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Abstract
We provide a novel implementation of the classical Work Function Algorithm (WFA) for the

k-server problem. In our implementation, processing a request takes O(n2 + k2) time per request;
where n is the total number of requests and k is the total number of servers. All prior implementations
take Ω(kn2 + k3) time per request. Previous approaches process a request by solving a min-cost
flow problem. Instead, we show that processing a request can be reduced to an execution of the
Dijkstra’s shortest-path algorithm on a carefully computed weighted graph leading to the speed-up.
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1 Introduction

In several applications such as emergency response, grocery delivery or virtual memory
management, a new request has to be irrevocably assigned to a service provider in real-time.
The k-server problem is a simplified abstraction of this problem. In this paper, we present a
new implementation of the classical Work Function Algorithm for the k-server problem. We
begin by introducing the k-server problem.

Problem Statement: Consider a vertex set V and a weighted complete graph where
each edge (u, v) ∈ V × V has a cost d(u, v). We assume that d(·, ·) is a metric. Given any
two multi-sets A and B of points with A, B ⊆ V and |A| = |B|, we use d(A, B) to denote the
minimum-cost bipartite matching of the points in A to points in B under the distance d(·, ·).
For an integer k > 0, we are given k identical servers and their initial locations, also called
the initial configuration C0 = {s0

1, . . . s0
k} in the metric space. A configuration is simply any

multi-set C ⊂ V , with |C| = k. We use configurations to denote the locations of the k servers.
For any request ri, a configuration C serves ri if the location of ri is contained in the multi-set
C. In other words, a server s ∈ C that is co-located with ri serves ri at zero cost. We are
also given a sequence of n requests R = ⟨r1, . . . , rn⟩ that arrive over time with ri arriving at
time t = i. After ri arrives, we move the servers to a configuration Ci = {si

1, . . . , si
k} that

serves ri. The input to the k-server problem is simply the initial configuration C0 and the
request sequence R.

A valid solution to the problem is any sequence of configurations σ = ⟨C0, C1 . . . , Cn, Cn+1⟩
where ∀1 ≤ i ≤ n, Ci serves request ri. Note that, we set the final configuration Cn+1 to be
the same as Cn unless otherwise specified. Furthermore, we define the points within the final
configuration as anchor nodes. The cost of σ is denoted by w(σ) and w(σ) =

∑n
i=0 d(Ci, Ci+1).

The optimal solution, denoted by σ∗
C0,R is a valid solution with the smallest possible cost

when the input is the initial configuration C0 and the request sequence is R. We denote
σ∗

C0,R as σ∗ when the request sequence R and the initial configuration C0 are obvious from
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31:2 A Scalable Work Function Algorithm for the k-Server Problem

the context. Let Ri be the sequence of first i requests, i.e., Ri = ⟨r1, . . . , ri⟩. We use σ∗
i to

denote σ∗
C0,Ri

. Suppose, in addition to the initial configuration C0 and the request sequence
Ri, the problem also specifies a final configuration C, then σ∗

i (C) denotes the minimum-cost
solution that places the k servers in the initial configuration C0 after which it serves the i

requests, and ends with C as the final configuration.
In the k-server problem, when a request ri arrives, one has to immediately and irrevocably

commit to a configuration Ci that serves request ri. For any algorithm A, let σA = σA,C0,R

be the sequence of configurations that A chooses for an input request sequence R. Then, for
a constant α > 0, we say that A has a competitive ratio of α if there exist another constant
β > 0 such that, over all possible request sequences R, w(σA,C0,R) ≤ αw(σ∗

C0,R) + β.
Next, we describe the work function algorithm for the k-server problem.
Work Function Algorithm: Given a request ri, the work function algorithm chooses a

configuration Ci that serves request ri as follows:

Ci = argmin
C

(w(σ∗
i (C)) + d(Ci−1, C)). (1)

Note that the minimum is over all possible configurations, i.e., every multi-set of size k.
However, work function algorithm can be shown to be a lazy algorithm; see [8, 15], i.e., the
configuration Ci that minimizes (1) is obtained by choosing one server s∗ in Ci−1 to serve
request ri where s∗ is given by

s∗ = argmin
s∈Ci−1,C=Ci−1\{s}∪{ri}

(w(σ∗
i (C)) + d(s, ri)) . (2)

Prior Work: The k-server problem is central to the theory of online algorithms. For
a survey of the problem, see [7]. The problem was first posted by Manasse et al. [11] who
established a lower bound that as long as a metric space has k + 1 points, no deterministic
algorithm can achieve a competitive ratio better than k. They also showed the competitive
ratio of 2 for the 2-server problem. With this as evidence, they conjectured that in fact
there is a k-competitive algorithm for this problem for any metric space. This conjecture is
the celebrated k-server conjecture. Since then, the k-server conjecture has also been shown
to be true for the line metric (1-dimensional Euclidean space) [2] and the tree metric [3].
It was shown that the Work Function Algorithm achieves a competitive ratio of 2k − 1 on
any metric space [8]. There has not been any significant progress on this conjecture since
then. On the other hand, there has been substantial work on the randomized version of the
k-server conjecture; see for instance Bubeck et al. [1] and Lee [10].

The analysis of the WFA in [8] was based on an exponential time dynamic programming
implementation which processes the ith request ri by solving equation (2).

The problem of finding the offline optimal solution for the k-server problem can be
carefully modelled as a minimum-cost flow problem [2] where each edge has a unit capacity.
Every unit of flow corresponds to a path taken by a server. In this flow network, every
request is represented by two nodes connected by an edge of weight −∞. This forces any
minimum-cost flow to visit every request. The optimal solution to this flow network of
2n + k + 2 nodes can be found in O(n2k) time.

For the online case, processing the ith request ri requires solving equation (2). Similar to
the offline case, evaluating (2) explicitly can be modelled as computing k distinct minimum-
cost flow values, each of which can take Θ((i + k)2k) time [2]. This observation leads to
an O((i + k)2k2) time algorithm for the WFA [16]. Using clever observations, evaluation
of (2) can be reduced to computation of a single minimum-cost flow which takes O(k(i + k)2)
time [15].
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Rudec and Manger [17] presented an alternative approach for computing an offline solution
to the k-server problem. Instead of creating a flow network with edges of −∞ cost, they
define a graph in the original metric space and define the notion of regular flow to be any
flow in which each request is served by at least one server. One can move from any regular
flow to another one using the so-called up-down cycles. Upon adding a new request, they
show that finding the minimum-cost regular flow can be done by finding the most negative
up-down cycle which they accomplish by conducting an exhaustive search. They argue that
there is empirical benefit to this approach despite the worst-case execution time of this
algorithm being slower than that of [15]. They also extend this approach to the work function
algorithm.

Our Results and Approach: In this paper, we present a new implementation of the
classical work function algorithm. Similar to Rudec and Manger [17], after processing each
request, we maintain a valid solution that serves all the requests seen so far. Moreover, our
algorithm processes the ith request by executing a single Dijkstra’s shortest path search
on a weighted graph in O((i + k)2) time which is faster than previous methods that take
Ω(k(i + k)2) time [15, 17].

For every server s ∈ Ci−1, and C = Ci−1 \ {s} ∪ {ri}, our algorithm computes (2)
explicitly and then computes the minimum across all k choices of s. We show that the
symmetric difference between σ = σ∗

i−1(Ci−1) and σ′ = σ∗
i (C) is a trail1 T whose edges

alternate between those in σ and σ′. We refer to this as an augmenting trail and define its
net-cost to be w(σ′)−w(σ). In order to find w(σ′), we simply have to identify the minimum
net-cost augmenting trail that starts at ri and ends at s. Our augmenting trails can be
seen as a variant of the up-down cycles maintained by Rudec and Manger [17]. However,
instead of conducting an exhaustive search, we describe an efficient algorithm (similar to the
Kuhn-Munkres algorithm [9]) to find this minimum net-cost augmenting trail.

Using a graph search algorithm to find a minimum net-cost augmenting trail in the
residual graph can be difficult since these algorithms find simple paths and not trails. In
order to assist in the search of an augmenting trail, we define a weighted graph which we refer
to as the alternating graph. Any augmenting trail in the residual graph maps to a directed
path in the alternating graph and every directed path in the alternating graph corresponds
to an alternating trail in the residual graph (See Lemma 2 and Figure 1).

