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Abstract

Image segmentation can be performed interac-
tively by accepting user annotations to refine
the segmentation. It seeks frequent feedback
from humans, and the model is updated with
a smaller batch of data in each iteration of the
feedback loop. Such a training paradigm re-
quires effective information filtering to guide
the model so that it can encode vital informa-
tion and avoid overfitting due to limited data
and inherent heterogeneity and noises thereof.
We propose an adaptive interactive segmen-
tation framework to support user interaction
while introducing dual-level information fil-
tering to train a robust model. The frame-
work integrates an encoder-decoder architec-
ture with a style-aware augmentation module
that applies augmentation to feature maps
and customizes the segmentation prediction
for different latent styles. It also applies a sys-
tematic label softening strategy to generate
uncertainty-aware soft labels for model up-
dates. Experiments on both medical and nat-
ural image segmentation tasks demonstrate
the effectiveness of the proposed framework.

1 INTRODUCTION

Human-in-the-loop machine learning leverages both
human knowledge and machine intelligence to train
accurate and reliable models (Wu et al., 2021). Unlike
the conventional model development process, where
the model is trained with a large amount of data before
testing, human-in-the-loop machine learning seeks more
frequent feedback from human users. As a result, the
model is updated with a smaller batch of data in each
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iteration of the feedback loop. Such a training paradigm
requires information filtering mechanisms to guide the
model to extract vital information to be encoded by
the model while neglecting noises.

In this paper, we integrate human-in-the-loop machine
learning with semantic image segmentation. The in-
teractive task is formulated as a procedure where the
model makes initial segmentation prediction for given
images, and users interact with the system by anno-
tating a few pixels as supervision, which is used by
the model to refine the segmentation results. It of-
fers a viable solution to tackle complex segmentation
tasks, especially those from specialized domains (e.g.,
medicine and security surveillance), where fully auto-
matic models cannot guarantee perfect segmentation
results that are satisfactory to end-users.

This setting introduces unique challenges of informa-
tion filtering. First, the heterogeneous image styles
may incur the problem of distributional shift between
the training images and the images provided by the
user. Consider medical image segmentation. The new
images provided by the user for segmentation may vary
due to different imaging devices, morphologic charac-
teristics, anatomic structures, patient-specific issues,
and other factors. In those cases, the latent styles may
incur highly uncertain model predictions and hurt the
interaction process. The second challenge is how to
leverage limited user annotations efficiently. Given a
new image, users typically annotate a few areas rather
than labeling all pixels. Therefore post-processing tech-
niques (Dhara et al., 2018; Zhou et al., 2019) are used
to assign class labels to unannotated regions. However,
those assigned labels are not ground truth, and there-
fore simply treating them as target labels for model
update may incur errors.

To address the above challenges, we propose an inter-
active framework with dual-level information filtering
mechanisms. The first-level information filtering aims
to disentangle the latent image styles from contents.
Prior works in this direction address the issue of het-
erogeneous styles by transforming the styles of testing



Dual-Level Adaptive Information Filtering for Interactive Image Segmentation

images to that of training images and performing seg-
mentation on transformed images using a Gram matrix
for style alignment (Ma et al., 2019), adaptive instance
normalization (Liu et al., 2020), or adversarial training
(Hou et al., 2019). However, the style transformation
essentially involves image generation, and thus genera-
tion errors can be introduced and hurt the downstream
segmentation performance. In addition, the above prior
works are proposed for automated segmentation tasks,
whereas the style disentanglement for interactive seg-
mentation is under-explored.

In contrast, the proposed method directly analyzes
the latent styles of images and applies style-specific
augmentation to feature maps. Specifically, we leverage
an encoder-decoder architecture to encode the global
knowledge that is necessary to perform segmentation.
The styles of images are grouped into latent patterns.
Since the exact number of patterns is unknown, we
introduce a Dirichlet process prior to automatically
discover the optimal number of patterns. Given the
style pattern assignment, a light-weighted convolutional
block is applied through residual connections to the
decoder layers to adjust those layers’ output feature
maps. In this way, the style-related local information
is augmented to the global information and contributes
to the improved segmentation performance.

The second-level information filtering aims to spatially
down weight the noisy areas of the image. Soft label
classification provides a promising direction. Different
from one-hot hard labels, soft labels are probability
vectors ranging from (0,1) that implies a pixel can
be a member of multiple classes with corresponding
probabilities (Galstyan and Cohen, 2007). Prior works
leverage soft labels to train robust segmentation models
by calculating soft masks during data pre-processing
(Gros et al., 2021), applying label softening guided
by superpixels (Li et al., 2020), or using knowledge
distillation to down weight corrupted labels (Zhang
et al., 2020). In summary, the label softening tech-
niques are based on low-level features of the image
or the annealed probability vector. Besides, the prior
works are proposed for automated segmentation tasks,
whereas label softening for interactive segmentation is
under-explored.

In contrast, the proposed model leverage uncertainty
estimation to generate soft labels based on the initial
segmentation prediction, which is combined with user-
provided labels on annotated areas to update network
parameters. Specifically, uncertainty quantifies the de-
gree to which a machine learning model is unconfident
about its predictions. Using a Bayesian network with
Monte-Carlo sampling, the uncertainty estimation from
initial segmentation is systematically integrated into
the soft labels for pixels with unconfident predictions.
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Figure 1: The high-level workflow of the proposed
interactive segmentation framework
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Figure 2: An illustrative example. Given an image (

the model applies the first-level information ﬁltermg
and makes an initial prediction (B1) with predictive en-
tropy visualized in (C1). Without information filtering,
the segmentation (B2) is worse, and the corresponding
entropy (C2) is higher. After that, the user annotates
a few pixels (D) highlighted in red, and the model ap-
plies the second-level information filtering and refines
segmentation (E). Ground-truth is given in (F).

Noisy areas are naturally down-weighted during net-
work updates and lead to a less significant impact on
the network parameters.

Figures 1 and 2 provide a high-level summary of the
proposed framework and an illustrative example. For
the first-level information filtering, the model selec-
tively triggers the residual block to adjust the output
of decoder layers for improved segmentation perfor-
mance. In addition, the model can discover new style
patterns during the interaction process and allocate
additional neural resources to make the model adapt
to the image. The second-level information filtering is
applied to transform the initial segmentation predic-
tion to uncertainty-aware soft labels, which are then
combined with user annotations for network updates.

