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Abstract

We present a novel dynamic recommendation model that fo-
cuses on users who have interactions in the past but turn rel-
atively inactive recently. Making effective recommendations
to these time-sensitive cold-start users is critical to maintain
the user base of a recommender system. Due to the sparse re-
cent interactions, it is challenging to capture these users’ cur-
rent preferences precisely. Solely relying on their historical
interactions may also lead to outdated recommendations mis-
aligned with their recent interests. The proposed model lever-
ages historical and current user-item interactions and dynam-
ically factorizes a user’s (latent) preference into time-specific
and time-evolving representations that jointly affect user be-
haviors. These latent factors further interact with an opti-
mized item embedding to achieve accurate and timely recom-
mendations. Experiments over real-world data help demon-
strate the effectiveness of the proposed time-sensitive cold-
start recommendation model.

Introduction

Recommender system has long been used as an effective
means to improve user experience and to provide person-
alized recommendations in diverse fields such as media, en-
tertainment, and e-commerce. [25, 33]. One effective way of
recommendation is via Collaborative Filtering (CF) [9, 24],
which recommends items based on similar users’ prefer-
ences. CF assumes that users who had similar interactions
with some items in the past are likely to have the same pref-
erence on other items, and leverages the observed user-item
interactions to make predictions for the missing parts, which
indicate the potential items of interest to users. Matrix Fac-
torization (MF) is one commonly used CF technique that
exploits user and item latent factors to capture their inher-
ent attributes. Most existing MF methods model user pref-
erences and item attributes as static factors [14, 16]. Some
recent efforts consider the dynamic changes in the user-item
interactions by modeling user preferences as shifting latent
factors over time, allowing them to provide more timely rec-
ommendations [3, 10, 25].

When user-item interactions are very sparse, making ac-
curate recommendations based on limited information is
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Figure 1: For User (ID:2181970): (a) shows dynamic
changes of ratings for three genre types over time (b) demon-
strates how user’s latent preferences evolve over time.

highly challenging, which is usually referred to as the cold-
start problem. A viable solution to handle the cold-start
problem is to utilize extra side information such as item de-
scriptions, user profiles [27], and social relationships [35].
While various side information is widely available for items
(i.e., movies, songs, and books), the user-related side infor-
mation is typically very scarce as acquiring users’ person-
alized information may be practically difficult due to pri-
vacy issues. Several recent works adopted meta-learning ap-
proaches for few-shot learning in the recommender systems
to alleviate the cold-start problem [28, 17, 5]. Meta-learning
aims to learn global knowledge from the historical informa-
tion of many similar tasks (users) and then provide quick
adaptation for a new task (user) with limited interaction
information. Although the meta-learning approaches show
promising results [28, 17], they are primarily designed for
static settings and hence not effective in providing timely
recommendations that best reflect users’ current interests.

Figure 1a shows that the average movie ratings for three
genre types of an example user from the Netflix dataset,
which oscillate significantly from 2002 to 2005. The aver-
age rating indicates an overall satisfaction on each type of
genre items that the user interacts with for each period, and
serves as an indicator for the change of users’ preference.
Those changes are usually caused by the interplay of two
contributing factors. First, a user’s preference over differ-
ent types of items (e.g., movie or music) may change over
time, which we refer to as the time-evolving factor. Second,
a user’s behavior in a specific period may vary significantly
from other periods due to the impact of money/time bud-



get or other external causes, which we refer to as the time-
specific factor. Given sufficient user interactions over time,
both factors could be effectively learned to provide accurate
and timely recommendations. However, in practice, many
users may have interactions in prior periods but become
largely inactive with few interactions in recent periods for
various reasons. We define these users as the time-sensitive
cold-start users due to scarce recent interactions. Solely re-
lying on the historical interactions of these users may lead
to outdated recommendations that do not match their recent
interests. Furthermore, the limited recent interactions pose
a user cold-start problem for the current period that makes
existing CF-based techniques less effective.