Critically, we also store a set of weights on the vertices of the alternating graph. These
weights satisfy a set of feasibility constraints, one for each edge in the alternating graph.
Vertex weights have been used to speed-up computation for a shortest path in a graph with
negative edge weights, for instance, in Johnson’s algorithm [4]. These weights allow us to
reduce the problem of finding minimum net-cost augmenting trail from ri to every server
s ∈ Ci−1 to a single execution of Dijkstra’s search procedure. Consequently, one can find the
optimal choice in (2) in O((i + k)2) time. After the optimal choice is identified, we augment
the solution to serve request ri. This may create many new edges, delete existing edges and
also change the cost of some edges in the alternating graph. Somewhat surprisingly, despite
the many updates to the alternating graph, we show that the vertex weights maintained by
our algorithm continue to satisfy the feasibility constraints for all edges.

Significance of our Result: Minimum net-cost paths have been central to the design
of algorithms for the closely related online minimum metric bipartite matching (OMBM)
problem [6, 5, 13]. Unlike in the k-server problem where a server can serve any number
of requests, in the OMBM problem, a server can serve no more than one request. Recent

1 Recollect that a trail is a (possibly non-simple) path that does not repeat edges
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analysis of algorithms for the OMBM rely on the behavior of the vertex weights (also called
dual weights) maintained while computing the minimum net-cost paths [12, 14]. Similarly,
we hope that our formulation of the WFA as computing a minimum net-cost augmenting
trail as well as the use of vertex weights can shed light into the dynamics of the WFA leading
to an improved analysis.

2 Preliminaries

Recollect that a valid solution is provided by a sequence of configurations σ = ⟨C0, C1, . . . , Cn,

Cn+1⟩. However, lazy valid solutions can also be represented as a set of k paths {Γ1, . . . , Γk}
taken by each of the k servers. More precisely, for any 1 ≤ i ≤ n and 1 ≤ j ≤ k, these paths
satisfy the following properties:

(P1) For each server sj , its path Γj starts at the location of sj in the initial configuration.
After the first vertex, Γj consists of a sequence of requests served by sj in increasing
order of their arrival time. Finally, the last vertex of Γj is the location of sj in the final
configuration.

(P2) Every request in Ri participates in exactly one of the k paths.
Furthermore, it can be shown that any set of paths {Γ1, . . . , Γk} that satisfies (P1) and (P2)
will be a valid solution .

The work function algorithm is a lazy algorithm. Therefore, we can represent the solution
it produces as k paths satisfying (P1) and (P2). Next, we introduce the notations that are
needed to describe an efficient implementation of the work function algorithm.

Notations: Throughout the rest of the paper, we consider directed graphs. We assume
that any edge (u, v) is directed from u to v unless otherwise stated. Let σi be a valid solution
to the first i requests of the k-server problem. Let {Γ1, Γ2, . . . , Γk} be the set of k paths
satisfying (P1) and (P2). For 1 ≤ j ≤ k, and for any vertex v on a path Γj where v is not an
anchor node, let f(v) denote the location of the next vertex on the path. Similarly, for any
vertex v on a path Γj where v is not a location in the initial configuration, let p(v) denote
the vertex that precedes v in the path Γj . In our algorithm, for any given valid solution σi,
we create a directed graph Gi called the residual graph as follows. The vertex set Vi of Gi

contains all vertices participating in any of the k paths, i.e., Vi =
⋃k

l=1

( ⋃
v∈Γl

v
)

. There
are two types of edges in the edge set Ei of Gi

Forward edges: For each of the k paths and any vertex v ∈ V where v is not an anchor
node, we add a directed edge from v to f(v) denoting that the server at v moves to f(v).
Backward edges: For every request rj , we add a backward edge to rj′ provided j′ < j and
j ̸= f(j′). This edge is directed from rj to rj′ . We also add a backward edge directed
from rj to the k vertices of the initial configuration.

We refer to the residual graph with respect to σi as Gi. The k paths {Γ1, . . . , Γk} are
represented as k directed paths consisting of all the forward edges in Gi. The backward
edges, on the other hand, are not in the solution.

The set of all forward edges of a residual graph Gi corresponds to a valid solution if and
only if

(Q1) The forward edges are directed from an earlier request to a later request, and,
(Q2) Every request r has exactly one incoming forward edge and one outgoing forward edge,

every vertex from the initial configuration has one outgoing forward edge and every
anchor node has one incoming forward edge.

One can prove this by showing their equivalence to (P1) and (P2) . Next, we define alternating
and augmenting trails that play a critical role in processing a request.
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Alternating Trails: Recollect that, in graph theory, a trail T is a path that is not
necessarily a simple path but it does not repeat edges. We define an alternating trail T in
Gi as a directed trail that alternates between forward and backward edges and ends at an
anchor node.

When a new request ri+1 arrives, we include the request ri+1 and extend the residual
graph to create an extended graph G0

i+1 from Gi as follows. The new vertex set Vi+1 is
Vi ∪ {ri+1}. The edges incident on ri+1 are as follows: for each vertex v ∈ Vi, if v is not an
anchor node, we add a backward edge directed from ri+1 to v. Figure 1(a) shows an example
of an extended graph where ri+1 = r6 with i1, i2, i3, i4 being the nodes in initial configuration
and a1, a2, a3, a4 are the anchor nodes. Any alternating trail T in the extended graph G0

i+1
that starts at ri+1 is an augmenting trail. Every edge going out of ri+1 in the extended
graph G0

i+1 is a backward edge. Therefore, an augmenting trail T starts with a backward
edge and ends at an anchor node. For example, in Figure 1(a), ⟨r6, i1, r2, i2, r3, r2, r4, r1, a3⟩
is an augmenting trail.

Alternating Graph: Finding augmenting trails can be tricky. Typical graph search
algorithms only find paths and not trails. In order to assist us in finding an augmenting
trail efficiently, we define a different directed graph called the alternating graph for G0

i+1
and denote it by G0

i+1(V0
i+1, E0

i+1). Every directed simple path in this alternating graph G0
i+1

maps to a unique alternating trail in G0
i+1 and every augmenting trail T in G0

i+1 maps to a
unique simple path in the alternating graph G0

i+1 which we refer to as the augmenting path
(Lemma 2).

Thus, finding augmenting trails in G0
i+1 reduces to finding augmenting paths in G0

i+1
which can be done via graph search algorithms. We describe the alternating graph next.
The vertex set V0

i+1 of the alternating graph is the same as that of G0
i+1, i.e., V0

i+1 = Vi+1.
The edge set of the alternating graph, E0

i+1, is defined as follows. For every vertex v, if v

has a backward edge to a node v′, then we add a directed edge from v to f(v′) in E0
i+1.

Figure 1(a) is an extended graph and Figure 1(b) is its alternating graph. For any directed
edge (v, f(v′)) in G0

i+1, denoted by Proj(v, f(v′)) is the backward edge (v, v′) concatenated
with the forward edge (v′, f(v′)), i.e., Proj(v, f(v′)) = ⟨(v, v′), (v′, f(v′))⟩. For example, the
projection of an edge (r3, r4) (Figure 1(b)) in the alternating graph consists of the edges
⟨(r3, r2), (r2, r4)⟩ (Figure 1(a)) of the residual graph. For any path P in the alternating
graph, its projection is simply the concatenation of the projection of the individual edges.
The highlighted augmenting path ⟨r6, r2, r3, r4, a3⟩ (Figure 1(b)) when projected gives the
highlighted augmenting trail ⟨r6, i1, r2, i2, r3, r2, r4, r1, a3⟩ (Figure 1(a)). The construction
of alternating graph and the definition of projection will also extend to the residual graph
Gi+1 in a straight-forward way. The alternating graph for Gi+1 will be referred to as
Gi+1(Vi+1, Ei+1).

Figure 1 Example of an (a) Extended graph G0
6 and (b) its alternating graph G0

6
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▶ Lemma 1. For any two edges (u, v) and (u′, v′) in G0
i , their projections are edge-disjoint

if and only if the head of both of the edges are distinct, i.e., v ̸= v′.

