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Abstract

Decomposable tasks are complex and comprise of a hierarchy
of sub-tasks. Spoken intent prediction, for example, combines
automatic speech recognition and natural language understand-
ing. Existing benchmarks, however, typically hold out exam-
ples for only the surface-level sub-task. As a result, models
with similar performance on these benchmarks may have un-
observed performance differences on the other sub-tasks. To
allow insightful comparisons between competitive end-to-end
architectures, we propose a framework to construct robust test
sets using coordinate ascent over sub-task specific utility func-
tions. Given a dataset for a decomposable task, our method op-
timally creates a test set for each sub-task to individually assess
sub-components of the end-to-end model. Using spoken lan-
guage understanding as a case study, we generate new splits for
the Fluent Speech Commands and Snips SmartLights datasets.
Each split has two test sets: one with held-out utterances assess-
ing natural language understanding abilities, and one with held-
out speakers to test speech processing skills. Our splits identify
performance gaps up to 10% between end-to-end systems that
were within 1% of each other on the original test sets. These
performance gaps allow more realistic and actionable compar-
isons between different architectures, driving future model de-

velopment. We release our splits and tools for the community.
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1. Introduction

Complex, real-world tasks, such as the spoken language un-
derstanding (SLU) tasks of spoken intent prediction and spo-
ken language translation, comprise of hierarchies of simpler
sub-tasks. Spoken intent prediction combines automatic speech
recognition (ASR) to process audio, followed by natural lan-
guage understanding (NLU) to classify an utterance to a partic-
ular intent (intent prediction) [1]. Similarly, speech translation
involves an ASR task followed by machine translation (MT) to
translate a transcription of the input audio [2].

Deep, end-to-end models [3–8] are adopted for these com-
plicated tasks due to advancements in model architectures and
computing capabilities. End-to-end architectures typically out-
perform traditional, modular architectures without requiring do-
main expertise or feature engineering [9]. Moreover, end-to-
end models avoid the error propagation arising from traditional
approaches [10]. However, traditional modular or cascade ar-
chitectures, naturally structured into sub-components that each
address a specific sub-task, are more straightforward to evalu-
ate. End-to-end models cannot quantify performance of decom-
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posed sub-tasks [11], blurring the lines between the individual
sub-tasks. Using pre-trained systems for some sub-tasks further
reduces the chance of errors propagating to the downstream sub-
tasks [12–14]. Thus, it is important to explicitly evaluate each
sub-component of an end-to-end network.

Prior datasets for decomposable problems, however, of-
ten test only the top-level subtask. For example, the Fluent
Speech Commands (FSC) [4] and Air Travel Information Sys-
tem (ATIS) [15] SLU benchmarks are open-speaker but not
open-utterance, and thus, only effectively test speaker gener-
alizability. Moreover, train-test overlap is a problem in modern
question answering datasets [16]. In paradigms like encoder-
decoder modeling or speech translation [11,17–19], neural net-
work components each solve different logical functions which
combine to solve the final task. Therefore, standard benchmarks
may effectively test a particular sub-network of a given system,
masking any weaknesses of other model sub-components and
providing an inflated estimates of model performance.

To address this, we present a dataset-agnostic framework
for evaluating end-to-end model on decomposable tasks. Using
spoken intent prediction as a case study, we focus on two popu-
lar benchmarks, FSC [4] and Snips SmartLights (Snips) [20,21]
datasets. We provide evidence that the original test splits do
not fairly evaluate the ASR and NLU subtasks of spoken intent
prediction. Using our framework, we propose robust Unseen

and Challenge splits that each contain two test sets: one test
set with held-out speakers, and one with held-out utterances.
For the Challenge set, we use coordinate ascent with speaker-
and transcript-specific utility metrics to explicitly test for gen-
eralization to diverse speakers and varied phrasings of intents.
Our experiments show the new test splits can amplify accuracy
differences by up to 10% between sub-components of several
state-of-the art models for spoken intent prediction, offering
more in-depth analyses of strengths and weaknesses of various
end-to-end modeling approaches. These splits have the poten-
tial to drive future modeling innovation, not only for this task,
but for any similarly decomposable task.

2. Motivation

In the following section, we introduce the spoken intent predic-
tion task and discuss limitations of existing SLU benchmarks.