The main challenge with these time-sensitive cold-start
users is to simultaneously capture their most recent interests
and evolving preferences, which are keys to achieve accu-
rate and timely recommendations. In this paper, we focus
on this special time-sensitive cold-start problem, which is
critical for a recommender system to maintain its user base.
We propose to dynamically factorize a user’s (latent) prefer-
ence into time-specific and time-evolving representations in
order to capture the time-specific and time-evolving factors
from both the historical and current user-item interactions.
For example, the Netflix dataset consists of a user’s inter-
actions with a large movie set in the form of user ratings.
The variation of movie ratings from the same user may be
affected by the change of user preference, rating criteria, or
other (unknown) factors. In addition, a user’s preference for
different genres may evolve over multiple periods, as shown
in Figure 1b, which corresponds to the proportion of differ-
ent factors in the time-evolving representation discovered by
our proposed model.

The proposed model consists of two distinct modules: a
meta-learning module and a recurrent module. The meta-
learning module aims to capture time-specific latent factors
through limited interaction data by leveraging the shared
knowledge learned from other users. The recurrent module
aims to capture time-evolving latent factors by nesting a re-
current neural network, and it can be jointly optimized with
the meta-learning module through the model-agnostic meta-
learning approach [7]. Finally, we seamlessly integrate the
two modules by merging the time-specific and time-evolving
factors to form the user representation. This user representa-
tion further interacts with an item embedding (which is also
optimized during model training) to provide the final recom-
mendations. Our experimental results clearly show that the
proposed model makes timely recommendations that closely
resemble the dynamically changed user ratings as a result of
effectively integrating the complementary factors capturing
the user preferences.

The main contributions of this paper are five-fold: (i)
the first work to formulate the time-sensitive cold-start
problem that is critical to maintain the user base of a rec-
ommender system; (ii) a novel integrated recommenda-
tion framework to model sparse dynamic user-item inter-
actions and extract time-evolving and time-specific factors
of user preferences simultaneously; (iii) a time-sensitive
meta-learning module to effectively handle user cold-start
problems by leveraging knowledge shared across multiple

users from the current recommendation period to adapt to
any specific user’s case using limited interaction informa-
tion, (iv) a time-evolving recurrent module to effectively
capture the gradual shift of users’ preferences over time,
and (v) an integrated training process that combines these
two models to simultaneously learn time-specific and time-
evolving factors and optimizes the item embedding.

We conduct extensive experiments over multiple real-
world datasets and compare with representative state-of-art
dynamic and meta-learning-based recommender systems to
demonstrate the effectiveness of the proposed model.

Related Work

Matrix Factorization Models. Matrix factorization is a
commonly used collaborative filtering approach that char-
acterizes users and items through the latent factors inferred
from the item rating patterns [16]. Using singular value de-
composition (SVD) for recommendation is popularized by
the Simon Funk [8] in the Netflix prize competition and a
probabilistic version is introduced by [19]. SVD is extended
to SVD++ [14] for processing the implicit feedback.

The above static models do not include the important tem-
poral information, which should be considered for analyzing
user-item interactions in a time-sensitive setting. Dynamic
matrix factorization has been developed to address the is-
sue, which allows latent features to change with time. Some
works introduce time-specific factors, such as timeSVD++,
which uses additive bias to model user-related temporal
changes [15]. There have been works that employ Gaussian
state-space models to introduce time-evolving factors with
a one-way Kalman filter [25, 10]. To handle implicit data,
Sahoo et al. propose an extension to the hidden Markov
model [22], where clicks are drawn from a negative bino-
mial distribution and Charlin et al. [3] introduces a Gaus-
sian state-space model with the Poisson emission. However,
matrix-factorization-based algorithms may suffer from lim-
ited expressive power and may not capture the complex na-
ture of user-item interactions. Instead, our model captures
both dynamic and static user preferences.