Proof. The projection of (u, v) is ⟨(u, p(v)), (p(v), v)⟩ and the projection of (u′, v′) is ⟨(u′, p(v′)),
(p(v′), v′)⟩. Note that for every vertex s, there is a unique previous vertex p(s). Therefore, if
these projections are edge-disjoint and (p(v), v) and (p(v′), v′) are distinct edges, then v and
v′ must be distinct points, i.e., v ̸= v′. If v ≠ v′, then p(v) ̸= p(v′). Therefore, the forward
edges (p(v), v) and (p(v′), v′) are two vertex-disjoint edges implying that the projections of
(u, v) and (u′, v′) are edge-disjoint. ◀

▶ Lemma 2. For every directed simple path P in the alternating graph G0
i that ends at an

anchor node, its projection T = Proj(P ) is an alternating trail. Furthermore, for every
alternating trail T in G0

i where the first edge of T is a backward edge, there is a directed
simple path P in G0

i such that Proj(P ) = T .

Proof. The in-degree of any vertex on a simple directed path is at most one. Therefore, for
any two edges (u, v) and (u′, v′) on a simple directed path P , v ̸= v′. From Lemma 1, the
projections of (u, v) and (u′, v′) are edge-disjoint. Therefore, the projection T of P which is
simply the concatenation of projections of all the edges of P will be a path that does not
repeat any edges, i.e., T is a trail. By construction, T starts with a backward edge, alternates
between backward and forward edges, and ends at an anchor node, i.e., T is an alternating
trail.

For any alternating trail T in G0
i , let the backward edges be (u1, v1), (u2, v2), . . . , (uj , vj)

in the order in which they appear on the trail. Similarly let the forward edges be
(v1, f(v1)), (v2, f(v2)), . . . , (vj , f(vj)), i.e., T = ⟨(u1, v1), (v1, f(v1)), (u2, v2), (v2, f(v2),
. . . , (uj , vj), (vj , f(vj))⟩. By our assumption, the first edge of the alternating trail (u1, v1)
must be a backward edge, and, f(vj) must be an anchor node and for 1 ≤ t < j, f(vt) = ut+1.
For each 1 ≤ t ≤ j, the pair of edges (ut, vt)(vt, f(vt)) is represented by a unique directed
edge (ut, f(vt)) in G0

i . We can therefore lift T to a path P in G0
i by simply replacing

successive pairs (ut, vt)(vt, f(vt)) with (ut, f(vt)). The resulting sequence of edges is P =
⟨(u1, f(v1)), (u2, f(v2)), . . . , (uj , f(vj))⟩. Since for 1 ≤ t < j, f(vt) = ut+1, P is precisely
the directed path ⟨u1, u2, . . . , uj , f(vj)⟩. Furthermore, since T is a trail and does not repeat
any edges, for any two edges (u, v) and (u′, v′) in P its projections will be edge-disjoint.
Therefore, from Lemma 1, v ̸= v′ and so, P is a simple path. ◀

Augmentation: Consider any augmenting trail T in the extended graph G0
i+1 that

starts at ri+1 and ends at an anchor node a. We augment a valid solution σi (represented by
the extended graph G0

i+1) along an augmenting trail T to produce a solution σi+1 and the
residual graph Gi+1 as follows:
To obtain the residual graph Gi+1 from the extended graph G0

i+1, we can simply reverse
the direction of all the edges on the augmenting trail T and relabel the forward edges as
backward and all backward edges as forward. Finally, we remove the incoming forward edge
to the anchor node a and add a new forward edge from ri+1 to the anchor node a and update
the location of a to that of ri+1.

Equivalently, one can consider modifying the k paths {Γ1, Γ2, . . . , Γk} of σi by removing all
forward edges of T and adding all backward edges of T to obtain the k paths {Γ′

1, Γ′
2, . . . , Γ′

k}
of σi+1. It can be shown that the solution σi+1 is a valid solution that also serves request
ri+1 . One can also generalize the augment operation for alternating trails and cycles. We
refer to this generalized operation as the flip operation and use it in Section 4.2. .
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We define the net-cost of an augmenting trail T to be

Φ(T ) =
∑

(u,v) is backward

d(u, v)−
∑

(u,v) is forward

d(u, v).

Note that the net-cost of an augmenting trail T with respect to σi is the change in the cost due
to augmenting σi along T . Therefore, one can express net-cost as Φ(T ) = w(σi+1)− w(σi).

For any edge (u, v) in the alternating graph, we set its cost c(u, v) = d(u, p(v))−d(p(v), v)
and for any simple path P , let c(P ) =

∑
(u,v)∈P c(u, v) denote its net-cost. Note that the

cost of any edge in the alternating graph can be negative. For any simple augmenting path
P in the alternating graph G0

i+1, its net-cost c(P ) is simply the net-cost of its projection
Φ(Proj(P )).

▶ Lemma 3. The net-cost of an augmenting path P in the alternating graph is equal to the
net-cost of its projection.

Proof. Given an augmenting path P in the alternating graph let the augmenting trail P ′

be its projection. Note that the set B = {(a, p(b)) | (a, b) ∈ P} is the set of all backward
edges of P ′. Similarly, the set F = {(p(b), b) | (a, b) ∈ P} is the set of all forward edges
of P ′. Therefore, the net-cost of P is

∑
(a,b)∈P c(a, b) =

∑
(a,b)∈P (d(a, p(b))− d(p(b), b)) =∑

(u,v)∈B d(u, v)−
∑

(u,v)∈F d(u, v) = Φ(P ′). ◀

Let y(·) be a weight associated with every vertex of the alternating graph. We say that any
valid solution σi and the weight function y(·) is feasible if for any edge (a, b) directed from a

to b

y(a)− y(b) ≤ c(a, b). (3)

We say that any edge satisfying this inequality is feasible. We define slack of any edge (a, b)
directed from a to b to be c(a, b) + y(b)− y(a) and denote it by s(a, b). Given these notations,
we are ready to describe our algorithm.

3 The Algorithm

After processing i requests, our algorithm will maintain a feasible valid solution σ = σi.
We refer to this as the offline solution. Initially, the weight y(v) for every vertex v ∈ C0 is
set to 0 and the offline solution σ is empty. For i ≥ 0, using the alternating graph G0

i+1,
our algorithm will identify an appropriate augmenting trail T in the extended graph G0

i+1.
Recollect that T ends at an anchor node a. The algorithm then moves the server located at
a and that served request p(a) to serve request ri+1. The offline solution σ is updated by
augmenting σi along T leading to a valid solution σ = σi+1. The algorithm consists of four
steps2:

(1) Augmenting path search: Let G′ be identical to this alternating graph G0
i+1 except the

cost of any edge (a, b) is replaced by its slack s(a, b). Note that G′ is a graph with only
non negative edge-costs. The algorithm executes Dijkstra’s algorithm on G′ with ri+1
as the source. Dijkstra’s algorithm returns the shortest path from ri+1 to every other
vertex in V0

i+1. Let, for any vertex v ∈ V0
i+1, ℓv be its shortest path cost as returned by

Dijkstra’s algorithm from the source ri+1.

2 An implementation of this algorithm is available here: https://github.com/RachitaS/
ScalableWorkFunction_Public
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(2) Determine net-cost: Next, we compute the minimum net-cost augmenting path from ri+1
to each of the k anchor nodes {a1, . . . , ak}. For any anchor node aj ∈ {a1, . . . , ak}, we
set the minimum net-cost to be Φj = ℓaj

− y(aj) and the path Pj corresponding to this
net-cost is the shortest path from ri+1 to aj in G′ as returned by Dijkstra’s algorithm
(Step 1).

(3) Choose server: Let am = arg minaj∈{a1,...,ak}(d(aj , ri+1) + Φj) and let s be the server
located at am with p(am) as its last served request. We assign s to serve request ri+1.