The major contribution of this paper is threefold:

e an adaptive interactive segmentation framework to
support user interaction while introducing dual-level
information filtering to train a robust model,

e a style-aware augmentation module that extracts
style information from images and customizes the
segmentation prediction for latent styles,

e a systematic label softening strategy that leverages
uncertainty information to generate soft labels and
integrate them with user annotations for effective
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model updates.

2 RELATED WORKS

Recently, deep learning-based algorithms have achieved
great success in interactive segmentation. User interac-
tions are collected in different forms, such as clicks (Xu
et al., 2016), scribbles (Lin et al., 2016), and bound-
ing boxes (Castrejon et al., 2017). After user anno-
tations are collected, a majority of algorithms refine
segmentation through spatial regularization using post-
processing techniques such as conditional random fields
and graph cuts (Dhara et al., 2018; Zhou et al., 2019)
to combine the initial segmentation prediction with an-
notations. To constrain annotated areas to have correct
labels, a few models treat user annotations as partial la-
bels to retrain the model or perform a back-propagating
refinement scheme (Kontogianni et al., 2019; Jang and
Kim, 2019). Most prior works are formulated in the
setting of class-agnostic foreground segmentation or
binary segmentation (Wang et al., 2018a,b), while a
few works considers the semantic segmentation setting
(Lin et al., 2016; Bearman et al., 2016). Our setting
falls into the latter category. It should be noted that
the feedback loop in the interactive setting requires
frequent model updates with a relatively small batch
of data, and therefore information filtering is critical to
the model for encoding vital information while neglect-
ing noises. However, integrating information filtering
with segmentation is relatively under-explored, and our
work aims to fill the gap.

The proposed dual-level information filtering strategy
is closely related to style disentanglement and domain
adaptation. Existing works leverage style transforma-
tion for segmentation tasks where the style of testing
images deviates from training images. (Ma et al., 2019)
proposes to apply style transformation of testing images
by aligning the Gram matrix of transformed images
with the training images and perform segmentation
on transformed images. (Liu et al., 2020) proposes to
leverage adaptive instance normalization for style trans-
formation, while (Hou et al., 2019) proposes to leverage
adversarial training. However, the style transformation
essentially involves image generation, and generation
errors can be introduced and hurt the downstream
segmentation performance. In contrast, the proposed
method directly applies style-specific augmentation to
customize segmentation results.

The proposed dual-level information filtering strategy
is also closely related to soft label classification. Soft
labels are widely used in specialized domains (e.g.,
medicine) where the determination of ground truth
labels is usually difficult. A few existing works con-
sider incorporating soft labels to segmentation tasks

for training robust and generalizable models. (Gros
et al., 2021) proposes to apply soft masks as a result
of data pre-processing and leverage normalized ReLLU
activation with adaptive wing loss for training segmen-
tation models. (Li et al., 2020) propose to soften pixel
labels depending on how superpixels interact with the
ground-truth segmentation boundaries, while Zhang
et al. (2020) proposes to leverage knowledge distillation
to down weight the corrupted labels. In summary, the
label softening techniques are based on low-level fea-
tures of the image or the annealed probability vectors.
In contrast, the proposed model leverage uncertainty
estimation to generate soft labels.

We provide additional discussions about other related
concepts in Appendix C.

3 THE PROPOSED FRAMEWORK

In this section, we provide details of the proposed
framework, including the backbone Bayesian neural
network, the information filtering strategy, and the
posterior inference for updating the model parameters.
Major notations are summarized in Appendix A.

3.1 Backbone Network

The proposed framework uses an encoder-decoder ar-
chitecture for segmentation. The mainstream encoder
and decoder have stacked convolutional blocks. Each
block has two convolutional layers with ReLLU activa-
tion, with pooling layers for the encoder blocks and
upsampling layers for the decoder blocks. Unlike con-
ventional encoder-decoder networks, we use a Bayesian
network as the backbone for uncertainty estimation
and regularization. For each convolutional layer [, we
place a Gaussian prior on its kernels as

W' ={wl},, wl~ N(uo,0p) (1)

where ¢ is the index of elements within the kernel. Such
settings are also applied to the bias terms. For the
rest of the paper, we use g(-) to denote the Bayesian
convolutional layer.

h' = g(h'™!) = relu (W' @ h'™?) (2)

where ® denotes the convolutional operation, h'~! and
h! denote layer input and output. Bias terms are
omitted in the equations for simplicity, and the default
activation is ReLU if not specified. Unlike conventional
networks, the training of BNN aims to optimize the
posterior distribution of the network’s weights, denoted
as g(wl) = N(u, (6!)?). A common practice is to use
the reparameterization tricks during feed-forwards to
sample w! from the posterior distribution and update
the posterior parameters during backpropagation.
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3.2 First-Level Information Filtering

The first-level information filtering leverages the style
information of each image and applies style-aware aug-
mentation to customize the segmentation prediction
for distinct images.

It should be noted that the style patterns are not
directly discovered from image data. Instead, each
pattern corresponds to a set of residual blocks that
adjust decoder layers’ output feature maps to generate
accurate and confident predictions. Since the number
of latent style patterns is unknown, we use a Dirichlet
process prior to automatically determine the optimal
number of patterns based on the nature of the data.
The DP prior allows potentially infinite patterns to
explain target pixel-wise labels given input images. It
is analogous to customers entering a Chinese restaurant
with unlimited tables (Blei and Jordan, 2006). A new
customer sits down at a table with a probability pro-
portional to the number of customers already sitting
there. Additionally, a customer opens a new table with
a probability proportional to the scaling parameter.
This probability distribution over the tables follows a
Dirichlet process. An important characteristic of the
DP is that a new customer is more likely to sit at a ta-
ble that has been taken by a lot of previous customers,
while it is still possible to open a new table. This
characteristic is useful in our framework to determine
the optimal number of patterns and encourage reusing
existing patterns.

To make the corresponding parameters learnable
through stochastic gradient descent, we leverage the
stick-breaking representation of the Dirichlet process
with truncation (Blei and Jordan, 2006).

m—1
{vm}M_ | ~ Beta(1,by), Cm =vm H (1 —vpmr)
m/=1
Zy, = [Zn,1, .y Zn,m] ~ Cat([c1, ..., cum])

(3)
where Beta denotes Beta distribution and Cat denotes
Categorical distribution. {¢;, }m can be interpreted as
stick portions and z,, can be interpreted as a pattern
assignment where m is the index of latent pattern and
n is the index of data instance. M is the truncation
level. Although the number of patterns is potentially
infinite, a common practice is to set a truncation level,
which is a sufficiently large positive integer.

