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—— Abstract

We provide a novel implementation of the classical Work Function Algorithm (WFA) for the
k-server problem. In our implementation, processing a request takes O(n2 + k2) time per request;
where n is the total number of requests and & is the total number of servers. All prior implementations
take Q(kn? + k®) time per request. Previous approaches process a request by solving a min-cost
flow problem. Instead, we show that processing a request can be reduced to an execution of the
Dijkstra’s shortest-path algorithm on a carefully computed weighted graph leading to the speed-up.
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1 Introduction

In several applications such as emergency response, grocery delivery or virtual memory
management, a new request has to be irrevocably assigned to a service provider in real-time.
The k-server problem is a simplified abstraction of this problem. In this paper, we present a
new implementation of the classical Work Function Algorithm for the k-server problem. We
begin by introducing the k-server problem.

Problem Statement: Consider a vertex set V and a weighted complete graph where
each edge (u,v) € V x V has a cost d(u,v). We assume that d(-,-) is a metric. Given any
two multi-sets A and B of points with A, B C V and |A| = |B|, we use d(A, B) to denote the
minimum-cost bipartite matching of the points in A to points in B under the distance d(-, -).
For an integer k > 0, we are given k identical servers and their initial locations, also called
the initial configuration C° = {s,...s%} in the metric space. A configuration is simply any
multi-set C C V, with |C| = k. We use configurations to denote the locations of the k servers.
For any request r;, a configuration C serves r; if the location of r; is contained in the multi-set
C. In other words, a server s € C that is co-located with r; serves r; at zero cost. We are
also given a sequence of n requests R = {ry,...,r,) that arrive over time with r; arriving at
time ¢ = 4. After r; arrives, we move the servers to a configuration C* = {s¢,...,s}} that
serves r;. The input to the k-server problem is simply the initial configuration C° and the
request sequence R.

A walid solution to the problem is any sequence of configurations o = (C°,C ... C", C"*1)
where V1 < i < n,C' serves request r;. Note that, we set the final configuration C"** to be
the same as C™ unless otherwise specified. Furthermore, we define the points within the final
configuration as anchor nodes. The cost of o is denoted by w(o) and w(o) = Y"1, d(C*,C*1).
The optimal solution, denoted by Oco g is a valid solution with the smallest possible cost
when the input is the initial configuration C° and the request sequence is R. We denote
0207 R as 0 when the request sequence R and the initial configuration CP are obvious from
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the context. Let R; be the sequence of first i requests, i.e., R; = (r1,...,7;). We use o} to
denote 0207 R Suppose, in addition to the initial configuration C° and the request sequence
R;, the problem also specifies a final configuration C, then ¢} (C) denotes the minimum-cost
solution that places the k servers in the initial configuration C° after which it serves the i
requests, and ends with C as the final configuration.

In the k-server problem, when a request r; arrives, one has to immediately and irrevocably
commit to a configuration C* that serves request r;. For any algorithm A, let 04 = 04 co g
be the sequence of configurations that A chooses for an input request sequence R. Then, for
a constant o > 0, we say that A has a competitive ratio of « if there exist another constant
B > 0 such that, over all possible request sequences R, w(c.4,co g) < aw(aéovR) + 5.

Next, we describe the work function algorithm for the k-server problem.

Work Function Algorithm: Given a request r;, the work function algorithm chooses a
configuration C that serves request r; as follows:

Ch = argcmin(w(af(C)) +d(Cc,0)). (1)

Note that the minimum is over all possible configurations, i.e., every multi-set of size k.
However, work function algorithm can be shown to be a lazy algorithm; see [8, 15], i.e., the
configuration C® that minimizes (1) is obtained by choosing one server s* in C*~! to serve
request 7; where s* is given by

s* = argmin (w(ef(C)) +d(s,1y)) . (2)
S€ECT—1.C=C;—1\{s}U{r;}

Prior Work: The k-server problem is central to the theory of online algorithms. For
a survey of the problem, see [7]. The problem was first posted by Manasse et al. [11] who
established a lower bound that as long as a metric space has k + 1 points, no deterministic
algorithm can achieve a competitive ratio better than k. They also showed the competitive
ratio of 2 for the 2-server problem. With this as evidence, they conjectured that in fact
there is a k-competitive algorithm for this problem for any metric space. This conjecture is
the celebrated k-server conjecture. Since then, the k-server conjecture has also been shown
to be true for the line metric (1-dimensional Euclidean space) [2] and the tree metric [3].
It was shown that the Work Function Algorithm achieves a competitive ratio of 2k — 1 on
any metric space [8]. There has not been any significant progress on this conjecture since
then. On the other hand, there has been substantial work on the randomized version of the
k-server conjecture; see for instance Bubeck et al. [1] and Lee [10].

The analysis of the WFA in [8] was based on an exponential time dynamic programming
implementation which processes the ith request r; by solving equation (2).

The problem of finding the offline optimal solution for the k-server problem can be
carefully modelled as a minimum-cost flow problem [2] where each edge has a unit capacity.
Every unit of flow corresponds to a path taken by a server. In this flow network, every
request is represented by two nodes connected by an edge of weight —oco. This forces any
minimum-cost flow to visit every request. The optimal solution to this flow network of
2n + k + 2 nodes can be found in O(n?k) time.

For the online case, processing the ith request r; requires solving equation (2). Similar to
the offline case, evaluating (2) explicitly can be modelled as computing & distinct minimum-
cost flow values, each of which can take ©((i + k)?k) time [2]. This observation leads to
an O((i + k)%k?) time algorithm for the WFA [16]. Using clever observations, evaluation
of (2) can be reduced to computation of a single minimum-cost flow which takes O(k(i + k)?)
time [15].
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Rudec and Manger [17] presented an alternative approach for computing an offline solution
to the k-server problem. Instead of creating a flow network with edges of —oo cost, they
define a graph in the original metric space and define the notion of regular flow to be any
flow in which each request is served by at least one server. One can move from any regular
flow to another one using the so-called up-down cycles. Upon adding a new request, they
show that finding the minimum-cost regular flow can be done by finding the most negative
up-down cycle which they accomplish by conducting an exhaustive search. They argue that
there is empirical benefit to this approach despite the worst-case execution time of this
algorithm being slower than that of [15]. They also extend this approach to the work function
algorithm.

Our Results and Approach: In this paper, we present a new implementation of the
classical work function algorithm. Similar to Rudec and Manger [17], after processing each
request, we maintain a valid solution that serves all the requests seen so far. Moreover, our
algorithm processes the ith request by executing a single Dijkstra’s shortest path search
on a weighted graph in O((i + k)?) time which is faster than previous methods that take
Q(k(i + k)?) time [15, 17].

For every server s € C*~! and C = C*~!\ {s} U {r;}, our algorithm computes (2)
explicitly and then computes the minimum across all k£ choices of s. We show that the
symmetric difference between o = o7 ;(C*™1) and o’ = ¢} (C) is a trail! T whose edges
alternate between those in o and ¢’. We refer to this as an augmenting trail and define its
net-cost to be w(o’) — w(o). In order to find w(o’), we simply have to identify the minimum
net-cost augmenting trail that starts at r; and ends at s. Our augmenting trails can be
seen as a variant of the up-down cycles maintained by Rudec and Manger [17]. However,
instead of conducting an exhaustive search, we describe an efficient algorithm (similar to the
Kuhn-Munkres algorithm [9]) to find this minimum net-cost augmenting trail.