Deep Learning Models. Recent works in recommender
systems [4, 11, 37] utilize deep learning to provide better
recommendations. Cheng et al. [4] propose to jointly train
wide linear models and deep neural networks to combine
the benefits of memorization and generalization. Similarly,
DeepFM [11] integrates the power of deep learning and fac-
torization machines models to learn low- and high-order
feature interactions simultaneously from the input. DIEN
[37] formulates interest evolution network as a deep learn-
ing model to capture latent temporal interests and evolving
interests for better recommendations. These models are very
sensitive to the features and might need important features
information and large datasets while training, which is not
necessary for our model.

Graph-Based Models. Another popular line of recom-
mendation systems is graph-based models. A graph captures
high-order user-item interactions through an iterative pro-
cess to provide effective recommendations [12]. Users and



items are represented as a bipartite graph in [2] and links
are predicted to make recommendations. Similarly, a graph-
based framework called Neural Graph Collaborative Filter-
ing (NGCF) [31] explicitly encodes the collaborative signal
in the form of high-order connectivities in a user-item bipar-
tite graph via embedding propagation. However, these meth-
ods are unable to capture long-term user preferences or deal
with cold-start problems.

Sequential Models. Sequential models understand the se-
quential user behaviors via user-item interactions, and model
the evolution of users’ preferences and item popularity over
time [30, 6]. Tang et al. [26] utilizes convolutional sequence
embedding to capture union level and point level contribu-
tions of historical items via horizontal and vertical filters
and provides top-N sequential recommendations. Similarly,
Kang et al. [13] introduce a self-attentive mechanism to han-
dle both long and short-term user preferences in a sequential
setting. Sequential models focus on users’ evolving prefer-
ences (i.e., recent interactions) but largely neglect long-term
users’ preferences. In contrast, our model dynamically cap-
tures long-term time-evolving preference via RNN and time-
specific users preferences through meta-learning to alleviate
cold-start problems.

Meta-learning Models. The user-item interaction data is
usually sparse because a user may only interact with a few
items within the large item pool. In such cases, making rec-
ommendations can be viewed as a few-shot learning prob-
lem. Meta-learning [23, 1] is recently becoming a popular
few-shot learning approach that learns from similar tasks
and can generalize quickly and efficiently for the few-shot
unseen new tasks. Finn et al. [7] propose a model-agnostic
meta-learning model that learns global parameters from a
large number of tasks and performs as a good generalization
on a new task that has few samples utilizing the few steps
of gradients. To address the cold-start problem in item rec-
ommendation, Vartak et al. [28] introduce a meta-learning
strategy that focuses on the items-cold-start problem to rec-
ommend cold-start items considering that items arrive con-
tinuously in the Twitter Timeline. On the contrary, our model
focuses on recommendations for the time-sensitive, cold-
start users by capturing users’ preferences over time. Simi-
larly, recent work based on meta-learning is done to estimate
user preferences in [17] and scenario-specific recommen-
dation in [5]. Both works use the information of users and
items to generate user and item embeddings. Meta-learning
is specifically utilized to learn heterogeneous information
networks to alleviate cold-start problems [18]. Similarly,
meta-learning approachs are utilized in graphs [32, 34] to
quickly adapt to new sub-graph that alleviate the cold-start
problem. Also, meta-learning is applied in click-through rate
(CTR) prediction [21] where desirable embeddings for the
new ads are generated via meta-learner. These embedding
methods are designed for a static setting, making them not
applicable to learn user preferences evolving over time. In
our work, we simultaneously learn time-evolving and user-
specific preferences to provide accurate and timely recom-
mendations for time-specific cold-start users with very lim-
ited recent interaction data.

Table 1: Summary of Notations

Notation Description

U, % user and item

Zi, €3 item ¢’s original encoding and embedding

ﬁuyi), rf% 9 predicted and ground truth scores for user
v on item ¢ at period ¢

uls, ul, time-specific and time-evolving factors

of user u at period ¢
0%, 0%, meta and user-specific parameters of
time-specific module at period ¢