(4) Update offline solution: We update the offline solution as follows: (a) For any vertex
v ∈ Vi+1, if ℓv < ℓam

, we set its weight y(v) ← y(v) + ℓam
− ℓv. (b) After updating

the weights, we augment σi along Pam
to obtain σ = σi+1 and update the edges of the

alternating graph to reflect the new solution σ. We also set y(am)← 0.
Our algorithm maintains the following two invariants at all times:

(I1): The offline solution σ along with the weights y(·) is a valid and feasible solution, and,
(I2): Let Ci be the final configuration of σi. Then, σi = σ∗

i (Ci). Furthermore, for every anchor
node aj ∈ {a1, . . . , ak}, let Ci+1

j = Ci \ {aj} ∪ {ri+1}. Then Φj = w(σ∗
i+1(Ci+1

j ))−w(σ∗
i (Ci)).

The proofs of these invariants are given in Section 4. Note that, after each request is processed
the set of edges in the alternating graph can change substantially. Despite this, our weight
updates guarantee that every newly added edge in the alternating graph continues to be
feasible (Section 4.1).

Efficiency Note that the |Vi+1| = i + 1 + 2k and |Ei+1| = O((i + k)2). The extended
graph and alternating graphs also have identical bounds. Step 1 of the algorithm requires
computation of G′ and an execution of Dijkstra’s algorithm on G′ which takes O((i + k)2))
time. Step 2 of the algorithm requires constant time computation for each of the anchor
nodes and therefore takes O(k) time. The paths Pj computed in Step 2 is can be compactly
represented using the shortest path tree that is returned by Dijkstra’s algorithm. Therefore,
computing Pj does not require any additional time. Choosing the server in Step 3 can be
performed by simply accessing the cost between the ri+1 and each of the k servers and
computing the one that minimizes Φj + d(aj , ri+1). Step 3, therefore, takes only O(k) time.
Step 4(a) requires us to update the weight at each vertex which can be done in O(i + k)
time. Step 4(b) requires augmenting and updating the residual and alternating graphs each
of which can be performed in O((i + k)2). Therefore, the time taken to process each request
is dominated by O(i2 + k2) = O(n2).

Next, assuming the invariants hold, we will show that the algorithm picks the same server
as the Work Function Algorithm.

Correctness: The following lemma establishes a link between the net-cost of an aug-
menting path and the sum of the slacks along its edges.

▶ Lemma 4. Suppose σi and the weights y(·) form a feasible solution. For any augmenting
path P in the alternating graph that starts at ri+1 and ends at an anchor node a, its net-cost
is

Φ(P ) = y(ri+1)− y(a) +
∑

(u,v)∈P

s(u, v). (4)

Proof. Every vertex v′ ∈ P with the exception of the first vertex ri+1 and the last vertex a

will have an incoming edge (u′, v′) and an outgoing edge (v′, w′) in P . The weight of v′, y(v′)
is added with respect to (v′, w′) and subtracted with respect to the edge (u′, v′) and therefore,
the net-contribution of v′ to Equation (4) is zero. The first vertex ri+1 participates in the
first edge of P and contributes +y(ri+1) to Equation (4). The last vertex a participates only
in the last edge and contributes −y(a) to Equation (4). ◀
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From Invariant (I1), Equation 4 and since y(ri+1) = 0, the minimum net-cost path Pj from
ri+1 to some anchor node aj in the alternating graph G0

i+1 is also the augmenting path that
minimizes the sum of slacks along its edges. From invariant (I1) all slacks are non-negative
and so, Pj will be the augmenting path returned by the execution of Dijkstra’s algorithm in
Step 1 of the algorithm. Furthermore, ℓaj

=
∑

(u,v)∈Pj
s(u, v). Therefore, from Equation 4,

we conclude that Φj = Φ(Pj) = ℓaj − y(aj). Therefore, Step 2 of the algorithm will correctly
compute the minimum net-cost augmenting path to every anchor node aj ∈ {a1, . . . , ak}.

Step 3 of the algorithm selects the server located at the anchor node am = argminaj∈{a1,...,ak}
(d(aj , ri+1)+Φj). Let Xj = Ci+1

j = Ci \{aj}∪{ri+1}. By Invariant (I2), (d(aj , ri+1)+Φj) =
d(aj , ri+1) + w(σ∗

i+1(Xj))− w(σ∗
i (Ci)) and, argminaj∈{a1,...,ak}(d(aj , ri+1) + Φj) is

= argmin
j∈{1,...k}

(d(aj , ri+1) + w(σ∗
i+1(Xj))− w(σ∗

i (Ci)))

= argmin
j∈{1,...,k}

(d(aj , ri+1) + w(σ∗
i+1(Xj)).

The last equality follows from the fact that w(σ∗
i (Ci)) is the same for every choice of j.

Thus, we choose the same server as required by the work function algorithm.

4 Proof of Invariants

4.1 Proof of Invariant (I1)
Recall the definition of feasibility. Any valid solution σi with the weight function y(·)
associated with each vertex of its alternating graph is feasible if for every edge (a, b) directed
from a to b in its alternation graph satisfies the following equation.

y(a)− y(b) ≤ c(a, b). (5)

Furthermore, any edge satisfying the above inequality is feasible.
We prove a slightly stronger version of Invariant (I1)
(I1): The offline solution σ along with the weights y(·) maintained by the algorithm is a

valid and feasible solution. Furthermore, for any forward edge (u, v) in the residual graph of
σ,

y(v) ≥ d(u, v). (6)

We can prove this invariant by induction. At time t = 0, we have the servers in the initial
configuration. The vertex set of the initial residual graph G0 only contains the vertices for
the initial configuration and the anchor nodes. The edge set of the initial residual graph
G0 contains only forward edges directed from each server in the initial configuration to its
anchor node. Since there are no backward edges in G0, the alternating graph G0 does not
have edges. Therefore, σ0 and the vertex weights y(·) are trivially feasible.

Let the solution σi after serving i requests be a valid and feasible solution and let y(·) at
the end of processing request ri satisfy (6). Given this, we will now prove that the solution
σi+1 is valid and feasible and the updated vertex weight satisfies (6). Note that each new
request arrives with a default weight 0. Given a valid feasible solution σi along with the
vertex weight function y(·), the algorithm first constructs the extended graph G0

i+1. Lemma 6
shows that the corresponding alternating graph G0

i+1 with weight function y(·) continues to
be feasible. Steps 1, 2 and 3 do not modify σi or the vertex weights. Therefore, σi continues
to remain valid and feasible till the end of Step 3.
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In Step 4(a) of the algorithm, the weights on the vertices of G0
i+1 are updated. Let

y(·) be the weights prior to executing step 4(a) and let y′(·) be the weights after executing
step 4(a). Lemma 8 proves that G0

i+1 along with the updated vertex weights y′(·) remain
feasible. In Step 4(b), the algorithm augments the solution σi along the augmenting trail T

(as determined in Step 3) leading to σi+1. Lemma 10 shows that the solution σi+1 remains
valid and feasible. Finally, in Lemma 11, we argue that the vertex weights at the end of Step
4(b) satisfies (6).

▶ Lemma 5. Suppose P is the augmenting path from ri+1 to the anchor node am chosen
in step 3 of the algorithm, then the slack s(u, v) on every edge (u, v) of P after the vertex
weight update in step 4(a) is zero.

Proof. Let y(·) be the vertex weight prior to Step 4(a) and y′(·) be the vertex weight after
Step 4(a). By our choice in Step 3, P is the shortest path computed by Dijkstra’s algorithm
from ri+1 to am in G′. Since ℓam is the cost of P in G′, every vertex v ∈ P has a shortest
path cost at most ℓam

, i.e., ℓv ≤ ℓam
. Furthermore, by the optimal sub-structure property

of shortest paths, for any edge (u, v) ∈ P , ℓv − ℓu = s(u, v) = c(u, v) + y(v) − y(u) or
ℓv − ℓu = c(u, v) + y(v)− y(u).

c(u, v) + (y(v)− ℓv)− (y(u)− ℓu) = 0,

c(u, v) + (y(v)− ℓv + ℓam
)− (y(u)− ℓu + ℓam

) = 0,

c(u, v) + y′(v)− y′(u) = 0.

The second to last equality is obtained by simply adding and subtracting ℓam
to the LHS.

The last equality follows from the fact that ℓv ≤ ℓam and ℓu ≤ ℓam and the update of the
vertex weights defined in Step 4(a). ◀

▶ Lemma 6. Given a valid feasible solution σi, all the edges of the alternating graph G0
i+1

are feasible.