Using a graph search algorithm to find a minimum net-cost augmenting trail in the
residual graph can be difficult since these algorithms find simple paths and not trails. In
order to assist in the search of an augmenting trail, we define a weighted graph which we refer
to as the alternating graph. Any augmenting trail in the residual graph maps to a directed
path in the alternating graph and every directed path in the alternating graph corresponds
to an alternating trail in the residual graph (See Lemma 2 and Figure 1).

Critically, we also store a set of weights on the vertices of the alternating graph. These

weights satisfy a set of feasibility constraints, one for each edge in the alternating graph.

Vertex weights have been used to speed-up computation for a shortest path in a graph with
negative edge weights, for instance, in Johnson’s algorithm [4]. These weights allow us to
reduce the problem of finding minimum net-cost augmenting trail from r; to every server
s € C'! to a single execution of Dijkstra’s search procedure. Consequently, one can find the
optimal choice in (2) in O((i + k)?) time. After the optimal choice is identified, we augment
the solution to serve request r;. This may create many new edges, delete existing edges and
also change the cost of some edges in the alternating graph. Somewhat surprisingly, despite
the many updates to the alternating graph, we show that the vertex weights maintained by
our algorithm continue to satisfy the feasibility constraints for all edges.

Significance of our Result: Minimum net-cost paths have been central to the design
of algorithms for the closely related online minimum metric bipartite matching (OMBM)
problem [6, 5, 13]. Unlike in the k-server problem where a server can serve any number
of requests, in the OMBM problem, a server can serve no more than one request. Recent

1 Recollect that a trail is a (possibly non-simple) path that does not repeat edges
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analysis of algorithms for the OMBM rely on the behavior of the vertex weights (also called
dual weights) maintained while computing the minimum net-cost paths [12, 14]. Similarly,
we hope that our formulation of the WFA as computing a minimum net-cost augmenting
trail as well as the use of vertex weights can shed light into the dynamics of the WFA leading
to an improved analysis.

2 Preliminaries

Recollect that a valid solution is provided by a sequence of configurations o = (C°,C*,...,C",

C™*1). However, lazy valid solutions can also be represented as a set of k paths {I'y,..., T}
taken by each of the k servers. More precisely, for any 1 <¢ < n and 1 < j < k, these paths
satisfy the following properties:

(P1) For each server s;, its path I'; starts at the location of s; in the initial configuration.

After the first vertex, I'; consists of a sequence of requests served by s; in increasing
order of their arrival time. Finally, the last vertex of I'; is the location of s; in the final
configuration.

(P2) Every request in R; participates in exactly one of the k paths.

Furthermore, it can be shown that any set of paths {I'y,...,'x} that satisfies (P1) and (P2)
will be a valid solution .

The work function algorithm is a lazy algorithm. Therefore, we can represent the solution
it produces as k paths satisfying (P1) and (P2). Next, we introduce the notations that are
needed to describe an efficient implementation of the work function algorithm.

Notations: Throughout the rest of the paper, we consider directed graphs. We assume
that any edge (u,v) is directed from u to v unless otherwise stated. Let o; be a valid solution
to the first ¢ requests of the k-server problem. Let {I'1,T's,...,Tx} be the set of k paths
satisfying (P1) and (P2). For 1 < j < k, and for any vertex v on a path I'; where v is not an
anchor node, let f(v) denote the location of the next vertex on the path. Similarly, for any
vertex v on a path I'; where v is not a location in the initial configuration, let p(v) denote
the vertex that precedes v in the path I';. In our algorithm, for any given valid solution o3,
we create a directed graph G; called the residual graph as follows. The vertex set V; of G;
contains all vertices participating in any of the k paths, i.e., V; = Ule (Uverl v). There
are two types of edges in the edge set E; of G;

Forward edges: For each of the k paths and any vertex v € V where v is not an anchor

node, we add a directed edge from v to f(v) denoting that the server at v moves to f(v).

Backward edges: For every request r;, we add a backward edge to rj provided j < j and

j # f(j’). This edge is directed from r; to r;;. We also add a backward edge directed

from r; to the k vertices of the initial configuration.

We refer to the residual graph with respect to o; as G;. The k paths {T'y,...,T;} are
represented as k directed paths consisting of all the forward edges in G;. The backward
edges, on the other hand, are not in the solution.

The set of all forward edges of a residual graph G; corresponds to a valid solution if and
only if

(Q1) The forward edges are directed from an earlier request to a later request, and,
(Q2) Every request r has exactly one incoming forward edge and one outgoing forward edge,

every vertex from the initial configuration has one outgoing forward edge and every
anchor node has one incoming forward edge.
One can prove this by showing their equivalence to (P1) and (P2) . Next, we define alternating
and augmenting trails that play a critical role in processing a request.
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Alternating Trails: Recollect that, in graph theory, a trail T is a path that is not
necessarily a simple path but it does not repeat edges. We define an alternating trail T in
G; as a directed trail that alternates between forward and backward edges and ends at an
anchor node.

When a new request ;41 arrives, we include the request ;41 and extend the residual
graph to create an extended graph GY 1 from G; as follows. The new vertex set Vi is
V; U{rit+1}. The edges incident on 7;;1 are as follows: for each vertex v € V;, if v is not an
anchor node, we add a backward edge directed from r;11 to v. Figure 1(a) shows an example
of an extended graph where ;1 = rg with 1,9, i3, 74 being the nodes in initial configuration
and ay,az,as,as are the anchor nodes. Any alternating trail 7" in the extended graph G9 1
that starts at ;1 is an augmenting trail. Every edge going out of r; 1 in the extended
graph GY 1 is a backward edge. Therefore, an augmenting trail T' starts with a backward
edge and ends at an anchor node. For example, in Figure 1(a), (re, 41,72, i2,73, 72, 74,71, a3)
is an augmenting trail.

Alternating Graph: Finding augmenting trails can be tricky. Typical graph search
algorithms only find paths and not trails. In order to assist us in finding an augmenting
trail efficiently, we define a different directed graph called the alternating graph for G9 1
and denote it by G2, ;(V,1,&?, ). Every directed simple path in this alternating graph G?, ,
maps to a unique alternating trail in G? 1 and every augmenting trail 7" in QY +1 maps to a
unique simple path in the alternating graph Q?_H which we refer to as the augmenting path
(Lemma 2).

Thus, finding augmenting trails in G 1 reduces to finding augmenting paths in QZQH

which can be done via graph search algorithms. We describe the alternating graph next.
The vertex set VY, | of the alternating graph is the same as that of G?, , i.e., V)| = Viqy.

The edge set of the alternating graph, EZQH, is defined as follows. For every vertex v, if v
has a backward edge to a node v, then we add a directed edge from v to f(v') 1

Figure 1(a) is an extended graph and Figure 1(b) is its alternating graph. For any directed
edge (v, f(v")) in G?,4, denoted by PROI(v, f(v")) is the backward edge (v,v') concatenated
with the forward edge (v, f(v')), i.e., PROI(v, f(v")) = ((v,v"), (v/, f(v'))). For example, the
projection of an edge (r3,r4) (Figure 1(b)) in the alternating graph consists of the edges
((rg,r2), (r2,74)) (Figure 1(a)) of the residual graph. For any path P in the alternating

graph, its projection is simply the concatenation of the projection of the individual edges.

The highlighted augmenting path (rg, 2, 73,74, as) (Figure 1(b)) when projected gives the
highlighted augmenting trail (rg, i1, 72, 42,73, 72,74,71,a3) (Figure 1(a)). The construction
of alternating graph and the definition of projection will also extend to the residual graph
Gi+1 in a straight-forward way.
Git1(Vig1, Eit1)-

The alternating graph for G;;; will be referred to as

r¢(new request)

-, rg(new request)
——e

— Forward Edge
T ; — Backward Edge

. L . Ly

i ag . oo IR o ve

4

Figure 1 Example of an (a) Extended graph G and (b) its alternating graph G§

< o0
in Sv+1.
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» Lemma 1. For any two edges (u,v) and (u',v") in G2, their projections are edge-disjoint
if and only if the head of both of the edges are distinct, i.e., v # v'.

