REGEX+: Synthesizing Regular Expressions from
Positive Examples

Mark Barbone
UC San Diego
mbarbone@ucsd.edu

Joey Rudek
UC San Diego
jrudek@ucsd.edu

Abstract

Regular expressions are a popular target for programming
by example (PBE) systems, which seek to learn regexes from
user-provided examples. Synthesizing from only positive
examples remains an unsolved challenge, as the unrestricted
search space makes it difficult to avoid over- and under-
generalizing. Prior work has approached this in two ways:
search-based techniques which require extra input, such as
user feedback and/or a natural language description, and
neural techniques. The former puts an extra burden on the
user, while the latter requires large representative training
data sets which are almost nonexistent for this domain. To
tackle this challenge we present REGEx+, a search-based syn-
thesizer that infers regexes from just a few positive examples.
REGEx+ avoids over/under-generalization by using minimum
description length (MDL) learning, adapted to version space
algebras in order to efficiently search for an optimal regex
according to a compositional MDL ranking function. Our
evaluation shows that REGEx+ more than triples the accu-
racy of existing neural and search-based regex synthesizers
on benchmarks with only positive examples.

1 Introduction

Suppose you are a data scientist searching for Brazilian CN-
PJs (company identification numbers) in a large document.
You quickly identify two initial CNP]Js, 60.701.190/0001-04
and 02.916.265/0001-60, but manually searching for more
examples is prohibitively expensive, and writing regular ex-
pressions has a steep learning curve [1].

One possible solution is to input the two examples into
a regex synthesizer and get a pattern-matching expression.
However, to our knowledge there exists no one-shot regex
synthesizer that works reliably well with only few positive
examples, and coming up with good negative examples is
unintuitive [7].

PL’22, January 01-03, 2018, New York, NY, USA
2022. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Elizaveta Pertseva
UC San Diego
epertsev@ucsd.edu

Nadia Polikarpova
UC San Diego
npolikarpova@eng.ucsd.edu

The above scenario can be extended to a multitude of
identification tasks which involve filtering data based on
only very few known matches, illustrating a void in the
regex synthesis field. To fill this need we introduce REGEX+,
a novel regex synthesizer that relies on MDL learning and
version space algebras to generate results from only positive
examples. For example, from the two CNPJ inputs mentioned
above, in less than a second, REGEX+ outputs

\d{2}\.\d{3}\.\d{3}/0001-\d{2}

the correct pattern for Brazilian CNPJs.

Challenge: Ranking Function. The first challenge in gen-
erating regular expressions is that the relatively unrestricted
search space demands a high quality ranking function which
penalizes both overly specific and overly generic regexes.
For example, both

.+ and (60\.701\.190/0001-04) | (02\.916\.265/0001-60)

are valid, but unhelpful, solutions for the given inputs. Exist-
ing techniques for regex synthesis include inferring a rank-
ing function using machine learning [2, 3, 9, 10], synthesizing
the simplest valid regex in a custom DSL [3, 6], and asking
users for clarification [18]. However, these strategies do not
extend well to synthesis from few positive examples: ma-
chine learning models struggle to generalize due to a lack
of positive-examples-only training data, and overly simple
regexes are often unhelpful to users.

Solution: MDL. To balance simplicity and specificity, REGEx+
employs minimum description length (MDL) learning [15],
where the main idea is to minimize the total amount of infor-
mation required to both describe the regex and to identify the
positive examples among all strings accepted by the regex.
More concretely, for a candidate regex r, the ranking function
includes a simplicity term and a specificity term. The sim-
plicity term corresponds to the probability of generating r
from a fixed probabilistic context-free grammar (PCFG); this
probability decreases as the regex gets larger or uses more
complex constructs. The specificity term corresponds to the
probability of generating the observed positive examples by
sampling strings accepted by r; this probability decreases as
the regex gets more general (accepts more strings).

https://doi.org/10.1145/nnnnnnn.nnnnnnn

PL’22, January 01-03, 2018, New York, NY, USA

Challenge: Search Strategy. Once a suitable ranking func-
tion is computed, efficiently searching for the best regex
presents a second challenge. Since there is a vast realm of ac-
ceptable regexes, computing the minimal description length
for each regex is infeasible. Even less-naive ranking strate-
gies such as top-down A* search face combinatorial explo-
sion, as optimal regexes can have many components (for
example, the CNPJ regex has 18). Neural synthesizers ap-
proach the combinatorial explosion using beam search [17].
However, this search strategy is not applicable to our ranking
function, as the correct regex might start with an unlikely
component such as an optional.

Solution: Compositional Ranking and VSAs. To over-
come this challenge, we propose a compositional formulation
of the MDL ranking function. In this formulation, the weight
of a regex is the sum of the weights of its atomic components.
We then use version space algebras (VSAs) [6, 8, 11, 16] in
order to compactly represent the space of all regexes that fit
the positive examples. Once a VSA has been constructed, the
compositional weights allow us to efficiently extract the best
regex by simply finding the cheapest path through a DAG.
Evaluation. We evaluate our tool, REGEX+, on 122 real-
world Stack Overflow benchmarks from the REGEL bench-
mark suite [3], as well as 22 benchmarks with augmented
positive examples. Our results demonstrate that MDL learn-
ing surpasses prior machine learning approaches on both
benchmarks suites, achieving 77% accuracy on the latter.

Contributions. In summary, this paper contributes the fol-
lowing:
e An MDL ranking function for selecting regexes, ac-
counting for both simplicity and specificity
e A VSA-based algorithm for efficient search guided by
the MDL ranking function
e REGEX+, an implementation of the above that is able to
synthesize correct regexes based on only positive ex-
amples outperforming other regex synthesizers, neural
and enumerative.