Proof. From the inductive hypothesis, σi is a feasible solution i.e. the edges of Gi satisfy (5),
and, the weights y(·) satisfies (6). The extended graph G0

i+1 is created by the addition of
ri+1 to the vertex set of Gi in the vertex set. Furthermore, for every j ≤ i a backward
edge is added from ri+1 to rj and an edge (ri+1, f(rj)) is added to G0

i+1. We show that for
every such edge, (ri+1, f(rj)) ∈ G0

i+1, the feasibility condition (5) holds. The cost of the edge
(ri+1, f(rj)) is

c(ri+1, f(rj)) = d(ri+1, rj))− d(rj , f(rj)) (7)
≥ −d(rj , f(rj)). (8)

Note that the vertex weight of ri+1, y(ri+1) is set to 0. By the inductive hypothesis,
−y(f(rj)) ≤ −d(rj , f(rj)). Adding y(ri+1) to the LHS and 0 to the RHS, we get y(ri+1)−
y(f(rj)) ≤ −d(rj , f(rj)) or y(ri+1)− y(f(rj)) ≤ c(ri+1, f(rj)). The last inequality follows
from 8. This implies that the edge (ri+1, v) satisfies (5). ◀

Feasibility after Step 4(b): Step 4(b) in the algorithm augments the solution along an
augmenting trail T . In doing so, the alternating graph G0

i+1 is updated to Gi+1. The edges
Ei+1 of Gi+1 may include several new edges that were not in G0

i+1. Furthermore, there may
be edges whose costs c(·, ·) change due to augmentation. We classify all such edges in the
alternating graph Gi+1 as affected edges. The following two lemmas establishes important
properties of the affected edges.
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▶ Lemma 7. Let P be the augmenting path from ri+1 to an anchor node am in the alternating
graph G0

i+1 that is computed in Step 3 of our algorithm. Given any affected edge (u, v) in
Gi+1, let ⟨(u, x), (x, v)⟩ be its projection. Then, v ̸= am and (v, x) is a backward edge on the
augmenting trail Proj(P ).

Proof. Let P be the augmenting path from ri+1 to an anchor node am in the alternating
graph G0

i+1 that is computed in Step 3 of our algorithm. And let T be the augmenting trail
in G0

i+1 such that T = Proj(P ).
First we will prove that given any affected edge (u, v) in Gi+1, v ̸= am. After augmentation

along T , we add the forward edge (ri+1, am). Since all backward edges are directed from a
later request to an earlier request and since ri+1 is the latest request in the residual graph
Gi+1, there are no in-coming backward edges to ri+1. Therefore, by its description, there
will not be any incoming edges to am in the alternating graph Gi+1 and so v ̸= am.

Since (u, v) is an affected edge, at least one of the edges in its projection ⟨(u, x), (x, v)⟩
is newly introduced by the augment operation. We claim that the forward edge (x, v) was
added by the augment operation in Step 4(b) of the algorithm. Suppose, for the sake
of contradiction, (x, v) was not added in Step 4(b), i.e., (x, v) is a forward edge in G0

i+1.
Therefore, (u, x) must be the backward edge that was newly added by the augment operation.
We can conclude that the augmenting trail T contains the forward edge (x, u), implying (x, u)
is a forward edge in G0

i+1. Note that (x, u) and (x, v) are both forward edges in G0
i+1 which

contradicts the fact that σi is a valid solution. Therefore, we conclude that the forward edge
(x, v) was introduced by the augment operation in Step 4(b), i.e., (v, x) is a backward edge
in the augmenting trail T . ◀

▶ Lemma 8. The edges of the alternating graph G0
i+1 remains feasible after the vertex weight

update in step 4(a).

Proof. The alternating graph G0
i+1 before the execution of Step 4(a) is feasible. Let y(·)

(resp. y′(·)) denote the vertex weights before (resp. after) the weight update of step 4(a).
For each edge (u, v) ∈ G0

i+1, let s(u, v) (resp. s′(u, v)) represent the slack on (u, v) before
(resp. after) weight update in step 4(a). Let (u, v) be any directed edge in G0

i+1. Note that
every edge in G0

i+1 along with the weights y(·) satisfies (3) and so the slack s(u, v) ≥ 0. Let
am be the anchor node chosen by algorithm in Step 3 and for any vertex w ∈ G0

i+1, recollect
that ℓw is the shortest path cost returned by Dijkstra’s algorithm in Step 1 of the algorithm.
For the edge (u, v), there are four possibilities after step 4(a):

Case (i) ℓu ≥ ℓam
and ℓv ≥ ℓam

. In this case, Step 4(a) will not update the vertex
weights for u and v. So, y′(u) = y(u), y′(v) = y(v), and s′(u, v) = s(u, v). Therefore, (u, v)
remains feasible with respect to y′(·).

Case (ii) ℓv < ℓam
and ℓu ≥ ℓam

. In this case, Step 4(a) will update the vertex weights
to y′(v) = y(v) + (ℓam

− ℓv) > y(v) and y′(u) = y(u). Furthermore, from feasibility of (u, v)
with respect to y(·), we have s(u, v) ≥ 0. Therefore, s′(u, v) = c(u, v) − y′(u) + y′(v) ≥
c(u, v)− y(u)− y(v) ≥ 0 implying that (u, v) remains feasible with respect to the updated
vertex weight y′(·).

Case (iii) ℓu < ℓam
and ℓv ≥ ℓam

. In this case, Step 4(a) updates the vertex weight to
y′(u) = y(u) + (ℓam

− ℓu) and y′(v) = y(v). From the property of shortest path distances,
the shortest path distance from ri+1 to v is bounded by the shortest path distance from ri+1
to u and the slack of the edge from (u, v), i.e., ℓv − ℓu ≤ s(u, v). Using the definition of slack
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we get,

ℓv − ℓu ≤ c(u, v)− y(u) + y(v),
(ℓam

− ℓu)− (ℓam
− ℓv) ≤ c(u, v)− y(u) + y(v),

[(ℓam
− ℓu) + y(u)−

((ℓam − ℓv) + y(v))] ≤ c(u, v),
y′(u)− ((ℓam − ℓv) + y′(v)) ≤ c(u, v)

The last inequality follows from the fact that y′(u) = (ℓam
− ℓu) + y(u). Furthermore, since

ℓam < ℓv, we get y′(u)− y′(v) ≤ c(u, v), i.e., the edge (u, v) remains feasible.
Case (iv) ℓu < ℓam

and ℓv < ℓam
. In this case, Step 4(a) sets y′(u) = y(u) + (ℓam

− ℓu)
and y′(v) = y(v) + (ℓam − ℓv). Again, the shortest path from ri+1 to v is of cost bounded by
the shortest path from ri+1 to u and the slack on the edge (u, v). Therefore, ℓv ≤ ℓu + s(u, v)
i.e. ℓv − ℓu ≤ s(u, v). Using the definition of slack we get

ℓv − ℓu ≤ c(u, v)− y(u) + y(v),
(ℓam

− ℓu)− (ℓam
− ℓv) ≤ c(u, v)− y(u) + y(v),

[(ℓam
− ℓu) + y(u)−

((ℓam
− ℓv) + y(v))] ≤ c(u, v),
y′(u)− y′(v) ≤ c(u, v).

implying (u, v) is feasible with respect to y′(·). ◀

▶ Lemma 9. Let P be the augmenting path computed in Step 3 that goes from request ri+1
to an anchor node am in the alternating graph G0

i+1. For any vertex v on the path P where
v ≠ am, let n(v) denote the vertex that succeeds v on P . Given any affected edge (u, v) in
Gi+1, let ⟨(u, x), (x, v)⟩ be its projection. Then,

(i) Either the edge (v, u) is on the augmenting path P with Proj(v, u) = ⟨(v, x), (x, u)⟩, or
(ii) There is an edge (u, n(v)) in G0

i+1 with its projection Proj(u, n(v)) = ⟨(u, x), (x, n(v))⟩.