Again, we parameterize the posterior distribution for
auxiliary variable v, as Beta(am, b,). To avoid the
arg max operation during sampling, we relax Beta dis-
tribution to a concrete distribution, and one option is
the Kumaraswamy distribution (Kumaraswamy, 1980)
with the density function

Kuma(vy,; G, by ) = ambmvd™ (1 — ,U;zr{n)bm*l (4)

and in our case, the samples can be drawn from

Vg ~ (1 —ut/bm)am gy~ Uniform(0,1)  (5)
The posterior distribution for pattern assignment z,
is reparameterized as categorical distribution Cat((,),
which is relaxed to a concrete distribution. One option
of relaxation is the Gumbel-softmax distribution (Jang
et al., 2016) with the density function

GS(Zn,le; Cny T)

-M
_ F(M)T]M—l (Z C’n,m/z;,m> H(Cn,m/zz;’tr})

m
(6)
where 7 is the temperature parameter. And in our case,
the samples can be drawn from

z,, ~ softmax(In((,) +¢€)/7), €~ Gumbel(0,1) (7)

Given the style pattern assignment sampled from the
concrete distribution, the augmentation module applies
style-specific augmentation to customize the segmen-
tation prediction for distinct images. For each style, a
light-weighted residual convolutional block is applied
to adjust the output feature maps of the decoder layers.
We design the residual block to include a number of
depth-wise and point-wise convolutional kernels. There
are d'~! depth-wise kernels in the shape of 3 x 3 x 1
followed by d! point-wise convolutional kernels in the
shape of 1 x 1 x d~!, where d"~! is the number of
channels in input feature map and d' is the number
of channels in output feature map. Compared with
conventional convolutional kernels, the combination of
depth-wise and point-wise kernels has fewer trainable
parameters and at the same time achieves comparable
performance (Howard et al., 2017).

Denote the main-stream decoder layer as g(-), the
depth-wise convolutional filter for pattern m as g, 1(-)
and the point-wise convolutional filter as g, 2(-), the
augmented output is

hl = g(hl_l) + Zzn,mgm,Q(gm,l(g(hl_l))) (8)

m

where h!~! is the input feature map and h' is the output
feature map. Again, we apply the setting of Bayesian
convolutional layers to ¢, 1(-) and gp, 2(-). This de-
sign is suitable for the proposed residual block. Recall
that the main-stream decoder is responsible for making
segmentation predictions, and therefore the global in-
formation necessary to perform segmentation is already
captured by the main-stream decoder. In contrast, the
residual block is responsible for augmentation that cus-
tomizes the segmentation prediction for different style
patterns, and a light-weighted architecture is efficient



Ervine Zheng, Qi Yu, Rui Li, Pengcheng Shi, Anne Haake

Interaction

:

|Uncertaintv H Soft Label |

Segmentation

Conv. Block

Mainstream

Encoder-Decoder

Conv. Block

Conv. Block
Conv. Block

Conv. Block

Conv. Block

| Conv. Block H Conv. Block |

| Res. Block H Res. Block H Res. Block H Res. Block |
T

Latent Style
Pattern

Figure 3: Schematic view of the proposed framework

Style-Aware Augmentation

to achieve the goal. In addition, the light-weighted
architecture has fewer trainable parameters and thus
speeds up the training process. A schematic view of
the proposed framework is provided in Figure 3.

For the mainstream encoder-decoder, each convolu-
tional block contains two convolutional layers, followed
by down-sampling for the encoder or up-sampling for
the decoder. The style-aware augmentation model con-
sists of a number of light-weight residual blocks to
adjust the output feature maps of decoder layers. Each
latent style has one residual block connected to each
decoder convolutional block. Each image corresponds
to a latent style pattern assignment vector. Given the
pattern assignment, the corresponding residual block is
used. It should be noted that the proposed framework
has an interaction module, but it does not involve any
new layers. Instead, the interaction module generates
a soft label map based on initial segmentation predic-
tion. Then user-provided labels on annotated areas are
combined with the soft labels on unannotated areas to
generate the target labels, which are used to retrain
the network and update parameters of the style-aware
augmentation module, so the network can predict the
refined segmentation.

3.3 Model Training And Initial Prediction

The model needs to be pretrained to make initial pre-
dictions. During pre-training, all modules are train-
able, including the mainstream encoder and decoder, as
well as the style discovery module and the style-aware
augmentation modules. Here we denote the param-
eters of encoder and decoder as W, the parameters
of the style-aware augmentation module as W?2. Let
¢ = {v,z, W, W?a} denote all trainable parameters,
and (X,Y) denote the training data. We introduce
a variational distribution ¢ to approximate the poste-

rior distribution of ¢. A general form of the objective
function is given as the negative evidence lower bound:

L = KL[g(®)lp(#)] — Eq[Inp(Y]¢, X)] (9)

where the first term is the KL divergence that regular-
izes the parameters between the prior distribution and
the posterior distribution, and the second term is the
expectation of cross-entropy.

To update model parameters, we assume ¢(¢) is fac-
torized as follows to expand the loss in (9).

q(¢) = H q(vim) H q(2m,n|vm) H Q(wb H Q((U’gn)b
m n L, m,l,i
(10)
The optimization problem is defined by minimizing the
evidence lower bound as

ar min L =KL[qW W
5, min L= KL(W)|p(W)

+ K L[g(v)|lp(v)] + K L[q(2)||p(z|v)]
+ KL[g(W*)|[]p(W*)] = Eq[Inp(Y]z, W, W, X)]
(11)
The first KL-divergence term is expanded as

K L[g(W)||lp(W)]

N o - gt o @7 (i —p0)* 1] (12)
_Z{l o—Ino; + 2o0)? 5

1

KL[g(W%)||p(W?)] is calculated in the same way. The
second KL-divergence term is expanded as

KLlg)p(v)] = 3 n m -

+ (bm — b0)Y (b)) + (1 4 bo — am — b )t (am + bm)
(13)
where B(-) denotes Beta function and (-) denotes
digamma function. The third KL-divergence term is
expanded as

KL[q(z)||p(z|v)] = Z Cm(In Cnym — Inc,) (14)

m,n

(am - 1)w<am)

To make initial segmentation for a new image x,,, it is
critical to determine the appropriate style pattern and
use the corresponding augmentation to enhance the
quality of initial segmentation. Since user annotation
is not collected yet, a good augmentation should result
in a confident prediction. Therefore, we optimize the
following objective function with respect to ¢(z,) while
fixing all other parameters

arg fﬁiz?L = K L[q(z)||p(zv)] — Eq[p(Y) Inp(Y)]

(15)
where Y denotes prediction. The first term serves as
regularization and the second term is the entropy. The
optimal ¢(z) corresponds to the optimal augmentation,
and the initial prediction is the corresponding Y.
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3.4 Second-Level Information Filtering

Given the initial segmentation, the user may selectively
annotate a few pixels, and the network leverages both
the initial segmentation and user annotation to update
its parameters. The second-level information involves
uncertainty estimation to generate soft labels based on
the initial segmentation prediction, which is then used
for network updates.