2 Overview
2.1 MDL Learning for Regular Expressions

To better motivate the core components of our technique,
we turn to a more familiar example: email addresses. Imag-
ine a user wants to determine the format of UCSD stu-
dent emails. Having read the REGEx+ paper, they know
three examples: epertsev@ucsd.edu, jrudek@ucsd.edu, and
mbarbone@ucsd.edu.

There are many regexes that match these examples, which
brings us to the question of how to pick the best (or the top
k) regexes to show to the user? One of the most popular
approaches in program synthesis is to select the shortest
valid program. However in the case of regexes, the shortest
option is . *, which is not helpful to the user as it is overly
general: it permits all inputs.

Mark Barbone, Elizaveta Pertseva, Joey Rudek, and Nadia Polikarpova

The choice of shortest regex can be improved by restricting
the DSL, a common technique used by prior regex synthesiz-
ers [4, 12]. Noting that learning all possible regular expres-
sions from only positive examples is theoretically impossi-
ble [5], we similarly restrict our regex grammar, disallowing
arbitrary alternation, and instead including a restricted class
of optionals. For more details see Sec. 3.1. However, this only
marginally improves the results. The simplest regex in our
DSL for the emails example is

[a-z]+@[a-z]+\.[a-z]+

which is still overly generic.

Existing approaches remedy this issue by requiring neg-
ative examples or natural language descriptions. However,
negative examples are inconvenient to come up with [7]. In
this case the user runs into an almost infinite and overwhelm-
ing space of invalid emails: capital letters in emails, emails
without @, emails not ending in ucsd. edu, etc. Similarly, writ-
ing natural language descriptions can be problematic and
verbose.

Recent state of the art neural synthesizers like Github
Copilot have attempted to approach the problem from a
different angle by remedying the lack of information from
inputs with an abundance of training data. However their
response often underfits or overfits the regex as they struggle
to capture the specific behavior of the input examples. For
the three given inputs Github Copilot outputs

[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+

which is too permissive. Note that in many cases neural
synthesizers are also unsound as there is no guarantee that
the resulting regexes will actually match the inputs.

Our first core insight is that the over-generalization prob-
lem can be tackled by viewing the regex synthesis problem
as an instance of minimum description length (MDL) learn-
ing. MDL learning [15] is a general framework for statistical
learning which involves selecting the hypothesis that min-
imizes the total information necessary to encode both the
hypothesis, and the data given the hypothesis. As a result,
an MDL learner is forced to trade off the simplicity of the hy-
pothesis and its specificity to the data. Specializing to regex
synthesis, we select the best regex for the provided inputs by
optimizing a combination of the probability of forming the
selected regex and the probability of inputs given the regex,
thus achieving a simple regex that is not overly permissive.
Specifically, we compute information as the negative log of
probability, minimizing the following over regexes r:

Weight,,,; (r) = —log (P(r)) — log (P(inputs | r))

in which —log(P(r)) is smaller for simpler regexes, and
—log(P(inputs | r)) is smaller for more specific regexes.

For the emails example, if we only minimize the simplicity
ranking we get

[a-z]+@[a-z]+\.[a-z]+,

REGEx+: Synthesizing Regular Expressions from Positive Examples

or the shortest regex in our DSL. On the other hand if we
only minimize the specificity score REGEX+ outputs

(epertsev)?(jrudek)?(mbarbone)?@ucsd\.edu,

which only permits a few inputs and is unhelpful to the user.
However if we combine both of the rankings the top five
choices are

1. [a-z]+@ucsd\.edu
2. [a-z]{2,}@ucsd\.edu
3. [a-z]+e[a-z]?@ucsd\.edu
4. [a-z1{3,}@ucsd\.edu
5. [a-z]1{2,}ela-z]?@ucsd\.edu
Where the top choice is clearly the desired result.

Scores. The top regex is chosen by REGEx+ because it strikes
the best balance between simplicity and specificity: its speci-
ficity score is 82.3 and its simplicity score is 55.4 giving the
regex a score of 137.7 overall, the minimal score given these
inputs.

The second from the top regex is more specific than the
first as it mandates the use of at least two [a-z] thus its
specificity is lower: 82.2. However it is also less simple then
first as it adds an extra regex atom thus the simplicity score
increases to 57.8 and the overall score becomes 140.0.

Similar checks and balances can be seen when analyzing
the score of the most specific and most simple regex. The
most simple regex

[a-z]+@[a-z]+\.[a-z]+,

has a simplicity score of 20.9 but a specificity score of 171.0
as it is too permissive thus giving it a total score of 191.0. On
the other hand

(epertsev)?(jrudek)?(mbarbone)?@ucsd\.edu,

has a specificity score of 6.2 but a simplicity score of 173.5
giving it a total score of 179.7, which is once again much
bigger than the top regex. The email example demonstrates
that by balancing specificity and simplicity, MDL ranking
is able to penalize both over permissive and overly strict
regexes and choose the regex that is most helpful to the user.

2.2 MDL-Guided Search

Given an MDL score for each regex we run into the problem
of efficiently enumerating all of the candidates and select-
ing one with a minimum Weight,,; (r). We propose an
approach based on version space algebras [16]. Our algo-
rithm constructs a DAG data structure that represents all
valid solutions, and then finds the optimal solution using a
graph search algorithm (shortest path in a DAG). In the rest
of this section we will first explain how to build a DAG that
represents all valid regexes, and then show how to find the
best one in a compositional way.