2.1. Task Definition

Spoken intent prediction maps a spoken command (e.g. “Turn
on the lights in the kitchen”) and to a discrete, actionable set
of slots (Action: “Activate”), (Object: “Lights”), (Location:
“Kitchen”). This task challenges a model’s speech recognition
and semantic processing abilities: a good SLU model must gen-
eralize to new speakers and to new phrasings of similar intents.

http://arxiv.org/abs/2106.15065v1
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Table 1: % WER values for Google ASR [24] on speakers with

first language English and non English. (S, I, and D refer to

substitution, insertion and deletion errors, respectively)

First Language Spoken % S % I % D % WER

English 2.0 0.7 2.4 10.8
Non English 6.3 2.2 7.7 27.8

The FSC dataset [4] tests a model’s ability to predict intents
from commands used with a home voice assistant. Following
traditional speech processing paradigms, the FSC test set con-
sists of audio from speakers unseen during training. Although
this test split measures generalization to new speakers, the test
set fails to explicitly test generalization to new utterances. As
Table 2 illustrates, the training set provides 100% coverage of
the transcripts seen during test time. Snips, which is similar in
content to FSC, does not release official splits, but typical split
creation approaches [9,21,22] do not explicitly consider testing
generalizability for each sub-task independently and instead use
random splits which can lead to overtly optimistic estimate [23].
This can also mask performance gaps in thesub-tasks.

In the real world, we expect systems to understand the
same commands spoken in different ways by speakers of di-
verse backgrounds. Thus, it is important to hold out new ut-
terances to more robustly assess a model’s semantic process-
ing ability [25]. Moreover, open-speaker test sets should assess
model generalizability to diverse demographics. In FSC, for ex-
ample, all held-out speakers are native English speakers, while
accented speakers are seen only during training time. To un-
derstand how this affects spoken language understanding eval-
uation, we used Google’s ASR system [24] to generate tran-
scripts from audio files in the dataset and computed Word Error
Rates using the gold transcripts. Table 1 illustrates that the ASR
model’s WER on audio from speakers whose first language is
not English is twice as high as the WER on audio from native
English speakers. To develop technologies that are inclusive to
different speaker demographics, it is important to create bench-
marks that are representative of these diverse backgrounds.

3. Methodology

We discuss our approach for creating the open-utterance and
open-speaker test sets for the Unseen and Challenge splits. The
Challenge split uses additional constraints to make both test sets
more difficult and realistic.

3.1. Dataset Optimization

We construct test splits using coordinate ascent [26, 27] over
sub-task driven utility functions. Each coordinate direction cor-
responds to the test set assignment (either the open-speaker or
open-utterance test sets) of a block of datapoints in the dataset.
We first select an open-speaker test set, then choose the open-
utterance test set. Finally, we randomly distribute the remaining
instances into training and validation sets, preserving the origi-
nal size ratio and intent distributions of these sets [4].

3.2. Unseen Split

We use the two functions to generate unseen-speaker and
unseen-utterance splits with desirable qualities.

Unseen Speaker Set The FSC dataset contains speakers of var-
ious ages, native languages, English fluency levels, and gen-
ders, but the original, open-speaker test set is not representa-

tive of these groups. To ensure we are testing on speakers of
diverse backgrounds, we minimize the symmetrised Kullback-
Leibler (KL) divergence [28] between the discrete distributions
of speaker demographics in the training and test sets.
Unseen Utterance Set When selecting unique utterances to
hold out from training, we minimize the symmetrised KL diver-
gence of the discrete intent label distributions between training
and test sets. Utterances with the same intent are semantically
similar, ensuring the semantic distributions of training and test
sets match. We also minimize the KL divergence of the discrete
distributions of transcript lengths between training and test sets.

3.3. Challenge Split

In addition to the constraints defined in the previous section, we
define speaker-specific and transcript-specific utility functions
to quantify the “hardness” for each subtask. When optimized,
these functions create more challenging, realistic held-out sets.
Notably, these test sets may capture dataset outliers due to noisy
recordings, labeling errors, or poorly aligned data. Thus, we
recommend using them in addition to the Unseen splits. The
proposed utility functions are specific to spoken language tasks,
but could be replaced with arbitrary task-specific objectives.
Challenge Speaker Set We compute the Word Error Rate, mea-
sured by insertion, deletion, and substitution errors, of Google’s
ASR model [24] to identify particularly challenging utterances.
However, high WER is not always indicative of a reasonably
hard example. According to previous work [29], substitution
errors reflect confusions in ASR systems. Alignment errors,
indicated by an increase in insertion and deletion errors and a
large deviation between these quantities, are a sign of poor data
quality. To produce a challenging speaker set without compro-
mising data quality, we use the following utility function, UWER:

