2)3, where �max and �min are the largest and smallest, respectively,
eigenvalues of ⌃̃.

Theorem 5.4 allows us to see several aspects of when our method will and will not perform well.
First, the presence of k`# � �#k22 in both the upper and lower bounds demonstrates that Gain(⇡,�2)
will be small when the eigenvalues are close to the diagonal entries, with Euclidean distance as an
informative metric.

As we find in our next corollary, Theorem 5.4 additionally allows us to see that nontrivial gains
may be obtained only in an intermediate signal-to-noise regime, where signal is given by the size
of the covariate effects and noise is the variance level �2. Notably, under Condition 4.1, �2 relates
directly to the variance of �̂LS, and is influenced by both the residual variances and the group sizes;
see Appendix C.1. In particular we interpret �min as a proxy for signal strength since it captures the
magnitude of typical �d’s along their direction of least variation.
Corollary 5.5. Gain(⇡,�2)  42�min/�2 and Gain(⇡,�2)  42(�min/�2)�1, where  :=
�max/�min is the condition number of ⌃̃.
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Figure 1: Dimension dependence of parameter estimation error in simulation. Covariate effects are
either [Left] correlated or [Right] independent across the Q = 10 groups. Each point is the mean
±1SEM across 20 replicates.

Corollary 5.5 formalizes the intuitive result that with enough noise, the little recoverable signal is
insufficient to effectively share strength. And furthermore, in the low-noise and high-signal regime
�̂ID is very accurate on its own and there is little need for joint modeling. However, when there is a
large gap between the largest and smallest eigenvalues of ⌃̃, leading  to be large, the gain could be
larger.  will be large, for example, when the covariate effects are very correlated across groups.

6 Experiments

6.1 Simulated data

We first conduct simulations, where we can directly control the relatedness among groups and where
we know the ground truth values of the parameters. We show that ECov is more accurate than EGroup
when covariates outnumber groups, whether effects are correlated across groups or not.

In particular, we simulated covariates, parameters, and responses for Q = 10 groups across a range
of covariate dimensions. We generated covariate effects as �d

i.i.d.⇠ N (0,⌃). We chose ⌃ so that
effects were either correlated (Figure 1 Left) or independent (Figure 1 Right) across groups; see
Appendix E for details. We compare performance of six estimates on these groups. These are
estimates assuming EGroup/ECov using moment matching and maximum marginal likelihood to
choose ⌃/� (�̂MM

EGroup/�̂
MM
ECov and �̂EGroup/�̂ECov, respectively), as well as least squares (�̂LS), and

ECov applied to each group independently (�̂ID).

Figure 1 reinforces our theoretical conclusions that (1) �̂ECov is more accurate when covariates
outnumber groups and (2) �̂EGroup is more accurate when groups outnumber covariates. Our
simulated X matrices are somewhat relaxed from a strict orthogonal design (Appendix E), so these
experiments suggest that our conclusions hold beyond Condition 4.1. Additionally, �̂ECov and
�̂EGroup both outperform their moment based counterparts, �̂MM

ECov and �̂MM
EGroup.

Even for the simulations with independent effects, Theorem 4.3 suggests �̂ECov should still outper-
form �̂LS and �̂EGroup in the higher dimensional regime, and we see this behavior in the right panel
of Figure 1. Additionally, in agreement with Theorem 5.3, �̂ECov does not improve over �̂ID in the
presence of independent effects, and the performances of these two estimators converge as D grows.

6.2 Real data

We find that ECov beats EGroup, as well as least squares and independent estimation, across three
real groups. We describe the datasets (with additional details in Appendix E.4) and then our results.
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Community level law enforcement in the United States. Policing rates vary dramatically across
different communities, mediating disparate impacts of criminal law enforcement across racial and
socioeconomic groups [64, 54]. Understanding how demographic and socioeconomic attributes of
communities relate to variation in rates of law enforcement is crucial to understanding these impacts.
Linear models provide the desired interpretability. We use a dataset [51] consisting of D = 117
community characteristics and their rates of law enforcement (per capita) for different crimes. We
consider Q = 4 group subsets corresponding to distinct (region, crime) pairs: (Midwest, Robbery),
(South, Assault), (Northeast, Larceny), and (West, Auto-theft). This data setup illustrates a small Q
and accords with the independent residuals assumption in the likelihood shared by ECov and EGroup
(Section 2). Across q, Nq represents between 400 and 600 communities.

Blog post popularity. We regress reader engagement (responses) on D = 279 characteristics of
blog posts (covariates) [13]. We divided the corpus based on an included length attribute into Q = 3
groups, corresponding to (1) long posts, (2) short posts, and (3) posts from an earlier corpus with
missing length attribute. We hypothesized that the relationships between the characteristics of posts
and engagement would differ across these three groups. We randomly downsampled to Nq = 500
posts in each group to mimic a low sample-size regime, in which sharing strength is crucial.

Figure 2: Prediction performance on held out data in three applications (mean ±1SEM across 5-fold
cross-validation splits).

Multiple binary classifications using pre-trained neural network embeddings on CIFAR10.
Modern machine learning methods have proved very successful on large datasets. Translating
this success to smaller datasets is one of the most actively pursued algorithmic challenges in machine
learning. It has spurred the development of frameworks from transfer learning [65] to one-shot learn-
ing [62] to meta-learning [21]. One common and simple strategy starts with a learned representation
(or “embedding”) from an expressive neural network fit to a large group. Then one can use this
embedding as a covariate vector for classification tasks with few labeled data points.

We take a D = 128 dimensional embedding of the CIFAR10 image group [37, 60]. We create Q = 8
different binary classification tasks using the classes in CIFAR10 (Appendix E.4). We downsampled
to Nq varying from 100 to 1000 to mimic a setting in which we hope to share strength from large
groups to improve performance on smaller datasets.

Discussion of evaluation and results. In previous sections we have focused on parameter estimation.
Here we instead evaluate with prediction error on held-out data since the true parameters are not
observed. Specifically we perform 5-fold cross-validation and report the mean squared errors and
classification errors on test splits. To reduce variance of out-of-sample error estimates on the
applications in which we downsampled, we also evaluate on the additional held-out data. Because
the residual variances were unknown, we estimated these for each application and group as �̂2

q :=

kP?
XqY qk2/(Nq �D), where P?

Xq := INq �Xq(Xq>Xq)�1Xq> (see e.g. [23, Chapter 18.1]). All
methods ran quickly on a 36 CPU machine; computation of �̂ECov, including the EM algorithm,
required 2.04 ± 0.64, 6.89 ± 3.19 and 37.14 ± 3.39 seconds (mean ± st-dev across splits) on the
law enforcement, blog, and CIFAR10 tasks, respectively.

Our results further reinforce the main aspects of our theory. �̂ECov outperformed �̂EGroup, indepen-
dent Bayes estimates (�̂ID), and least squares (�̂LS) in all applications (at > 95% nominal confidence
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with a paired t-test).2 Additionally, �̂ECov outperformed the baseline of ignoring heterogeneity,
pooling groups together, and using the same effect estimates for every group (“Least Sqrs./MLE
Pool”).

Appendix E includes additional results and comparisons. In particular, we provide the performance
of the estimators on each component group for each application. Additionally, we report the
performances of (1) stable and computationally efficient moment based alternatives to �̂ECov and
�̂EGroup and (2) variants of �̂ECov and �̂EGroup that include a learned (rather than zero) prior mean.
Appendix E.5 reports the licenses of software we used.

7 Discussion

The Bayesian community has long used hierarchical modeling with priors encoding exchangeability
of effects across groups of data (EGroup). In the present work, we have made a case for instead using
priors that encode exchangeability across covariates (ECov) – in particular, when the number of
covariates exceeds the number of groups. We have presented a corresponding concrete model and
inference method. We have shown that ECov outperforms EGroup in theory and practice when the
number of covariates exceeds the number of groups.

Our approach is, of course, not a panacea. In some settings, a priori exchangeability among covariate
effects will be inconsistent with prior beliefs. For example, imagine in the CIFAR10 application if
meta-data covariates (such as geo-location and date) were available, in addition to embeddings. Then
we might achieve better performance by treating meta-data covariates as distinct from embedding
covariates. Additionally, we focused on a Gaussian prior for convenience. In cases where practitioners
have more specific prior beliefs about effects, alternative priors and likelihoods may be warranted,
though they may be more computationally challenging. Moreover, while relatively interpretable, linear
models have their downsides. The linear assumption can be overly simplistic in many applications. It
is common to misinterpret effects as causal rather than associative. Both the linear model and squared
error loss lend themselves naturally to reporting means, but in many applications a median or other
summary is more appropriate; so using a mean for convenience can be misleading.

Many exciting directions for further investigation remain. For example, the covariance ⌃ may
provide an informative measure of task similarity; this similarity measure can be useful in, e.g., meta
learning [34] and statistical genetics [12]. Additionally, we here explored two approaches to choosing
the covariance matrices in the empirical Bayes step; more sophisticated approaches to covariance
estimation may provided improved performance. It also remains to extend our methodology to other
generalized linear models.
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[17] Sameer K Deshpande, Veronika Ročková, and Edward I George. Simultaneous variable and covariance
selection with the multivariate spike-and-slab lasso. Journal of Computational and Graphical Statistics,
2019.

[18] Bradley Efron and Carl Morris. Empirical Bayes on vector observations: An extension of Stein’s method.
Biometrika, 59(2):335–347, 1972.

[19] Bradley Efron and Carl Morris. Limiting the risk of Bayes and empirical Bayes estimators—Part II: The
empirical Bayes case. Journal of the American Statistical Association, 67(337):130–139, 1972.

[20] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association, 96(456):1348–1360, 2001.

[21] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pages 1126–1135. PMLR, 2017.

[22] Alan E Gelfand, Susan E Hills, Amy Racine-Poon, and Adrian FM Smith. Illustration of Bayesian
inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85
(412):972–985, 1990.

[23] Andrew Gelman and Jennifer Hill. Data Analysis using Regression and Multilevel/Hierarchical Models.
Cambridge University Press, 2006.

[24] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. Bayesian
Data Analysis. Chapman and Hall/CRC, 2013.

11



[25] Amos Golan and Jeffrey M Perloff. Comparison of maximum entropy and higher-order entropy estimators.
Journal of Econometrics, 107(1-2):195–211, 2002.

[26] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-based
meta-learning as hierarchical Bayes. In International Conference on Learning Representations, 2018.

[27] William E Griffiths. Bayesian inference in the seemingly unrelated regressions model. In Computer-Aided
Econometrics, pages 287–314. CRC Press, 2003.

[28] Yoel Haitovsky. On multivariate ridge regression. Biometrika, 74(3):563–570, 1987.

[29] Lanoy Nelson Hazel. The genetic basis for constructing selection indexes. Genetics, 28(6):476–490, 1943.

[30] Grant Hillier and Raymond Kan. Properties of the inverse of a noncentral Wishart matrix. Available at
SSRN 3370864, 2019.

[31] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970.

[32] Alfred Horn. Doubly stochastic matrices and the diagonal of a rotation matrix. American Journal of
Mathematics, 76(3):620–630, 1954.

[33] W. James and Charles Stein. Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, 1:361–379, 1961.

[34] Ghassen Jerfel, Erin Grant, Thomas L Griffiths, and Katherine Heller. Reconciling meta-learning and
continual learning with online mixtures of tasks. Advances in Neural Information Processing Systems, 32,
2019.

[35] Michael I Jordan. Bayesian nonparametric learning: Expressive priors for intelligent systems. Heuristics,
Probability and Causality: A Tribute to Judea Pearl, 11:167–185, 2010.

[36] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114,
2013.

[37] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Paper, University of
Toronto, 2009.

[38] Nan M Laird and James H Ware. Random-effects models for longitudinal data. Biometrics, 38(4):963–974,
1982.

[39] Sang Hong Lee, Jian Yang, Michael E Goddard, Peter M Visscher, and Naomi R Wray. Estimation of
pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships
and restricted maximum likelihood. Bioinformatics, 28(19):2540–2542, 2012.

[40] Seunghak Lee, Jun Zhu, and Eric P Xing. Adaptive multi-task lasso: with application to eqtl detection.
2010.

[41] Erich L Lehmann and George Casella. Theory of Point Estimation. Springer Science & Business Media,
2006.

[42] Guy Letac and Hélene Massam. A tutorial on non central Wishart distributions. Technical Paper, Toulouse
University, 2004.

[43] Alex Lewin, Habib Saadi, James E Peters, Aida Moreno-Moral, James C Lee, Kenneth GC Smith,
Enrico Petretto, Leonardo Bottolo, and Sylvia Richardson. MT-HESS: an efficient Bayesian approach for
simultaneous association detection in OMICS datasets, with application to eQTL mapping in multiple
tissues. Bioinformatics, 32(4):523–532, 2015.