2.2.1 Representing valid solutions. To illustrate our VSA
construction algorithm, we walk through another example

PL’22, January 01-03, 2018, New York, NY, USA

{15,\d+}
. =
! (LA \d+) ~ > (5.\d,\d+} © end
{18,\d+}

o e %

end
{1,\d,\d+} ~ (8 \d,\d+}

Figure 1. VSAs for inputs 15 and 18. We omit [a-zA-Z0-9]
and [a-zA-Z0-9]+ for simplicity.

with shorter inputs (to limit the size of the VSA) where the
user is attempting to synthesize a regular expression that
matches all numbers 10-19. As an input the user enters 15
and 18. First, for each input, a version space algebra (VSA)
is constructed, encoding the set of all regular expressions
that match it. The VSA consists of a directed acyclic graph
with designated start and end nodes, in which each edge is
labelled with an atomic regex. The possible answer regexes
are paths in the DAG from the start node to the end node.
The VSAs generated for 15 and 18 can be found in Fig. 1.
The VSAs for both of the inputs include 3 nodes (1 per each
character and 1 for the end token). Each path represents a
set of regexes that only accept the portion of the input from
the source node until the destination, not including the des-
tination. For example, in the VSA in Fig. 1 for the input 15
the edge from 1 to 5 represents possible regexes that accept
1.

Next, we intersect the VSAs yielding a VSA representing
the regexes that accept all of the inputs. For example, the
intersection of the two VSAs from Fig. 1 is shown in Fig. 2.
As in prior work [16], to intersect two VSAs we take all
pairs of their nodes, and only keep those edges that are
present in both VSAs. Unlike prior work, however, we also
introduce optional edges to account for atomic regexes that
are not shared by all inputs. For example, in Fig. 2 there is an
optional edge 57 from the node (5,8) to the node (end,8),
which corresponds to consuming the substring 5 from the
first input (15) and consuming nothing from the second input.
Note that when allowing optionals, the resulting DAG grows
quite large, thus in Fig. 2 we omit the full set of labels for
each edge, instead showing only the most specific one.

2.2.2 Finding the optimal solution. Upon constructing
the DAG, a naive approach would be to enumerate all paths
and then compute the MDL score for each one. However, this
is prohibitively expensive: when one includes optionals the
number of path grows superexponentially with each added
input, and as shown in Fig. 2, even with a few inputs there
is a proliferation of paths.

Thus our second core insight is that we can instead define
a compositional approximation of the MDL score: we assign
a score to each atomic regex (aka each edge of the DAG),
and score of a path (the concatenation of the atomic regexes)

PL’22, January 01-03, 2018, New York, NY, USA

(1) =T 5.1) —— 5= (end. 1)

Figure 2. The intersection of VSAs from Fig. 1

becomes the sum of the scores of its edges. Similarly, during
intersection, the score of the intersection of two edges may
be computed from the scores of the two edges.

In our running example, we compare three likely candidate
regexes, 1\d, \d\d, and \d+, all of which appear along the
diagonal in Fig. 2. (Although omitted for space, \d is an
allowed label for the edge from (1, 1) to (5, 8).)

For the DAG above using the ranking function described
in more detail in Sec. 3.2 REGEX+ assigns

Weight,,; (1) = 5.809

Weight, ,; (\d) = 7.010
Weight,p; (\d+) = 17.295

The weight of \d is the same for all of its occurrences in this
VSA.

Since in log space multiplication becomes addition we get
that

Weightp; (1\d) = 5.809 + 7.010 = 12.819
Weight,,; (\d{2}) = 7.010 + 7.010 = 14.020

Thus we can now represent the extraction problem as
finding the shortest/cheapest path. The top five results for
this example, together with their total composed weights,
are presented below:

1. [12.819] 1\d
2. [14.021] \d\d (simplified to \d{2})
3. [17.295] \d+
4. [18.308] 1\d+
5. [19.413] 1[A-Za-20-9]
The first is the one desired by the user, as it accepts all/only
numbers 10-19.

2.3 Simplification and Deduplication

Since regexes can include arbitrary-count repetition, our
grammar admits different representations, with different
scores, for equivalent languages. For example, 17[0-9]+ is
equivalent to [0-9]+, but the latter would have a lower score
as it is ostensibly simpler.

Mark Barbone, Elizaveta Pertseva, Joey Rudek, and Nadia Polikarpova

regex := ¢ | edge regex

edge ::= atom | (atom)?

atom ::= class | class+ | literal(string)

[0-9]1 | [a-z] | [A-Z] | [a-zA-Z] | [a-ZzA-Z0-9]

class ::
Figure 3. The restricted regex grammar

While the duplication poses no computational toll, as the
compositional ranking function facilitates the reuse of com-
ponent calculations, it does pose a problem when outputting
the top-k candidate regexes, since some of them could be
duplicated.

Thus in order to avoid these equivalences, we gather C - k
(in our implementation, 4 - k) of highest-ranked regexes and
then we use the library greenery [14] to compare their lan-
guages, eliminate duplicates according to various reduction
rules, and collect the top-at-most-k unique output regexes.
Greenery also allows us to simplify complicated regexes via
rewrites such as

\d\d\d = \d{3}

(\d)?(\d)?(\d)? = \d{0,3}

3 Algorithm
3.1 Grammar

Inspired by prior work [4, 6, 16] on synthesis of regexes
and string transformations, we represent a regex as a con-
catentation of atoms, individual simple components which
include literal strings, character classes, etc. We extend prior
grammars by including optionals. The detailed DSL is shown
in Fig. 3. Since the specific choice of character classes is
inessential to our algorithm, it is simple to add more char-
acter classes such as [0-9A-F] or [A-Za-z0-9_] and tailor
REGEX+ to produce regexes for a specific domain.