Proof. The projection of (u,v) is ((u, p(v)), (p(v),v)) and the projection of (u’, v') is {(v’, p(v")),
(p(v"),v")). Note that for every vertex s, there is a unique previous vertex p(s). Therefore, if
these projections are edge-disjoint and (p(v),v) and (p(v'),v’) are distinct edges, then v and
v’ must be distinet points, i.e., v £ v'. If v # ', then p(v) # p(v’). Therefore, the forward
edges (p(v),v) and (p(v'),v") are two vertex-disjoint edges implying that the projections of
(u,v) and (u',v") are edge-disjoint. <

» Lemma 2. For every directed simple path P in the alternating graph G that ends at an
anchor node, its projection T = PROJ(P) is an alternating trail. Furthermore, for every
alternating trail T in GY where the first edge of T is a backward edge, there is a directed
simple path P in G? such that PROJ(P) =T.

Proof. The in-degree of any vertex on a simple directed path is at most one. Therefore, for
any two edges (u,v) and (u/,v’) on a simple directed path P, v # v’. From Lemma 1, the
projections of (u,v) and (u’,v’) are edge-disjoint. Therefore, the projection T of P which is
simply the concatenation of projections of all the edges of P will be a path that does not
repeat any edges, i.e., T' is a trail. By construction, T starts with a backward edge, alternates
between backward and forward edges, and ends at an anchor node, i.e., T' is an alternating
trail.

For any alternating trail 7" in G?, let the backward edges be (u1,v1), (uz,v2), ..., (u;,v;)
in the order in which they appear on the trail. Similarly let the forward edges be
(vla f(vl))7 (U27 f(UZ))’ R (vj’ f(vj))’ Le, T'= <(u1,’U1), (vla f('Ul)), (UZ’U2)7 (UQa f('U?)v
..y (uj,v5), (v, f(v5))). By our assumption, the first edge of the alternating trail (ui,v1)
must be a backward edge, and, f(v;) must be an anchor node and for 1 <t < j, f(v¢) = we41.
For each 1 <t < j, the pair of edges (u¢,v¢)(ve, f(vt)) is represented by a unique directed
edge (ug, f(v)) in GY. We can therefore lift T to a path P in G2 by simply replacing
successive pairs (ug, v¢)(ve, f(v4)) with (u, f(ve)). The resulting sequence of edges is P =
((u1, f(v1)), (w2, f(v2)), ..., (uj, f(v;))). Since for 1 <t < j, f(ve) = w1, P is precisely
the directed path (u1,us, ..., u;, f(v;)). Furthermore, since T is a trail and does not repeat
any edges, for any two edges (u,v) and (v/,v’) in P its projections will be edge-disjoint.
Therefore, from Lemma 1, v # v’ and so, P is a simple path. |

Augmentation: Consider any augmenting trail 7' in the extended graph G? 1 that
starts at r; 1 and ends at an anchor node a. We augment a valid solution o; (represented by
the extended graph G? 1) along an augmenting trail 7’ to produce a solution ¢;;; and the
residual graph G;;1 as follows:

To obtain the residual graph G;y; from the extended graph G? ' 1, We can simply reverse
the direction of all the edges on the augmenting trail 7" and relabel the forward edges as
backward and all backward edges as forward. Finally, we remove the incoming forward edge
to the anchor node a and add a new forward edge from 7;11 to the anchor node a and update
the location of a to that of r;11.

Equivalently, one can consider modifying the k paths {I';,T'a, ..., %} of o; by removing all
forward edges of T' and adding all backward edges of T to obtain the k paths {I'},T,..., T}
of g;41. It can be shown that the solution ;41 is a valid solution that also serves request
ri+1 - One can also generalize the augment operation for alternating trails and cycles. We
refer to this generalized operation as the flip operation and use it in Section 4.2. .
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We define the net-cost of an augmenting trail 7" to be

(T = Z d(u,v) — Z d(u,v).

(u,v) is backward (u,v) is forward

Note that the net-cost of an augmenting trail T with respect to o; is the change in the cost due
to augmenting o; along T'. Therefore, one can express net-cost as ®(T") = w(o;41) — w(o;).

For any edge (u,v) in the alternating graph, we set its cost c(u, v) = d(u, p(v)) —d(p(v),v)
and for any simple path P, let ¢(P) = >_, ,)cp ¢(u,v) denote its net-cost. Note that the
cost of any edge in the alternating graph can be negative. For any simple augmenting path
P in the alternating graph Q?_H, its net-cost ¢(P) is simply the net-cost of its projection
& (ProJ(P)).

» Lemma 3. The net-cost of an augmenting path P in the alternating graph is equal to the
net-cost of its projection.

Proof. Given an augmenting path P in the alternating graph let the augmenting trail P’
be its projection. Note that the set B = {(a,p(b)) | (a,b) € P} is the set of all backward
edges of P’. Similarly, the set F = {(p(b),d) | (a,b) € P} is the set of all forward edges
of P'. Therefore, the net-cost of P is >, cpc(a,b) =32, yep(d(a, p(b)) — d(p(b),b)) =
e A1, 0) = X e dlu,v) = () «

Let y(-) be a weight associated with every vertex of the alternating graph. We say that any
valid solution o; and the weight function y(-) is feasible if for any edge (a,b) directed from a
to b

y(a) = y(b) < c(a,b). (3)

We say that any edge satisfying this inequality is feasible. We define slack of any edge (a,b)
directed from a to b to be ¢(a, b) + y(b) — y(a) and denote it by s(a,b). Given these notations,
we are ready to describe our algorithm.

3 The Algorithm

After processing i requests, our algorithm will maintain a feasible valid solution o = o;.

We refer to this as the offline solution. Initially, the weight y(v) for every vertex v € C¥ is
set to 0 and the offline solution o is empty. For ¢ > 0, using the alternating graph Q?H,

our algorithm will identify an appropriate augmenting trail T in the extended graph G? 1

Recollect that T ends at an anchor node a. The algorithm then moves the server located at
a and that served request p(a) to serve request ;1. The offline solution o is updated by
augmenting o; along T leading to a valid solution o = 0;41. The algorithm consists of four
steps?:
(1) Augmenting path search: Let G’ be identical to this alternating graph Q?_H except the
cost of any edge (a,b) is replaced by its slack s(a,b). Note that G’ is a graph with only
non negative edge-costs. The algorithm executes Dijkstra’s algorithm on G’ with ;14
as the source. Dijkstra’s algorithm returns the shortest path from r;;1 to every other
vertex in VY, ;. Let, for any vertex v € V|, £, be its shortest path cost as returned by
Dijkstra’s algorithm from the source ;4.

2 An implementation of this algorithm is available here: https://github.com/RachitaS/
ScalableWorkFunction_Public
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(2) Determine net-cost: Next, we compute the minimum net-cost augmenting path from r; 1
to each of the k anchor nodes {ai,...,a;}. For any anchor node a; € {ai,...,a;}, we
set the minimum net-cost to be ®; = £,; — y(a;) and the path P; corresponding to this
net-cost is the shortest path from ;4 to a; in G’ as returned by Dijkstra’s algorithm
(Step 1).

(3) Choose server: Let a,, = argming cqa,.....a.}(d(aj,7i41) + ®;) and let s be the server
located at a,, with p(a,,) as its last served request. We assign s to serve request r; .