[44] Dennis V Lindley and Adrian FM Smith. Bayes estimates for the linear model. Journal of the Royal
Statistical Society: Series B, 34(1):1–18, 1972.

[45] David G Luenberger. Introduction to Linear and Nonlinear Programming. Addison-Wesley Reading, MA,
1973.

[46] Robert Maier, Gerhard Moser, Guo-Bo Chen, Stephan Ripke, Cross-Disorder Working Group of the
Psychiatric Genomics Consortium, William Coryell, James B Potash, William A Scheftner, Jianxin Shi,
Myrna M Weissman, Christina M Hultman, Mikael Landén, Douglas F Levinson, Kenneth S Kendler,
Jordan W Smoller, Naomi R Wray, and S Hong Lee. Joint analysis of psychiatric disorders increases
accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. The American
Journal of Human Genetics, 96(2):283–294, 2015.

12



[47] Geoffrey J McLachlan and Thriyambakam Krishnan. The EM Algorithm and Extensions, volume 382.
John Wiley & Sons, 2007.

[48] Rachael Meager. Understanding the average impact of microcredit expansions: A Bayesian hierarchical
analysis of seven randomized experiments. American Economic Journal: Applied Economics, 11(1):57–91,
2019.

[49] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business Media, 2006.

[50] Guillaume Obozinski, Ben Taskar, and Michael Jordan. Multi-task feature selection. Statistics Department,
UC Berkeley, Tech. Rep, 2(2.2):2, 2006.

[51] Michael Redmond and Alok Baveja. A data-driven software tool for enabling cooperative information
sharing among police departments. European Journal of Operational Research, 141(3):660–678, 2002.

[52] Gregory C Reinsel. Mean squared error properties of empirical Bayes estimators in a multivariate random
effects general linear model. Journal of the American Statistical Association, 80(391):642–650, 1985.

[53] Daniel E Runcie, Jiayi Qu, Hao Cheng, and Lorin Crawford. MegaLMM: Mega-scale linear mixed models
for genomic predictions with thousands of traits. BioRxiv, 2020.

[54] Lee A Slocum, Beth M Huebner, Claire Greene, and Richard Rosenfeld. Enforcement trends in the city of
St. Louis from 2007 to 2017: Exploring variability in arrests and criminal summonses over time and across
communities. Journal of Community Psychology, 48(1):36–67, 2020.

[55] Michael Smith and Robert Kohn. Nonparametric seemingly unrelated regression. Journal of Econometrics,
98(2):257–281, 2000.

[56] Matthew Stephens. A unified framework for association analysis with multiple related phenotypes. PloS
One, 8(7):e65245, 2013.

[57] Robin Thompson. The estimation of variance and covariance components with an application when records
are subject to culling. Biometrics, pages 527–550, 1973.

[58] Hisayuki Tsukuma. Admissibility and minimaxity of Bayes estimators for a normal mean matrix. Journal
of Multivariate Analysis, 99(10):2251–2264, 2008.

[59] A Van Der Merwe and James V Zidek. Multivariate regression analysis and canonical variates. Canadian
Journal of Statistics, 8(1):27–39, 1980.

[60] Arnaud Van Looveren, Giovanni Vacanti, Janis Klaise, and Alexandru Coca. Alibi-Detect: Algorithms for
outlier and adversarial instance detection, concept drift and metrics. 2019. URL https://github.com/

SeldonIO/alibi-detect.

[61] Wessel N van Wieringen. Lecture notes on ridge regression. arXiv preprint arXiv:1509.09169, 2015.

[62] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 3637–3645, 2016.

[63] Martin J Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge University
Press, 2019.

[64] David Weisburd, Malay K Majmundar, Hassan Aden, Anthony Braga, Jim Bueermann, Philip J Cook,
Phillip Atiba Goff, Rachel A Harmon, Amelia Haviland, Cynthia Lum, Charles Manski, StephenMastrofski,
Tracey Meares, Daniel Nagin, Emily Owens, Steven Raphael, Jerry Ratcliffe, and Tom Tyler. Proactive
policing: A summary of the report of the national academies of sciences, engineering, and medicine. Asian
Journal of Criminology, 14(2):145–177, 2019.

[65] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big
Data, 3(1):1–40, 2016.

[66] Xiaolin Yang, Seyoung Kim, and Eric Xing. Heterogeneous multitask learning with joint sparsity con-
straints. Advances in neural information processing systems, 22:2151–2159, 2009.

[67] Arnold Zellner. An efficient method of estimating seemingly unrelated regressions and tests for aggregation
bias. Journal of the American Statistical Association, 57(298):348–368, 1962.

[68] Arnold Zellner and David S Huang. Further properties of efficient estimators for seemingly unrelated
regression equations. International Economic Review, 3(3):300–313, 1962.

13



[69] Xiang Zhou and Matthew Stephens. Efficient multivariate linear mixed model algorithms for genome-wide
association studies. Nature Methods, 11(4):407, 2014.

[70] Jim Zidek. Deriving unbiased risk estimators of multinormal mean and regression coefficient estimators
using zonal polynomials. The Annals of Statistics, pages 769–782, 1978.

14



A Additional Related Work

A.1 Brown and Zidek details

As discussed in Section 1, the papers of Brown and Zidek [10] and Haitovsky [28] carry the only
references of which we are aware of the idea of exchangeability of effects across covariates for
sharing strength among multiple groups of data. We here provide additional discussion on this related
prior work. To aid our comparison, we slightly modify their notation to match ours.

In their paper, “Adaptive Multivariate Ridge Regression”, Brown and Zidek [10] consider multiple
related regression regression problems with a shared design (i.e. X := X1 = X2 = · · · = XQ) and
seek to extend the univariate ridge regression estimator of Hoerl and Kennard [31] to the multivariate
setting. Specifically, the authors propose a class of estimators of the form

~̂� = (IQ ⌦X>X +K ⌦ ID)�1(IQ ⌦X>)~Y ,

where ~Y := [Y 1>, Y 2>, · · · , Y Q>]>, ⌦ denotes the Kronecker product, and K is a Q ⇥ Q ridge
matrix which they suggest be chosen by some “adaptive rule” (i.e. that K be a function of the
observed data). Notably, this functional form closely resembles our expression for E[~�|D,⌃] in
Proposition 3.1, if we take K = ⌃�1.

The authors do not explicitly discuss the interpretation of K�1 as the covariance of a Gaussian prior,
nor any interpretation for this quantity as capturing any notion of a priori similarity of the regression
problems. However, they do point to Bayesian motivations at the outset of the paper. In particular,
Brown and Zidek [10] narrow their consideration of possible methods for choosing K to those which
satisfy two criteria:

1. For any K, ~̂� correspond to a Bayes estimate.

2. In the case that X>X = ID, ~̂� correspond to the Efron and Morris [19] extension of the
James and Stein [33] estimator to vector observations.3

They present four such estimators (derived from existing estimators of a multivariate normal means
that dominate the sample mean) and demonstrate conditions under which each of these estimators
dominates the least squares estimator for �.

As a further point of connection, the authors claim in the their abstract that their “result is implicitly
in the work of Lindley and Smith [44] although not actually developed there.” However, the authors
give little support for, or clarification of this claim. In particular, their analysis is entirely frequentist
and they provide no explanation for how their proposed estimators for K might be interpreted as
reasonable empirical Bayes estimates.

In their short follow-up paper, Haitovsky [28] elaborates on this Bayesian motivation. The primary
focus of Haitovsky [28] is a matrix normal prior [16] that captures structure in effects across both
groups and covariates. Though this prior is not exchangeable across covariates in general, they note
that the special case of where effects are uncorrelated across different covariates satisfies the notion
of exchangeability for which we have advocated in this paper.

A.2 Methods of inference for � in existing work assuming exchangeability of effects across
groups.

We here describe several existing approaches for estimating the covariance matrix � in the exchange-
ability of effects among groups model. These existing methods do not translate directly to the
exchangeability of effects among covariates model proposed in this paper. However, in principle, one
could likely adapt any of them to our setting. We have chosen to use the EM algorithm described
in Section 3 for its simplicity, efficiency, and stability. We leave the investigation of alternative
estimation approaches to future work.

In their initial paper, Lindley and Smith (1972) [44] suggest that a fully Bayesian approach would be
ideal. They advocate for placing a subjectively specified, conjugate Wishart prior on �, and remark

3 See Appendix A.4 for further discussion of connections to Efron and Morris [19].
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that one should ideally consider the posterior of � rather than relying on a point estimate. However,
in the face of analytic intractability, they propose returning MAP estimates for � and � and provide
an iterative optimization scheme that they show is stationary at �̂, �̂ = argmax log p(�,�|D).

Advances in computational methods since 1972 have given rise to other ways of estimating � in this
model. Gelfand et al. [22] describe a Gibbs sampling algorithm for posterior inference. Gelman
et al. [24, Chapter 15 sections 4-5] describe an EM algorithm which returns a maximum a posteriori
estimate marginalizing over �, �̂ = argmax p(�|D) =

R
p(�,�|D)d�; notably, though the updates

in our EM algorithm for the case of exchangeability in effects across covariates differ from those in
the case of exchangeability among groups, one can see the two algorithms as closely related through
their shared dependence on Gaussian conjugacy. Finally, in the software package lme4, Bates et al.
[5] use the maximum marginal likelihood estimate, �̂ = argmax p(D|�), which they compute using
gradient based optimization.

A.3 Details on connections to lme4

In the notation of lme4 [5], our paper considers only random effects and no fixed effects. In that work,
each vector of random effects, denoted B, corresponds to a length D (q in their notation) column of
� (in our notation). Bates et al. [5, Equation 3] states the prior derived from Lindley and Smith [44]
that reflects the assumption of exchangeability across groups and captures correlation structure across
covariates. This correlation structure is modeled whenever two or more random effects are specified
and allowed to vary across groups. In the high dimensional setting (when D > Q), however, lme4
fails to run because the optimization problem associated with empirical Bayes step is ill-conditioned.

A.4 Related work on estimation of normal means

As we discuss in Appendix C.1, under Condition 4.1 and when �2 = 1, we have that

�̂q
LS

indep⇠ N (�q, ID).

As such, inference reduces to the “normal means problem”, with a matrix valued parameter. Specifi-
cally, we can equivalently write

�̂LS = � + ✏,
for a random D ⇥Q matrix ✏ with i.i.d. standard normal entries.

This problem has been studied closely outside of the context of regression. Notably, Efron and Morris
[18] approach the problem from an empirical Bayesian perspective and recommend an approach
analogous to estimating ⌃ by

⌃̂Ef := (D �Q� 1)�1�̂>
LS�̂LS � IQ.

Efron and Morris [18] argue for this estimate because it is unbiased for a transformation of the
parameter. In particular, ⌃̂Ef satisfies E[(IQ + ⌃̂Ef)�1] = (IQ +⌃)�1 when each �d

i.i.d.⇠ N (0,⌃).

They show that, among all estimates of the form ↵�̂>
LS�̂LS � IQ with real valued ↵, this factor

↵ = (D � Q � 1)�1 is optimal in terms of squared error risk. Notably, this includes the moment
estimate ⌃̂MM we describe in Section 4, which corresponds to ↵ = D�1. However, this optimality
result does not translate to the associated positive part estimators. In fact, in experiments not shown,
we have found that �̂ECov reliably outperforms an analogous positive part variant that estimates ⌃ by
⌃̂Ef .
Remark A.1. Efron and Morris [18, Theorem 5] prove that an analogous positive part estimator is
superior to their original estimator in term of “relative savings loss” (RSL). Our domination result in
Theorem 4.3 is strictly stronger and implies an improvement in RSL as well. Furthermore our proof
technique immediately applies to their estimator.

Several other works have noted the dependence of the risk of estimators for the matrix variate
normal means problem on the expectations of the eigenvalues of inverse non-central Wishart matrices
[18, 70, 59]. In all of these cases, the authors did not document attempts to interpret or approximate
these difficult expectations.

More recently, Tsukuma [58] explores a large class of estimators for the matrix variate normal means
problems that shrink �̂LS along the directions of its singular vectors in different ways. For subclass
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of these estimators, Tsukuma [58][Corollary 3.1] proves a domination result for associated positive
part estimators. In the orthogonal design case, �̂ECov can be shown to be a member of this subclass
of estimators, providing an alternative route to proving Theorem 4.5.