The restrictions on our grammar are motivated by the the-
oretical results that show that with an unrestricted grammar
synthesis from only positive examples is impossible [5]. As a
result our grammar excludes complex regex features such as
not and startwith(). These components are unlikely to be
correctly inferred from only a few examples, thus excluding
them not only allows for more efficient synthesis, but also
likely improves our output.

3.2 VSAs and Intersection

To facilitate efficient search, we encode the set of possible
regexes in a version space algebra (VSA). In REGEx+, a VSA
consists of a directed acyclic graph (V, E), where V, the set of
vertices, is labelled by source positions in the input strings,
and E, the set of edges, is labelled by possible atomic regexes.
The possible regexes are represented by paths through the
directed graph from the start to end nodes. Examples are
shown in Figures 1 and 2.

REGEx+: Synthesizing Regular Expressions from Positive Examples

VSAs [16] are a representation-based search technique
which works in three steps:

1. A VSA is built for each input, encoding the set of all
possible solutions given only that input.

2. These VSAs are intersected, yielding a single datastruc-
ture that encodes the intersection of all the individual
solution sets.

3. Lastly, the best solution (according to our cost metric)
is extracted from the VSA.

Initial VSA Construction. To construct a VSA from an
input word, we create vertices for each position in the word,
and between each two vertices we put edges for each atomic
regex from our grammar that matches that part of the word.
More formally, given an input word W = wow; ... wp_1:

Viv :=={v; | 0 < i < n}

Eyw = U {(vi = vj; atom) | atom matches w; ... w;}

0<i<j<n

where (v; — v;; atom) denotes an edge from v; to v; la-
belled by the regex component atom.

VSA Intersection. Next, the VSAs representing each input
are intersected. From two VSAs (Vi,E;) and (V, E;), we
build their intersection (Vn, En) as follows. Since we want
a path through (Vn, En) to be both a path through (V1, E;)
and (Va, E,), the vertices in V are pairs of vertices from V;
and V5. Then the edges from (vq,v2) to (wy, W) consist of
the intersection of the sets of edges v; to wy in E; and edges
Uy to Wy in E,.

Optionals. With the intersection mechanism as described
so far, each edge in the intersection VSA always consumes a
non-empty substring of both inputs. To support optionals,
we must allow edges that consume characters only from one
of the inputs. We account for these components by taking
each edge (v — w; atom) in one of the input VSAs, turn-
ing atom into an optional, and adding it as an extra edge in
the intersected VSA between vertices of the form (v, a) and
(w, a), for each vertex a of the other input VSA. These op-
tional edges can be seen in Fig. 2. All the horizontal optional
edges, such as (15)? from (1,1) to (end, 1), consume a part
of the first input (15) but not the second (18), while all of the
vertical optional edges consume a part of the second input
but not the first.

The process can be formally summarized as

Vhi=V1 XV,
En = {((v1,v2) = (w1, w2); atom)
| (v1 = wi; atom) € Eq, (v; — wa; atom) € E,}
U {((v1,v2) = (w1,v2); (atom)?)
| (v1 = wy; atom) € Eq, vy € Va}
U {((v1,v2) = (v1, we); (atom)?)

| v1 € Vi, (v = wy; atom) € E,}

PL’22, January 01-03, 2018, New York, NY, USA

Finally, after our ranking function assigns a weight to
each edge, we extract the top regexes using shortest path in
a DAG.

3.3 Ranking

We use an MDL learner composed of simplicity and speci-
ficity scores. We approximate minimum description length
with a compositional ranking function by computing these
scores for each regex atom separately and then multiply-
ing the probabilities (or equivalently summing up the log
scores) of the atoms to get the full score of the regex given
the inputs.
In other words, we use Bayes rule and compute

P(r|inputs) ~ P(inputs|r) - P(r)

where P(inputs|r) corresponds to the specificity scores and
P(r) corresponds to simplicity. In log space, this allows us to
compute the two scores independently and then add them.
However, as log space can be unintuitive, we show all our cal-
culations using probabilities. We first explain how specificity
scores are computed, followed by simplicity scores.

3.3.1 Specificity. Composition. Since our goal is to use a
shortest path algorithm, we seek to compute the specificity
scores or P(inputs|regex) by focusing on one input at a time
and breaking each regex into its atomic components. Ideally
we want the combined probability to be the product of atomic
probabilities; however, in reality its computation is more
complex: for a regex r = ryr, and an input string s, we can

compute
PGl =)

S1,S2|s1++82=5

P(s1]r1)P(sz|r2)

where the sum is over all ways to break s up into pieces s;
and ss.

Nevertheless we claim that we can simplify this sum to
a single product with out losing any solutions, taking only
one (non-zero) term from the sum. In cases where the split
of the string into matching components is unambiguous,
such as when r = [a-z]\d+ and the input string is a9, this
approximation is exact as the sum simplifies to a product of
two probabilities

P(s|r) = P(s1lr))P(szlr2)

since all other partitions of s yield probabilities of 0 for the
given atomic regexes.

The simplification underapproximates the probabilities
only in cases where the split is ambiguous. For example,
when r = [a-z]+[a-z]+ and the input string is xyz, it can be
split both as xy followed by z and as x followed by yz, so the
true probability is

P(xyz|la-z]+[a-z]+) = P(x|[a-z]+)P(yz|[a-2]+)
+ P(xy|la-z1+)P(z|[a-2]+).

PL’22, January 01-03, 2018, New York, NY, USA

However, the ambiguous regexes similar to [a-z]+[a-z]+ are
already expressed in our grammar by unambiguous regexes
such as [a-z][a-z]+, whose probability will be correctly com-
puted according to the simplification and higher than the
underaproximation. Thus our algorithm will still find a cor-
rect regex.