w parameter of time-evolving module

Sk, o support and query sets in task corre-
sponding to user v at period ¢

D}, items interacted with user u at period ¢

The Dynamic Meta-Learning
Recommendation Model

Problem Settings. We propose a dynamic recommenda-
tion model, where the input data is represented as {U, Z, H},
U is the user set, 7 is the item set, and 7 is the set of time pe-
riods. A time period ¢t € H defines a particular time interval
where the interactions for user v with the item ¢ are aggre-
gated based on timestamps. All major symbols are summa-
rized in Table 1. We perform recommendation in each time
period with a recommendation function as

for (@) =7 YuclUjiceIteH (1)

where ffu,i) is the recommended score for item ¢ assigned
by user w at period , Htu is user latent factor at time ¢, and w
is the parameter of the recurrent neural network module. The
goal of a recommender system is to predict the recommen-
dation scores that can accurately capture a user’s true prefer-
ence on items over time so that the recommended items are
likely to be adopted by the users.

We formulate dynamic recommendations as a few-shot
regression problem in the meta-learning setting. Users are
dynamically partitioned into meta-train and meta-test sets
based on their interactions in the current recommendation
period ¢. In particular, the meta-train user set includes users
with sufficient interactions, while the meta-test user set in-
cludes time-sensitive cold-start users who have only a few
interactions in the current time period. Details for the train-
test user splits are discussed in the experiment section. We
consider a distribution over tasks P(7), and each user is
represented as a few-shot regression task 7,! sampled from
the given task distribution. In general, a task includes a
support set S, and a query set Q',. The support set includes
a user’s interactions at period ¢ where k is interpreted as the
number of shots (i.e., interactions). The query set includes
the rest interactions of this user at period ¢.

T ~P(T):

S, = {(U’ij)vrfu,ij)}jzhm

QZ = {(’LL, ij)v Tfuyij)}j:kJrl:Nt

2

where [V, is the number of items a user interacted with at pe-

riod ¢ and rfu ;) fepresents label (i.e. rating or count) from
[
user u to item 7. We adopt episodic training [29], where the
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Figure 2: The proposed model captures time-evolving fac-
tors via a recurrent network module and time-specific factors
through a meta-learning module.

training task mimics the test task for efficient meta-learning.
The support set S in each episode works as the labeled train-
ing set on which the model is trained to minimize the loss
over the query set Q. The training process iterates episode
by episode until convergence.

Model Overview

To leverage item information such as text descriptions, our
model generates an initial item representation (/) using an
embedding matrix E € R4*™ where m is the dimension of
input item attributes, and d is the dimension of embedding.
The embedding is generated from item attributes following
[4, 17]. An item ¢ is first encoded as a binary vector z; €
R™, where the corresponding index of item attributes is set
to 1 and O otherwise. The binary vector is then transformed
using the embedding matrix: e; = Ez;. The embedding of
all items can be stacked as: I = [ey, e, ..., €,] Where n is
the total number of items. The embedding matrix £ will be
optimized along with the model training process after the
user latent factor is learned, and details are provided at the
end of this section.

Figure 2 shows that the proposed model consists of a time-
specific meta-learning module and a time-evolving recur-
rent neural network module to generate time-specific user
latent factors u!, and time-evolving latent factors uf,, both
of which contribute to the final prediction f*(u, ). Details
of them are described in following sections. After both mod-
ules are trained, the model learns time-specific user factors
ul, and time-evolving user factors uf,. These user factors
are merged to interact with the item embedding to provide
recommendations for the user. The recommendation for a
user u at the current period ¢ is denoted as a vector 7,.

Making recommendations can be viewed as a regression
problem. By using the mean square error (MSE) function,
the loss for a specific user u is formulated as:

Ly [fet;,w] = Z Hféf“w(i) - Tfu,i)Hga

fgz,w(z) = (U’ie + uie_l) T €

3

where rfu 0 is user-item interaction (rating or count). The
user representation is the vector sum of time-specific ul, and

time-evolving user factors u/. ' (as a compact single repre-
sentation reducing the number of trainable parameters that
helps to avoid overfitting), and the prediction is achieved by
the dot product of v and item embedding 7. Note that pre-
diction for the current time includes time-specific user fac-
tors from current time period i.e. u!, and time-evolving user
factors from the previous time period i.e. u’,'. In general,
dynamic recommender systems utilize the information from
the previous period to predict for the next period, and we
follow this standard setting.