A.5 Additional related work on multiple related regressions

Methods for simultaneously estimating the parameters of multiple related regression problems have a
long history in statistics and machine learning, with different assumptions and analysis goals leading
to a diversity of inferential approaches. Perhaps the most famous is Zellner’s landmark paper on
seemingly unrelated regressions (SUR) [67]. Zellner [67] addresses the situation where apparent
independence of regression problems is confounded by covariance in the errors across Q problems
(i.e. ‘groups’ in our language). In the presence of such correlation in residuals, the parameter may be
identified with greater asymptotic statistical efficiency by considering allQ problems together [67, 68].
While most work on SUR has taken a purely frequentist perspective in which � is assumed fixed,
some more recent works on SUR have considered Bayesian approaches to inference [8, 15, 55, 27, 2].
However these do not address the scenario of interest here, in which we believe a priori that there
may be some covariance structure in the effects of covariates across the regressions, or that some
regression problems are more related than others. The setting of the present paper further differs from
SUR in that we do not consider correlation in residuals as a possible mechanism for sharing strength
between groups, but instead explicitly assume independence in the noise.

Breiman and Friedman [9] present a distinct, largely heuristic approach to multiple related regression
problems where all Q responses are observed for each group, or equivalently each group has the
same design. The authors focus entirely on prediction and obviate the need share information across
regression problems when forming an initial estimate of � by proposing to predict new responses
in each regression with a linear combination of the predictions of linear models defined by the
independently computed least squares estimate of each regression problem. However this approach
does not consider the problem of estimating parameters, which is a primary concern of the present
work.

Reinsel [52]’s paper, “Mean Squared Error Properties of Empirical Bayes Estimators in a Multivariate
Random Effects General Linear Model”, considers a mixed effects model in which a linear model for
regression coefficients is specified �q = Baq + �q where a := [a1, a2, . . . , aQ] is aK ⇥Q known
design matrix associated with the regression problems,4 B is aD⇥K matrix of unknown parameters
and [�1,�2, . . . ,�Q] is a D ⇥Q matrix of error terms. These error terms are assumed exchangeable
across groups. In contrast to the present work, Reinsel [52] requires the relatedness between groups
to be known a priori through the known design matrix a.

Laird and Ware [38] consider a random effects model for longitudinal data in which different
individuals correspond to different regression problems with distinct parameters. In their construction,
covariance structure in the noise is allowed across the observations for each individual, but not across
individuals. Additionally, as in [44], the authors model the covariance in effects of different covariates
a priori within each regression, but not covariance across regressions.

Brown et al. [11] propose to use sparse prior for � which encourages a shared sparsity pattern.
Conditioned on a binary D�vector � 2 {0, 1}D, � is supposed to follow a multivariate normal prior
as

~�
i.i.d.⇠ N (0,⌃⌦H�)

where H� is a D ⇥ D covariance matrix which expresses that for d such that �d = 0 we expect
each �d,q to be close to zero. Notably, this is equivalent to the assumption that � follows a matrix-
variate multivariate normal distributed as � ⇠ MN (0, H� ,⌃) [16]. Curiously, and without stated
justification, the same ⌃ is also taken to parameterize the covariance of the residual errors, as well as
of an additional bias term. We suspect this restriction is made for the sake of computational tractability.
Indeed, [56] makes similar modeling assumptions for tractability in the context of statistical genetics.
In contrast to the present work, the premise of Brown et al. [11] is sharing strength through similar
sparsity patterns and covariance in the residuals, rather than learning and leveraging patterns of
similarity in effects of covariates across groups.

4 Notably, though Reinsel [52] refers to a as a design matrix, it has little relation of the design matrices Xq

to which we frequently refer in the present work.
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Other more recent papers have considered alternative approaches for multiple regression with sparse
priors [6, 43, 17]. As one example, Obozinski et al. [50] estimate parameters across multiple groups
with a mixed `1/`2 regularized objective that induces sparsity. Yang et al. [66], Lee et al. [40] build
on this work by Obozinski et al. [50] with a focus on applications in genetics. These latter methods
may be understood as returning the maximum a posteriori estimate under a Bayesian model. However,
in contrast to our approach, the corresponding prior distributions implicit in such perspectives do
not capture a priori correlation of effects across groups. Moreover, these methods are of course
inappropriate when we do not expect sparsity a priori.

Meta-Learning The popular “Model Agnostic Meta-Learning” (MAML) approach [21] can be
understood as a hierarchical Bayesian method that treats tasks / groups exchangeably [26]. As such,
MAML and its variations do not allow tasks to be related to different extents (as our approach does).
A few recent works on meta-learning are exceptions; for example, Jerfel et al. [34] model tasks as
grouped into clusters by using a Dirichlet process prior, and Cai et al. [14] consider a weighted variant
of MAML that allows, for a given task of interest, the contribution of data from other tasks to vary.
However these works differ from the present paper in their focus on prediction with flexible black-box
models, whereas the primary concern of the present is parameter estimation in linear models.

Exchangeability of effects across covariates in the single group context. In the context of re-
gression problems consisting of only a single group (i.e. corresponding to the special case of Q = 1)
Lindley and Smith [44] suggest modeling the D scalar covariate effects exchangeable. In particular,
they suggest modeling scalar covariate effects as i.i.d. from a univariate Gaussian prior when this ex-
changeability assumption is appropriate. However, because this development is restricted to analyses
of data in a single group, it does not relate to the problem of sharing strength across multiple groups,
which is the subject of the present work.

B Section 3 supplementary proofs and discussion

B.1 Proof of Proposition 3.1

Proof. First note that the least squares estimates �̂LS :=
[(X1>X1)�1X1>Y 1, . . . , (XQ>XQ)�1XQ>Y Q] are a sufficient statistic of D for �, and

so �|D,⌃ ⇠ �|�̂LS,⌃. As such, it is sufficient to consider the likelihood of �̂LS. Let ~̂�LS :=
[Y 1>X1(X1>X1)�1, . . . , Y Q>XQ(XQ>XQ)�1] be the DQ-vector defined by stacking the least
squares estimates for each group. Since for each q, we have �̂q

LS|�
indep.⇠ N (�q,�2

q (X
q>Xq)�1),

we can write ~̂�LS|� ⇠ N

~�, diag

⇣
�2
1(X

1>X1)�1, . . . ,�2
Q(X

Q>XQ)�1
⌘�

. Next, that each

�d
i.i.d.⇠ N (0,⌃) a priori implies that we may write ~� ⇠ N (0,⌃⌦ ID) a priori, where ⌦ is the Kro-

necker product. Then, by Gaussian conjugacy (see e.g. Bishop [7, Chapter 2.3]), we have that ~�|D ⇠

N (~µ, V ), where ~µ = V


(⌃⌦ ID)�10 + diag

⇣
�2
1(X

1>X1)�1, . . . ,�2
Q(X

Q>XQ)�1
⌘�1

~̂�LS

�

for V �1 = (⌃ ⌦ ID)�1 + diag
⇣
�2
1(X

1>X1)�1, . . . ,�2
Q(X

Q>XQ)�1
⌘�1

. Due to the

block structure of the matrices above, these simplify to ~µ = V


Y 1>X1

�2
1

, . . . , Y Q>XQ

�2
Q

�
and

V �1 = ⌃�1 ⌦ ID + diag(X
1>X1

�2
1

, . . . , XQ>XQ

�2
Q

), as desired.

B.2 Efficient computation with the conjugate gradient algorithm

As mentioned in Section 3.1, ~µ = E[~�|D,⌃] in Proposition 3.1 may be computed efficiently using
the conjugate gradient algorithm (CG) for solving linear systems. We here describe several properties
of CG that make it surprisingly well-suited to this application.

We first note that Proposition 3.1 allows us to frame computation of ~µ as the solution to the linear
system

A~µ = b
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for b =
h
Y 1>X1/�2

1 , . . . , Y
Q>XQ/�2

Q

i>
and A = ⌃�1 ⌦ ID +

diag
⇣
��2
1 X1>X1, . . . ,��2

Q XQ>XQ
⌘
. A naive approach to computing ~µ could then be to

explicitly compute A�1 and report the matrix vector product, A�1b. However, as mentioned in
Section 3.1, since A is a DQ⇥DQ matrix, explicitly computing its inverse would require roughly
O(D3Q3) time. This operation becomes very cumbersome when D and Q are too large; for instance
if D and Q are in the hundreds the, DQ is is the tens of thousands.

CG provides an exact solution to linear systems in at mostDQ iterations, with each iteration requiring
only a small constant number of matrix vector multiplications by A. This characteristic does not
provide a complexity improvement for solving general linear systems because for dense, unstructured
DQ⇥DQmatrices, matrix vector multiplies requireO(D2Q2) time, and CG still demandsO(D3Q3)
time overall. However this property provides a substantial benefit in our setting. In particular, the
special form of A allows computation of matrix vector multiplications in O(D2Q) rather than
O(D2Q2) time, and storage of this matrix withO(D2Q) rather thanO(D2Q2)memory. Specifically,
if v = [v1, v2, . . . , vQ] is a D ⇥ Q matrix with D-vector columns vq, for the DQ-vector ~v =
[v>1 , v

>
2 , . . . , v

>
Q]

> we can compute A~v as vec
�
v⌃�1

�
+ [��2

1 X1>X1v1, . . . ,�
�2
Q XQ>XQvQ]>,

where vec(·) represents the operation of reshaping anD⇥Q matrix into aDQ-vector by stacking its
columns. When D > Q, this operation is dominated by the Q O(D2) matrix-vector multiplications
to compute the second term. As such, CG provides an orderQ improvement in both time and memory.

Next, CG may be viewed as an iterative optimization method. At each step it provides an iterate
which is the closest to the ~µ on a Krylov subspace of expanding dimension. As such, the algorithm
may be terminated after fewer than DQ steps to provide an approximation of the solution. Moreover,
the algorithm may be provided with an initial estimate, and improves upon that estimate in each
successive iteration. In our case we may readily compute a good initialization. For example, we can
initialize with the posterior mean of the parameter for each group when conditioning on that group
alone, i.e. ~µ(0) :=

⇥
E[�1|Y 1]>, . . . ,E[�Q|Y Q]>

⇤>
.

Finally, the convergence properties of the conjugate gradient algorithm are well understood. Notably
the ith iterate of conjugate gradient ~µ(i) when initialized at ~µ(0) satisfies

k~µ(i+1) � ~µkA  2

✓
� 1

+ 1

◆i

k~µ(0) � ~µkA,

where  =
q

�max(A)
�min(A) is the square root of the condition number of A, and k · kA is the A�quadratic

norm [49, Chapter 5.1], [45]. Since A will often be reasonably well conditioned (note, for example,
that �min(A) � �min(⌃)), convergence can be rapid. Notably, in an unpublished application the
authors encountered (not described in this work) involving D ⇡ 20, 000 covariates and Q ⇡ 50
groups, the approximately million dimensional estimate ~µ was computed in roughly 10 minutes on a
16 core machine.

B.3 Expectation maximization algorithm further details

In Sections 3.2 and 3.3 we introduced EM algorithms for estimating ⌃ for both linear and logistic
regression models. In this subsection we provide a derivation of the updates in Algorithm 1 and
discuss computational details of our fast implementation.

Derivations of EM updates for linear regression. Our notation inherits directly from [47, Chapter
1.5], to which we refer the reader for context. In our application of the EM algorithm, we take the
collection of all covariate effects � as the ‘missing data.’ For the expectation (E) step, we therefore

19



require

Q(⌃,⌃(i)) : = E[log p(�|⌃)|D,⌃(i)]

= c+
D

2
log |⌃�1|� 1

2

DX

d=1

E[�>
d ⌃�1�d|D,⌃(i)]

= c+
D

2
log |⌃�1|� 1

2

DX

d=1

tr
⇣
⌃�1E[�d�

>
d |D,⌃(i)]

⌘

= c+
D

2
log |⌃�1|� 1

2

DX

d=1

tr
⇣
⌃�1(µdµ

>
d + Vd)

⌘
,

(2)

where c is a constant that does not depend on ⌃, µ = [µ1 . . . , µD]> := E[�|D,⌃(i)] and for each
d Vd := (IQ ⌦ ed)>Var[~�|D,⌃(i)](IQ ⌦ ed). From the last line of Equation (2) we may see that µ
and {Vd}Dd=1, comprise the required posterior expectations.

The solution to the maximization step may then be found by considering a first order condition for
maximizing over ⌃�1 rather than ⌃. Observe that @

@⌃�1Q(⌃,⌃(i)) = D
2 ⌃� 1

2

PD
d=1(µdµ>

d + Vd).

Setting this to zero we obtain ⌃(i+1) = D�1
P

(µdµ>
d + Vd). This is the desired update for the

M-step provided in Algorithm 2.

Logistic regression EM updates. The updates for the approximate EM algorithm described in
Section 3 are derived from a Gaussian approximation to the posterior under which the expectation of
log prior is taken. In particular we approximate the first line of Equation (2) as

Q(⌃,⌃(i)) : = E[log p(�|⌃)|D,⌃(i)]

=

Z
p(�|D,⌃(i)) log p(�|⌃)d�

⇡
Z

q(i)(�) log p(�|⌃)d�

(3)

where q(i) denotes the Laplace approximation to p(�|D,⌃(i)). Specifically, as we summarized in
Algorithm 3, we approximate the posterior mean by the maximum a posteriori estimate, ~µ⇤ :=
argmax~� log p(

~�|D,⌃(i)), and the posterior variance by V := �[r2
� log p(

~�|D,⌃(i))
��
~�=~µ⇤ ]

�1.