After establishing the theoretical basis for splitting up
the probability by splitting up the input among the atomic
regexes, we can implement the split by relying on our VSA
representation. Since in the VSA each node already corre-
sponds to a position in the input string, each path has a
canonical splitting of the inputs along those regex compo-
nents. For example, considering the path 1\d through the
VSA for 15 in Fig. 1, the first atomic regex 1 consumes 1, and
\d consumes 5, so we can naturally split the input between
these atomic regexes.

Going forward, two challenges remain to be solved: how
to actually compute the probabilities for each atomic regex,
and how to factor in multiple inputs.

Probabilities. The first challenge can be symbolically ex-
pressed as computing P(i|r) for each atomic regex r, where
i is a single matching string.

For this task the atomic regexes can be split into two
classes: finite such as \d and infinite such as \d+. In both
cases, to compute the probability we consider a finite state
automaton for the component and assign a probability to
the input by assuming that each transition in the automaton
is equally likely.

For example, consider the atomic regex (a)?, whose NFA
representation is in Fig. 4. There are two possible transitions
from beginning to end so P(i|(a)?) = % for any matching
input. In general, for any finite regex r matching |r| strings
(including literal strings, optional literal strings, character
classes, and optional character classes) the probability can
be computed as 1 over the number of possible transitions:

1
Irl”

For the atomic regexes that match infinitely many strings,
we consider an input as a sequence of n + 1 transitions in
the automaton, where n is the input’s length, and thus only
multiply the probabilities of each of the n + 1 transitions.

For example consider [a-z]+, which has a loop in its NFA
as can be seen in Fig. 5. Any input of length n makes n + 1
transitions (accounting for the transition to the end) through
this NFA. For the first transition we have 26 options and for
the rest we have 27, thus the probability for any matching

lnput Of length n1is
.

The infinite atomic regexes in our grammar can be further
subdivided into C+ and Cx (the simplified form of (C+)?),
for a character class C. The probability of an input of length

Mark Barbone, Elizaveta Pertseva, Joey Rudek, and Nadia Polikarpova

Figure 4. NFA for (a)?

€

Figure 5. NFA for [a-z]+

n given C+ can be computed as

1 1 \"
IC] \ICI+1

and the probability of the input given Cx would be

1 n+1
(|C| + 1) '

Multiple inputs. Finally, to account for multiple inputs, we
assume that the probabilites P(i;|r) and P(i,|r) are indepen-
dent as there is no reason for them to influence each other.
Thus the overall probability can be computed as the product

n
P(is,....inlr) = [[PGIP).
j=1

3.3.2 Simplicity. The simplicity score of a single regex
atom is derived using the probability of a regular expression,
computed using the Probabilistic Context Free Grammar
(PCFG) shown in Fig. 6. The PCFG encodes domain knowl-
edge about the simplicity of regexes: [0-9] is simpler than
[A-Za-20-9] which is simpler than a constant which is sim-
pler than an optional. One can use the PCFG to derive the
simplicity weight for a single atom by following the PCFG
until no transitions are left. For example let us consider com-
puting the simplicity weight for ([a-z])? and [a-z]. To find
the score of the first atom we take

P(Atom) = P(0pt) * P(Char Class) = P([a-z])
57
0.95 % 0.25 % 0.40 * m = 0.09025
For the second atom:

P(Atom) = P(Char Class) * P([a-z]

57

0.95 % 0.30 *x — = 0.27
60

Clearly [a-z] is simpler than ([a-z])?, and thus has a higher
probability.

REGEx+: Synthesizing Regular Expressions from Positive Examples

Regex — end of string 0.05
Atom Regex 0.95
Atom — Optional 0.25

Char Class + 0.15
Char Class 0.30
Literal 0.30

Literal — Printable ASCII char %

[a-z1/10-91/[A-Z]1 0.95
[A-Za-z] 0.03
[A-Za-z0-9] 0.02
Optional — Char Class 0.4
Char Class + 0.2
Literal 0.4

Char Class

!

Figure 6. The Simplicity PCFG

By using a PCFG, the simplicity score can also be com-
puted compositionally: for a regex r built from the atomic
components 7y . . . Iy, its probability given by the PCFG is

P(r) =0.05- | |0.95P(r;),

n
i=1
so analogously to the specificity scores, it can be feasibly
computed by multiplying a function of the edges in the VSA,

or in log space, adding their negative logs.

4 FEvaluation

For our evaluation we set out to answer the following ques-
tions:

(RQ1) How does REGEx+ perform on real-world regex prob-
lems compared to state-of-the-art neural and non-neural
synthesizers?

(RQ2) How does REGEx+ perform on regex problems tailored
to be solved with only positive examples?

(RQ3) Are both simplicity and specificity weights needed to
generate good regexes?

General Setup. All of the benchmarks ran by us are run on
a consumer laptop with an Intel(R) Core(TM) i7-5557U CPU
and 16 GB of memory.

4.1 StackOverflow Study

Benchmark Suite. To investigate how REGEx+ performs
on real world problems we took the benchmark suite from
REGEL [3] benchmark suites: a battery of 122 questions scraped
from Stack Overflow endowed with positive and negative
examples and natural language descriptions. It is vital to note
that the Stack Overflow benchmarks are meant for multi-
modal synthesis, using a combination of NLP, positive, and

PL’22, January 01-03, 2018, New York, NY, USA

negative examples, and thus often provide a minimal num-
ber of positive examples, in some cases only one. For many
cases, even human experts struggle to find the correct regex
from only the examples provided. We proved this through an
informal study where we asked 8 programmers who claimed
reasonable knowledge of regex to solve 20 randomly-selected
benchmarks given unlimited time. We received 14 correct
answers, which is only 8.75% accuracy.