The total loss is formed by aggregating all users in the
meta-train set, regularized by the L, norm of key model pa-
rameters. Let 95 and #' denote the local (i.e., user-specific)
and global parameters of the time-specific meta-learning
module, w denote the parameters of the time-evolving re-
current neural network module. Training of a dynamic rec-
ommendation model can be formulated as:

. A
arg min Z ﬁn[féz,w]+§(||9t|\§+\|w||§)’
e “4)
0! = 0" — Vo Lre[fhe ]

where 6!, is one gradient step from global parameter 6 of
the meta-learned time-specific module with « being the step
size and A is the regularization parameter.

Time-Specific Meta-Learning Module

This module aims to capture time-specific user factors by
only considering the information from the current recom-
mendation period. The meta-learner takes input from the
specific period, which is a different setting than the exist-
ing meta-learning-based recommender systems [17, 5]. In
this way, the model can capture the latent factors associ-
ated with that specific period to provide more accurate and
timely recommendations. We consider each user as a learn-
ing task. Our goal is to learn a meta parameter 6° that rep-
resents a time-specific global user representation given the
meta-training set. We follow the standard setting of few-
shot learning [7], where the distribution over tasks is rep-
resented as p(7). The model is trained iteratively by sam-
pling tasks from p(7"). The meta-learning module generates
time-specific user latent factors (ul,) as:

uztfs - :neta(’]:f; 0t) (5)

where 7.! represents task of a user w at period ¢. The task
T.!includes S! and QF,. We first pass S¢. into f? _,, to adapt
user-specific model parameter 6!, from the global user model
parameter ' and then we provide Q?, into the f! _,, to gen-
erate time-specific user factors (ul,).

We apply an optimization-based meta-learning approach
[7] to learn time-specific user factors, as shown in Figure 2.
The meta-learning network consists of one input layer, two
fully connected hidden layers, and one output layer. The first
and second hidden layers have 128 and 64 hidden units with
ReLU activation, while the last layer estimates time-specific
user factors with a linear function followed by sigmoid ac-
tivation. The input to the meta-learning model is the item
embedding for the users on a particular period. Algorithm 1



shows the training process that learns the model parameters.
For the time-specific module, the local update (line 7) is
done for the user specific parameter, which is achieved by
one or more gradients from the global parameter:

92 = Qt — avetﬁrj [f5t7w:| (6)

In this update, the loss function is computed with the support
set. Similarly, the global update (line 11) is conducted with
the new item interactions of each user from the query set for
the meta update:

0'=0"— Vo > Lrelfh ] @)

Ti~p(T)

This process continues to find a good global parameter
shared by all users in each period.

Time-Evolving Module

User preferences usually change dynamically over time. By
capturing the time-evolving factors and integrating them
with the time-specific factor, the proposed model can re-
cover the user’s true preference more accurately. To this end,
we formulate time-evolving user factors (u!,) for each user
using a nested recurrent neural network (RNN):

t t t—1 t.
Ute = rnn(ute aDu’w) (8)

where D!, is the set of items that user u interacted with at
time ¢, uie_l is the previous time period time-evolving user
factors, and w is the network parameter. Notice that the input
and output of the RNN are both latent variables instead of
observations. We use SGD to update the parameter of RNN:

A
w=w = V(L fi W] + S lIwI3) ©)

where + is the step size. As shown in the time-evolving mod-
ule of Figure 2, the vector representation of a hidden layer
ul, is a time-evolving factor of user u at period ¢ and helps to
propagate influence from the previous period to the next pe-
riod [36]. The updates of time-specific user factors through
meta-learning and time-evolving user factors through nested
RNN are summarized in Algorithm 1. The recommendation
process is summarized in Algorithm 2.