We the let q(i) be the Gaussian density with these moments. This renders the integral in the last line
of Equation (3) tractable, and updates are derived in the same way as in the linear case.

Naively, the approximate EM algorithm for logistic regression could be much more demanding than
its counterpart in the linear case. In particular, at each iteration we need to solve a convex optimization
problem, rather than linear system. However, in practice the algorithm is only little more demanding
because, by using the maximum a posteriori estimate from the previous iteration to initialize the
optimization, we can solve the optimization problem very easily. In particular, after the first few EM
iterations, only one or two additional Newton steps from this initialization are required.

To simplify our implementation, we used automatic differentiation in Tensorflow to compute gradi-
ents and Hessians when computing the maximum a posteriori values and Laplace approximations.

Computational efficiency. We have employed several tricks to provide a fast implementation of
our EM algorithms. The M-Steps for both linear and logistic regression involve a series of expensive
matrix operations. To accelerate this, we used Tensorflow[1] to optimize these steps by way
of a computational graph representation generated using the @tf.function decorator in python.
Additionally, we initialize EM with a moment based estimate (see Appendix E.2).
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C Frequentist properties of exchangeability among covariate effects –
supplementary proofs and discussion

C.1 Discussion of Condition 4.1

The restriction on the design matrices in Condition 4.1 places strong limits the immediate scope
of our theoretical results. However, as with many statistical assumptions such as Gaussianity of
residuals, this condition lends considerable tractability to the problem that enables us to build insights
that we can see hold in more relaxed settings in experiments (see Section 6).

Under Condition 4.1 estimation of the parameter � may be reduced to a special matrix valued case
of the normal means problem with each �̂q

LS,d ⇠ N (�q
d,�

2). Accordingly, we may recognize �2

as a reflection of both the residual variances �2
q and sample sizes Nq. In particular, if within each

group q the covariates have sample second moment N�1
q

PNq

n=1 X
q
nX

q>
n = ID, and the residual

variances and sample sizes are equal (i.e. �2
1 = �2

2 = · · · = �2
Q and N1 = N2 = · · · = NQ), then

�2 = �2
1/N

1. Additionally, because �̂LS is a sufficient statistic of D for �, it suffices to consider �̂LS

alone, without needing to consider other aspects of D. For these reasons, conditions of this sort are
commonly assumed by other authors in related settings (e.g. van Wieringen [61, Chapters 1.4 and
6.2] and Fan and Li [20], Golan and Perloff [25]).

That the trends predicted by our theoretical results persist beyond the limits of Condition 4.1 should
not be surprising. The likelihood, our estimators and their risks are all continuous in the Xq, and so
domination results may be seen to extends via continuity to settings with well-conditioned designs. On
the other hand, problems with design matrices that are more poorly conditioned are more challenging
for both theory and estimation in practice (see e.g. Brown and Zidek [10][Example 4.2]).

C.2 A proposition on analytic forms of the risks of moment estimators

The following proposition characterizes analytic expressions for the moment based estimators. These
expressions provide a starting point for the theory in Section 4

Proposition C.1. Assume each Y q
n |Xq

n,�
q ⇠ N (Xq>

n �q,�2
q ) and define ⌃̂MM := D�1�̂>

LS�̂LS �
D�1diag(�2

1kX1†k2F , . . . ,�2
QkXQ†k2F ). Then

1. if each �d
i.i.d.⇠ N (0,⌃), E[⌃̂MM] = ⌃.

Furthermore, under Condition 4.1

2. when D � Q, �̂MM
ECov = �̂LS � �2D�̂†>

LS and

3. when D  Q, �̂MM
EGroup = �̂LS � �2Q�̂†>

LS ,

where † denotes the Moore-Penrose pseudoinverse of a matrix.

Proof. We begin with statement (1), that under Condition 4.1 and correct prior specification,
E[⌃̂MM] = ⌃. Recall that ⌃̂MM := D�1�̂>

LS�̂LS � D�1diag(�2
1kX1†k2F , . . . ,�2

QkXQ†k2F ). For
any fixed �, we have E[⌃̂MM|�] = D�1E[�̂>

LS�̂LS|�] � D�1diag(�2
1kX1†k2F , . . . ,�2

QkXQ†k2F ),
and so seek to characterize E[�̂>

LS�̂LS|�].Note that we may write �̂LS
d
= �+✏ for a randomD⇥Qma-

trix ✏ with each column q distributed as ✏q indep.⇠ N
h
0,�2

q (X
q>Xq)�1

i
. As such, for each q we have

E[�̂q>
LS �̂

q
LS|�] = �q>�q+E[✏q>✏q].Next observe thatE[✏q>✏q] = tr[�2

q (X
q>Xq)�1] = �2

qkXq†k2F ,
where † denotes the pseudo-inverse of a matrix and k · kF is the Frobenius norm. Additionally,
for q 6= q0, we have E[�̂q>

LS �̂
q0

LS|�] = �q>�q0 . Putting these together into matrix form, we see
E[�̂>

LS�̂LS|�] = �>� + diag(�2
1kX1†k2F , . . . ,�2

QkXQ†k2F ), and so E[⌃̂MM|�] = D�1�>�. Under

the additional assumption that for each d, �d
i.i.d.⇠ N (0,⌃), we have that E[D�1�>�] = ⌃, and (1)

obtains from the law of iterated expectation.
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We next prove statement (2), that �̂MM
ECov := E[�|D, ⌃̂MM] = �̂LS � �2D�̂†>

LS . Consider the singular
value decomposition (SVD), �̂LS = V diag(�

1
2 )U>. Under Condition 4.1 substituting this expression

into ⌃̂MM provides ⌃̂MM = D�1Udiag(�)U> � �2IQ. Therefore, Lemma C.2 provides that we
may write

�̂MM
ECov := E[�|D, ⌃̂MM]

= �̂LS � �̂LS

h
��2⌃̂MM + IQ

i�1

= �̂LS � V diag(�
1
2 )U>

h
��2(D�1Udiag(�)U> � �2IQ) + IQ

i�1
U>

= �̂LS � V diag
h
�

1
2 � (��2D�1�)�1

i
U>

= �̂LS � �2DV diag(�� 1
2 )U>

= �̂LS � �2D�̂†>
LS ,

where � is the Hadamard (i.e. elementwise) product, as desired.

We lastly prove (3), that the analogous moment based estimator constructed under the assumption of
a priori exchangeability among groups is �̂MM

EGroup = �̂LS � �2Q�̂†>
LS .We begin by making explicit

the assumed model and estimate. Specifically we assume each �q i.i.d.⇠ N (0,�) a priori, where � is a
D ⇥D covariance matrix.

In this case, we obtain an unbiased moment based estimate of � as �̂MM := Q�1�̂LS�̂>
LS �

Q�1
PQ

q=1 �
2
q (X

q>Xq)�1. Following an argument exactly parallel to the one in the proof of (1),

we find that under the prior �q i.i.d.⇠ N (0,�), we have E[�̂MM] = �. Furthermore, following an
argument exactly parallel to the one in the proof of (2), we find that under Condition 4.1 the corre-
sponding empirical Bayes estimate �̂MM

EGroup := E[�|�̂MM] = �̂LS � �2Q�̂†>
LS .We omit full details

to spare repetition.

Lemma C.2. Under Condition 4.1 E[�|D,⌃] = �̂LS � �̂LS

⇥
��2⌃+ IQ

⇤�1
.

Proof. By Proposition 3.1, we have

E[~�|D,⌃] = V

"
Y 1>X1

�2
1

, . . . ,
Y Q>XQ

�2
Q

#
where V �1 = ⌃�1 ⌦ ID + diag(

X1>X1

�2
1

, . . . ,
XQ>XQ

�2
Q

).

Under Condition 4.1, we can simplify this as

E[~�|D,⌃] =

"
⌃�1 ⌦ ID + diag(

X1>X1

�2
1

, . . . ,
XQ>XQ

�2
Q

)

#�1 "
Y 1>X1

�2
1

, . . . ,
Y Q>XQ

�2
Q

#

=
h
⌃�1 ⌦ ID + ��2IDQ

i�1
��2

h
�̂1
LS, . . . , �̂

Q
LS

i

=
h
�2⌃�1 ⌦ ID + IDQ

i�1 h
�̂1
LS, . . . , �̂

Q
LS

i
.

As a result, for each d, E[�d|D,⌃] =
⇥
�2⌃�1 + IQ

⇤�1
�LS,d and so, in matrix form, we may write

E[�|D,⌃] = �̂LS

h
�2⌃�1 + IQ

i�1

= �̂LS � �̂LS

h
IQ + ��2⌃

i�1
.
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C.3 Proof of Lemma 4.2

Proof. We prove the lemma in two parts; first for the case thatD > Q+ 1, and then for the case that
Q  D  Q+ 1.

Our proof for the case thatD > Q+1 relies on an expression for the squared error risk for estimators
of the form �̂ = �̂LS � �2c�̂†>

LS for real c. In particular, Lemma C.3 provides that when D > Q+ 1
and under Condition 4.1,

E[k� � (�̂LS � c�̂†>
LS )k

2
F | �] = DQ+ �4c(c+ 2 + 2Q� 2D)E[k�̂†

LSk
2
F | �].

Notably, since under Condition 4.1, by Proposition C.1 we have that �̂MM
ECov = �̂LS � �2D�̂†>

LS we
obtain E[k� � �̂MM

ECovk2F | �] = �2DQ� �4D(D � 2Q� 2)E[k�̂†
LSk2F | �], as desired.

We next consider Q  D  Q + 1. In this case, both R(�, �̂MM
ECov) and �2DQ� �4D(D � 2Q �

2)E[k�̂†
LSk2F | �] are positive infinity. In particular, observe that k�̂†

LSk2F = tr[(�̂>
LS�̂LS)�1] is the

trace of the inverse of a non-central Wishart matrix, which is known to have infinite expectation for
Q  D  Q+1 (see e.g. Hillier and Kan [30]). Likewise, Lemma C.6 reveals thatR(�, �̂MM

ECov) = 1
as well.

The second assertion of Lemma 4.2, that whenD  Q and under Condition 4.1 E[k� � �̂MM
EGroupk2F |

�] = �2DQ � �4Q(Q � 2D � 2)E[k�̂†
LSk2F | �], obtains similarly. Specifically, under these

conditions an identical argument to that provided in Lemma C.3 provides that
E[k� � (�̂LS � �2c�̂†>

LS )k
2
F | �] = DQ+ �4c(c+ 2 + 2D � 2Q)E[k�̂†

LSk
2
F | �]

when D < Q � 1. The desired expression is then obtained by taking c = Q to reflect �̂MM
EGroup =

�̂LS � �2Q�̂†>
LS , again as specified by Proposition C.1.

Lemma C.3. Let D > Q+ 1 and let �̂ = �̂LS � �2c�̂†>
LS . Then under Condition 4.1 E[k� � �̂k2F |

�] = �2DQ+ �4c(c+ 2 + 2Q� 2D)E[k�̂†
LSk2F | �].

Proof. The results follows by considering Stein’s unbiased risk estimate (SURE) [41, Chapter 4,
Corollary 7.2] (restated as Lemma C.4) and making several algebraic simplifications. In order to
apply the lemma, we note that under Condition 4.1 ~̂�LS ⇠ N (~�,�2IDQ) and ~̂� = ~̂�LS � g(~̂�LS) for

g(~̂�LS) = ��2c · vec(�̂†>
LS ), where vec(·) represents the operation of reshaping an D ⇥Q matrix

into a DQ-vector by stacking its columns.

We first simplify the sum of partial derivatives in Equation (4) of Lemma C.4. Observe that
DQX

n=1

@gn(~̂�LS)

@ ~̂�LS,n

= ��2c
DX

d=1

QX

q=1

@�̂†,q
LS,d

@�̂q
LS,d

,

where �̂†,q
LS,d denotes the entry in the qth row and dth column of �̂†

LS.