Since these benchmarks were posted on StackOverflow
with 3 different modes of inputs; they were likely deemed
as very difficult by the users. In fact, only 22 (18%) of the
ground truth solutions to these benchmarks can be captured
by our DSL.

Setup. For comparison, we list the results cited by the au-
thors of REGEL on the same benchmarks for DEEPREGEX
(natural language only), REGEL (enumerative synthesizer in-
formed by machine learning) and REGEL-PBE (one of REGEL’s
baselines: an interactive synthesizer with positive and nega-
tive examples). The most relevant for comparing with REGEX+
are the results from REGEL-PBE, since both tools have no ac-
cess to the natural-language description. Because the REGEL-
PBE results were obtained on a stronger computer (Intel
Xeon(R) E5-1620 v3 CPU with 32GB of RAM), and multiple
iterations per benchmark, we also report the results of a sin-
gle REGEL-PBE iteration without interaction when run with
exactly the same setup we give REGEx+, as well a second
REGEL-PBE run only given positive examples. In the last ex-
periment we show REGEL-PBE and REGEX+ up to 4 positive
examples (depending on how many examples the benchmark
has) to test REGEX+’s ability to synthesize the expected re-
sults with minimal information. All of these benchmarks are
run with a 40 second timeout. Following prior work [10], we
count a benchmark as correct if the result is in top five.

Results. The results are summarized in Tab. 1. Even when
given less information, REGEx+ triples the accuracy of both
DeePREGEX and the Single Iteration REGEL-PBE. Further-
more, it more than quadruples the accuracy of Single Itera-
tion REGEL-PBE with negative examples withheld.
Interestingly, REGex+ does not have any overlap with Sin-
gle Iteration REGEL-PBE on which examples they get right;
Fig. 7 shows an example comparing REGEx+ to REGEL-PBE
given positive examples only. Note that although REGEx+’s
result is incorrect for benchmark 110 in Fig. 7, it still matches
the examples well. Anecdotally we report that this is com-
mon: a large subset of the benchmarks that REGEx+ gets
wrong don’t match the ground truth but are nevertheless
likely helpful to users. This brings us to our second study.

4.2 Positive Examples Only Study

Benchmark Suite. To address the fact that the StackOver-
flow benchmark suite is not designed for synthesis from only
positive examples, we consider the 22 benchmarks whose
ground truth is within our DSL. We then augmented these

PL’22, January 01-03, 2018, New York, NY, USA

Mark Barbone, Elizaveta Pertseva, Joey Rudek, and Nadia Polikarpova

Table 1. Results on Stack Overflow Benchmarks Compared to other Synthesizers

Benchmarks Correct | Percent Positive NLP Negative Multlp le
Examples Examples | Iterations
Deep Regex 3 2.4% X
Regel 74 60.7% X X X
Full Regel- PBE 18 14.7% X X X X
Single Iteration Regel-PBE 3 2.4% X X
w/ out nlp
Single Iterat.l(.)n Regel-PBE 9 16% X
w/ only positive examples
REGEX+ 9 7.4% X

Benchmark 57
Inputs: 0,25, 10,2, -7000, -175,33
Correct: -?\d+.7\d{0,2}
Regel-PBE: .x([0-9])
ReGEXx+ Top 5:

1. -?2\d+,?\d{1,2}

2. -\d+,?\d{0,2}

3. -2\d+, ?\d+

4. -?\dx*,?\d+

5. -7\d+, 2\dx

Benchmark 110

Inputs: {foo}, {bar}, {nice}
Correct: \{.x

Regel-PBE: ([{]).x*
ReGEXx+ Top 5:

1. \{[a-z]+\}

- \{[a-z1{2,}\}
. \{la-z1{3,4}\}
- \{la-z1{3,}\}
. \{[a-z]1{2,4}\}

Gl W N

Figure 7. Left: REGEX+ produces the ground-truth regex as its second option (despite none of the examples having 0 decimals
after the comma), whereas REGEL-PBE produces a regex that is too simple. Right: REGEL-PBE produces the ground-truth regex,
whereas all answers given by REGEX+ are too constrained, since . * is not within our grammar.

22 benchmarks with 4 positive examples each, intended to
make the results guessable by a human.

Setup. We compare the results of REGEx+ once again with a
single iteration of REGEL-PBE. Since REGEL-PBE timed out
on many of the 122 benchmarks we increase the timeout to
5 minutes. We also introduce Github Copilot, a state of the
art neural program synthesizer. Although Copilot’s primary
use is not regexes, it is advertised as a general purpose syn-
thesizer, so it can be used to synthesize regexes. It is also one
of the few neural synthesizers that does not require verbose
NLP descriptions. The prompt used for Copilot is shown in
Listing 1, where the synthesizer auto completes the answer
into re.compile(r'"). This was selected as the best of several
prompts through repeated experimentation.

Results. A summary of results is presented in Tab. 2 and
selected specific examples are listed in Tab. 3. Our results
demonstrate that REGEX+ more than quintuples the accuracy
of REGEL-PBE and more than triples that of Github Copilot.

Note that Copilot often produces unsound results. For
example in Tab. 3, one can see that for benchmarks 3, 12
and 18 Copilot’s results are not only wrong but they also
do not accept the given inputs. A result of special interest
is benchmark 3 where upon getting a large number Copilot
automatically assumes it is a phone number. Out of these 22

import re

3 Regular expression which matches

<

- Example 1
- Example 2

v - Example 3

- Example 4

rx = re.compile(r'")

Listing 1. Prompt for Github Copilot

benchmarks, Copilot guesses
\d{3}-\d{3}-\d{4},

3 separate times, out of which it is correct only once, thus
demonstrating the shortcomings of neural synthesizers in
this domain.