Joint Item Embedding Optimization. Let L.,,; denote
a differentiable loss function used to train the embedding
matrix E. And let G denote the decoding module, which is
followed by attribute-wise sigmoid transformation:

di = Q(Ezl)

~ . . T
[2:]; = sigmoid(n; d;) T oxp (77 d)

(10)
where z; is the original item representation in a binary vec-
tor, K is the length of z;, E is the embedding matrix, d;
is the decoded item representation, 7 is the parameter for
attribute-wise Sigmoid transformation, and Z; is the recov-
ered item representation. The loss function for learning the
embedding matrix is a negative log-likelihood and is repre-

sented as:
Eemb = - Z Z[zz]] log [EZ]J (11)

i€l j

vied{l,.. K}

Algorithm 1: Model training

Require: Set of time periods: H
Require: Hyperparameters: «, 3,y

1: fort € Hdo
2: Initialize meta learner, 6*
3: while not converge do
4: Sample tasks 7. ~ p(T)
5: for all 7! do
6: Sample support set, St € Tt for the local
update
7: Perform local update with S, for time-
specific module using Equation (6)
8: Sample query set Qf, € T.! for the meta up-
date
9: Update time-evolving module with D=1 us-
ing Equation (9)
10: end for
11: Perform meta update with QF, for time-specific

module using Equation (7)
12: end while
13: end for

Algorithm 2: Recommendation for time-specific cold-start
users

Require: Trained meta parameter #, RNN parameter w,

recommendation time period ¢

1: Identify cold-start user set for ¢

2: for each user w in the set do

3: Form support set St from current interactions

4: Perform local update with S?. for time-specific mod-
ule using Equation (6)

5 Compute user factors using Equations (5) and (8)

6: Make recommendation using Equation (3)

7: end for

Other designs for item embedding with a differentiable loss
function can also be applied.

To jointly train the embedding matrix, time-specific and
time-evolving modules, we combine those losses, and opti-
mize the total loss with respect to 6%, w and E.

A
Y Lrilfdywm) +ELems + 5 (116113 + [lell3)

TE~p(T)

0, = 0" —avo L[ fge o 5]

arg min
ot .w,E

(12)
where £ is the weight to be tuned. If £ is set to a very large
value, matrix E is determined only by L.

Note that the encoded item embedding is used for both
modules. By fixing 6!, and w, it is possible to back-propagate
and calculate the gradient with respect to F, which is up-
dated in each task as

E=E —yVE(L7:[fot wpl + Lemb) (13)

Also notice that L,,,; is not dependent on §* and w.
Therefore, when embedding matrix is fixed, the loss func-
tion reduces to Eq (4), and #' and w are updated without
considering L.



Experiments

We conduct experiments on two movie datasets: Netflix and
MovieLens-1M that consist of users’ ratings of movies as ex-
plicit feedback and one music dataset: Last.fin that consists
of users’ play counts of music tracks as implicit feedback.
Besides reporting the overall recommendation performance
and comparing with state-of-the-art baselines, we also in-
vestigate key properties of the model, including: (1) each
module’s performance when used in isolation, (2) impact
of varying time period lengths, (3) recommendation perfor-
mance with no interactions in the current period, and (4)
impact of hyper-parameters in the model. Experimental set-
tings, datasets details, and analysis of the above key proper-
ties are presented in the Appendix [20].

Methods for Comparison. For comparison, we include
matrix factorization based static and dynamic models, deep
learning based models, graph models, sequential models,
and meta-learning models:

e Matrix factorization (MF): The standard MF model
SVD++ [14] that also exploits both explicit and implicit
feedback is used here as a static baseline.

e Dynamic models: We use timeSVD++ [15], collaborative
Kalman Filter (CKF) [10], and dynamic Poisson factor-
ization (DPF) [3] as the time-evolving models.

* Deep learning models: We use Wide and deep [4],
DeepFM [11] as static, and DIEN [37] as a dynamic
models for deep learning-based recommendation. How-
ever, most of them are developed for click-through rate
prediction in their original forms.

* Graph-based model: Most graph-based models are de-
signed for static settings. For comparison, we use graph
convolutional matrix completion (GC-MC) [2], which
models recommendation as link prediction in the graph,
and neural graph collaborative filtering (NGCF) [31] that
utilizes embedding propagation over user-item graphs.