Next, letting eq be the qth basis vector in RQ, for each q and d we may write

@�̂†,q
LS,d

@�̂q
LS,d

=
@

@�̂q
LS,d

�̂LS,d(�̂
>
LS�̂LS)

�1eq

= e>q (�̂
>
LS�̂LS)

�1eq + �̂LS,d
@

@�̂q
LS,d

(�̂>
LS�̂LS)

�1eq

= e>q (�̂
>
LS�̂LS)

�1eq � �̂>
LS,d(�̂

>
LS�̂LS)

�1

2

4 @

@�̂q
LS,d

(�̂>
LS�̂LS)

3

5 (�̂>
LS�̂LS)

�1eq

= k�̂†,q
LS k

2 � �̂†>
LS,d

h
eq�̂

>
LS,d + �̂LS,de

>
q

i
(�̂>

LS�̂LS)
�1eq

= k�̂†,q
LS k

2 �
h
�̂†>
LS,deq�̂

>
LS,d(�̂

>
LS�̂LS)

�1eq + �̂†>
LS,d�̂LS,de

>
q (�̂

>
LS�̂LS)

�1eq
i

= k�̂†,q
LS k

2 � (�̂†,q
LS,d)

2 � �̂†>
LS,d�̂LS,dk�̂†,q

LS k
2,
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where in the fourth and last lines we have used that e>q (�̂>
LS�̂LS)�1eq = k�̂†,q

LS k2, as can be seen by
observing that (�̂>

LS�̂LS)�1 = �̂†
LS�̂

†>
LS .

Adding these terms together we find
DX

d=1

QX

q=1

@�̂†,q
LS,d

@�̂q
LS,d

=
DX

d=1

QX

q=1

n
k�̂†,q

LS k
2 � (�̂†,q

LS,d)
2 � �̂†>

LS,d�̂LS,dk�̂†,q
LS k

2
o

= Dk�̂†
LSk

2
F � k�̂†

LSk
2
F � k�̂†

LSk
2
F

DX

d=1

�̂†>
LS,d�̂LS,d

= Dk�̂†
LSk

2
F � k�̂†

LSk
2
F � k�̂†

LSk
2
F tr(�̂

†
LS�̂LS)

= (D �Q� 1)k�̂†
LSk

2
F .

We next note that the regularity condition required by Lemma C.4 is satisfied, as demonstrated in
Lemma C.5, and so we may write

E[k� � �̂k2F | �] = �2DQ+ E[kg(~̂�LS)k2 | �]� 2�2
DX

d=1

QX

q=1

E[
@�̂†,q

LS,d

@�̂q
LS,d

| �]

= �2DQ+ �4c2E[k�̂†
LSk

2 | �]� 2�4c(D �Q� 1)E[k�̂†
LSk

2
F | �]

= �2DQ+ �4c(c+ 2 + 2Q� 2D)E[k�̂†
LSk

2 | �].
as desired.

Lemma C.4 (Stein’s Unbiased Risk Estimate – Lehmann and Casella Corollary 7.2). Let
X ⇠ N (✓,�2IN ), and let the estimator ✓̂ be of the form ✓̂ = X � g(X) where g(X) =
[g1(X), g2(X), . . . , gN (X)] is differentiable. If E[| @

@Xn
gn(X)|] < 1 for each n = 1, . . . , N,

then

R(✓, ✓̂) = �2N + E[kg(X)k2]� 2�2
NX

n=1

@

@Xn
gn(X). (4)

Lemma C.5. Let D > Q+ 1. Then under Condition 4.1 E
"����

@�̂†,q
LS,d

@�̂q
LS,d

���� | �
#
 1 for each d and q.

Proof. From our derivation of
@�̂†,q

LS,d

@�̂q
LS,d

in Lemma C.3 we have that

@�̂†,q
LS,d

@�̂q
LS,d

= k�̂†,q
LS k

2 � (�̂†,q
LS,d)

2 � �̂†>
LS,d�̂LS,dk�̂†,q

LS k
2

= k�̂†,q
LS k

2 � (�̂†,q
LS,d)

2 � k�̂†,q
LS k

2tr[(�̂>
LS�̂LS)

�1�LS,d�
>
LS,d].

As such we have that������

@�̂†,q
LS,d

@�̂q
LS,d

������
 k�̂†,q

LS k
2 + |(�†,q

LS,d)
2|+ k�̂†,q

LS k
2|tr[(�̂>

LS�̂LS)
�1�LS,d�

>
LS,d]|

 k�̂†,q
LS k

2 +

������

DX

d0=1

(�†,q
LS,d0)2

������
+ k�̂†,q

LS k
2

������
tr[(�̂>

LS�̂LS)
�1

DX

d0=1

�LS,d0�>
LS,d0 ]

������

= k�̂†,q
LS k

2 + k�̂†,q
LS k

2 + k�̂†,q
LS k

2tr[(�̂>
LS�̂LS)

�1�̂>
LS�̂LS]

 (2 +Q)k�̂†,q
LS k

2

 (2 +Q)k�̂†
LSk

2
F

= (2 +Q)tr[(�̂>
LS�̂LS)

�1].
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We next recognize that under Condition 4.1, (�̂>
LS�̂LS)�1 is the inverse of a non-central Wishart

matrix with non-centrality parameter �. Therefore, from Hillier and Kan [30, Theorem 1], we

have that for D > Q + 1, E

tr
⇣
(�̂>

LS�̂LS)�1
⌘
| �

�
< 1. Accordingly, we may conclude that

E
"����

@�̂†,q
LS,d

@�̂q
LS,d

���� | �
#
 1 as desired.

Lemma C.6. Assume Q  D  Q+ 1. For any �, R(�, �̂MM
ECov) = 1.

Proof. First observe that we may lower bound L(�, �̂MM
ECov) as

L(�, �̂MM
ECov) = k�̂MM

ECov � �k2F
= k�2D�̂†>

LS + � � �̂LSk2F
= �4D2k�̂†

LSk
2
F + k� � �̂LSk2F � 2�2Dtr

h
��̂†

LS(� � �̂LS)
i

� �4D2k�̂†
LSk

2
F + k� � �̂LSk2F � 2�2Dk�̂†

LSkF k� � �̂LSkF
= (�2Dk�̂†

LSkF � k� � �̂LSkF )2

where the inequality follows from Cauchy-Schwarz. We next consider any constant c < �2D and
write

R(�, �̂MM
ECov) = E[L(�, �̂MM

ECov)|�]
= P(ck�̂†

LSkF � k�̂LS � �kF )E[L(�, �̂MM
EGroup) | �, ck�̂

†
LSkF � k�̂LS � �kF ]

+ P(ck�̂†
LSkF < k�̂LS � �kF )E[L(�, �̂MM

EGroup) | �, ck�̂
†
LSkF < k�̂LS � �kF ]

� P(ck�̂†
LSkF � k�̂LS � �kF )E[L(�, �̂MM

EGroup) | �, ck�̂
†
LSkF � k�̂LS � �kF ]

� P(ck�̂†
LSkF � k�̂LS � �kF )E[(�2Dk�̂†

LSkF � k� � �̂LSkF )2 | �, ck�̂†
LSkF � k�̂LS � �kF ]

� P(ck�̂†
LSkF � k�̂LS � �kF )(�2D � c)2E[k�̂†

LSk
2
F | �, ck�̂†

LSkF � k�̂LS � �kF ]
� (�2D � c)2P(ck�̂†

LSkF � k�̂LS � �kF )E[tr[(�̂>
LS�̂LS)

�1 | �] = 1

where the last line comes from recognizing (�̂>
LS�̂LS)�1 as the inverse of a non-central Wishart

matrix, the trace of which has infinite expectation for Q  D  Q+ 1.

C.4 Proof of Theorem 4.3 and additional details

Proof. The first domination result of Theorem 4.3 follows closely from Lemma 4.2. Under Condi-
tion 4.1, �̂LS

d
= � + �✏ for a random matrix ✏ with i.i.d. standard normal entries, and so we can see

R(�, �̂LS) =
PD

d=1

PQ
q=1 E[(�✏

q
d)

2] = DQ�2. Next, D > 2Q + 2 implies that D � 2 � 2Q > 0

so that D(D � 2 � 2Q)�2k�̂†
LSk2F is almost surely positive, and therefore positive in expectation.

We therefore obtain the result from Lemma 4.2.

We next consider the second domination result. The performance of �̂MM
EGroup may be seen to degrade

in stages as we transition from a few covariates and many groups regime to a many covariates and
few groups regime. When D < Q/2� 1, we can see that �̂MM

EGroup has good performance. In fact, by
an argument analogous to our proof of the first part of Theorem 4.3 above, we can see that �̂MM

EGroup

dominates �̂LS; Specifically, from Lemma 4.2 we can recognize R(�, �̂LS)� R(�, �̂EGroup) as the
expectation of an almost surely positive quantity.

When D = Q/2� 1 we have Q(Q� 2� 2D) = 0, and so regardless of �, the estimators �̂MM
EGroup

and �̂LS have equal risk, and neither dominates.

Relative performance degrades further in the intermediate regime of Q/2 � 1 < D < Q � 1. In
this regime, R(�, �̂LS)� R(�, �̂MM

EGroup) = �4Q(Q� 2� 2D)E[k�̂†
LSk2F | �] may be written as the

expectation of an almost surely negative quantity, and so �̂MM
EGroup is dominated by �̂LS.
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The situation is even worse when Q � 1  D  Q; appealing again the they symmetry between
�̂MM
EGroup and �̂MM

ECov, we can see that by Lemma C.6 R(�, �̂MM
EGroup) = 1.

Finally, whenD > Q the expression �̂MM
EGroup = �̂LS�

h
��2�̂MM � ID

i�1
�̂LS involves the inverse

of a low rank matrix since under Condition 4.1, �̂MM = Q�1�̂LS�̂>
LS � �2ID. Accordingly we take

as our convention k�̂MM
EGroupk = 1, analogously to defining 1

0 = 1; as a result �̂MM
EGroup has infinite

risk in this second regime as well, and we see that this estimator is dominated by �̂LS whenever
D < Q/2� 1.

With the strong parallels established by Proposition C.1 and Lemma 4.2 under Condition 4.1, we
can see that this is not a result of �̂MM

EGroup being singularly bad. Indeed, if we consider the many
groups regime with Q > D, we can obtain analogous results to demonstrate the superiority of an
exchangeability among groups approach.

C.5 Proof of Lemma 4.4

Proof. We first show that under Condition 4.1, ⌃̂ = Udiag
⇥
(D�1�� �21Q)+

⇤
U> is the maximum

marginal likelihood estimate of ⌃ in Equation (1). Our approach is to first derive a lower bound
on the negative log likelihood, and then show that this bound is met with equality by the proposed
expression.

For convenience, we consider a scaling of the negative log likelihood,

�2D�1 ln p(�̂LS|⌃) = ln |⌃+ �2IQ|+D�1tr
h
(⌃+ �2IQ)

�1�̂>
LS�̂LS

i
,

and are interested in deriving a lower bound on

min
⌃⌫0

ln |⌃+ �2IQ|+D�1tr
h
(⌃+ �2IQ)

�1�̂>
LS�̂LS

i
,

where the notation ⌃ ⌫ 0 reflects that the minimum is taken over the space of positive semidefinite
matrices.

The problem simplifies if we parameterize the minimization with the eigendecomposition ⌃ =
V >diag(⌫)V, where V is a Q⇥Q matrix satisfying V >V = IQ and ⌫ is a Q-vector of non-negative
reals. In particular, if we define L(V, ⌫) := �2D�1 ln p(�̂LS|⌃ = V >diag(⌫)V ) then, leaving the
constraints on V and ⌫ implicit, we have

min
V,⌫

L(V, ⌫) = min
V,⌫

ln |V >diag(⌫)V + �2IQ|+D�1tr
h
(V >diag(⌫)V + �2IQ)

�1�̂>
LS�̂LS

i

= min
V,⌫

ln |V >diag(⌫)V + �2IQ|+D�1tr
h
(diag(⌫) + �2IQ)

�1V �̂>
LS�̂LSV

>
i

= min
V,⌫

QX

q=1

ln(⌫q + �2) +D�1
QX

q=1

1

⌫q + �2
V >
q �̂>

LS�̂LSVq

= min
V

QX

q=1

min
⌫q�0

ln(⌫q + �2) +
D�1V >

q �̂>
LS�̂LSVq

⌫q + �2
.

Next, Lemma C.7 provides that we may solve the inner optimization problems over ⌫ in the line above
analytically to get ⌫⇤ := argmin⌫ L(V, ⌫) with entries ⌫⇤q = max(�2, D�1V >

q �̂>
LS�̂LSVq) � �2.

Substituting these values in, we obtain

min
V,⌫

L(V, ⌫) = min
V

QX

q=1

ln
h
max(�2, D�1V >

q �̂>
LS�̂LSVq)

i
+

D�1V >
q �̂>

LS�̂LSVq

max(�2, D�1V >
q �̂>

LS�̂LSVq)

= min
V

QX

q=1

ln
h
max(�2, D�1V >

q �̂>
LS�̂LSVq)

i
+ ��2 min(�2, D�1V >

q �̂>
LS�̂LSVq).
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We can now further simplify the problem by considering the eigendecomposition of �̂>
LS�̂LS =

Udiag(�)U>, and recognizing that because V U satisfies (V U)>V U = IQ we may write

min
V,⌫

L(V, ⌫) = min
V

QX

q=1

ln
h
max(�2, D�1V >

q �̂>
LS�̂LSVq)

i
+ ��2 min(�2, D�1V >

q �̂>
LS�̂LSVq)

= min
V

QX

q=1

ln


max

⇣
�2, V >

q diag(D�1�)Vq

⌘�
+ ��2 min

h
�2, V >

q diag(D�1�)Vq

i
.