Proof. From Lemma 7, we know that (v, x) is a backward edge in the augmenting trail T .
There are two possibilities for the edge (u, x): (a) (u, x) was also added as a backward edge
by the augment process, or (b) (u, x) was also an edge in the extended graph G0

i+1.
For case (a), the edge (x, u) was a forward edge prior to augmentation. Since both the

backward edge (v, x) and the forward edge (x, u) are in the augmenting trail T , we will have
an edge (v, u) in the augmenting path P , implying (i). An instance of this case is shown in
Figure 2I where directed edge (u, v) is the affected edge.

In case (b), (u, x) is also a backward edge in G0
i+1 (Figure 2II(b)). Since (v, x) is a

backward edge in T , the projection of the edge (v, n(v)) will contain the backward edge
(v, x) followed by the forward edge (x, n(v)). Since (u, x) is a backward edge and (x, n(v))
is a forward edge in G0

i+1, we will have an edge (u, n(v)) in the alternating graph G0
i+1.

An example of this case is demonstrated in Figure 2II where the directed edge (u, v) in
Figure 2II(a) is the affected edge. Figure 2II(b) shows the projection of (u, v). Figure 2II(c)
shows the scenario before augmentation where (v, u) ∈ G0

i+1 and Figure 2II(d) shows (v, u)’s
projection in G0

i+1. ◀

▶ Lemma 10. σi+1 is a valid and feasible solution after the Augment operation in Step 4(b).



S. Raghvendra and R. Sowle 31:13

(I) Demonstrating Case(a): (u, v) is an affected edge with projection ⟨(u, x), (x, v)⟩ such that (x, u) was a
forward edge prior to augmentation.
(a) Affected edge (u, v) ∈ Gi+1. (b) Projection of the affected edge (u, v), Proj(u, v) = ⟨(u, x), (x, v)⟩. (c)
Alternating graph edge (v, u) ∈ G0

i+1 before augmentation. (d) Projection of the edge (v, u), Proj(v, u) =
⟨(v, x), (x, u)⟩ before augmentation.

(II) Demonstrating Case(b): (u, v) is an affected edge with projection ⟨(u, x), (x, v)⟩ such that (u, x) was
a backward edge prior to augmentation as well.
(a) Affected edge (u, v) ∈ Gi+1. (b) Projection of the affected edge (u, v) ∈ Gi+1, ⟨(u, x), (x, v)⟩. (c)
Alternating graph edges of G0

i+1 before augmentation where (v, n(v)) ∈ P and (u, n(v)) ∈ G0
i+1 (d)

Projection of the edge (u, n(v)) ∈ G0
i+1, ⟨(u, x), (x, n(v))⟩ before augmentation.

Figure 2

Proof. Let P be the augmenting path from ri+1 to the anchor node chosen in Step 3. To
prove that σi+1 is a feasible solution after Step 4(b), we need to show that the edges of
alternating graph Gi+1 that are affected by the augment operation along the path P continue
to be feasible and satisfy (5).

Let c(·, ·) be the cost function of edges in the alternating graph G0
i+1, i.e., prior to

augmentation and let c′(·, ·) be the cost function of edges in the alternating graph Gi+1, i.e.,
after augmentation. From Lemma 9, one of the following cases is true.

(i) Edge (v, u) is on the augmenting path P with Proj(v, u) = ⟨(v, x), (x, u)⟩, or
(ii) There is an edge (u, n(v)) in G0

i+1 with its projection Proj(u, n(v)) = ⟨(u, x), (x, n(v))⟩.
We will consider both these cases separately.

Case (i): For the edge (v, u), c(v, u) = d(v, x)−d(x, u). After augmentation, Proj(u, v) =
⟨(u, x), (x, v)⟩ and the cost of the affected edge (u, v) ∈ Gi+1 is c′(u, v) = d(u, x)− d(x, v) =
−c(v, u). From Lemma 5, after Step 4(a), the slack on every edge of the augmenting path P ,
including (v, u) ∈ P is 0 i.e. s(v, u) = (c(v, u) + y(u)− y(v)) = 0. The slack on the affected
edge (u, v) ∈ Gi+1 can be calculated as,

s(u, v) = c′(u, v)− y(u) + y(v)
= −(c(v, u) + y(u)− y(v))
= 0.

Hence, the affected edge (u, v) ∈ Gi+1 is feasible.
Case (ii): There is an edge (u, n(v)) in G0

i+1 and Proj(u, n(v)) = ⟨(u, x), (x, n(v))⟩.
From Lemma 5, after Step 4(a), every edge on P including (v, n(v)) ∈ P has a slack of 0.
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Hence, y(v)− y(n(v)) = c(v, n(v)) = d(v, x)− d(x, n(v)), or

y(n(v)) = y(v) + d(x, n(v))− d(v, x). (9)

Since (u, n(v)) is an edge in G0
i+1, it is a feasible edge after the step 4(a) (Lemma 8) and

we get y(u) − y(n(v)) ≤ c(u, n(v)). Substituting c(u, n(v)) as d(u, x) − d(x, n(v)), we get
y(u)− y(n(v)) ≤ d(u, x)− d(x, n(v)). From equation (9), we can rewrite this inequality as

y(u)− y(v)− d(x, n(v)) + d(v, x) ≤ d(u, x)− d(x, n(v)),
y(u)− y(v) ≤ d(u, x)− d(x, v),
y(u)− y(v) ≤ c′(u, v),

implying that the affected edge (u, v) is a feasible edge.
Next, we show that σi+1 is a valid solution after Step 4(b). To show that σi+1 remains a

valid solution, we need to show that the forward edges of Gi+1 satisfies (Q1) and (Q2). By
construction, every backward edge is directed from a later request to an earlier one. During
augmentation, for every backward edge on the augmenting trail, we reverse its direction and
label it as a forward edge. Therefore, every newly introduced forward edge is from an earlier
request to a later one implying (Q1).

Next, we will show (Q2)
The first vertex of P is ri+1. Let a be the anchor node at the end of P . Consider any

edge (u, v) of the simple directed path P . Note that its projection is ⟨(u, p(v)), (p(v), v)⟩
where (u, p(v)) is a backward edge and (p(v), v) is a forward edge. Due to augmentation,
this projection is modified as follows: (v, p(v)) becomes a backward edge and (p(v), u) is now
a forward edge. We abuse notation and refer to the modifications made by augmentation
along the projection of (u, v) as augmentation along the edge (u, v).

Augmentation along (u, v) modifies the outgoing forward edge from p(v). It also removes
the incoming forward edge to v and adds an incoming forward edge to u. Therefore,
augmentation along (u, v) does not change the number of forward edges coming in and going
out of p(v), i.e., p(v) continues to satisfy (Q2). However, it increases the number of forward
edges coming into u by 1 and reduces the number of incoming forward edges incident on v

by 1.
Every vertex v′ along P , except for the first and the last vertex, i.e., v′ ̸∈ {ri+1, a}, will

be the tail for some edge (u′, v′) ∈ P and the head for some edge (v′, w′) ∈ P . Augmentation
along (u′, v′) will reduce the incoming forward edge on v′ by one. On the other hand,
augmenting along (v′, w′) will increase the incoming forward edge on v′ by one. As a result
the incoming and outgoing forward edges incident on v′ remain unchanged. Therefore, for
every vertex except ri+1 and a, we can conclude that (Q2) holds.

The first vertex ri+1 is the tail of the first edge in P , augmentation will result in a new
incoming forward edge in Gi+1. Finally, the last vertex a ∈ P is the head of the last edge.
Therefore, augmentation causes removal of the only incoming forward edge to a. Instead, we
add a forward edge from ri+1 to a. This guarantees that ri+1 contains exactly one incoming
forward edge and one outgoing forward edge satisfying (Q2). Furthermore, the anchor node
a will have exactly one incoming forward edge satisfying (Q2).

◀

Finally, we will show that the updated vertex weights satisfy (6).

▶ Lemma 11. Consider any solution σi maintained by the algorithm with residual graph Gi,
for any forward edge (u, v) in the residual graph,

y(v) ≥ d(u, v). (10)
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4.2 Proof of Invariant (I2)

Before we present the proof for (I2), we would like to remind the reader of the following
discussion.