For uncertainty estimation, We follow (Kendall and
Gal, 2017) to model epistemic and aleatoric uncer-
tainties. Epistemic uncertainty is estimated using the
Bayesian neural network with Monte-Carlo sampling,
while the aleatoric uncertainty is evaluated by adding
a head to the segmentation decoder’s last layer before
softmax to estimate the variance. Instead of predicting
the logit for pixel m, the network outputs the mean
o, and variance w;". The logit fm is sampled from a
Gaussian distribution and squashed through softmax
to generate the predicted probability 0,,

Con ~ N(opm,w?), Oy, = softmax(ém) (16)
The soft label is the expectation of the predicted prob-
ability, which estimated by the sample mean of 6,,.

S
) . 1 -
y7n = ECmrNN(OmWJ”m)[Gm] ~ g E 07(71) (17)
s=1

Once user annotation is collected, we combine user-
provided labels on annotated areas with the soft labels
on unannotated areas to update network parameters.
It should be noted that the neighboring pixels to user
annotations should be assigned the same label as the
annotated pixels if they reveal similar low-level fea-
tures. Therefore, we calculate superpixels using the
SLIC algorithm (Achanta et al., 2012) and assign the
corresponding superpixel with the user-provided label.

Soft labels are a natural choice for updating the network
to adapt to user annotation, because we do not know
the ground truth labels for most pixels except for those
annotated by users. In addition, noisy areas of an
image are usually blurred, confusing, or visually difficult
to recognize. Forcing the model to fit those areas
increases the risk of overfitting. Such noise can be
quantified by the aleatoric uncertainty, parameterized
by the standard deviation term w, for pixel m. With a
large w,y,, the soft labels calculated by (17) are far away
from the one-hot vector. Intuitively, the uncertainty
information is systematically integrated into the soft
label for pixels with unconfident predictions. When the
model is updated to fit the soft labels, areas with high
aleatoric uncertainty are naturally down-weighted.

To show such characteristics, we formally establish
the relationship between aleatoric uncertainty and

the ‘softness’ of labels: a larger aleatoric uncertainty
leads to softer labels, indicating a less certain pre-
diction. Recall that the mean of logits is a vector
Om = (0m,1,0m 2., 0m7K)T, where K is the number of
classes. For simplicity, we assume that the variance
w2, is shared for all k € [K]. Next, we first show that
a larger w,, makes the approximate expectation of the
softmax values ‘softer’.

Lemma 1. Asw,, increases, (i) the approximate upper
bound of E[0,,] decreases and (ii) the approzimate lower
bound of E[0,,] increases.

Proof sketch. The proof of Lemma 1 requires sorting
entries in o, in an descending order so that o,,1 >
Om,2... > Om k- Then we estimate the expectation of
softmax probability as

-1

Elfmi] = |14 > exp(compw) (18)
K2k

where ¢, ki X Om e — Om i 1t is straightforward to
show that

Vi1 > ka: Ellmg,] > El0m.k,) (19)

And using counterevidence, we can show that

Ebp1] > 1/K > E[b,, k] (20)

By differentiating E[0,, 5] with respect to w?,
J - 1

5 E[vak] = — 2
A(w2,) {1 + 3k eXp(Cm,kk')}

X Z exp(cm ki) (Om.k — Om k)a(l + 2aw72n)_%
k' £k

21)
where a = 0.368 according to (Daunizeau, 2017). When
k = 1, Eq (21) is negative, indicating that as the
aleatoric uncertainty increases, the upper bound in
E[0p, k] is decreasing and goes towards 1/K. When
k = K. Eq (21) is positive, indicating that as the
aleatoric uncertainty increases, the lower bound of
E[0,, k] is increasing and goes towards 1/K. O

The detailed proof is provided in Appendix B.

3.5 Model Updates with User Annotations

During network updates during feedback iterations, we
propose to fix the mainstream encoder and decoder.
This is because the mainstream encoder-decoder archi-
tecture is responsible for performing coarse segmenta-
tion in a global manner. The corresponding knowledge
is already learned during pretraining. In contrast, the
style-aware augmentation module is responsible for
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making augmentation so that the segmentation predic-
tion is customized for different style patterns. After
pretraining, new images with heterogeneous styles are
provided to the model, and some images may be of
brand new styles. In this case, it is proposed to update
the module accordingly so that the model can adapt to
new patterns, and the objective function is modified as

arg min I = KL[q(2)|[p(z|v)] + KL[g(v)|[p(v)]

q(z,v,Wa)
+ KL[g(W™)|[p(W)] — E,[Inp(¥]z, W, W*, X))
(22)
where Y denotes the combination of soft and user anno-
tated labels. It should be noted that the p(v), p(z) and
p(W?) in (22) are different from those used for (11). In
(22), we plug in the posterior distribution of (v, z, W®)
learned from pretraining as the prior distribution, so
that the knowledge acquired from the pretraining pro-
cess is used to regularize network updates.

The last term in (22) for soft labels can be interpreted
from the perspective of KL divergence. Note that the
soft label g is essentially a distribution that describes
the fuzzy label (i.e., a pixel should belong to class k
with probability gj). Then the KL divergence between
the fuzzy label and the predicted probability by the
refined network is

KLp@)llp(@) =>_ (i) Inp(ic) — np(ge)) (23)
k

If 7 is one-hot, the KL divergence degenerates to the
categorical cross-entropy.

In summary, there are three stages: i) The model needs
to be pretrained to perform initial segmentation. Then,
in one iteration of interactive segmentation, ii) the
model makes an initial prediction, and iii) collects an-
notations from users to update parameters and refine
the segmentation. At the first stage, all modules are
trainable; at the second stage, only the pattern assign-
ment parameter is trainable; at the third stage, the
pattern assignment and residual blocks are trainable
while other modules are frozen. The algorithm of the
whole process is summarized in Appendix A.