Finally, we obtain a lower bound by recognizing {V >
q diag(D�1�)Vq}Qq=1 as the diagonals of

D�1V diag(�)V > and applying Lemma C.8 to obtain that

�2D�1 ln p(�̂LS|⌃) �
QX

q=1

ln
h
max(�2, D�1�q)

i
+ ��2 min(�2, D�1�q)

for every ⌃ ⌫ 0.

We next show that this bound is met with equality by ⌃̂ = Udiag
⇥
(D�1�� �21Q)+

⇤
U>,

the form given in the statement of Lemma 4.4. Recognize first that ⌃̂ + �2IQ =
Udiag

⇥
max(�21Q, D�1�)

⇤
U>. Substituting this expression in, we find

�2D�1 ln p(�̂LS|⌃̂) = ln |⌃̂+ �2IQ|+D�1tr
h
(⌃̂+ �2IQ)

�1�̂>
LS�̂LS

i

= ln

����diag
h
max(�21Q, D

�1�)
i����+D�1tr


diag

h
max(�21Q, D

�1�)
i�1

U>�̂>
LS�̂LSU

�

=
QX

q=1

ln
h
max(�2, D�1�q)

i
+D�1�q/max(�2, D�1�q)

=
QX

q=1

ln
h
max(�2, D�1�q)

i
+ ��2 min(�2, D�1�q),

which meets our lower bound. This establishes that the maximum marginal likelihood estimate is
⌃̂ = U

⇥
(D�1�� �21Q)+

⇤
U>, as desired.

It now remains to show that, under Condition 4.1, �̂ECov = V diag
h
�

1
2 � (1Q � �2D��1)+

i
U>.

By Lemma C.2, we have that �̂ECov = �̂LS � �̂LS

h
IQ + ��2⌃̂

i�1
. Substituting in the analytic

expression for ⌃̂, recalling the SVD �̂LS = V diag(�
1
2 )U>, and rearranging, we obtain

�̂ECov = V diag(�
1
2 )U> � V diag(�

1
2 )U>

⇢
IQ + ��2U

h
(D�1�� �21Q)+

i
U>

��1

= V diag

⇢
�

1
2 � �

1
2

h
1Q + ��2(D�1�� �21Q)+

i�1
�
U>

= V diag

(
�

1
2 �


1Q �

⇣
1Q + (��2D�1�� 1Q)+

⌘�1
�)

U>

= V diag


�

1
2 �

⇣
1Q � �2D��1

⌘

+

�
U>,

as desired.

Lemma C.7. For any c > 0,

⌫⇤ : = argmin
⌫�0

ln(⌫ + �2) +
c

⌫ + �2

= max(�2, c)� �2
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Proof. Define g(x) := ln(x+ �2) + c/(x+ �2) and f(x) := g(�2x) = ln(x+ 1) + ��2c
x+1 + ln�2

to lighten notation. Now ⌫⇤ = argmaxx�0 g(x) = �2 argmaxx�0 f(x). Denote by f 0 and f 00

the first two derivatives of f. Notably, f 0(x) = (x + 1)�1
⇥
1� ��2c/(x+ 1)

⇤
and f 00(x) = (x +

1)�2
⇥
2��2c/(x+ 1)� 1

⇤
. The result may be seen by separately considering the cases of ��2c < 1

and ��2c � 1.

If ��2c < 1, then f 0 is positive on R+, and so argminx2R+
f(x) = 0. On the other hand, if

��2c � 1, then f has a local minimum at x = ��2c � 1 (note that f 0(��2c � 1) = 0, and
f 00(��2c � 1) > 0)). Since this is the only local minimum on R+, and with the positive second
derivative at the this minimum, we can conclude that in this case argminx2R+

f(x) = ��2c� 1. In
either case, we can write argminx2R+

f(x) = max(1,��2c)� 1. Therefore, as desired, we see that
argminx2R+

g(x) = max(�2, c)� �2.

Lemma C.8. Let A be a Q⇥Q Hermitian matrix with eigenvalues �1,�2, . . . ,�Q. Then

QX

q=1

ln
h
max(�2, Aq,q)

i
+ ��2 min(�2, Aq,q) �

QX

q=1

ln
h
max(�2,�q)

i
+ ��2 min(�2,�q).

Proof. First note that f(x) = lnmax(�2, x) + min(�2, x) is concave on R+, and so the vector
valued function, g(x1, x2, . . . , xN ) =

PN
n=1 f(xn) is Schur concave. By the Schur-Horn theorem

(TheoremD.4) the diagonals ofA are majorized by its eigenvalues, when each are sorted in descending
order. As such g

�
diag(A)

�
� g (�), as desired.

C.6 Proof of Theorem 4.5

Our approach to showing dominance of �̂ECov over �̂MM
ECov parallels the classical approach of

Baranchik [4], to showing that the positive part James-Stein estimator dominates the original James-
Stein estimator. In this case, however, our parameter and estimates are matrix-valued, rather than
vector-valued. Additionally, we contend with the added complication that the directions along which
we apply shrinkage are random.

Proof. To begin, consider again the SVD of the matrix of least squares estimates, �̂LS =
V diag(�

1
2 )U>. Recall from Proposition C.1 that �̂MM

ECov = �̂LS � �2D�̂†>
LS under Condition 4.1.

Because the pseudo-inverse of �̂LS may be written as �̂†
LS = Udiag(�� 1

2 )V >, we rewrite
�̂MM
ECov = V diag(�

1
2 � �2D�� 1

2 )U>. Comparing this estimate to the expression for �̂ECov in
Lemma 4.4, �̂ECov = V diag

h
�

1
2 � (1� �2D��1)+

i
U>, we see that the two estimates differ only

when �̂MM
ECov “flips the direction” of one or more of the singular values of �̂LS. Our strategy to proving

the theorem is to show that analogously to the “over-shrinking” of the James-Stein estimator relative
to the positive part James-Stein estimator, this “over-shrinking” of singular values increases the loss
of �̂MM

ECov in expectation.

For convenience, we define ⇢ := �
1
2 � (1 � �2D��1) and ⇢+ := �

1
2 � (1 � �2D��1)+ so that

�̂MM
ECov = V diag(⇢)U> and �̂ECov = V diag(⇢+)U>.

To show the desired uniform risk improvement we must show that for any �,

E
h
L(�, �̂MM

ECov)� L(�, �̂ECov)
i
> 0, (5)
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where L(�, �̂) = k�̂ � �k2F is squared error loss. We can rewrite this difference in loss as

L(�, �̂MM
ECov)� L(�, �̂ECov) = k�̂MM

ECov � �k2F � k�̂ECov � �k2F
= kdiag(⇢)� V >�Uk2F � kdiag(⇢+)� V >�Uk2F

=
QX

q=1

(⇢q � V >
q �Uq)

2 � (⇢+q � V >
q �Uq)

2

=
QX

q=1

⇢2q � ⇢2+q � 2(V >
q �Uq)(⇢q � ⇢+q),

where we here (and in the proof of this theorem only) write Vq and Uq to denotes columns of V and

U, rather than rows. Since ⇢2q
a.s.
� ⇢2+q , it suffices to show that for any � and each q,

E
h
(V >

q �Uq)(⇢q � ⇢+q)
i
< 0.

To show this, we again find an even narrower but easier to prove condition will imply the one above;
since ⇢q and ⇢+q differ only when �q < �2D, it is enough to show that for each 0 < c < �2D

E
h
(V >

q �Uq)⇢q|�q = c
i
< 0. (6)

If we establish Equation (6), then Equation (5) obtains from the law of iterated expectation. Next,
observe that since ⇢q fixed and negative when �q = c < �2D, Equation (5) is equivalent to

E
h
V >
q �Uq|�q = c

i
> 0.

Letting U�q and V�q denote the remaining columns of U and V , respectively, we may write

E
h
V >
q �Uq|�q = c

i
= E


E
h
V >
q �Uq|�q = c, U�q, V�q

i�

and, again through the law of iterated expectation, see that it will be sufficient to show for every U�q

and V�q that E
h
V >
q �Uq|�q = c, U�q, V�q

i
> 0.

With all but one column of each of U and V fixed, Uq and Vq are determined up to signs, as unit
vectors in the one dimensional subspaces orthogonal to [{Uq0}q0 6=q] and [{V d}d 6=q]. As such, we
need only to show

P
h
V >
q �Uq > 0|U�q, V�q,�q = c

i
> P

h
V >
q �Uq < 0|U�q, V�q,�q = c

i
, (7)

since
E
h
V >
q �Uq|�q, U�q, V�q

i

= |V >
q �Uq|

⇢
P
h
V >
q �Uq > 0|�q, U�q, V�q

i
� P

h
V >
q �Uq < 0|�q, U�q, V�q

i�
,

where, in an abuse of notation, we have moved |V >
q �Uq| outside the expectation since it is determin-

istic once we have observed V�q and U�q .

That Equation (7) holds may be seen from considering the conditional probability densities for Uq

and Vq , and noting that the density is larger for Vq and Uq such that V >
q �Uq is positive. In particular,

we have that

ln p(�̂LS|�, U�q, V�q,�) = �1

2
k� � �̂k2F + h

= �1

2
kV >�U � diag(�

1
2 )k2F + h

= �1

2
(�

1
2
q � V >

q �Uq)
2 + h0

where h and h0 are constants that do not depend on the signs of Uq and Vq. Since �
1
2
q is positive with

probability one, the conditional probability that V >
q �Uq is positive is greater than that it is negative.

Accordingly, we see that Equation (6) does in fact hold, and the result obtains.
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D Gains from ECov in the high-dimensional limit – supplementary proofs

D.1 Proof of Lemma 5.2

From the sequence of datasets, {DD}1D=1, we obtain sequences of estimates. To make explicit the
dimension dependence, we denote these as explicit functions of the data, e.g. {�̂ECov(DD)}1D=1

where �̂ECov(DD) denotes �̂ECov in Equation (1) applied toDD. Furthermore, we consider the entire
sequence of datasets and estimates as existing in a single probability space.

We note that Lemma D.1 establishes that �̂ECov(DD) and �̂MM
ECov(DD) coincide almost surely in the

high-dimensional limit. As such, the squared error loss of these two estimates coincide almost surely
in the limit, and we may write

lim
D!1

D�1RD
⇡ (�̂ECov(DD)) = lim

D!1
D�1E

h
E[k�̂ECov(DD)� �k2F | �]

i

= lim
D!1

D�1E
⇥
E[k�̂MM

ECov(DD)� �k2F + k�̂ECov(DD)� �̂MM
ECov(DD)k2F+

2tr((�̂ECov(DD)� �̂MM
ECov(DD))>(�̂MM

ECov(DD)� �)) | �]
⇤

= lim
D!1

E
h
D�1E[k�̂MM

ECov(DD)� �k2F | �]
i

= lim
D!1

E
h
�2Q� �4(D � 2Q� 2)E[k�̂LS(DD)†k2F |�]

i

= �2Q� �4 lim
D!1

E[(D � 2Q� 2)k�̂LS(DD)†k2F ]

= �2Q� �4 lim
D!1

E[tr[(⌃̃+ �2IQ)
�1] + o(1)]

= �2Q� �4tr[(⌃̃+ �2IQ)
�1].

The third line comes from linearity of expectation and that k�̂ECov � �̂MM
ECovk

a.s.! 0. The fourth line
comes from Lemma 4.2. The second to last line comes from Lemma D.2.

We next recognize that tr[(⌃̃+�2IQ)�1] =
PQ

q=1(�q+�2)�1,where �1, . . . ,�Q are the eigenvalues
of ⌃̃. Accordingly we may write,

lim
D!1

D�1RD
⇡ (�̂ECov(DD)) = �2Q� �4

QX

q=1

(�q + �2)�1.

Furthermore since we obtain �̂ID(DD) by applying �̂ECov(DD) independently to the data in each
group, we analogously obtain

lim
D!1

D�1RD
⇡ (�̂ID(DD)) = �2Q� �4

QX

q=1

(⌃̃q,q + �2)�1.

Putting these expressions together, we obtain

lim
D!1

D�1
h
RD

⇡ (�̂ID(DD))� RD
⇡ (�̂ECov(DD))

i
= �4

2

4
QX

q=1

(�q + �2)�1 �
QX

q=1

(⌃̃q,q + �2)�1

3

5 .