(4) Update offline solution: We update the offline solution as follows: (a) For any vertex
v € Vi, if £y, < 4, , we set its weight y(v) + y(v) + £, — £,. (b) After updating
the weights, we augment o; along P, to obtain o = 0,41 and update the edges of the
alternating graph to reflect the new solution o. We also set y(a,,) < 0.

Our algorithm maintains the following two invariants at all times:

(I1): The offline solution ¢ along with the weights y(-) is a valid and feasible solution, and,
(I2): Let C? be the final configuration of o;. Then, o; = o} (C"). Furthermore, for every anchor
node a; € {a1,...,ax}, let C;‘H =C"\{a;} U{riy1}. Then &; = w(afﬂ(C;H)) —w(a}(CY)).
The proofs of these invariants are given in Section 4. Note that, after each request is processed
the set of edges in the alternating graph can change substantially. Despite this, our weight
updates guarantee that every newly added edge in the alternating graph continues to be
feasible (Section 4.1).

Efficiency Note that the |V; 41| =i+ 1+ 2k and |E;41| = O((i + k)?). The extended
graph and alternating graphs also have identical bounds. Step 1 of the algorithm requires
computation of G’ and an execution of Dijkstra’s algorithm on G’ which takes O((i + k)?))
time. Step 2 of the algorithm requires constant time computation for each of the anchor
nodes and therefore takes O(k) time. The paths P; computed in Step 2 is can be compactly
represented using the shortest path tree that is returned by Dijkstra’s algorithm. Therefore,
computing P; does not require any additional time. Choosing the server in Step 3 can be
performed by simply accessing the cost between the r; 11 and each of the k servers and
computing the one that minimizes ®; + d(a;,r;+1). Step 3, therefore, takes only O(k) time.
Step 4(a) requires us to update the weight at each vertex which can be done in O(i + k)
time. Step 4(b) requires augmenting and updating the residual and alternating graphs each
of which can be performed in O((i + k)?). Therefore, the time taken to process each request
is dominated by O(i? + k?) = O(n?).

Next, assuming the invariants hold, we will show that the algorithm picks the same server
as the Work Function Algorithm.

Correctness: The following lemma establishes a link between the net-cost of an aug-
menting path and the sum of the slacks along its edges.

» Lemma 4. Suppose o; and the weights y(-) form a feasible solution. For any augmenting
path P in the alternating graph that starts at r;11 and ends at an anchor node a, its net-cost
18

O(P) = y(rip1) —yla) + D s(u,0). (4)

(u,v)EP

Proof. Every vertex v € P with the exception of the first vertex r;11 and the last vertex a
will have an incoming edge (u/,v’) and an outgoing edge (v',w’) in P. The weight of v/, y(v")
is added with respect to (v',w’) and subtracted with respect to the edge (u’,v") and therefore,
the net-contribution of v’ to Equation (4) is zero. The first vertex r; 41 participates in the
first edge of P and contributes +y(7;4+1) to Equation (4). The last vertex a participates only
in the last edge and contributes —y(a) to Equation (4). <
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From Invariant (I1), Equation 4 and since y(r;41) = 0, the minimum net-cost path P; from
r;+1 to some anchor node a; in the alternating graph ng+1 is also the augmenting path that
minimizes the sum of slacks along its edges. From invariant (I1) all slacks are non-negative
and so, P; will be the augmenting path returned by the execution of Dijkstra’s algorithm in
Step 1 of the algorithm. Furthermore, /,, = Z(u,v)GPj s(u,v). Therefore, from Equation 4,
we conclude that ®; = ®(P;) = £y, — y(a;). Therefore, Step 2 of the algorithm will correctly
compute the minimum net-cost augmenting path to every anchor node a; € {a1,...,ar}.
Step 3 of the algorithm selects the server located at the anchor node a,,, = argmin
(d(aj,rmi41)+ ;). Let X; = C;H =C"\ {a;}U{rit+1}. By Invariant (12), (d(a;,ri+1) +®;) =
dlag,risn) + w(of, 1 (X)) —w(o7(C) and, argming cquy o0y (e, ris1) + ;) is

= argmin (d(a;, 7i+1) +w(o71 (X;)) — w(o; (C")))

je{l,...k}
= argmin (d(aj,ri+1) + w(oj 1 (X;)).
je{1,...,k}

The last equality follows from the fact that w(o}(C?)) is the same for every choice of j.

Thus, we choose the same server as required by the work function algorithm.

4 Proof of Invariants

4.1 Proof of Invariant (I1)

Recall the definition of feasibility. Any valid solution o; with the weight function y(-)
associated with each vertex of its alternating graph is feasible if for every edge (a,b) directed
from a to b in its alternation graph satisfies the following equation.

y(a) —y(b) < c(a,b). (5)

Furthermore, any edge satisfying the above inequality is feasible.

We prove a slightly stronger version of Invariant (I1)

(I1): The offline solution o along with the weights y(-) maintained by the algorithm is a
valid and feasible solution. Furthermore, for any forward edge (u,v) in the residual graph of
U?

y(v) = d(u,v). (6)

We can prove this invariant by induction. At time ¢ = 0, we have the servers in the initial
configuration. The vertex set of the initial residual graph G only contains the vertices for
the initial configuration and the anchor nodes. The edge set of the initial residual graph
Gy contains only forward edges directed from each server in the initial configuration to its
anchor node. Since there are no backward edges in G, the alternating graph Gy does not
have edges. Therefore, oy and the vertex weights y(-) are trivially feasible.

Let the solution o; after serving i requests be a valid and feasible solution and let y(-) at
the end of processing request r; satisfy (6). Given this, we will now prove that the solution
0;+1 is valid and feasible and the updated vertex weight satisfies (6). Note that each new
request arrives with a default weight 0. Given a valid feasible solution ¢; along with the
vertex weight function y(-), the algorithm first constructs the extended graph G? 1. Lemma 6
shows that the corresponding alternating graph Q?H with weight function y(-) continues to
be feasible. Steps 1, 2 and 3 do not modify ¢; or the vertex weights. Therefore, o; continues
to remain valid and feasible till the end of Step 3.

aj€{ay,...,ar}
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In Step 4(a) of the algorithm, the weights on the vertices of Q?H are updated. Let
y(-) be the weights prior to executing step 4(a) and let y'(-) be the weights after executing
step 4(a). Lemma 8 proves that G, ; along with the updated vertex weights y'(-) remain
feasible. In Step 4(b), the algorithm augments the solution o; along the augmenting trail T
(as determined in Step 3) leading to ;1. Lemma 10 shows that the solution ¢;; remains
valid and feasible. Finally, in Lemma 11, we argue that the vertex weights at the end of Step
4(b) satisfies (6).

» Lemma 5. Suppose P is the augmenting path from r;;1 to the anchor node a,, chosen
in step 3 of the algorithm, then the slack s(u,v) on every edge (u,v) of P after the vertex
weight update in step 4(a) is zero.

Proof. Let y(-) be the vertex weight prior to Step 4(a) and y'(-) be the vertex weight after
Step 4(a). By our choice in Step 3, P is the shortest path computed by Dijkstra’s algorithm
from r;41 to a,, in G’'. Since £, is the cost of P in G’, every vertex v € P has a shortest
path cost at most ¢, , i.e., £, </{,, . Furthermore, by the optimal sub-structure property
of shortest paths, for any edge (u,v) € P, £, — £, = s(u,v) = c(u,v) + y(v) — y(u) or
by — by = c(u,v) + y(v) — y(u).