4 EXPERIMENTS

In this section, we report our experimental results in
two testing cases with real-world image datasets. The
first case focuses on medical images. Algorithms are
evaluated using the HAM dataset, which contains der-
matoscopic images with seborrheic keratosis, melanoma,
and benign tumors from different populations (Tschandl
et al., 2018). The models are trained on the PH2 der-
matoscopic images dataset (Mendonga et al., 2013) in
the realm of pigmented lesions so that the model expe-
riences diversified styles during the training and testing

phases. The second case focuses on natural images.
Algorithms are evaluated using ACDC (Sakaridis et al.,
2021) containing street scenes in different weather con-
ditions, including normal, light fog, and heavy fog,
with pixel-level annotations of eight major semantic
categories. The models are trained on the Cityscape
dataset (Cordts et al., 2016) with urban scenes with
normal weather conditions. To reduce potential overfit-
ting, we perform data augmentation for data used for
pretraining using cropping, flipping, image translation
and modification of HSV channels. Adam optimizer
is used for gradient-based optimization. For model
updates, we set the number of iterations to 200. For
model pre-training, the hyper-parameters are set to
ﬂO:LMO:OaO—O:LMZIO'

Experimental setup. A group of college students
participated as volunteers for evaluating the interac-
tive system. As discussed in the introduction, users
(i.e., participants) performed the annotation task in the
following steps. 1) Given a testing image, the model
makes initial segmentation prediction; 2) The user pro-
vides annotation by clicking on a few pixels with wrong
segmentation and typing the correct class labels into
a pop-up textbox; 3) After receiving user feedback, a
refined segmentation is provided by the model and com-
pared with the ground-truth of all pixels for evaluation.
For both cases, 80 images are randomly selected from
the testing data for evaluation. It should be noted
that user study is time-consuming and difficult to per-
form on a massive scale. We provide instructions to
the participants as follows: 1) If applicable, the user
should avoid annotating on pixels that are overly close
to the boundaries of segments; 2) If applicable, the user
should annotate pixels over a large area of the image
rather than focusing on a small region.

For evaluating the effectiveness of an interactive system,
one important aspect is the quality of refined results
given a limited annotation budget. For interactive
segmentation, one widely-applied option of annota-
tion budget is the number of clicks provided by users
(Mahadevan et al., 2018). Users provide annotations
through an interface that includes a pop-up window for
visualizing initial segmentation and collecting clicks,
and a textbox for typing in the corresponding labels.
The user interface is shown in Appendix D. Users pro-
vide click-based annotations in a progressive way, and
the number of clicks ranges from 1 to 16 for all the base-
lines. We report the quality of refined segmentation
in terms of mean intersect over union (IoU) averaged
across testing images and classes given different num-
bers of clicks.

Baselines. We include baseline methods MLG (Ma-
jumder and Yao, 2019), SU (Lin et al., 2016), SPS
(Bearman et al., 2016) and BRS (Sofiiuk et al., 2020).
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These baselines are representative methods that allow
user interactions through clicks, which is the same
as our experiment settings. MLG generates binary
foreground-background interaction maps and distance-
based maps based on user annotations and feeds them
to the network for refining segmentation. For the
ACDC dataset with multiple classes, the foreground-
background maps are extended to the multiclass setting
where user annotations are converted into multiclass
guidance maps rather than foreground-background
maps. BRS considers backpropagation refinement to
adjust misclassified pixels that are inconsistent with
user annotations. SPS leverages point supervision with
a weighting factor that quantifies the relative impor-
tance of each supervised point. SU leverages a graphical
model that propagates information from annotations
to unmarked pixels to update network parameters.

Case 1 (Medical Image)

Case 2 (Natural Image)
0.86 0.79

[e]8]

—3¥— Proposed
—O—MLG
BFS

Click

Figure 4: Quantitative comparison of refined segmen-
tation (IoU) with respect to the number of interactions
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Figure 5: Performance comparison of initial segmen-
tation (IoU) with respect to the number of existing
iterations. An upward trend indicates that the model
learns from previous iterations of interaction to improve
its performance on new images.

Performance comparison. We first present the re-
sults of performance improvement with different num-
bers of clicks in Figure 4. In most cases, the proposed
framework outperforms the baselines given the same
number of clicks. MLG does not update network pa-
rameters after pre-training, and thus its capability to
adapt to user annotations is limited. SU and SPS
involve the update of network parameters and auxil-
iary feature maps and perform better. However, they
are not specifically developed with information filter-
ing, and thus its performance may deteriorate if the
overfitting issue emerges.

Qualitative comparisons with illustrative examples of
refined segmentation after 16 clicks are provided in Fig-
ure 6. The proposed framework usually achieves better
performance in identifying boundaries of segments and
visually difficult instances.

Another important perspective is to evaluate how the
model leverages user annotation to improve the perfor-
mance on future segmentation tasks. The key motiva-
tion is that the model should ideally learn from users so
that it can perform better in the future, even without
user annotation. Recall that the interaction process
takes new images one by one. Therefore, we report the
performance of initial segmentation on new images in
terms of IoU after the model interacts with users for a
number of iterations (i.e., each iteration corresponds to
a new image, and the model leverages user annotation
on the image to update its parameters). We compare
with baselines and report the results in Figure 5. The
proposed framework exhibits an upward trend and out-
performs baselines. It indicates that the performance
is improved by learning from user annotation, and the
information filtering strategy effectively extracts useful
knowledge from user annotation while down-weighting
noisy information.

A side product of the proposed framework is latent
style pattern discovery in an unsupervised setting. We
consider the street scene images as illustrative exam-
ples, where the weather condition is regarded as an
important factor of style patterns. These images corre-
spond to diverse weather conditions, including normal,
light fog, and heavy fog. During the inference phase, by
optimizing (15), the proposed framework automatically
assigns latent style patterns to each image. By group-
ing images with respect to the pattern assignment, we
observe some interpretable patterns with illustrative
examples shown in the top two rows of Figure 7. The
first pattern can be interpreted as heavy fog, and the
second can be interpreted as light fog, while the rest
two patterns correspond to normal weather with minor
variants. Similarly, for dermatoscopic images, we visu-
alize some illustrative examples as shown in the bottom
two rows of Figure 7. The second pattern can be in-
terpreted as excessive hairs, the third pattern can be
interpreted as low contrast between lesion and healthy
skin, while the first and forth pattern corresponds to
moderate contrast.