Finally, including the additional scaling by ��2Q�1 we obtain

Gain(⇡,�2) = �2Q�1

2

4
QX

q=1

(�q + �2)�1 �
QX

q=1

(⌃̃q,q + �2)�1

3

5

as desired.
Lemma D.1. Under the conditions of Lemma 5.2, limD!1 k�̂ECov(DD) � �̂MM

ECov(DD)kF = 0
almost surely.
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Proof. Note that under the conditions of Lemma 5.2, Lemma 4.4 provides that �̂ECov(DD) and
�̂MM
ECov(DD) differ only when ⌃̂MM is not positive definite; otherwise ⌃̂MM = ⌃̂. Since ⌃̂MM =

D�1�̂LS(DD)>�̂LS(DD) � �2IQ, by Lemma D.3 ⌃̂MM will be positive definite for all D above
some D0 almost surely, and so �̂ECov(DD) and �̂MM

ECov(DD) become equal for all D large enough,
implying strong convergence.

Lemma D.2. Under the conditions of Lemma 5.2, limD!1 Dk�̂LS(DD)†k2F = tr[(⌃̃+ �2IQ)�1]
almost surely.

Proof. Recall that k�̂LS(DD)†k2F = tr[(�̂LS(DD)>�̂LS(DD))�1]. As such, we
may write Dk�̂LS(DD)†k2F = tr[(D�1�̂LS(DD)>�̂LS(DD))�1]. By Lemma D.3
D�1�̂LS(DD)>�̂LS(DD)

a.s.! ⌃̃ + �2IQ, and so we can see that Dk�̂LS(DD)†k2F
a.s.!

tr[(⌃̃+ �2IQ)�1] as desired.

Lemma D.3. Under the conditions of Lemma 5.2 limD!1 D�1�̂LS(DD)>�̂LS(DD) = ⌃̃+ �2IQ
almost surely.

Proof. It suffices to show strong convergence element wise, as this implies strong convergence in
all other relevant norms. For convenience, let C(D) := D�1�̂LS(DD)>�̂LS(DD). Note that we
may write each entry C(D)

q,q0 =
PD

d=1 D
�1�̂LS(DD)qd�̂LS(DD)q

0

d as a sum of D i.i.d. terms. Notably,

each term �̂LS(DD)qd · �̂LS(DD)q
0

d is a product of two Gaussian random variables and is therefore
sub-exponential with some non-negative parameters (⌫,↵) (see e.g. Wainwright [63, Definition
2.7]). As a result, C(D) is then sub-exponential with parameters (D� 1

2 ⌫, D�1↵). Therefore, for any
constant b satisfying 0 < b < ⌫2/↵, by Wainwright [63, Proposition 2.9] we have that

P
���C(D)

q,q0 � E[C(D)
q,q0 ]

��� � b

�
 2 exp{�D

2
b2/⌫2}.

This rapid, exponential decay in tail probability with D implies that for small b,
1X

D=1

P
���C(D)

q,q0 � E[C(D)
q,q0 ]

��� � b

�
 1.

Therefore, by the Borel-Cantelli lemma we see that |C(D)
q,q0 � E[C(D)

q,q0 ]|
a.s.! 0. Since E[C(D)] =

⌃̃ + �2IQ for each D, this implies that limD!1 D�1�̂LS(DD)>�̂LS(DD) = ⌃̃ + �2IQ almost
surely.

D.2 Further discussion of Theorem 5.3

We here give further detail related to the proof of Theorem 5.3 and introduce additional notation used
in the remainder of the section. Recall from Lemma 5.2 that Gain(⇡,�2) = �2Q�1[

PQ
q=1(�q +

�2)�1 �
PQ

q=1(⌃̃q,q + �2)�1]. For convenience, we will use ` := diag(⌃̃)# to denote the Q-vector
of diagonal entries of ⌃̃ sorted in descending order. Similarly, we take � to be the Q-vector of
eigenvalues of ⌃̃, again sorted in descending order. Next, it is useful to rewrite

Gain(⇡,�2) = �2Q�1
h
~f(�)� ~f(`)

i

where ~f(x) :=
PQ

q=1 f(xq) =
PQ

q=1(�
2 + xq)�1 (where f(x) := (�2 + x)�1).

The key theoretical tool used in establishing Theorem 5.3 is the Schur-Horn theorem. We state
this result below, adapted from Horn [32, Theorem 5]. The Schur-Horn theorem guarantees that
� majorizes `. In particular, an N -vector a is said to majorize a second N -vector b if

PN
n=1 an =PN

n=1 bn and for all N 0  N,
N 0X

n=1

a#n �
N 0X

n=1

b#n,
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where for a vector v, we use v# to denote the vector with the same components as v, sorted in
descending order. As captured by Theorem 5.3, we can therefore see that Gain(⇡,�2) is non-
negative for any ⌃̃ by observing that ~f is Schur-convex (since f is convex).
Theorem D.4 (Schur-Horn). A vector ` can be the diagonal of a Hermitian matrix with (repeated)
eigenvalues � if and only if � majorizes `.

D.3 Proof of Theorem 5.4

We here show that Gain(⇡,�2) is upper bounded as

Gain(⇡,�2)  �2Q�1f 00(�min)k�k2k�� `k2
= 2�2Q�1k�k2k�� `k2/(�2 + �min)

3,

and lower bounded as

Gain(⇡,�2) � 1

2
�2Q�1f 00(�max)k�� `k2

= �2Q�1k�� `k2/(�2 + �max)
3,

where f 00(x) := d2

dx2 f(x) where f is as defined in Appendix D.2.

We obtain both bounds with quadratic approximations to f . In particular, we define g↵ as the 2nd
order Taylor approximation of f expanded at ↵,

g↵(x) := f(↵) + f 0(↵)(x� ↵) +
1

2
f 00(↵)(x� ↵)2,

and note that by Lemma D.5

~g�max(�)� ~g�max(`)  ~f(�)� ~f(`)  ~g�min(�)� ~g�min(`), (8)

where ~g↵(x) :=
PQ

q=1 g↵(xq).

Proof of upper bound. We obtain the desired upper bound as follows.

Equation (8) and Lemma D.6 allow us to see

Gain(⇡,�2)  �2Q�1
⇥
~g�min(�)� ~g�min(`)

⇤

=
1

2
�2Q�1f 00(�min)(k�k2 � k`k2).

(9)

Since f 00 is positive on R+, the problem reduces to upper bounding k�k2 � k`k2.
In particular, we find

k�k2 � k`k2 = h�+ `,�� `i (10)
 k�+ `kk�� `k // by Cauchy-Schwarz (11)

=
p
k�k2 + 2h�, `i+ k`k2 k�� `k (12)


p
k�k2 + 2k�kk`k+ k`k2 k�� `k // by Cauchy-Schwarz (13)

 2k�kk�� `k // Since k�k � k`k, (14)

where we can see that k�k � k`k by noting that k · k2 is Schur convex, and again appealing to the
Schur-Horn Theorem. The desired upper bound obtains by combining Equations (9) and (10).

Proof of lower bound. We begin as we did for the upper bound. Equation (8) and Lemma D.6
allow us to see

Gain(⇡,�2) � �2Q�1
⇥
~g�max(�)� ~g�max(`)

⇤

=
1

2
�2Q�1f 00(�max)(k�k2 � k`k2).

(15)

Since, again, f 00 is positive on R+, the problem reduces to lower bounding k�k2 � k`k2.
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In particular, we would like to show k�k2 � k`k2 � k� � `k2. We can arrive at this bound with
a particular expansion of k� � `k2 and using Lemma D.7, which again leverages the fact that �
majorizes `. Specifically, we write

k�� `k2 = h�� `,�i � h�� `, `i
= k�k2 �

⇥
h�, `i+ h�� `, `i

⇤

= k�k2 � k`k2 �
⇥
h�, `i � h`, `i+ h�� `, `i

⇤

= k�k2 � k`k2 � 2h�� `, `i
 k�k2 � k`k2

(16)

where the last line follows from Lemma D.7, which provides that h� � `, `i � 0 since, from the
Schur-Horn theorem for any Q0  Q

PQ0

q=1 �q � `q � 0, and ` has non-negative, non-increasing
entries. We obtain the desired lower bound by combining Equations (15) and (16).
Lemma D.5. Let � and ` be Q-vectors of non-negative reals with non-increasing entries, and let
� majorize `. Consider ~f : RQ ! R, x 7!

PQ
q=1 f(xq) =

PQ
q=1(�

2 + xq)�1 (where f(v) :=

(�2 + v)�1) for any �2 > 0, and define g↵ to be the 2nd order Taylor approximation of f expanded
at ↵,

g↵(x) := f(↵) + f 0(↵)(x� ↵) +
1

2
f 00(↵)(x� ↵)2.

Then
~g�max(�)� ~g�max(`)  ~f(�)� ~f(`)  ~g�min(�)� ~g�min(`),

where ~g↵(x) :=
PQ

q=1 g↵(xq) and �max = �1 and �min = �Q are the largest and smallest entries
of �, respectively.

Proof. If there are indices q for which �q = `q , remove them (they do not affect ~f(`)� ~f(�)). If all
are equal, � = d and so the result is trivial, otherwise we have Q � 2 entries with �q 6= `q .

We begin with the lower bound; the upper bound follows similarly. For this, it suffices to show
~f(�)� ~f(`)�

�
~g�max(�)� ~g�max(`)

�
� 0.

We first express this difference as an inner product

~f(�)� ~f(`)�
�
~g�max(�)� ~g�max(`)

�
=

QX

q=1

⇥
(f � g�max)(�q)� (f � g�max)(`q)

⇤

=
QX

q=1

(�q � `q)

"
(f � g�max)(�q)� (f � g�max)(`q)

�q � `q

#

// defining each hq :=
(f � g�max)(�q)� (f � g�max)(`q)

�q � `q

=
QX

q=1

(�q � `q)hq

= h�� `, hi

where h = [h1, h2, . . . , hQ]>.

We will complete our proof by leveraging Lemma D.7, which provides that ha, bi � 0 for any
Q-vector a satisfying

PQ
q=1 aq = 0 and

PQ0

q=1 aq � 0 for every Q0  Q, and Q-vector b with
non-increasing entries.

It therefore remains only to show that � � ` and h satisfy the conditions of Lemma D.7. Since
the entries of � and ` are taken to be in descending order, the condition that

PQ0

q=1(� � `)q � 0
for any Q0  Q, follows from the Schur-Horn theorem. Likewise, this theorem provides thatPQ

q=1 �q =
PQ

q=1 `q, and therefore that
PQ

q=1(� � `)q = 0, so that � � ` meets condition (2) of
the lemma.
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We next confirm that h has non-increasing entries by considering an expansion of the expressions for
each hq . In particular, observe that

hq =
(f � g�max)(�q)� (f � g�max)(`q)

�q � `q

= (�q � `q)
�1

n
f(�q)� f(`q)�

⇥
g�max(�q)� g�max(`q)

⇤o

= (�q � `q)
�1
� (�2 + `q)� (�2 + �q)

(�2 + `q)(�2 + �q)
�


(�q � `q)f

0(�max) +
1

2
((�q � �max)

2 � (`q � �max)
2)f 00(�max)

�  

= (�2 + �max)
�2 � (�2 + `q)

�1(�2 + �q)
�1 � 1

2
(�q � `q)

�1(�2 + �max)
�3

h
�2
q � `2q � 2�max(�q � `q)

i

= (�2 + �max)
�2 � (�2 + `q)

�1(�2 + �q)
�1 � 1

2
(�2 + �max)

�3
⇥
�q + `q � 2�max

⇤
.

Next define �(a, b) = (�2+�max)�2� (�2+a)�1(�2+ b)�1� 1
2 (�

2+�max)�3 [b+ a� 2�max] ,
so that for each q, hq = �(`q,�q). Now, for q0 > q, we may write

hq0 � hq = �(`q0 ,�q0)� �(`q,�q)

=

Z `q0

`q

@

@a
�(a,�q)da+

Z �q0

�q

@

@b
�(`q0 , b)db.

(17)

Next note that
@

@a
�(a, b) = (�2 + a)�2(�2 + b)�1 � 1

2
(�2 + �max)

�3

and
@

@b
�(a, b) = (�2 + a)�1(�2 + b)�2 � 1

2
(�2 + �max)

�3

from which we can see that @
@a�(a, b) and

@
@b�(a, b) are positive for a, b 2 [�min,�max].Accordingly,

Equation (17) provides that hq0 �hq  0, since `q0  `q and �q0  �q for q0 > q, because the entries
of ` and � are non-increasing. Therefore hq0  hq, completing the proof.