UWER = S − α ∣I −D∣ − β I − γ D

where S, I and D refer to substitution, insertion, and deletion
rates, respectively, such that we maximize S while minimizing
I , D and their deviation, ∣I −D∣. α, β and γ are hyperparam-
eters. We empirically observe α = 0.05, β = 0.05 and γ = 0.4

work well for the FSC dataset, producing a challenging split
without compromising on test-set data quality.
Challenge Utterance Set A dataset with many unique n-grams
makes the SLU task more difficult [25]. Thus, we create splits
that minimize the n-gram overlap between our train and test set.
We choose the Sentence BLEU [30] score as a proxy for n-gram
overlap and use it in the following utility function:

UBLEU = −BP ∗ exp(
4

∑
i=1

αi log(pi))

where pi is the modified precision [30] for each n-gram, αi

weighs the respective importance of the i
th

-gram overlap, and
BP is the brevity penalty [30] penalizing shorter sentences.
Transcripts in the FSC dataset are 3-5 words in length, thus,
considering only 1-gram and 2-gram overlap (i.e. α1 =

0.5, α2 = 0.5, α3 = 0.0, α4 = 0.0) worked well for holding
out unique n-grams not seen during training.

Finally, to ensure both Unseen and Challenge speaker sets
test generalization only to new speakers (and not utterances),
we maximize the n-gram overlap with each split’s respective
training utterances. As Table 2 shows, our constructed speaker
test sets have 100% n-gram overlap with their respective train-
ing sets. Unlike the original splits, in which test speakers are
less demographically diverse than training set speakers, our new



Table 2: Comparing data statistics and different models compared on original and proposed splits for the Fluent Speech Commands

dataset. Speaker and Utterance Coverage refer to the percentages of test set speakers and utterances, respectively, observed in the

training set. “Speaker KL” is the symmetrised Kullback-Leibler divergence of speaker demographic distributions between training and

test sets. We ensure that our proposed splits have roughly the same # of examples in each test set as in the split proposed in [4]. We

also construct different variants of the Unseen split by changing the random seed of our algorithm and report the standard deviation.

Dataset Statistics E2E SLU Model [4] Test Accuracy

Fluent Speech Speaker Utterance Speaker Test No w/ Pretrained ASR Finetune Word + Finetune
Command Test Set Coverage Coverage KL Size Pretraining (Frozen) Intent Layers All Layers

Original Split 0% 100% 0.88 3793 96.8 98.5 99.1 97.2
Random Split 100% 100% <0.01 3793 94.6 96.2 97.2 95.8

Unseen Split (Spk.) 0% 100% 0.01 3366 92.0 (±0.4) 92.9 (±0.2) 94.2 (±0.3) 93.9(±0.4)
Unseen Split (Utt.) 100% 0% <0.01 3971 78.1 (±1.3) 86.0 (±0.7) 88.2 (±0.9) 88.3(±2.0)

Challenge Split (Spk.) 0% 100% 0.01 3349 87.2 90.9 92.3 91.1
Challenge Split (Utt.) 100% 0% <0.01 4204 68.2 73.4 78.3 74.1

splits effectively minimize this distributional gap, as shown by
the “Speaker KL” column. Each new test set has similar size to
the original test set, and its distribution of utterance lengths is
kept close to that of the training set to limit distribution shift.

4. Experiments

4.1. Comparing end-to-end SLU systems

We compare four different models from [4] on the Original, Un-

seen, and Challenge splits, as well as a stratified Random split
(stratified over all intent labels). The four models are based on
a three-stage neural architecture consisting of a phoneme layer,
word layer, and intent layer. Each model uses different pre-
training and finetuning schemes: using no pretraining, using a
frozen pretrained ASR model (i.e. finetuning only the intent
layers), finetuning only word and intent layers, or finetuning all
layers. When pretraining, the phoneme and word modules are
pretrained on the LibriSpeech dataset [31]. Using the Original
test split, we successfully reproduced the results [4] for each of
these freezing and unfreezing schedules.