Ablation Study. We also conduct an ablation study
to compare with alternative designs of the proposed
framework. The proposed method uses style-aware
augmentation to assign latent style patterns (i.e., the
first-level information filtering strategy) to new images
to improve the segmentation performance. In addi-
tion, it uses uncertainty-aware label softening (i.e., the
second-level information filtering strategy) to generate



Ervine Zheng, Qi Yu, Rui Li, Pengcheng Shi, Anne Haake

Ground Truth Proposed

#‘“

ﬁ[]ﬂﬂﬂﬂ
P B PY P
" i

SPS

Figure 6: Illustrative examples of refined segmentation results after user interaction with 16 clicks. Different color

denote different semantic classes.

Style 2 Style 3 Style 4

Style 1

Al

Figure 7: Illustrative examples of images automatically
assigned to different latent style patterns

soft labels based on initial segmentation prediction,
which is then combined with user annotation to retrain
the model and generate refined results. Alternative
design choices are to remove either or remove both
(i.e., plain architecture). We compare the proposed
design with those three alternative approaches, and
report results in Figure 8. The results are summarized
in terms of refined segmentation (IoU) with different
numbers of clicks. And the results are averaged across
testing images. It can be seen that both alternative
approaches underperform the proposed design.

Due to the page limit, we provide additional experi-

Case 1 (Medical Image)

Case 2 (Natural Image)
0.87 0.8

______

2
Q
—3¥— Proposed 0_7* 7, —¥— Proposed
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0.65
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Click Click

Figure 8: Ablation study. Results are reported in
terms of refined segmentation (IoU) on two datasets
with respect to the number of interactions.

ment results on winter scene image segmentation in
Appendix E.

5 CONCLUSION

We propose an adaptive segmentation framework to
support user interaction while introducing dual-level
information filtering to train a robust model. The first-
level information filtering disentangles the style and
content of the image and customizes the segmentation
prediction for latent image styles. The second-level
information filtering applies label softening by lever-
aging uncertainty information to generate soft labels
and integrate them with user annotations for effective
model updates. The proposed framework may find
its potential application for interactive segmentation
tasks in specialized domains, such as medicine, security
intelligence, and autonomous driving.
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Supplementary Material:
Dual-Level Adaptive Information Filtering for Interactive Image
Segmentation

Organization. In this Appendix, we first summarize the workflow and algorithm of the proposed framework,
along with major mathematical notations in Appendix A. We formally prove how a high aleatoric uncertainty can
make the predicted labels ‘softer’ under the proposed framework in Appendix B. We provide additional discussion
of related concepts in Appendix C. We then provide additional details of experiments in Appendix D.

A Summary of Workflow, Algorithm and Notations

Table 1: Summary of Important Notations

R output feature map of layer [
wW! layer I’s weights
w! i-th entry of layer I’s weights
(ul, aﬁ) parameter of posterior distribution of w!
Uy Cm auxiliary variables of the stick-breaking representation of Dirichlet pro-
cess for style pattern m
Zn style pattern assignment vector for image n
Zn,m m-th entry of vector z,
(am,bm) | parameter of posterior distribution of v,
Cn parameter of posterior distribution of z,,
o} all weights of the network
%% all weights of convolutional blocks in the mainstream encoder-decoder
w#? all weights of residual blocks in the style-aware augmentation module
q() variational distribution to approximate the posterior of variables
X images
Y ground-truth segmentation labels for all pixels
Y initial prediction of segmentation labels for all pixels
ém, ém predicted softmax probability vector and logit vector for pixel m’s label
(0m,w?2,) | predicted mean and variance of pixel m’s logit
Tm. soft label for pixel m
Y the combination of soft labels on unannotated areas and user-provided
labels on annotated areas to update the network

One
| Prediction Model Next Initial seg- } _j Soft label Model J Refinedseg- | MNext
| results update Iteration mentation | | update | _mentation teratior

Human | | Human | | ) Combine as One
L F K \—» Annotat
evaluation | | eedbac ‘ evaluation | | nnetation feedback Iteration
(a) (b)

Figure 9: The workflow of general human-in-the-loop model training (a) and the workflow of the proposed
interactive segmentation framework (b).

We first summarize the workflow of our framework and make a connection to the general human-in-the-loop
model training. With humans involved in model training, a general workflow (Chai and Li, 2020) is described in
Figure 1 (a). When applied to segmentation tasks, we customize the workflow as shown in Figure 9 (b). There
are three adjustments from the general human-in-the-loop model training: 1) human annotation for segmentation
is on a few pixels rather than all pixels on an image; 2) After retraining the model for updating parameters, the
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model makes a prediction on the same image as a refined segmentation; 3) The proposed information filtering
strategies are involved: the first-level filtering aims to leverage style patterns to generate a better segmentation,
while the second-level filtering aims to generate soft labels based on the initial prediction, while is combined with
the human annotation to update the model.

Model Pre-training Updating Model and Refining Segmentation
Goal Train a segmentation model that can perform initial Initial Segmentation Goal Update network to learn from user annotation;
segmentation, Goal Given a new image, generate initial segmentation. Also generate refined segmentation

Required | Training images and ground-truth labels Required | New image, initial segmentation, user annotation

Required | New image

Result Updated weights of residual block and pattern assignment;
Refined segmentation for the image.

Result Trained weights of encoder, decoder and residual blocks;

N - Result Initial prediction;
Inferred style pattern assignments for training images.

Optimized style pattern assignment for the image.

Ground- Soft label + User
truth labels (minimize annotation

trainable trainable loss) fixed fixed entropy) fixed fixed (loss)
(loss) - - . - - (loss)
Training Mainstream Mainstream . Prediction _New Mainstream Mainstream Prediction Training _J Mainstream Mainstream Prediction
data encoder decoder image encoder decoder data | encoder decoder
Pattern P.
Pattern ‘ ResBlocks " | '| ResBlocks e ResBlocks
assignment -\ assignment assignment
trainable trainable trainable fixed trainable trainable

Figure 10: Hlustration of the three stages including model pre-training, initial segmentation and model update.

We visualize the three stages in Figure 10 and summarize the key steps in Algorithms 1, 2 and 3.