* Sequential model: We use Sequential Recommendation
via Convolutional Sequence Embedding (Caser) [26],
which models recommendation as a unified and flexible
structure to capture both preferences and sequential pat-
terns, and transformer-based sequential recommendation
model (SASRec) [13] in our comparison.

* Meta-learning models: We follow the model-agnostic
meta-learning model (MAML) to implement the meta-
learning model similar to MeLU [17]. We also compared
with the meta-learning model in [28] that focuses on item
cold-start problem (referred to as ML-ICS). The model is
also designed for the classification setting, so we have to
make adjustments to fit into our context.

Evaluation Metrics. For evaluation, we analyze the ex-
perimental results in terms of both the deviation of predicted
values from the ground truth and the errors of the ranking
sequences. We use Root Mean Squared Error (RMSE) and
Normalized Discounted Cumulative Gain (NDCG) averaged
across all test users. RMSE is usually reported for explicit

data, while NDCG is usually reported for implicit data:

Z (Puyi — Tu,i)?/10),

Tu,i €0

RMSE =

lpred lideal (14)
re re

NDCG, = E n E n

" 10g2(1—|—n)/ — logy(1+n)

where O is the observation set for the test set and rel,, is
the relevancy of n'” item in the ranking sequence for user
u, which is binary for implicit data or the rating for explicit
data. To penalize the negative feedback, we linearly mapped
the ratings to a range of [-1,1]. The NDCG is the fraction
of Discounted Cumulative Gain (DCG) of recommendation
result over the ideal DCG.

Recommendation Performance

The experimental results are shown in Figures 3a-3c. We
evaluate NDCG based on the top N recommendation list and
RMSE based on the training epochs. The RMSE is stable
after 30 and 40 epochs in both movies and music datasets,
respectively. The average results of NDCG and RMSE con-
sidering all periods with the range of deviation are shown in
Table 2, for the Netflix, Last.fm, and MovieLens datasets, re-
spectively. The proposed model clearly demonstrates the ad-
vantage of combining time-specific and time-evolving user
factors that lead to a superior recommendation accuracy as
compared with other competitive models. Both explicit and
implicit datasets are highly sparse, and MF models’ per-
formance is poor due to the sparse interactions. Also, MF
models suffer from cold-start problems, and thus their per-
formances are fairly limited, as shown in Table 2. Simi-
larly, deep learning models require sufficient training data
and hence largely suffer in the few-shot recommendation
setting. Moreover, these models might need extra side in-
formation, like user profile and item details, for better rec-
ommendations. For example, DIEN needs cleverly chosen
interest features like user behavior, and the absence of those
features limits its performance, as shown in Table 2. Simi-
larly, the poor performance of graph-based models in both
movie datasets implies that these methods are insufficient
to handle cold-start problems. Like other existing models,
the performance of a sequential model is less effective for
the cold-start users in all three datasets. The reason could
be that the model is less effective in capturing long-term
user preferences. In contrast, the meta-learning approaches
show better results by leveraging shared knowledge across
the users. However, in the time-specific cold-start setting,
test users have very limited interactions. In particular, the
meta-learning model doesn’t benefit from time-evolving as-
pects of the user interests, and thus underperforms the pro-
posed model.

We use an illustrative example to further demonstrate how
the proposed model effectively captures the underlying user
interest and its evolution in Figure 4. The recommended
movie genres are compared to the user’s favorite genres
based on the provided true ratings. The result shows that
the recommendation matches user’s changing taste over time
well. It is also interesting to see that the proposed model
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Figure 3: NDCG based on the top /N recommendations and RMSE based on the training epochs

Table 2: Recommendation Results (RMSE and NDCG)