Using the speaker and utterance test sets we create, we can
highlight sub-task-level performance differences across the four
models. As Table 2 illustrates, our Unseen and Challenge splits
reveal that all models are better at generalizing to new speakers
than to new utterances. However, all models achieve at least 3%
lower accuracy on the Unseen and Challenge speaker sets com-
pared with the Original held-out speaker set, indicating that cur-
rent SLU models still do not generalize well to diverse speaker
demographics. The results on the Challenge utterance set in-
dicate that all models are significantly worse at generalizing to
unique phrases of the same intent, suggesting an opportunity for
enhancing semantic processing abilities of SLU models.

Our splits are also useful for comparing configurations of
the same model. Intuitively, pretraining phoneme layers to de-
tect phonetic patterns should help generalize to unseen speakers
and utterances. However, Table 2 shows that on the Original
and Random splits, there are small performance gaps between
pretrained and non-pretrained models (1-2%, or ∼50 test set ex-
amples), suggesting pretraining offers limited value, consider-
ing the resources it requires. In contrast, the performance gap
becomes significant in the Unseen utterance set and both the
speaker and utterance Challenge splits. The model without pre-
training performs 10.1% worse than the best pre-trained model
(pretraining with finetuned word and intent layers) in both the
Unseen and Challenge utterance sets, corresponding to ≈460
more mistakes. The gaps are smaller in the speaker Challenge
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Figure 1: Comparing text-based NLU models with the “Fine-

tune All Layers SLU” baseline on the original and proposed

utterance test sets. “Text-NLU Model” refers to a text-based

NLU system using randomly initialized word embeddings.

set, suggesting a non-pretrained ASR model generalizes better
to new speakers than to new words or phonemes. These results
corroborate previous findings [25] that finetuning models to the
dataset’s distinct acoustic and linguistic patterns improves gen-
eralization to new phrasings. Finally, we change the random
seeds used to create the Unseen split to test the robustness of
our methods. The relatively low standard deviations in perfor-
mance, as seen in Table 2, illustrate that our method is stable.

4.2. Gap between SLU and NLU

Using the utterance test sets of the Unseen and Challenge splits,
we identified that SLU systems struggle to effectively capture
lexical and semantic information. As an ablation study, we used
gold transcripts to train and test the intent prediction component
of the end-to-end model [4] in isolation (keeping all word and
phoneme layers frozen). As a baseline, we train a text-based in-
tent classification model initialized with random word embed-
dings that are finetuned during training. To incorporate seman-
tic information into the word representations, we extract two
types of word embeddings: (1) pretrained FastText [32] embed-
dings and (2) contextual BERT embeddings [33]. In Figure 1,
we compare the baseline and semantically-enhanced text NLU
models with the “Finetune All Layers” SLU model of [4]. Fig-
ure 1 illustrates that BERT pretraining can boost the accuracy
of the intent subcomponent by 12% on the Challenge utterance
set. These differences are not so apparent in the Unseen split,
which is not as semantically challenging because it does not



Table 3: Adding semantic word embeddings to the SLU system

has only a minor effect (<1%) on the the Original split and

proposed unseen-speaker splits. On the unseen-utterance splits,

we see a magnified performance gap (>2%), in bold.

Unseen Challenge
E2E SLU Model [4] Original Spk. Utt. Spk. Utt.

Pretrained ASR (Frozen) 98.5 92.9 86.0 90.9 73.4
+ FastText Pretraining 98.7 92.7 88.3 90.0 75.5

Table 4: % WER values of the Google ASR system [24] on the

original and proposed speaker test sets, and the corresponding

accuracy of the Pretrained ASR (Frozen) model. (S, I, and D

refers to substitution, insertion, and deletion, respectively.)

Test Split % S % I % D % WER SLU Acc.

Original 1.0 0.5 0.6 6.5 98.5
Unseen Speaker 2.1 1.0 2.5 12.1 92.9
Challenge Speaker 3.2 1.2 2.6 13.9 90.9

explicitly minimize n-gram overlap [25]. There is still a 2%
gap between the SLU and NLU models’ performance on the
Unseen utterance split, suggesting that pretraining embeddings
helps enhance semantic understanding.