From Invariant (I1), Equation (4) and since y(ri+1) = 0, the minimum net-cost path
Pj from ri+1 to some anchor node aj in the alternating graph G0

i+1 is also the augmenting
path that minimizes the sum of slacks along its edges. From invariant (I1) all slacks are
non-negative and so, Pj will be the augmenting path returned by the execution of Dijkstra’s
algorithm in Step 1 of the algorithm. Furthermore, ℓaj

=
∑

(u,v)∈Pj
s(u, v). Therefore,

from Equation (4), we conclude that Φj = Φ(Pj) = ℓaj
− y(aj). Therefore, Step 2 of the

algorithm will correctly compute the minimum net-cost augmenting path to every anchor
node aj ∈ {a1, . . . , ak}.

Invariant (I2): Let Ci be the final configuration of σi. Then, σi = σ∗
i (Ci). Fur-

thermore, for every anchor node aj ∈ {a1, . . . , ak}, let Ci+1
j = Ci \ {aj} ∪ {ri+1}. Then

Φj = w(σ∗
i+1(Ci+1

j ))− w(σ∗
i (Ci)).

Proof: Prior to processing any request, all the servers are in their initial configuration
and σ0 with zero cost is indeed the optimal solution. Assume that, after processing i

requests, σi = σ∗
i (Ci). We will use this to show that Φj = w(σ∗

i+1(Ci+1
j ))− w(σ∗

i (Ci)) and
σi+1 = σ∗

i+1(Ci+1).
Consider σj

i+1 = σ∗
i+1(Ci+1

j ) to be the smallest cost solution that serves i + 1 requests
and ends in Ci+1

j . If there are many minimum-cost solutions, we set σj
i+1 to be the one that

has the fewest edges in the symmetric difference with σi = σ∗
i (Ci). Consider the symmetric

difference of the edges of σi and σj
i+1. Since their final configurations Ci and Ci+1

j differ in only
the locations of aj and ri+1, the symmetric difference will include exactly one augmenting
trail from ri+1 to aj and possibly a set C of alternating cycles.

First, we show that C is an empty set. For the sake of contradiction, assume C is not
empty. Let C be an alternating cycle with respect to G0

i+1 (extended graph for solution σi) in
the symmetric difference. The net-cost of C cannot be zero, since otherwise applying the flip
operation on the cycle C in Gσ′ will lead to another valid solution σ′′ whose cost is identical
to that of σj

i+1 and the final configuration is Ci+1
j . However, the flip operation will reduce

the size of the symmetric difference and so, σj
i+1 has more edges that σ′′ in the symmetric

difference with σi. This contradicts our assumption that σj
i+1 is the minimum-cost valid

solution that ends in configuration Ci+1
j and has the smallest symmetric difference with σi.

Similarly, the net-cost Φ(C) cannot be negative, since otherwise applying the flip operation
along the cycle C on G0

i+1 will lead to another valid solution that ends in Ci and has a
smaller cost than σi . This contradicts the fact that σi = σ∗

i (Ci) is a minimum-cost solution.
If the net-cost Φ(C) with respect to G0

i+1 is positive, i.e., Φ(C) > 0, then let C ′ be the
alternating cycle corresponding to C in Gσj

i+1
(the residual graph with respect to σj

i+1).
From Corollary 13 presented in Section 4.3, it follows that the net-cost Φ(C ′) = −Φ(C) < 0.
Again, applying the flip operation along the cycle C ′ in Gσj

i+1
will lead to a valid solution

whose cost is smaller than σj
i+1 contradicting the fact that σj

i+1 is the smallest cost solution.
From the above discussion, it follows that the symmetric difference of σi and σj

i+1 is an
augmenting trail T ′. We claim that T ′ is in fact the minimum net-cost augmenting trail that
starts at ri+1 and ends at aj . For the sake of contradiction, suppose T ′ is not the minimum
net-cost augmenting trail and Φ(T ′) > Φj . Let T be some minimum net-cost augmenting
trail in G0

i+1 that starts at ri+1 and ends at an anchor node aj . Note that Φj = Φ(T ). Let
σj

i+1 be the valid solution obtained by augmenting σi along T in the extended graph G0
i+1.
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The final configuration of σj
i+1 is Cj

i+1 . Then, by its definition,

w(σj
i+1)− w(σi) > w(σj

i+1)− w(σi),
w(σj

i+1) > w(σj
i+1),

contradicting the fact that σj
i+1 is a minimum cost solution to serve i + 1 requests and

end in configuration Cj
i+1. Thus the net-cost of the augmenting trail T ′ in the symmetric

difference of σi and σj
i+1 is Φj . From the definition of net-cost, Φj = w(σj

i+1) − w(σi) =
w(σ∗

i+1(Ci+1
j ))− w(σ∗

i (Ci)).
Our algorithm chooses the minimum net-cost path from ri+1 to am and augments the

valid solution along this path. As a result, the cost of the solution σi+1 increases precisely by
w(σ∗

i+1(Ci+1
m ))− w(σ∗

i (Ci)) and the new valid solution will end in configuration Ci+1
m = Ci+1

and have a cost equal to w(σ∗
i+1(Ci+1)) proving invariant (I2).

4.3 Symmetric Difference of Valid Solutions
Next, we introduce properties of the symmetric difference of two valid solutions. These
properties are used in the proof of invariant (I2).

Let σ and σ′ be two valid solutions where σ serves the first i requests and σ′ serves the
first i + 1 requests. Let G0

σ be the extended graph with respect to σ and Gσ′ be the residual
graph with respect to σ′. We show that the edges in the symmetric difference of σ and σ′ can
be decomposed into a edge-disjoint set of alternating trails, augmenting trail and alternating
cycles.

Let C and C′ be the final configurations of σ and σ′. Let X denote the edges in the
symmetric difference of σ and σ′. For any edge in X, there is a corresponding directed
edge in G0

σ. We assign the same direction for edge in X. Therefore, by construction, the
edges of X ∩ σ will be forward edges and the edges of X ∩ σ′ will be backward edges in
G0

σ. Figures 3(a), (b) and (c) highlight the edges of σ, σ′ and (X ∩G0
σ) respectively. For

each vertex v ∈ Vi, suppose v is not an anchor node (resp. if v is not a vertex in the initial
configuration), let f(v) (resp. p(v)) denote the vertex that appears after (resp. before) v in
σ. Similarly, for all v ∈ Vi+1, where v is not a vertex from the initial configuration (resp. not
an anchor node), let p′(v) (resp. f ′(v)) denote the vertex that appears before (resp. after)
v in Gσ′ . Let {a1, . . . , ak} denote the anchor nodes of G0

σ and {a′
1, a′

2, . . . , a′
k} denote the

anchor nodes of Gσ′ . Let v′
j = p′(a′

j) in Gσ′ and vj = p(aj) in G0
σ. Let Y = {v1, . . . , vk} and

let Y ′ = {v′
1, . . . , v′

k}. We use these notations throughout this section.
Next, consider any edge (u, v) ∈ X. Suppose (u, v) is a forward edge and v ̸∈ {a1, . . . , ak}.

Since (u, v) is in the symmetric difference and since v is not an anchor node, there is a
different in-coming forward edge to v, namely (u′, v) in Gσ′ with u ̸= u′. The backward
edge (v, u′) will be in X and we denote the edge (v, u′) as next(u, v) in G0

σ. For example, in
Figure 3(c), the backward edge (r9, r8) is next(r6, r9). For the forward edge (u, v) ∈ X, there
is a different out-going forward edge (u, v′) in Gσ′ . This edge appears as the backward edge
(v′, u) in X provided v′ ̸∈ {a′

1, a′
2, . . . , a′

k}. Therefore, we define the backward edge (v′, u) to
be the prev(u, v) in X. For example, in Figure 3(c), (r3, r1) = prev(r1, r7).

Finally, we define next(u, v) and prev(u, v) for the case where (u, v) is a backward edge
in X. Since (u, v) is in the symmetric difference, the edge (v, u) is an out-going forward
edge from v in Gσ′ . Since (u, v) is in the symmetric difference, there is a different out-going
forward edge from v, namely (v, v′) ∈ X with v′ ̸= u. We denote the forward edge (v, v′)
as next(u, v) in G0

σ. For instance, in Figure 3(c), (r1, r7) = next(r3, r1). Similarly, for the
backward edge (u, v) ∈ X, if u ̸= ri+1, there is a different in-coming forward edge to u (v′, u)
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in Gσ. This edge appears as a forward edge (v′, u) in X. Therefore, we define the forward
edge (v′, u) to be the prev(u, v) in X. For instance, in Figure 3(c), (r3, r5) = prev(r5, i4).