C(U,U) + (y(l}) - Ev) - (y(u) - gu) = 0,
C(ua v) + (y(v) — by + gam) - (y(u) — Ly + Ea?n) = 0,
c(u,v) +y'(v) =y (u) =

The second to last equality is obtained by simply adding and subtracting ¢, to the LHS.
The last equality follows from the fact that ¢, < ¢, and ¢, </, and the update of the
vertex weights defined in Step 4(a). <

» Lemma 6. Given a valid feasible solution o;, all the edges of the alternating graph Q?H
are feasible.

Proof. From the inductive hypothesis, o; is a feasible solution i.e. the edges of G; satisfy (5),
and, the weights y(-) satisfies (6). The extended graph GY,, is created by the addition of
ri+1 to the vertex set of G; in the vertex set. Furthermore, for every ;7 < ¢ a backward
edge is added from ;11 to r; and an edge (rit1, f(r;)) is added to G, ;. We show that for
every such edge, (ri41, f(r;)) € G2,4, the feasibility condition (5) holds. The cost of the edge

(rig1, f(rj)) is

c(riv, f(rj)) = d(rit1,75)) = d(rj, f(rj)) (7)
> —d(r;, f(r5))- ®)

Note that the vertex weight of 741, y(ri+1) is set to 0. By the inductive hypothesis,
—y(f(r;)) < —=d(rj, f(r;)). Adding y(r;+1) to the LHS and 0 to the RHS, we get y(r;+1) —
y(f(rj)) < =d(rj, f(r;)) or y(riva) — y(f(r;)) < e(riga, f(r;)). The last inequality follows
from 8. This implies that the edge (r;y1,v) satisfies (5). <

Feasibility after Step 4(b): Step 4(b) in the algorithm augments the solution along an
augmenting trail 7. In doing so, the alternating graph Q?_H is updated to G;4+1. The edges
i1 of ;11 may include several new edges that were not in GY, ;. Furthermore, there may
be edges whose costs ¢(-, -) change due to augmentation. We classify all such edges in the
alternating graph G, as affected edges. The following two lemmas establishes important
properties of the affected edges.
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» Lemma 7. Let P be the augmenting path from ;11 to an anchor node a,, in the alternating
graph QZQH that is computed in Step 3 of our algorithm. Given any affected edge (u,v) in
Git1, let {(u,x), (x,v)) be its projection. Then, v # an, and (v,x) is a backward edge on the
augmenting trail PROJ(P).

Proof. Let P be the augmenting path from r;1; to an anchor node a,, in the alternating
graph Q?H that is computed in Step 3 of our algorithm. And let 7" be the augmenting trail
in GY,, such that T = PrROJ(P).

First we will prove that given any affected edge (u,v) in G;41, v # a.,. After augmentation
along T, we add the forward edge (711, @, ). Since all backward edges are directed from a
later request to an earlier request and since 7,11 is the latest request in the residual graph
Gi+1, there are no in-coming backward edges to r;41. Therefore, by its description, there
will not be any incoming edges to a,, in the alternating graph G; 1 and so v # a,.

Since (u,v) is an affected edge, at least one of the edges in its projection ((u, z), (z,v))
is newly introduced by the augment operation. We claim that the forward edge (z,v) was
added by the augment operation in Step 4(b) of the algorithm. Suppose, for the sake
of contradiction, (z,v) was not added in Step 4(b), i.e., (z,v) is a forward edge in G?,;.
Therefore, (u, ) must be the backward edge that was newly added by the augment operation.
We can conclude that the augmenting trail 7' contains the forward edge (x, u), implying (x, u)
is a forward edge in GY, ;. Note that (x,u) and (z,v) are both forward edges in GY,; which
contradicts the fact that o; is a valid solution. Therefore, we conclude that the forward edge
(z,v) was introduced by the augment operation in Step 4(b), i.e., (v,z) is a backward edge
in the augmenting trail 7. |

» Lemma 8. The edges of the alternating graph Q?Jd remains feasible after the vertex weight
update in step 4(a).

Proof. The alternating graph G?,, before the execution of Step 4(a) is feasible. Let y(-)
(resp. y'(-)) denote the vertex weights before (resp. after) the weight update of step 4(a).
For each edge (u,v) € GP, 1, let s(u,v) (vesp. s'(u,v)) represent the slack on (u,v) before
(resp. after) weight update in step 4(a). Let (u,v) be any directed edge in G?, ;. Note that
every edge in G?,; along with the weights y(-) satisfies (3) and so the slack s(u,v) > 0. Let
a., be the anchor node chosen by algorithm in Step 3 and for any vertex w € G "1, recollect
that £,, is the shortest path cost returned by Dijkstra’s algorithm in Step 1 of the algorithm.
For the edge (u,v), there are four possibilities after step 4(a):

Case (i) ¢, > {,,, and ¢, > ¢, . In this case, Step 4(a) will not update the vertex
weights for u and v. So, y'(u) = y(u), y'(v) = y(v), and s'(u,v) = s(u,v). Therefore, (u,v)
remains feasible with respect to y/'(-).

Case (ii) 4, < {,,, and ¢, > £, . In this case, Step 4(a) will update the vertex weights
to y'(v) = y(v) + (ba,, — €v) > y(v) and y'(u) = y(u). Furthermore, from feasibility of (u,v)
with respect to y(-), we have s(u,v) > 0. Therefore, s'(u,v) = c(u,v) —y'(u) + y'(v) >
c(u,v) —y(u) — y(v) > 0 implying that (u,v) remains feasible with respect to the updated
vertex weight y'(+).

Case (iii) 4, < {,,, and £, > ¢,
y'(u) = y(u) + (a,, — £u) and y'(v) = y(v). From the property of shortest path distances,
the shortest path distance from ;41 to v is bounded by the shortest path distance from r;41
to u and the slack of the edge from (u,v), i.e., £, — £, < s(u,v). Using the definition of slack

. In this case, Step 4(a) updates the vertex weight to
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we get,

[(gam _gu) +y(u)_
((ba,,, = £o) +y(v))] < c(u,v),
y'(u) = ((la,, — L) +9'(v) < c(u,v)

The last inequality follows from the fact that y'(u) = (4., — £y) + y(u). Furthermore, since
by, <Ly, we get y'(u) —y'(v) < c(u,v), i.e., the edge (u,v) remains feasible.

Case (iv) ¢, < {,,, and ¢, < £, . In this case, Step 4(a) sets y'(u) = y(u) + (lq,, — lu)
and ¢’ (v) = y(v) + (€a,, — £»). Again, the shortest path from 7,11 to v is of cost bounded by
the shortest path from 7; 41 to u and the slack on the edge (u,v). Therefore, ¢, < £, + s(u,v)
ie. £, — £, < s(u,v). Using the definition of slack we get

by =y < c(u,v) —y(u) +y(v),
(lap, = lu) = (ba,, — o) < c(u,v) —y(u) +y(v),
[(la,, = lu) + y(u)—
((la,, = L) +y(v))] < c(u,v),
y'(U) —y'(v) < c(u,v)
implying (u,v) is feasible with respect to y/(-). <

» Lemma 9. Let P be the augmenting path computed in Step 3 that goes from request ;41
to an anchor node a., in the alternating graph QZOH. For any vertex v on the path P where
v # apm, let n(v) denote the vertex that succeeds v on P. Given any affected edge (u,v) in
Git1, let {(u,x), (x,v)) be its projection. Then,

(i) Fither the edge (v,u) is on the augmenting path P with PROJ(v,u) = {(v, ), (x,u)), or

(ii) There is an edge (u,n(v)) in GP, | with its projection PROJ(u,n(v)) = ((u,z), (z,n(v))).