Based on the results of our ablation study, we extend the
frozen pretrained ASR model, the best reported SLU model
from [4], with FastText embeddings. At each audio frame, the
ASR module predicts a distribution over words; we use this
compute a weighted average FastText word embedding [34] and
pass it to the intent layer. Table 3 illustrates that enriching the
ASR outputs with semantic information gives very minor im-
provements on the original test set, but provides >2% improve-
ment to the unseen-utterance sets of both Unseen and Challenge
splits, consistent with the experiments in the previous section.

4.3. Analyzing proposed utility functions

In Section 4.1, we illustrated how our optimized splits can dis-
tinguish model performance. We now verify our utility func-
tions can effectively quantify the complexity of each subtask.

Word Error Rate As in Section 2.1, we use WER of Google’s
ASR system [24] to quantify the difficulty of our splits. Table 4
illustrates that WER is twice as high on the proposed speaker-
diverse splits as on the original splits. Substitution errors are
most prominent in Challenge set, indicating that we create a
hard test set without necessarily compromising on data quality.
N-gram overlap For each proposed split, we compute the aver-
age BLEU score for the test set relative to the training set. Table
5 highlights that our test splits have much lower n-gram overlap
with their training sets. Minimizing n-gram overlap while pre-
serving intent distributions of training and test sets further tests
a model’s generalization to new phrasings of the same intents.

4.4. Extending to the Snips SmartLights dataset

To illustrate our methodology is dataset agnostic, we extend our
approach to Snips SmartLights, a popular SLU dataset [35,36].

Snips SmartLights dataset is unseen-utterance by design be-
cause all utterances are unique. Thus, we create a single Unseen
test set that holds out speakers and utterances. We optimize both
speaker and utterance utilities defined in Section 3.2 to create
the split. Using the WER and n-gram based utilities defined
in Section 3.3, we create separate speaker and utterance Chal-

Table 5: BLEU score values for unigram, bigram, trigram and

4-gram for Original and proposed (utterance) test sets. Utter-

ances shorter than order of a given n-gram were removed.

N-gram overlap SLU

Test Split 1 2 3 4 Acc.

Original 100.0 100.0 100.0 100.0 98.5
Unseen Utterance 98.0 87.4 73.4 71.7 86.0
Challenge Utterance 91.0 69.9 66.4 66.6 73.4

Table 6: Evaluating models on original and proposed splits for

the Snips SmartLights dataset. Snips does not provide default

splits, so we compare against a random split.

Rand. [9] Unseen Challenge Split
E2E SLU Model [4] Split Split (Spk.) (Utt.)

No Pretraining 60.4 27.3 37.8 45.2
w/ Pretrained ASR (Frozen) 83.2 78.5 73.2 67.4
Finetune Word + Intent Layers 88.0 80.9 82.6 75.3
Finetune All Layers 85.0 75.0 74.8 78.5

lenge test sets. Following the Challenge test setup of FSC, we
increase the speaker test set’s n-gram overlap set with its train
set to match that of the random split. We do not control for n-
gram overlap in the Unseen split since it holds out both speakers
and utterances. As a result, our Challenge speaker set may be
easier than the Unseen split for SLU models. Moreover, Snips
is a smaller dataset, so the Snips Challenge set’s train, valid,
speaker test, utterance test ratios are 75:10:7.5:7.5 as compared
to 80:10:10 in the baseline random split [9].

Using the same models as Section 4.1, we compare the per-
formance on our proposed splits against a random split [9] in
Table 6 (Snips does not release official splits). We observe sim-
ilar results as in the FSC setting. Pretraining ASR models im-
proves speaker test set performance by nearly 40-50% for the
Unseen and Challenge splits. Moreover, finetuning improves
performance for all splits, especially on the Challenge utterance
set, on which both finetuned models achieve nearly 12% gains
in performance. Thus, we illustrate that we can easily extend
our approach to another SLU benchmark, and see effects con-
sistent with those on the FSC dataset.

5. Conclusions

We present a novel, dataset-agnostic methodology for con-
structing splits for decomposable tasks, casting the construc-
tion of splits as an optimization problem over dataset-level util-
ity functions. We release Unseen and Challenge splits for the
FSC and Snips datasets to the community, and show evidence
that these splits can amplify performance differences between
sub-components of models. We recommend the use of the Un-

seen splits for testing in-domain performance and the Challenge

splits for more extreme out-of-domain generalization scenarios.
As our methodology is task-agnostic, we encourage the exten-
sion of our re-splitting method to other decomposable tasks,
such as speech translation or visual question answering.
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