Lemma D.6. Consider the quadratic function ~h(x) =
PQ

q=1(ax
2
q + bxq + c). Let �, ` 2 RQ satisfy

PQ
q=1 �q =

PQ
q=1 `q . Then

~h(`)� ~h(�) = a(k`k2 � k�k2).

Proof. The result follows from the simple algebraic rearrangement below,

~h(`)� ~h(�) =
QX

q=1

(a`2q + b`q + c)� (a�2
q + b�q + c)

=
QX

q=1

a`2q � a�2
q

= a(k`k2 � k�k2).

Lemma D.7. Let x be aQ-vector satisfying for eachQ0  Q,
PQ0

q=1 xq � 0, and let y be aQ-vector
with non-increasing entries. If additionally either (1) y has non-negative entries or (2)

PQ
q=1 xq = 0

then hx, yi � yQ
PQ

q=1 xq � 0.

Proof. We first prove the lemma under condition (1) by induction. The base case of Q = 1 is trivial;
hx, yi = x1y1 and under (1) x1 and y1 are non-negative and under (2) x1 = 0.
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Assume the result holds for Q� 1. Then

hx, yi = yQxQ + hx1:Q�1, y1:Q�1i (18)

� yQxQ + yQ�1

Q�1X

q=1

xq // by the inductive hypothesis (19)

� yQxQ + yQ

Q�1X

q=1

xq // since yQ�1 � yQ and
Q�1X

q=1

xq � 0 (20)

= yQ

QX

q=1

xq � 0 // since yQ and
QX

q=1

xq are non-negative. (21)

This provides the desired inductive step, completing the proof under condition (1).

Under condition (2), consider y0 = y �minq yq1Q. Then

hx, yi = hx, y0i+min
q

yqhx,1Qi

= hx, y0i.

Since y0 now has non-negative entries, condition (1) is satisfied and the result follows.

D.4 Proof of Corollary 5.5

We establish the corollary with a brief sequence of upper bounds following from our initial upper
bound in Theorem 5.3. In particular, the theorem provides

Gain(⇡,�2)  2�2Q�1k�#kk`# � �#k/(�2 + �min)
3.

We begin by simplifying this upper bound. As a first step, note that

k`# � �#k2 = k`k2 + k�k2 � 2h`#,�#i
 2k�k2.

As such, we can simplify our upper bound as

Gain(⇡,�2)  2�2Q�1k�kk`# � �#k/(�2 + �min)
3

 4�2Q�1k�k2/(�2 + �min)
3

 42�2
min�

2/(�2 + �min)
3

(22)

where  := �max/�min is the condition number of ⌃̃.

We then obtain the first bound by noting that

�2
min�

2/(�2 + �min)
3  �2

min�
2/(�2)2/�min

 �min/�
2

and the second by noting that

�2
min�

2/(�2 + �min)
3  �2

min�
2/(�min)

3

 �2/�min.

Substituting these expressions into Equation (22) provides the desired expressions in Corollary 5.5.

D.5 Extensions to random design matrices

The asymptotic formulation in Section 5 may allow us to relax Condition 4.1. In particular, The-
orem 5.3 and Theorem 5.4 depend on this condition only through Lemma 5.2, which provides an
analytic expression for the asymptotic gain. We conjecture that this condition may be satisfied for
certain sequences of datasets with random design matrices of increasing dimension. For example if
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for each group q, the number of data points Nq
D grows as !(D2) and if each of the covariates are

each distributed as Xq
n,d

i.i.d.⇠ N (0,�2
q/(�

2I2D)), then an asymptotic analogue of Condition 4.1 will
be satisfied in the sense that k��2

q Xq>Xq � �2IDk2 will be o(1/
p
D) (see e.g. Wainwright [63,

Theorem 6.5]). As a result, we can expect the sequence of estimates �̂ECov to converge to estimates
with the simplified form utilized in the proof of Lemma 5.2 fast enough that the asymptotic gains are
equal in these two cases.

Making this argument rigorous, however, requires contending with convergence of sequences of
random variables of changing dimension (recall that we consider D ! 1). This technical aspect
complicates the required theoretical analysis because common tools (e.g. continuous mapping
theorems) do not apply in this setting. We leave further analysis of �̂ECov with random design
matrices to future work.

E Experiments Supplementary Results and Details

E.1 Simulations additional details

We here describe the details of the simulated datasets discussed in Section 6. For each of the dimen-
sionsD and each of the 20 replicates we first generated covariate effects for allQ = 10 groups. To do
this, we began by setting⌃; for the correlated covariate effects experiments (Figure 1 Left) we generat-
ing a randomQ⇥Qmatrix of orthonormal vectors U and set⌃ = Udiag([20, 2�1, . . . , 2Q�1]>)U>,
and for independent effects (Figure 1 Right) we set ⌃ = IQ.We then simulated covariate effects as
�d

i.i.d.⇠ N (0,⌃).

We next simulated the design matrices. For each group q, we chose a random number of data points
Nq ⇠ Pois(� = 1000), and for each data point n = 1, . . . , Nq sampled Xq

n ⇠ N (0, (1/1000)ID)

so that for each group E[Xq>Xq] = ID. Finally, we generated each response as Y q
n

indep⇠
N (Xq>

n �q, 1).

For �̂EGroup, we estimated the D ⇥D covariance � by maximum marginal likelihood. We did this
with an EM algorithm closely related to Algorithm 1. See e.g. Gelman et al. [24, Chapter 15 sections
4-5] for an explanation of the relevant conjugacy calculations in a more general case that includes a
hyper-prior on �.

E.2 Practical moment estimation for poorly conditioned problems

The moment based estimator (using ⌃̂MM in Section 4) is unstable in the two real data applications
discussed in Section 6 due to poor conditioning of the design matrices leading �̂LS to have high
variance. To overcome this limitation, we instead used an adapted moment estimation procedure
which is less sensitive to this poor conditioning. While, in agreement with Theorem 4.5, this approach
performs worse than �̂ECov (see Figure 3) we report it nonetheless because it has lower computational
cost and may be appealing for larger scale applications. We describe this approach here. We note
however that moment based estimates of the sort we consider here do not naturally extend to logistic
regression and so are not reported for our application to CIFAR10.

We first introduce some additional notation. For each group q consider the reduced singular value
decomposition Xq = Sqdiag(!q)Rq>, where Sq and Rq are Nq ⇥ D and D ⇥ D matrices with
orthonormal columns and !q is a D-vector of non-negative singular values. Next define for each
group W q := Sq>Xq and Zq := Sq>Y q, which we may interpret as a D ⇥D matrix of pseudo-
covariates andD-vector of pseudo-responses, respectively. Next define ⌦ to be theQ⇥Qmatrix with
entries ⌦q,q0 := tr(W q>W q0)�1 and ~�2 := [�2

1 ,�
2
2 , . . . ,�

2
Q]

>. Lastly, let Z = [Z1, Z2, . . . , ZQ]
be the D ⇥Q matrix of all pseudo-responses. Our new moment estimator is

⌃̂MM := [Z>Z �Ddiag(~�2)]� ⌦.

We next show hat E[⌃̂MM] = ⌃ under correct prior and likelihood specification. Note first that if � is
a D ⇥Q matrix with i.i.d. standard normal entries we may write

Z
d
= [W 1�1,W 2�2, . . . ,WQ�Q] + �diag(~�2).
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Figure 3: Performances of additional methods on the law enforcement and blog datasets. Uncertainty
intervals are ±1SEM.

As such, for each q and q0, we have that

E[(Z>Z)q,q0 ] = E[Zq>Zq]

= E[�q>W q>W q0�q0 ] + I[q = q0]�2
qD

= tr(W q>W q0E[�q0�q>]) + I[q = q0]�2
qD

= ⌦�1
q,q0⌃q,q0 + I[q = q0]�2

qD.

Accordingly, we can see that each entry of ⌃̂MM has expectation E[⌃̂MM
q,q0 ] = ⌃q,q0 , which establishes

unbiasedness.

However, this moment estimate still has the limitation that it evaluates to a non positive semidefinite
matrix with positive probability. Under the expectation that, in line with Theorem 4.3 the very small
and negative eigenvalues of ⌃̂MM might lead to over-shrinking, we performed an additional step
of clipping these eigenvalues to force the resulting estimate to be reasonably well conditioned. In
particular, if our initial estimate had eigendecomposition ⌃̂MM = Udiag(�)U>, we instead used
⌃̂MM = Udiag(�̃)U>, where for each q, we have �̃q = max(�q,�max/100) so that the condition
number of the modified estimate was at most 100. Though we did not find the performance of the
resulting estimates to be very sensitive to this cutoff, we view requirement for these partly subjective
implementation choices required to make the �̂MM

ECov effective in practice to be a downside of the
approach as compared to �̂ECov, which avoids such choices by estimating ⌃ by maximum marginal
likelihood.

Compared to the iterative EM algorithms, which rely on matrix inversions at each iteration, com-
putation of ⌃̂MM is much faster. In each of our experiments, computing it requires less than one
second.

E.3 Allowing for non-zero means a priori in hierarchical Bayesian estimates

In the development of our approach in Section 2 we imposed the restriction that E[�d] = 0 a priori.
Though in general one might prefer to let � have some nontrivial mean (as Lindley and Smith [44]
do in the context of exchangeability of effects across groups) this assumption simplifies the resulting
estimators, theory, and notation. When � is permitted to have a non-zero mean, conjugacy maintains
and the methodology presented in Section 3 may be updated to accommodate the change. While we
omit a full explanation of the tedious details of this variation, we include its implementation in our
code and the performance of the resulting empirical Bayesian estimators in Figures 3 to 5. From
these empirical results we see that removing this restriction has little impact on the performance of
the resulting estimators. Notably, our results in these figures reveal that the same is true for choosing
to include or exclude a prior mean for the exchangeability of effects across groups prior.
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Figure 4: Performances of methods on the blog dataset, segmented by post type. Uncertainty intervals
are ±1SEM.

Figure 5: Performances of methods on the law enforcement dataset, segmented by region and recorded
offense categorization. Uncertainty intervals are ±1SEM.
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E.4 Additional details on datasets

In each of the two regression applications, for each component dataset, we mean centered and
variance-normalized the responses. Additionally, we Winsorized the responses by group; in particular,
we clipped values more than 2 standard deviations from the mean.

BlogFeedback Data Set details Given the nature of the features included in the blog dataset used
in the main text (which are summarizing characteristics rather than readable text), we believe it
may be possible to find the blog post that corresponds to a particular data point. But we believe
it is unlikely that the dataset directly contains any personally identifiable information. The blog
information was obtained by web-crawling on publicly posted pages, so it is unlikely that consent for
inclusion of the content into this dataset was obtained.

Communities and Crime Dataset details All data in this dataset was obtained through official
channels. This dataset is composed of statistics aggregated at the community level, so it is less likely
(though not impossible) to contain personally identifiable information. Since it contains demographic,
census, and crime data, it is unlikely to contain offensive content.

CIFAR10 details. For the tasks car vs. cat, car vs. dog, truck vs. cat, and truck vs.
dog we used Nq = 100 data points. For the tasks car vs. deer, car vs. horse, truck vs.
deer, and truck vs. horse we used N q = 1000 data points.

We generated the pre-trained neural network embeddings using a variational auto-encoder
(VAE) [36]. We adapted our VAE implementation from ALIBI DETECT [60], here. See also
notebooks/2021_05_12_CIFAR10_VAE_embeddings.ipynb for details.

CIFAR10 is composed from a subset of the 80 million tiny images dataset. As is currently ac-
knowledged on the 80 million tiny images website, this larger dataset is known to contain offen-
sive images and images obtained without consent (https://groups.csail.mit.edu/vision/
TinyImages/). However, given the benign nature of the 10 image classes in CIFAR10, we expect
it does not contain offensive or personally identifiable content. These data were also obtained by
web-crawling, so it is unlikely that consent for inclusion of the content into this dataset was obtained.

E.5 Software Licenses

We here report the software used to generate our results and their associated licenses.

All of our experiments were implemented in python, which is licensed under the PSF license. For
ease of reproducibility, ran our experiments and generated our plots IPython in Jupyter notebooks;
this software is covered by a modified BSD license.

For our application to transfer learning using CIFAR10, we used a variational auto-encoder imple-
mentation adapted from ALIBI DETECT [60], which uses the Apache licence. Our implementation
of our EM algorithm uses TensorFlow [1], which is licensed under the MIT license.

We made frequent use of python packages numpy and scipy and
matplotlib. These are large libraries with components covered different li-
censes. See github.com/scipy/scipy/blob/master/LICENSES_bundled.txt for
scipy, github.com/numpy/numpy/blob/main/LICENSES_bundled.txt for numpy, and
github.com/matplotlib/matplotlib/tree/master/LICENSE for matplotlib.
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Figure 6: Performances of methods on CIFAR10 segmented by binary classification task. Uncertainty
intervals are ±1SEM.
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