Proof. From Lemma 7, we know that (v,z) is a backward edge in the augmenting trail T'.
There are two possibilities for the edge (u,z): (a) (u,x) was also added as a backward edge
by the augment process, or (b) (u,z) was also an edge in the extended graph G?H.

For case (a), the edge (z,u) was a forward edge prior to augmentation. Since both the
backward edge (v, x) and the forward edge (x,u) are in the augmenting trail T, we will have
an edge (v, u) in the augmenting path P, implying (i). An instance of this case is shown in
Figure 21 where directed edge (u,v) is the affected edge.

In case (b), (u,) is also a backward edge in G}, (Figure 2II(b)). Since (v,z) is a
backward edge in T, the projection of the edge (v,n(v)) will contain the backward edge
(v, x) followed by the forward edge (z,n(v)). Since (u,z) is a backward edge and (z, n(v))
is a forward edge in G?Ha we will have an edge (u,n(v)) in the alternating graph Q?H.
An example of this case is demonstrated in Figure 21T where the directed edge (u,v) in
Figure 2I1(a) is the affected edge. Figure 2II(b) shows the projection of (u,v). Figure 21I(c)
shows the scenario before augmentation where (v,u) € G?,; and Figure 2II(d) shows (v, u)’s
projection in GY, ;. <

» Lemma 10. o, is a valid and feasible solution after the Augment operation in Step 4(b).
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= Forward edge
= Backward edge

= Forward edge
= Backward edge

(@) (b) . fc) d)

(1) Demonstrating Case(a): (u,v) is an affected edge with projection ((u, z), (z,v)) such that (z,u) was a
forward edge prior to augmentation.
(a) Affected edge (u,v) € Gi+1. (b) Projection of the affected edge (u,v), PROI(u,v) = ((u, ), (z,v)). (c)
Alternating graph edge (v,u) € G2, ; before augmentation. (d) Projection of the edge (v,u), PROJ(v,u) =
((v,x), (z,u)) before augmentation.

LU LU L LU

n{v) v n{v)

= Forwand edge
®= Backward edge

== Forward edge
= Hackward edge

(a) (b) . (c) (d)

(1) Demonstrating Case(b): (u,v) is an affected edge with projection ((u,x), (z,v)) such that (u,x) was
a backward edge prior to augmentation as well.

(a) Affected edge (u,v) € Git1. (b) Projection of the affected edge (u,v) € Git1, ((u,x), (x,v)). (c)
Alternating graph edges of G, before augmentation where (v,n(v)) € P and (u,n(v)) € G (d)
Projection of the edge (u,n(v)) € G211, ((u, ), (z,n(v))) before augmentation.

Figure 2

Proof. Let P be the augmenting path from r;;; to the anchor node chosen in Step 3. To
prove that o;41 is a feasible solution after Step 4(b), we need to show that the edges of
alternating graph G, that are affected by the augment operation along the path P continue
to be feasible and satisfy (5).

Let ¢(-,-) be the cost function of edges in the alternating graph G?,,, i.e., prior to
augmentation and let ¢/(+,-) be the cost function of edges in the alternating graph G,11, i.e.,
after augmentation. From Lemma 9, one of the following cases is true.

(i) Edge (v,u) is on the augmenting path P with PrROJ(v,u) = ((v,x), (x,u)), or
(ii) There is an edge (u,n(v)) in GY,, with its projection PrROJ(u, n(v)) = ((u, z), (z,n(v))).
We will consider both these cases separately.

Case (i): For the edge (v, u), c(v,u) = d(v, z)—d(x,u). After augmentation, PROJ(u,v) =
((u, ), (z,v)) and the cost of the affected edge (u,v) € G411 is ¢/ (u,v) = d(u,z) — d(z,v) =
—c(v,u). From Lemma 5, after Step 4(a), the slack on every edge of the augmenting path P,
including (v,u) € P is 0 i.e. s(v,u) = (¢(v,u) + y(u) — y(v)) = 0. The slack on the affected
edge (u,v) € G;11 can be calculated as,

c(u,0) = y(u) +y(v)

= —(c(v,u) +y(u) —yv))
= 0.

s(u,v) =

Hence, the affected edge (u,v) € G;41 is feasible.

Case (ii): There is an edge (u,n(v)) in GY,; and ProJ(u,n(v)) = ((v,z), (z,n(v))).
From Lemma 5, after Step 4(a), every edge on P including (v,n(v)) € P has a slack of 0.
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Hence, y(v) — y(n(v)) = ¢(v,n(v)) = d(v, z) — d(z,n(v)), or
y(n(v)) = y(v) + d(z, n(v)) — d(v, ). 9)

Since (u,n(v)) is an edge in GY,,, it is a feasible edge after the step 4(a) (Lemma 8) and

we get y(u) — y(n(v)) < c(u,n(v)). Substituting c(u,n(v)) as d(u,z) — d(x,n(v)), we get
y(u) —y(n(v)) < d(u, z) — d(z,n(v)).

y(u) —y(v) — d(z,n(v)) + d(v,z) <

y(u) —y(v)

y(u) —y(v)

implying that the affected edge (u,v) is a feasible edge.

Next, we show that ;41 is a valid solution after Step 4(b). To show that ¢;11 remains a
valid solution, we need to show that the forward edges of G;; satisfies (Q1) and (Q2). B
construction, every backward edge is directed from a later request to an earlier one. During

From equation (9), we can rewrite this inequality as

d(u, z) — d(z,n(v)),
< d(u,z) — d(z,v),
< c(u,0),

augmentation, for every backward edge on the augmenting trail, we reverse its direction and
label it as a forward edge. Therefore, every newly introduced forward edge is from an earlier
request to a later one implying (Q1).

Next, we will show (Q2)

The first vertex of P is r;+1. Let a be the anchor node at the end of P. Consider any
edge (u,v) of the simple directed path P. Note that its projection is ((u,p(v)), (p(v),v))
where (u,p(v)) is a backward edge and (p(v),v) is a forward edge. Due to augmentation,
this projection is modified as follows: (v, p(v)) becomes a backward edge and (p(v),u) is now
a forward edge. We abuse notation and refer to the modifications made by augmentation
along the projection of (u,v) as augmentation along the edge (u,v).

Augmentation along (u,v) modifies the outgoing forward edge from p(v). It also removes
the incoming forward edge to v and adds an incoming forward edge to u. Therefore,
augmentation along (u,v) does not change the number of forward edges coming in and going
out of p(v), i.e., p(v) continues to satisfy (Q2). However, it increases the number of forward
edges coming into u by 1 and reduces the number of incoming forward edges incident on v
by 1.

Every vertex v along P, except for the first and the last vertex, i.e., v’ & {r;11,a}, will
be the tail for some edge (v/,v’) € P and the head for some edge (v',w’) € P. Augmentation
along (u',v") will reduce the incoming forward edge on v’ by one. On the other hand,
augmenting along (v’, w’) will increase the incoming forward edge on v’ by one. As a result
the incoming and outgoing forward edges incident on v’ remain unchanged. Therefore, for
every vertex except 7;+1 and a, we can conclude that (Q2) holds.

The first vertex r;41 is the tail of the first edge in P, augmentation will result in a new
incoming forward edge in G;1. Finally, the last vertex a € P is the head of the last edge.
Therefore, augmentation causes removal of the only incoming forward edge to a. Instead, we
add a forward edge from 7;41 to a. This guarantees that r; 1 contains exactly one incoming
forward edge and one outgoing forward edge satisfying (Q2). Furthermore, the anchor node
a will have exactly one incoming forward edge satisfying (Q2).

<

Finally, we will show that the updated vertex weights satisfy (6).