Algorithm 1 Model Pretraining

Require: Training images X and ground-truth labels Y;
: Given hyperparameters bo, (o, 0o;
: for epoch e =1 : maxEpoch do
Sample weights of mainstream encoder-decoder W and weights of residual blocks W* using Eq.(2)
Sample auxiliary variable v using Eq.(4)
for images n =1: N do
Sample latent pattern assignment z, using Eq.(6)
Feed forward using Egs.(2), (8) to generate predicted probability for all pixels
Evaluate loss using Eqgs.(11)-(14)
Backpropagate via stochastic gradient descent to update posterior parameters of (W), ¢(W*%), ¢(v) and latent
pattern assignment g(zy)
10: end for
11: end for

Algorithm 2 Initial Segmentation
Require: A new image X,, and pretrained model;

1: Import parameters learned from pretraining ¢(W), ¢(W*®), ¢(v) and fix them;
2: for epoch e =1 : maxEpoch do
3: Sample weights of mainstream encoder-decoder W and weights of residual blocks W* using Eq.(2)
4: Sample auxiliary variable v using Eq.(4)
5: for imagesn=1: N do
6: Sample latent pattern assignment z, using Eq.(6)
7 Feed forward using Egs.(2), (8) to generate predicted probability for all pixels
8: Evaluate predictive entropy using Eq.(15)
9: Backpropagate to optimize latent pattern assignment g(z,)
10: end for
11: end for

12: Feed forward using Eqgs.(2), (8) to generate predicted probability for all pixels as initial segmentation

B Proof of Lemma 1

In this section, we formally show the relationship between aleatoric uncertainty and the ‘softness’ of labels: a
large aleatoric uncertainty leads to softer labels, indicating a less uncertain prediction. An important tool we
leverage is the approximation of the expected softmax values.

Proof. First, we sort entries in o,, in an descending order so that 0,1 > 0m,2... > op k. Notice that when
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Algorithm 3 Updating Model and Refining Segmentation

Require: Initial prediction of segmentation

1: Predict mean and variance of pixel-wise logits using Eq.(16)

2: Generate pixel-wise soft label using Eq.(17)

3: Collect user annotations and replace the soft label on annotated pixels with user-provided labels;

4: for epoche =1 : maxzEpoch do

: Sample weights of mainstream encoder-decoder W and weights of residual blocks W using Eq.(2)
6.

7

8

Sample auxiliary variable v using Eq.(4)
for imagesn=1: N do
Sample latent pattern assignment z, using Eq.(6)

9 Feed forward using Egs.(2), (8) to generate predicted probability for all pixels
10 Evaluate loss using Egs.(11)-(14)
11: Backpropagate to update posterior parameters of ¢(W?), ¢g(v) and latent pattern assignment g(z,)
12: end for
13: end for
14: Feed forward using Eqs.(2), (8) to generate predicted probability for all pixels as refined segmentation
15: Proceed to another new image

variance is zero, ¢ is degenerated to point estimate. The corresponding softmax value is

i [expwm,l) D (0mz) X (omx) o)

Ym = ,
" Zk exp (Om,k) Zk exp (Om,k) Zk exp (OmJﬁ')

When the variance is a finite positive number, the expectation E[f,,] does not have an exact analytical form. We
use a semi-analytical approximation [3], which is derived by matching the statistical moments. Specifically, the
k-th element of E[f,,] can be approximated by

-1
1

[Sigm(gn,k - Cm,k’)]

Elfmi]~ [2-K+ ) 5 (25)

k' £k

where E[sigm((m,k — Cm,k)] is the expectation of sigmoid of g — G k- Since the sum of two Gaussian variables
is still Gaussian, we have

(Cm,k - Cm,,k’) ~ N(Om,k - Om,k’a Q(Wm)z) (26)

According to (Daunizeau, 2017), the expectation of sigmoid term can be further approximated as

. . Om,k — Om Kk’
FElsigm — ] = sigm | ———=— 27
[ g (Cm,k Cm,k )] g ( \/m > ( )
where a = 0.368.
Using the substitution ¢, g = 01’:7\/%“}2’“, we have
~ 1
E[0, k] = El0mx]) = 28
[ ,k] [ ,k] 1+ Zklik eXP(Cm,k-k/) ( )
It is straightforward to show that B
Vky > kot Elf0mk,] > El0m.k)] (29)
And using counterevidence, we can show that
. 1 .
Elfma] > 2= = El0m k] (30)
’ K
To investigate how this approximation changes with w, we differentiate E[0,, x] with respect to (w2,)
0 - 1
Bl x] =~ —
T R R (RS SRwe )
(31)

_3
% |37 explem ir) (Omk — om )l +2aw2,) 3
k' #£k
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Now we consider k = 1. Since VK’ # 1, 0,1 > 0m. i, (31) is negative, indicating that as the aleatoric uncertainty
increases, the upper bound in E[6,, ;] is decreasing and goes towards 1/K. Similarly, we consider k = K. Since
VE # K, 0m, Kk < 0om, (31) is positive, indicating that as the aleatoric uncertainty increases, the lower bound
of E[f, k] is increasing and goes towards 1/K. O

C Additional Discussion of Related Concepts

In this section, we discuss some related concepts by explaining those concepts and clarifying the differences
from the proposed model. The related concepts include 1) pattern discovery via probabilistic mixture models; 2)
weakly-supervised semantic segmentation; 3) style disentanglement via domain adaptation, and the discussion is
summarized in Table 2.

D Additional Details of Experiments

The proposed method and baselines are trained with Intel Core i7-3820 CPU and NVIDIA GeForce RTX2070
GPU. As discussed in the main paper, for medical images, the model is pretrained on the PH2 dermatoscopic
image dataset and then evaluated on the HAM dataset. For natural images, the model is pretrained on the
Cityscape dataset and then evaluated on the FoggyACDC dataset. This setting is common for style-aware
segmentation and domain adaptation to ensure that the model is exposed to diversified image styles during the
training and testing phases.

Once the model is pretrained, it is evaluated on interaction tasks where the user provides annotation as supervision
to refine the segmentation and update the network. Given a new image, the model makes an initial prediction, and
the user provides annotations on selective pixels. Based on both the user annotation and the initial segmentation,
the network is updated to generate refined segmentation results and learns from user annotation. Illustrative
examples of the interaction process are provided in Figure 11.

The interaction process takes new images one by one. Theoretically, different image orders will affect the model
performance, because the model is updated based on new images and the corresponding user interactions. However,
we do not observe over-sensitivity in practice. In addition, we randomly sample unseen images from testing
data, and the reported results are averaged across images. Therefore, the influence of image order is considered
negligible.