Thus, every edge in X have a unique next(·, ·) edge except those that are directed towards
an anchor nodes {a1, . . . , ak}. Edges directed towards the anchor nodes {a1, . . . , ak} do not
have any next(·, ·) edge.

Similarly, every edge in X has a unique prev(·, ·), except the edges going out of {v′
1, v′

2, . . . , v′
k}.

Edges going out of {v′
1, v′

2, . . . , v′
k} do not have any previous edge.

Decomposing X into augmenting trail, alternating trails and cycles: Consider
any vertex in v ∈ Y ∩ Y ′. The forward edge (v, a) is in X. However, since v ∈ Y ′, the
prev(v, a) does not exist. Similarly, since a ∈ {a1, . . . , ak}, next(v, a) does not exist. So, we
create a trivial alternating trail with one edge (v, a).

For every vertex v ∈ Y ′ \ Y , let (v, v′) be the outgoing edge in X. We initialize T to be
(v, v′) We construct an alternating trail incrementally by concatenating the last edge (u, v)
of T with next(u, v). This construction stops when we reach some edge (u′, a) for which
next(u′, a) is not defined. Suppose the vertex v ̸= ri+1, then this trail starts with a forward
edge and ends at an anchor node. On the other hand, suppose v = ri+1, this trail is an
augmenting trail that starts with a backward edge and ends at an anchor node. Any edge
(u, v) of X that did not participate in the alternating and augmenting trails have a well
defined next(u, v). Therefore, we can construct an alternating cycle that contains (u, v) by
repeatedly concatenating the last added edge (u′, v′) with its next(u′, v′). The construction
stops when next(u′, v′) = (u, v) and we get an alternating cycle. Figure 3(c) illustrates an
example such decomposition. Vertex r10 and r5 are in Y ∩ Y ′, so ⟨r10, a1⟩ and ⟨r5, a3⟩ are
trivial trails. Vertex r6 and r3 are in Y ′ \ Y and therefore we have two alternating trails
⟨r6, r9, r8, a2⟩ and ⟨r3, r5, i4, r4, i3, r3, r1, r7, r4, a4⟩. The vertex r11 is ri+1, therefore we have
an augmenting trail ⟨r11, r9, r10, r7, a5⟩. All the remaining edges form an alternating cycle
⟨r2, r6, i1, r2, i2, r8, r2⟩.

Figure 3 (a) Forward edges of G0
σ, representing σ, (b) Forward edges of Gσ′ , represent-

ing σ′, (c) Edges in the symmetric difference of σ and σ′. Edges of σ are shown as forward
edges in Gσ (red edges), and edges of σ′ are shown as the backward edges in Gσ (dashed blue
edges). This graph has an augmenting trail ⟨r11, r9, r10, r7, a5⟩, two alternating trails ⟨r6, r9, r8, a2⟩,
⟨r3, r5, i4, r4, i3, r3, r1, r7, r4, a4⟩ and one directed alternating cycle ⟨r2, r6, i1, r2, i2, r8, r2⟩

Note that the construction described above also extends to the residual graph Gσ′ and
we obtain the following lemma.
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▶ Lemma 12. The edges of symmetric difference X of two valid solutions σ and σ′ in G0
σ

can be decomposed into (a) one augmenting trail A, (b) a set T of |Y ′ \ Y | − 1 non-trivial
alternating trails that start with a forward edge, (c) a set T′ of |Y ′∩Y | trivial alternating trails
and (d) a set C of alternating cycles. Similarly, the edges of X in Gσ′ can be decomposed into
alternating trails and cycles each of which are obtained by simply applying the flip operation
to the trails and cycles in A, T, T′ and C

▶ Corollary 13. Given the set X of edges in the symmetric difference, consider the decom-
position of X into {A} ∪ T ∪ C in G0

σ as described in Lemma 12. Then the edges of X in
Gσ′ can be decomposed into alternating trails such that for each alternating trail (resp. cycle)
T ∈ {A} ∪ T ∪ C, there is an alternating trail T ′ (resp. cycle) induced by the edges of X in
Gσ′ such that T ′ is obtained by applying the flip operation on T and Φ(T ) = −Φ(T ′).

5 Missing Proofs

Proof of Lemma 11: The initial solution σ0 is a trivially valid solution and the only edges
in the residual graph are forward edges that go from a vertex in the initial configuration
to an anchor node. For any such forward edge (u, v), v is an anchor node with y(v) = 0.
The cost d(u, v) is also 0 since the anchor node v and the vertex u share the same location.
Therefore, inequality (10) holds.

Let us assume that the inequality (10) holds after request ri is processed by our algorithm.
To complete the proof, we will show that the inequality will continue to be satisfied after
request ri+1 is processed. To do so, we will show that the any of the changes made by the
algorithm will not violate inequality (10).

At the start of the algorithm, we add ri+1 to Gi to create G0
i+1. Since all the edges

incident on ri+1 in G0
i+1 are backward edges, all forward edges will continue to satisfy

inequality (10). Steps 1, 2 and 3 do not alter the weights y(·) or the alternating graph.
Therefore, the inequality (10) continues to hold for every forward edge during these three
steps. In Step 4(a), we modify the vertex weights for every vertex v with ℓv < ℓ. Consider
any such vertex and let (u, v) be the in-coming forward edge to v. Recollect that y(v) is
the weight prior to the execution of Step 4(a) and y′(v) is the weight after Step 4(a). Since
inequality (10) is true prior to execution of Step 4(a), we have y(v) ≥ d(u, v). In Step 4(a),
the weight is updated to y′(v)← y(v)− ℓv + ℓ provided ℓv < ℓ. Since ℓv < ℓ, it follows that
y′(v) ≥ y(v) ≥ d(u, v) and inequality (10) continues to hold.

Next, we show that the inequality (10) continues to hold after Step 4(b). In Step 4(b), we
apply the augment operation along an augmenting trail T (computed in Step 3). Recollect
that the first vertex of T is ri+1 and the last vertex of T is an anchor node a. Note that
the weights of every vertex, except the anchor node a remains unchanged. However, for
any v along the alternating trail T , its incoming forward edge may change. As a result of
augmentation along T , every backward edge (v2, v1) in T changes to a forward edge (v1, v2).
Let P be the augmenting path in the alternating graph G0

i+1 such that trail T = Proj(P ).
Let (v2, v1) be a backward edge in T . Let (v2, w) be the edge in P such that Proj(v2, w)
contains the backward edge (v2, v1), i.e., Proj(v2, w) = ⟨(v2, v1), (v1, w)⟩. By definition of
slack,

s(v2, w) = c(v2, w)− y(v2) + y(w)
= d(v2, v1)− d(v1, w)− y(v2) + y(w).

Since (v2, w) ∈ P , at the end of Step 4(a), the slack s(v2, w) becomes 0 (Lemma 5). Therefore,
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we have (d(v2, v1)− d(v1, w))− y′(v2) + y′(w) = 0 which can be rearranged as

y′(v2) = d(v2, v1)− d(v1, w) + y′(w). (11)

Since, (v1, w) is a forward edge in T , after Step 4(a), we have y′(w) ≥ d(v1, w). Substituting
this in 11, we get

y′(v2) ≥ d(v1, v2). (12)

After augmentation, the backward edge (v2, v1) ∈ Proj(v2, w) changes to a forward edge
(v1, v2) ∈ Gi+1. Hence, inequality (11) implies inequality (10) continues to hold. Therefore,
inequality (10) continues to hold after the augment operation in Step 4(b).

Finally, step 4(b) also adds a forward edge from ri+1 to am and modifies the vertex
weight of the anchor node am to 0. Since the cost of this forward edge d(ri+1, am) is 0,
inequality (10) holds for the vertex am. This concludes the argument that inequality (10)
holds after Step 4(b).
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