» Lemma 11. Consider any solution o; maintained by the algorithm with residual graph G;,
for any forward edge (u,v) in the residual graph,

y(v) = d(u,v). (10)
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4.2 Proof of Invariant (12)

Before we present the proof for (I2), we would like to remind the reader of the following
discussion.

From Invariant (I1), Equation (4) and since y(r;1+1) = 0, the minimum net-cost path
P; from r;11 to some anchor node a; in the alternating graph GY 11 is also the augmenting
path that minimizes the sum of slacks along its edges. From invariant (I1) all slacks are
non-negative and so, P; will be the augmenting path returned by the execution of Dijkstra’s
algorithm in Step 1 of the algorithm. Furthermore, £,, = Z(u,v)epj s(u,v). Therefore,
from Equation (4), we conclude that ®; = ®(P;) = £4; — y(a;). Therefore, Step 2 of the
algorithm will correctly compute the minimum net-cost augmenting path to every anchor
node a; € {as,...,ax}.

Invariant (I2): Let C' be the final configuration of ;. Then, o; = o} (C). Fur-
thermore, for every anchor node a; € {ai,...,ax}, let C;-H = C'\ {a;} U{rit1}. Then
B; = w(ot, (CF) — w(os (C).

Proof: Prior to processing any request, all the servers are in their initial configuration
and op with zero cost is indeed the optimal solution. Assume that, after processing 4
requests, o; = o} (C?). We will use this to show that ®; = w(a;‘H(C;H)) —w(o7(CY) and
Oip1 =071 (C7F).

Consider J{ 41 =0F +1(C;+1) to be the smallest cost solution that serves ¢ 4+ 1 requests
and ends in C;'H. If there are many minimum-cost solutions, we set Uf 1 to be the one that
has the fewest edges in the symmetric difference with o; = o7 (C*). Consider the symmetric
difference of the edges of o; and o” 1~ Since their final configurations C* and C;H differ in only
the locations of a; and 741, the symmetric difference will include exactly one augmenting
trail from 7;41 to a; and possibly a set C of alternating cycles.

First, we show that C is an empty set. For the sake of contradiction, assume C is not
empty. Let C be an alternating cycle with respect to G? 1 (extended graph for solution ;) in
the symmetric difference. The net-cost of C' cannot be zero, since otherwise applying the flip
operation on the cycle C' in G,/ will lead to another valid solution ¢” whose cost is identical
to that of Uf 1 and the final configuration is C;-H . However, the flip operation will reduce
the size of the symmetric difference and so, 0{ 1 has more edges that 0" in the symmetric
difference with o;. This contradicts our assumption that Ug 11 is the minimum-cost valid
solution that ends in configuration C;.H and has the smallest symmetric difference with o;.

Similarly, the net-cost ®(C') cannot be negative, since otherwise applying the flip operation
along the cycle C' on GY +1 will lead to another valid solution that ends in C’ and has a
smaller cost than o; . This contradicts the fact that o; = o (C*) is a minimum-cost solution.

If the net-cost ®(C') with respect to G?H is positive, i.e., ®(C) > 0, then let C’ be the
alternating cycle corresponding to C' in fofﬂ (the residual graph with respect to o} 1)
From Corollary 13 presented in Section 4.3, it follows that the net-cost ®(C") = —®(C') < 0.

Again, applying the flip operation along the cycle C’ in G_; will lead to a valid solution
i1

whose cost is smaller than ag 41 contradicting the fact that of 1 is the smallest cost solution.

From the above discussion, it follows that the symmetric difference of ¢; and ag 41 isan
augmenting trail 7’. We claim that 7" is in fact the minimum net-cost augmenting trail that
starts at 7,41 and ends at a;. For the sake of contradiction, suppose 7" is not the minimum
net-cost augmenting trail and ®(7") > ®,. Let T be some minimum net-cost augmenting
trail in G?,  that starts at 7,41 and ends at an anchor node a;. Note that ®; = ®(T'). Let
Eg 41 be the valid solution obtained by augmenting o; along 7" in the extended graph &Y 1
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The final configuration of 77 4118 c/ +1 - Then, by its definition,

O—g-i-l) - w(gi)7

w(af_H) > w(ag+1),

w(%jﬂ)*w(gi) > w(

contradicting the fact that O’lj 41 18 @ minimum cost solution to serve i + 1 requests and
end in configuration cg' +1- Thus the net-cost of the augmenting trail 7" in the symmetric
difference of o; and 0174_1 is ®@;. From the definition of net-cost, ®; = w(ofH) —w(oy) =
(ot (€)= w(o? ().

Our algorithm chooses the minimum net-cost path from ;1 to a,, and augments the
valid solution along this path. As a result, the cost of the solution ;41 increases precisely by
w(of,1(CL)) — w(o;(C?)) and the new valid solution will end in configuration C5 = C*+!
and have a cost equal to w(o},;(C*™!)) proving invariant (I2).

4.3 Symmetric Difference of Valid Solutions

Next, we introduce properties of the symmetric difference of two valid solutions. These
properties are used in the proof of invariant (12).

Let 0 and ¢’ be two valid solutions where o serves the first 7 requests and ¢’ serves the
first i + 1 requests. Let G2 be the extended graph with respect to o and G, be the residual
graph with respect to o’. We show that the edges in the symmetric difference of o and ¢’ can
be decomposed into a edge-disjoint set of alternating trails, augmenting trail and alternating
cycles.

Let C and C’ be the final configurations of o and ¢’. Let X denote the edges in the
symmetric difference of o and ¢’. For any edge in X, there is a corresponding directed
edge in G2. We assign the same direction for edge in X. Therefore, by construction, the
edges of X N o will be forward edges and the edges of X N ¢’ will be backward edges in
GY. Figures 3(a), (b) and (c) highlight the edges of o, ¢’ and (X N G2) respectively. For
each vertex v € V;, suppose v is not an anchor node (resp. if v is not a vertex in the initial
configuration), let f(v) (resp. p(v)) denote the vertex that appears after (resp. before) v in
o. Similarly, for all v € V;41, where v is not a vertex from the initial configuration (resp. not
an anchor node), let p’(v) (resp. f/(v)) denote the vertex that appears before (resp. after)

vin Gor. Let {ay,...,a;} denote the anchor nodes of G% and {a},d),...,a}} denote the
anchor nodes of G,. Let v} = p/(a) in Gor and v; = p(a;) in GY. Let Y = {v1,...,v;} and
let Y’ = {v],...,v;,}. We use these notations throughout this section.

Next, consider any edge (u,v) € X. Suppose (u,v) is a forward edge and v & {a1,...,ax}.
Since (u,v) is in the symmetric difference and since v is not an anchor node, there is a
different in-coming forward edge to v, namely (v/,v) in G, with u # «’. The backward
edge (v,u') will be in X and we denote the edge (v,u’) as next(u,v) in G2. For example, in
Figure 3(c), the backward edge (rg, rg) is next(rs, 79). For the forward edge (u,v) € X, there
is a different out-going forward edge (u,v’) in G,-. This edge appears as the backward edge
(v',u) in X provided v' & {a},ab,...,a}}. Therefore, we define the backward edge (v', u) to
be the prev(u,v) in X. For example, in Figure 3(c), (r3,r1) = prev(ry,r7).

Finally, we define next(u,v) and prev(u,v) for the case where (u,v) is a backward edge
in X. Since (u,v) is in the symmetric difference, the edge (v,u) is an out-going forward
edge from v in G,/. Since (u,v) is in the symmetric difference, there is a different out-going
forward edge from v, namely (v,v") € X with v' # u. We denote the forward edge (v,v’)
as next(u,v) in G%. For instance, in Figure 3(c), (r1,r7) = next(rs,r1). Similarly, for the
backward edge (u,v) € X, if u # r;11, there is a different in-coming forward edge to u (v’ u)
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in G,. This edge appears as a forward edge (v',u) in X. Therefore, we define the forward
edge (v',u) to be the prev(u,v) in X. For instance, in Figure 3(c), (r3,r5) = prev(rs, iq).