REGEL-PBE also does poorly on these benchmarks. Al-
though REGEL-PBE works well as a multi-modal synthesizer,
without negative examples or natural language descriptions
its enumerative synthesis quickly finds very short matching
regexes, which are seldom correct. For example, for bench-
mark 4 its output, startwith(<P>) in its DSL, satisfies the
specification but is too simple, as it ignores the other shared
components between the 4 inputs.

REGEx+: Synthesizing Regular Expressions from Positive Examples

The benchmarks also illustrated some of the shortcomings
of REGEx+. In benchmark 11 as seen in Tab. 3 our synthe-
sizer fails to achieve \d{1, 4}, this occurs because to generate
\d{1,4} REGEX+ must output

\d (\d)? (\d)? (\d)?

which is simplified to \d{1, 4}. The initial regex is very long
and thus due to the compositional ranking function it is more
expensive than just \d+. One way to remedy this is to increase
the specificity weight penalizing \d+ or to add ranges to
our grammar. Furthermore for benchmark 12 REGex+ only
outputs 3 results as opposed to five. This occurs because 17
of the top 20 outputs generated by REGEX+ are pruned as
equivalent (see Sec. 2.3). One way to avoid this would be to
either initially compute top 40 as opposed to top 20, or to
prune a large portion of repeating paths prior to extraction.
Nonetheless despite its shortcomings REGEx+ outperforms
both REGeL-PBE and Copilot when given benchmarks with
only positive examples, showing that it is a competitive with
state of the art regex synthesizers.

Table 2. Results on Positive Examples Benchmarks Com-
pared to other Synthesizers

Benchmarks Correct | Percent
REGEL-PBE 3 13.6%
Github-Copilot | 5 22.7%
REGEX+ 17 77.3%

4.3 Ablation Study

Setup. Finally in order to answer RQ3 we preform an ablation
study comparing full REGEx+ to REGEx+ with only specificity
and simplicity.

Results. The results, summarized in Tab. 4, show that full
MDL learning more than doubles the accuracy of REGEx+
with only specificity or simplicity. In fact REGEx+ with only
specificity gets 0 benchmarks correct, as all of the outputs are
way too tailored to the inputs. With only simplicity REGEx+
gets 7 benchmarks correct, since as mentioned in Sec. 2,
choosing the simplest regex within the DSL is a common
strategy for many regex synthesizers. However REGEX+ with
only simplicity fails to account for the presence of constants
and ranges.

Table 4. Results on Positive Examples Benchmarks for Speci-
ficity and Simplicity

Benchmarks Correct | Percent
Only Specificity | 0 0%
Only Simplicity | 7 31.8%
Full REGEx+ 17 77.3%

PL’22, January 01-03, 2018, New York, NY, USA

5 Related Work

String transformations. Although not explicitly targeting
regular expressions, string transformations as used in tools
such as FLasHFILL [6] and BLINKFILL [16] also involve iden-
tifying textual patterns. These tools synthesize string trans-
formations in spreadsheets from input-output example pairs.
As part of this synthesis problem, BLINKFILL uses an INPUT-
DATAGRAPH VSA to identify patterns in the inputs from a
restrictive DSL; we apply a similar technique to the problem
of general regex synthesis.

Non-neural synthesizers. Regular expression synthesis has
also been approached in terms of more traditional program
synthesis. ALPHAREGEX [9] uses an extension of top-down
enumerative search to generate regular expressions over
a very small alphabet (namely, the set {0, 1}). REGAE [18]
also employs top-down search, but instead of restricting its
alphabet, it relies on extensive user interaction to narrow
the search space.

Neural synthesizers. Many recent program synthesizers
leverage machine learning, and the domain of regular ex-
pressions is no exception. In particular, machine learning
is uniquely proficient at working with natural language de-
scriptions. DEEPREGEX [10] attains 88.7% accuracy on its
benchmark suite using only natural language descriptions of
target regexes. REGEL [3] also uses natural language descrip-
tions, but only for ranking candidate regexes; because it uses
traditional top-down synthesis to generate candidates, its
output is guaranteed to be sound with respect to the given
examples. Finally, GitHub Copilot [2] is not tailored to regu-
lar expressions, but as it is a general-purpose code synthesis
tool it is completely capable of generating regular expres-
sions. (It is worth noting, however, that Copilot regularly
provides well-formed but unsound regexes; see Tab. 3.)

Pragmatic communication. Recent work on program syn-
thesis with pragmatic communication [13] also seeks to
increase the amount of information extractable from posi-
tive examples, by modelling synthesis as a two-player game.
Their work uses a very simple DSL for controlling a robot
on a finite grid. In future work, it would be interesting to
explore whether this learning paradigm can be extended to
regular expressions.

6 Limitations and Future Work

Regex synthesis from only positive examples is as yet an
underexplored space. To the best of our knowledge, there
is a limited number of other synthesizers tailored to the
domain, as well as limited benchmarks facilitating our need
to create our own battery of 22 benchmarks. We consider
the creation of more extensive sets of benchmarks, as well as
the subsequent benchmarking of our tool and others against
them, to be important future work.