0 24 28
N

32 36 4

Category Model Netflix Last.fm MovieLens-1M
RMSE NDCG RMSE NDCG RMSE NDCG
MF SVD++ | 0.9797+0.03 | 0.2915 | 1.7829+0.08 | 0.2882 | 1.0825+0.04 | 0.3023
timeSVD++ | 0.9538+0.06 | 0.3115 | 1.6912+0.11 | 0.2962 | 1.0483+0.03 | 0.3224
Dynamic CKF | 0.9337+0.04 | 0.3130 | 1.5316+£0.32 | 0.3018 | 1.0652+0.04 | 0.3151
DPF N/A N/A | 1.522740.43 | 0.3085 N/A N/A
Wide and Deep | 0.9904+0.04 | 0.2864 | 1.7253+0.22 | 0.2727 | 1.1364+£0.06 | 0.2932
Deep Learning DeepFM | 0.98114+0.03 | 0.2930 | 1.6815+0.21 | 0.2971 | 1.1723+0.05 | 0.2882
DIEN | 1.03454+0.04 | 0.2832 | 1.9225+0.26 | 0.2714 | 1.1872+0.14 | 0.2843
Graph GC-MC | 1.0760+0.03 | 0.2901 N/A N/A | 1.1704+0.08 | 0.2913
NGCF | 1.03214+0.03 | 0.3026 | 1.5612+0.23 | 0.2896 | 1.1216+0.05 | 0.3103
Sequential Caser | 1.01244+0.03 | 0.3101 | 1.582440.31 | 0.2931 | 1.1339+0.08 | 0.3012
SASRec N/A | 0.3246 N/A | 0.3103 N/A | 0.3238
Meta-Learning MeLU | 0.9213+0.05 | 0.3232 | 1.2580+0.28 | 0.3122 | 1.0685+0.08 | 0.3214
ML-ICS | 0.9332+0.04 | 0.3173 | 1.24084+0.24 | 0.3142 | 1.0845+0.06 | 0.3244
Proposed Ours | 0.8925£0.03 | 0.3472 | 1.2203+£0.16 | 0.3385 | 0.9945+0.08 | 0.3351
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Figure 4: Dynamic trend of movie genres in Netflix: ground
truth (a) vs model recommended (b)

(b) Recommended

accurately detects some dramatic changes in user’s ratings
(e.g., from 12/02 to 06/03 and from 06/04 to 12/04), which
were likely to be caused by some time-specific factors.

We further present an example to show how the meta-
learning module effectively captures time-specific factors
in the form of popular trends in a specific period from
the global user space and transfers the (meta) knowledge
to the cold-start users with very limited interactions. Ta-
ble 3 demonstrates top-5 time-specific (period 4) popular
movies learned by the meta-learning module, which shares
that knowledge with the test users (i.e., two users are shown
in Table 3 and some time-specific popular movies like *Best
in Show’ are recommended to them). This example demon-
strates how our model provides effective recommendations
to users by capturing time-specific factors.

Table 3: Time-specific popular movies learned and predicted
by the meta-learning module

Movies

[’Best in Show’, ’Chicken Run’,
’Sommersby’, 'Bedrooms and Hall-
ways’, 'The Mod Squad’]

[’Mr. Mom’, ’Best in Show’,
’Shower’, "We’re No Angels”,
’Groundhog Day’]

[’Best in Show’, ’An Ideal Hus-
band’, ’Life Is Beautiful’, ’Break-
ing Away’, ’Kramer vs. Kramer’]

Users
Training users

Test user (ID:5636)

Test user (ID:5539)

Conclusion

In this paper, we formulate a novel time-sensitive cold-start
problem and present a dynamic recommendation framework
to address its unique challenges. The framework integrates
a time-sensitive meta-learning module with a time-evolving
recurrent module. The former handles the user cold-start
problem by learning global knowledge among users from
their interaction information in the current recommenda-
tion period. This module is jointly optimized with the time-
evolving recurrent module that captures a user’s gradually
shifted preferences. A merged user representation is gener-
ated using the two modules’ outputs and interacts with the
item embedding to provide the final recommendations. Ex-
perimental results of real-world dynamic datasets and com-
parison with the state-of-the-art models clearly demonstrate
the performance advantage of the proposed model.
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