Thus, every edge in X have a unique next(-,-) edge except those that are directed towards
.,ar}. Edges directed towards the anchor nodes {a1,...,ar} do not
have any next(-,-) edge.

an anchor nodes {ay, ..

!/
7vk

Similarly, every edge in X has a unique prev(-, -), except the edges going out of {v}, v5, ...
Edges going out of {v], v5,..., v} do not have any previous edge.

Decomposing X into augmenting trail, alternating trails and cycles: Consider
any vertex in v € Y NY’. The forward edge (v,a) is in X. However, since v € Y’, the
prev(v, a) does not exist. Similarly, since a € {a1,...,ar}, next(v,a) does not exist. So, we
create a trivial alternating trail with one edge (v, a).

For every vertex v € Y/ \ 'Y, let (v,v') be the outgoing edge in X. We initialize T to be
(v,v") We construct an alternating trail incrementally by concatenating the last edge (u,v)
of T with next(u,v). This construction stops when we reach some edge (u',a) for which
next(u’,a) is not defined. Suppose the vertex v # r;41, then this trail starts with a forward
edge and ends at an anchor node. On the other hand, suppose v = r;;1, this trail is an
augmenting trail that starts with a backward edge and ends at an anchor node. Any edge
(u,v) of X that did not participate in the alternating and augmenting trails have a well
defined next(u,v). Therefore, we can construct an alternating cycle that contains (u,v) by
repeatedly concatenating the last added edge (v, v’) with its next(u’,v"). The construction
stops when next(u’,v") = (u,v) and we get an alternating cycle. Figure 3(c) illustrates an
example such decomposition. Vertex r1p and 75 are in Y NY”, so (rig,a1) and (rs, az) are
trivial trails. Vertex rg and 73 are in Y’ \ Y and therefore we have two alternating trails
(re,r9,7s,a2) and (rs, rs,i4,74,43,73,71,77, T4, as). The vertex 717 is 7,41, therefore we have
an augmenting trail (r11, 79,710, 77, a5). All the remaining edges form an alternating cycle
<7‘27 T6, il, T2, ’ig, rs, T2>.

"4, Ty

g *

ra®

¥,

1.
T * T

(b} (e}
Figure 3 (a) Forward edges of GY, representing o, (b) Forward edges of G/, represent-
ing o', (c) Edges in the symmetric difference of o and o’. Edges of o are shown as forward
edges in G, (red edges), and edges of o’ are shown as the backward edges in G, (dashed blue
edges). This graph has an augmenting trail (ri1,79, 710,77, as), two alternating trails (re,r9,7s, az),
(rs,rs,44,74,13,73,71,77, 74, a4) and one directed alternating cycle (ra,re,1, 72,12, 78, 72)

Note that the construction described above also extends to the residual graph G, and
we obtain the following lemma.
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» Lemma 12. The edges of symmetric difference X of two valid solutions o and o' in G
can be decomposed into (a) one augmenting trail A, (b) a set T of |Y'\' Y| — 1 non-trivial
alternating trails that start with a forward edge, (c) a set T/ of |[Y'NY| trivial alternating trails
and (d) a set C of alternating cycles. Similarly, the edges of X in G, can be decomposed into
alternating trails and cycles each of which are obtained by simply applying the flip operation
to the trails and cycles in A, T, T/ and C

» Corollary 13. Given the set X of edges in the symmetric difference, consider the decom-
position of X into {A}yUTUC in G as described in Lemma 12. Then the edges of X in
Gy can be decomposed into alternating trails such that for each alternating trail (resp. cycle)
T € {A} UTUC, there is an alternating trail T' (resp. cycle) induced by the edges of X in
Gy such that T’ is obtained by applying the flip operation on T and ®(T) = —®(T").

5 Missing Proofs

Proof of Lemma 11: The initial solution oy is a trivially valid solution and the only edges
in the residual graph are forward edges that go from a vertex in the initial configuration
to an anchor node. For any such forward edge (u,v), v is an anchor node with y(v) = 0.
The cost d(u,v) is also 0 since the anchor node v and the vertex u share the same location.
Therefore, inequality (10) holds.

Let us assume that the inequality (10) holds after request r; is processed by our algorithm.
To complete the proof, we will show that the inequality will continue to be satisfied after
request ;41 is processed. To do so, we will show that the any of the changes made by the
algorithm will not violate inequality (10).

At the start of the algorithm, we add r;; to G; to create G?H. Since all the edges
incident on 7,47 in GY 1 are backward edges, all forward edges will continue to satisfy
inequality (10). Steps 1, 2 and 3 do not alter the weights y(:) or the alternating graph.
Therefore, the inequality (10) continues to hold for every forward edge during these three
steps. In Step 4(a), we modify the vertex weights for every vertex v with ¢, < £. Consider
any such vertex and let (u,v) be the in-coming forward edge to v. Recollect that y(v) is
the weight prior to the execution of Step 4(a) and y’(v) is the weight after Step 4(a). Since
inequality (10) is true prior to execution of Step 4(a), we have y(v) > d(u,v). In Step 4(a),
the weight is updated to y'(v) « y(v) — ¢, + ¢ provided ¢, < ¢. Since £, < ¢, it follows that
y' (v) > y(v) > d(u,v) and inequality (10) continues to hold.

Next, we show that the inequality (10) continues to hold after Step 4(b). In Step 4(b), we
apply the augment operation along an augmenting trail T (computed in Step 3). Recollect
that the first vertex of T" is r;;1 and the last vertex of T" is an anchor node a. Note that
the weights of every vertex, except the anchor node a remains unchanged. However, for
any v along the alternating trail T, its incoming forward edge may change. As a result of
augmentation along T', every backward edge (vg,v1) in T' changes to a forward edge (v1,v2).
Let P be the augmenting path in the alternating graph QZQH such that trail T'= ProJ(P).
Let (v2,v1) be a backward edge in T'. Let (v, w) be the edge in P such that PrROJ(ve, w)
contains the backward edge (ve,v1), i.e., PROJ(va, w) = ((ve, v1), (v1,w)). By definition of
slack,

s(vz,w) = ¢(vg,w) —y(v2) +y(w)
= d(vg,v1) — d(v1,w) — y(v2) + y(w).

Since (vg,w) € P, at the end of Step 4(a), the slack s(vy, w) becomes 0 (Lemma 5). Therefore,
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we have (d(vs,v1) — d(vi,w)) —y'(v2) + ¥’ (w) = 0 which can be rearranged as
y'(v2) = d(v2,v1) — d(v1,w) + ¥/ (w). (11)

Since, (v1,w) is a forward edge in T, after Step 4(a), we have y'(w) > d(v1,w). Substituting
this in 11, we get

y'(v2) > d(v1,v2). (12)

After augmentation, the backward edge (vq,v1) € PROJ(v2, w) changes to a forward edge
(v1,v2) € Gi41. Hence, inequality (11) implies inequality (10) continues to hold. Therefore,
inequality (10) continues to hold after the augment operation in Step 4(b).

Finally, step 4(b) also adds a forward edge from 7,1 to a,, and modifies the vertex
weight of the anchor node a,, to 0. Since the cost of this forward edge d(ri+1,am) is 0,
inequality (10) holds for the vertex a,,. This concludes the argument that inequality (10)
holds after Step 4(b).
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