PL’22, January 01-03, 2018, New York, NY, USA Mark Barbone, Elizaveta Pertseva, Joey Rudek, and Nadia Polikarpova

Table 3. Selected benchmarks run on REGEx+, REGEL-PBE, and Github Copilot. Green cells indicate that a tool output the
golden regex, whereas red cells indicate that the tool provided a regex which does not match all provided inputs.

| Examples Golden regex REGEX+ ReGEL-PBE | Github Copilot
t
1 alex [a-z]+
ramon
bob

091239567
098764321
3 003334445 09\d{7} ([0-9]){9}
094388270
Page 2 of 20
Page 18 of 44 .
4 Page 107 of 109 Page \d+ of \d+ ([P)):
Page 7 of 0

abc-fde-;234 - [125.824] [a-z]+-[a-z}{1,2}-\d+
- [a-2]{1,3}-[a-z}{1,2}-\d{1,4} | - [127.073] [a-z]+-[a-z}{0,2}-\d+ (lazD” | laz]+-[a-z] -

oh-no-33
co0-1-007 - [128.842] [a-z]{1,3}-[a-z]{1,2}-\d+ \d+

236.1
8736.9999 - [87.976] \d+\.\d+

11 \d+\\d{1,4} - [95.357] \d*\\d+ ([0-9])* | \d+\\d+

0.43 g
72.875 - [95.357] \d+\.\d

10

tw
*mcaaa

12 *qqee* (*)? [a_Z]{z’}(*)?

hello

4567
+9752

o
13 3015 \+2\d+

+1

Hello Bob
Sunil Kumar
18 Jack Sparrow [A-Z][a-z]+ [A-Z][a-z]+

Oh No

H347gjdj
8
20 sdjW23 [a-zA-Z0-9]+

Q3QW

Our chosen grammar encodes many useful regexes, but 7 Acknowledgements
to maximize speed and code simplicity, it is extremely re- This work was supported by the National Science Foundation
strictive. Notably absent from it are the class . x, arbitrary under Grants No. 1955457 and 1943623.
choice including custom character classes, and repetitions

and optionals of multiple concatenated components (e.g., References
(\d.:)+). .Fur.th.er work should expand upon our grammar [1] Carl Chapman, Peipei Wang, and Kathryn T. Stolee. 2017. Explor-
while maintaining reasonable runtime. ing Regular Expression Comprehension. In Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software Engineering

10

REGEx+: Synthesizing Regular Expressions from Positive Examples

(Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, 4054A5416.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde,

Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brock-
man, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, and
Wojciech Zaremba. 2021. Evaluating Large Language Models Trained
on Code. (07 2021).

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020.
Multi-modal synthesis of regular expressions. Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (2020).

Henning Fernau. 2009. Algorithms for learning regular expressions
from positive data. Information and Computation 207, 4 (2009), 521-
541.

E Mark Gold. 1967. Language identification in the limit. Information
and control 10, 5 (1967), 447-474.

Sumit Gulwani. 2011. Automating string processing in spreadsheets
using input-output examples. ACM Sigplan Notices 46, 1 (2011), 317-
330.

Tessa Lau. 2009. Why PBD systems fail: Lessons learned for usable AL
(10 2009).

Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld.
2003. Programming by Demonstration Using Version Space Algebra.
Machine Learning 53, 1 (2003), 111-156.

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular
Expressions from Examples for Introductory Automata Assignments.
SIGPLAN Not. 52, 3 (oct 2016), 704AS80. https://doi.org/10.1145/3093
335.2993244

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

PL’22, January 01-03, 2018, New York, NY, USA

Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kush-
man, and Regina Barzilay. 2016. Neural Generation of Regular Ex-
pressions from Natural Language with Minimal Domain Knowledge.
In Proceedings of the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics,
Austin, Texas, 1918-1923. https://doi.org/10.18653/v1/D16-1197
Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Frame-
work for Inductive Program Synthesis. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 107-126.

Paul Prasse, Christoph Sawade, Niels Landwehr, and Tobias Scheffer.
2015. Learning to identify concise regular expressions that describe
email campaigns. . Mach. Learn. Res. 16, 1 (2015), 3687-3720.

Yewen Pu, Kevin Ellis, Marta Kryven, Joshua B. Tenenbaum, and Ar-
mando Solar-Lezama. 2020. Program Synthesis with Pragmatic Com-
munication. ArXiv abs/2007.05060 (2020).

qntm. 2022. Greenery. https://github.com/qntm/greenery.

Jorma Rissanen. 1978. Modeling by shortest data description. Auto-
matica 14, 5 (1978), 465-471.

Rishabh Singh. 2016. BlinkFill: semi-supervised programming by
example for syntactic string transformations. Proceedings of the VLDB
Endowment 9 (06 2016), 816—-827. https://doi.org/10.14778/2977797.2
977807

Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney. 1994. Improve-
ments in beam search. In Third international conference on spoken
language processing.

Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glass-
man. 2020. Interactive Program Synthesis by Augmented Examples. As-
sociation for Computing Machinery, New York, NY, USA, 627€1AS648.
https://doi.org/10.1145/3379337.3415900

https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.18653/v1/D16-1197
https://github.com/qntm/greenery
https://doi.org/10.14778/2977797.2977807
https://doi.org/10.14778/2977797.2977807
https://doi.org/10.1145/3379337.3415900

	Abstract
	1 Introduction
	2 Overview
	2.1 MDL Learning for Regular Expressions
	2.2 MDL-Guided Search
	2.3 Simplification and Deduplication

	3 Algorithm
	3.1 Grammar
	3.2 VSAs and Intersection
	3.3 Ranking

	4 Evaluation
	4.1 StackOverflow Study
	4.2 Positive Examples Only Study
	4.3 Ablation Study

	5 Related Work
	6 Limitations and Future Work
	7 Acknowledgements
	References