Image Initial Segment ation User Annotation Refined Segrentation  Ground Truth

Figure 11: Illustration of the interactive segmentation process. A user provides annotation based on initial
segmentation, and annotated pixels are highlighted in red. Once user annotation is collected, the network is
updated and a refined segmentation is predicted. It should be noted that the complete ground truth labels are
not available to the model; it is used only for evaluating the segmentation performance.

User interaction is implemented through a simple user interface, with an illustrative example shown in Figure 12.
The user interface includes a pop-up window visualizing the initial segmentation results and the corresponding
image. It allows users to click on the segmentation map to specify the position of annotation. After that, a
textbox is generated for the user to type in the corresponding label of the clicked position. Then, the information
of annotation is passed back to the model for refined segmentation results, and the network is updated accordingly
to encode user knowledge.
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Table 2: Discussion of Related Concepts

Concept

Explanation of concept

Difference from the proposed model

Pattern discov-
ery via proba-
bilistic mixture
model

Probabilistic mixture models assume the data
is generated from a mixture of patterns. Con-
sider the Gaussian mixture model as an ex-
ample. The data generation process includes
1) sampling mixture components from prior
Gaussian distribution; 2) sampling mixture
assignment for a data instance from prior
Categorical distribution; 3) given mixture as-
signment and mixture component, generate
the observation of the data instance. In this
case, the pattern is the mixture component,
characterized by the corresponding Gaussian
distribution. Given new data, the pattern
assignment is inferred by maximizing the log-
likelihood. Gaussian mixture model can be
extended to non-parametric models by using
a Dirichlet process prior.

Our model assumes latent styles can be
grouped into a number of patterns. However,
we do not assume the images are generated
from a mixture of style patterns. Instead,
we assume each style pattern requires unique
augmentation to feature maps so that the
final segmentation prediction is customized
to the style. Given an image, the forward
process includes 1) sampling layer weights
from augmentation module from prior distri-
bution; 2) sampling latent pattern assignment
for an image; 3) given the weights and pat-
tern assignment, generating the customized
segmentation. Without user annotation, the
pattern assignment of an image is inferred by
minimizing predictive entropy. With user an-
notation, the pattern assignment is inferred
by maximizing the likelihood.

Weakly-
supervised
segmentation

In weakly-supervised segmentation, the
model is trained with noisy or limited labels
as supervised signals. For example, given
some images, the corresponding label used
for training could be the label annotation of a
few pixels through clicks, scribbles, or bound-
ing boxes. This is different from conventional
image segmentation, where the labels of all
pixels are available. Weakly-supervised seg-
mentation can be conducted interactively by
collecting annotation from users.

During pretraining, our model leverages
datasets with ground truth of fully labeled
pixels rather than partial labeled ones. Dur-
ing user interactions, the new images provided
by the user are from another dataset with dis-
tribution shifts and diverse styles. At this
phase, only partial labels from annotated ar-
eas by the user are used to retrain the model.
Our setting is realistic, because one can al-
ways find some fully labeled datasets to pre-
train the model. But if we customize the
model to specific applications, fully labeling
the data may be costly, and thus leveraging
partial annotation from the user is more vi-
able.

Foreground-
background
interactive
segmentation

In foreground-background segmentation, the
user annotates foreground and background
classes to determine the target segment. For
medical image segmentation, it is similar to se-
mantic segmentation, because the foreground
corresponds to disease areas, and the back-
ground class corresponds to normal areas.

Our framework focuses on semantic segmen-
tation, and it requires the user to provide
labels in terms of semantic class rather than
foreground and background. User annota-
tions are treated as supervision to update the
model and generate refined segmentation.

Style disentan-
glement via do-
main adaptation

Domain adaptation aims to apply the segmen-
tation model trained in data from one source
domain to data from another target domain,
where distribution shifts exist between differ-
ent domains. Image style is one of the sources
of distribution shift.

Our model considers more fine-grained styles.
For instance, multiple latent styles may be
discovered from the new images provided by
the user. In contrast, domain adaptation
essentially considers two ’styles’, one from
the source domain and one from the target
domain.

The experiment results reported in the main paper are based on real-user interactions. These studies received
IRB approval that strictly protected the rights of the subjects.
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Figure 12: An illustrative example of the user interface

E Additional Experiment Results

For a more comprehensive evaluation of the proposed model, we provide an additional evaluation of the ACDC
dataset for winter scene image segmentation. Similar to before, the models are pre-trained on the Cityscape
dataset with urban scenes, and evaluated on the ACDC dataset.

We first compare the performance given different numbers of clicks. For each image, after receiving a number of
clicks (with corresponding label annotation), the proposed model and baseline methods refine the segmentation.
The results averaged across testing images are reported in Figure 13. In most cases, the proposed framework
outperforms the baselines given the same number of clicks.

Case 3 (Natural Image)
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Figure 13: Performance comparison of refined segmentation (IoU) on ACDC dataset with respect to the number
of clicks (averaged across testing images)

It should be noted that the baseline methods do not consider diversified image styles. To overcome this limitation,
we apply the image style transfer technique proposed by [6] on testing images, and evaluate the baseline methods
again as shown in the right plot of Figure 13. The goal of style transfer is to make the testing image’s distribution
aligned with the training images. In most cases, the proposed framework outperforms the baselines given the
same number of clicks.

Qualitative comparisons with illustrative examples of refined segmentation after 16 clicks are provided in Figure 14.
The proposed framework achieves better performance in identifying boundaries of segments.

We also evaluate how the model leverages user annotation to improve the performance on future segmentation
tasks. We report the performance of initial segmentation in terms of IoU after the model interacts with users
for a few iterations. We compare with baselines and report the results on Figure 15. The proposed framework
exhibits an upward trend and outperforms baselines.

F Link to the Source Code

The source code is provided at: https://github.com/ritmininglab/DLAIF


https://github.com/ritmininglab/DLAIF

Dual-Level Adaptive Information Filtering for Interactive Image Segmentation
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Figure 14: Illustrative examples of refined segmentation results after user interaction with 16 clicks. Different
color denote different semantic classes.

Case 3 (Initial Segmentation)
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Figure 15: Performance comparison of initial segmentation (IoU) on ACDC dataset with respect to the number
of existing iterations. An upward trend indicates that the model learns from previous iterations to improve its
performance on new images.
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