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Black hat hackers use malicious exploits to circumvent security controls and take advantage of system 
vulnerabilities worldwide, costing the global economy over $450 billion annually. While many 
organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their 
vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One 
promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In 
this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-
based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes 
bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to 
vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates 
the exploit post date and vulnerability severity to help cybersecurity professionals with their device 
prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-
art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across 
four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate 
that the proposed EVA-DSSM achieves precision at 1 scores 20% - 41% higher than non-DL approaches 
and 4% - 10% higher than DL-based approaches. We demonstrated the EVA-DSSM’s and DVSM’s 
practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and 
over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary 
user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-
DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities 
than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and 
DVSM have important implications for analysts in security operations centers, incident response teams, 
and cybersecurity vendors. 
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Introduction 

The rapid proliferation of computing technologies has 
afforded modern society with unprecedented benefits. 
Industry, government, and academia use databases, 
communication networks, and other information systems 
(IS) to execute day-to-day operations with unparalleled 
efficiency and effectiveness. Unfortunately, black hat 
hackers often use malicious exploits to circumvent security 
controls and take advantage of system vulnerabilities for 
cyberwarfare, hacktivism, espionage, or financial purposes. 
These cyberattacks cost the global economy over $450 
billion annually (Graham, 2017). To combat this societal 
issue, many organizations are increasingly developing cyber 
threat intelligence (CTI) to manage knowledge about 
hackers and emerging threats (Samtani et al., 2020a). A 
common step within the CTI process is vulnerability 
assessment, where organizations assess their systems’ flaws 
using automated tools such as Nessus. Vulnerability 
assessment results help analysts collect relevant data from 
log files located in databases, firewalls, and servers. 
Analytics such as malware analysis, event correlation, and 
forensics derive intelligence for CTI professionals to 
prioritize vulnerable devices for subsequent remediation and 
mitigation.  

Despite the maturity of CTI procedures, experts note that the 
reliance on past events (e.g., log files) creates reactive 
intelligence (Bromiley, 2016). Major industry firms such as 
Ernst & Young have long expressed that “organizations need 
to take a more proactive approach to cybersecurity” (EY, 
2014). Similarly, the internationally recognized SANS 
Institute has consistently urged organizations to use 
“external threat intelligence sources to help alert the 
organization of threats it was not previously aware of” 
(Bromiley, 2016). One promising and emerging data source 
that can help CTI professionals proactively identify exploits 
is the online hacker community or “Dark Web” (Benjamin 
et al., 2019). The Dark Web is an appealing data source for 
CTI as it contains millions of hacking tools from hackers in 
the US, Russia, the Middle East, and China. The Dark Web 
comprises four major platforms (Benjamin et al., 2019): 
forums, Internet-Relay-Chat (IRC), DarkNet Markets 
(DNMs), and carding shops. While each platform offers CTI 
value, forums are the largest (often tens of millions of posts 
in a forum) and allow hackers to freely share exploits 
(Samtani et al., 2017). We illustrate example exploits with 
their metadata (e.g., titles, dates, categories) from a hacker 
forum on the Dark Web in Figure 1.  

Researchers and practitioners have found thousands of SQL 
injections, rootkits, crypters, and other malicious exploits 
within large, international, and evolving hacker forums 
(Samtani et al., 2017). Such exploits have helped hackers 

execute highly publicized attacks resulting in organizations 
losing tens of millions of dollars and significant reputation 
(e.g., BlackPOS for Target breach) (Kitten, 2014). These 
significant ramifications underscore the importance for 
organizations to identify the hacker exploits relevant to their 
vulnerabilities to improve their cybersecurity posture 
(Shackleford, 2016). Although many exploit and 
vulnerability names share similar semantics (e.g., “Telnet 
Cracker” exploit and “Unencrypted Telnet Server” 
vulnerability), automatically creating links in a scalable and 
accurate manner is a nontrivial task due to significant non-
natural language content (e.g., system and technology 
names) and volume of hacker forums and vulnerability 
assessment data. These data characteristics limit the direct 
application of standard CTI and text mining methods and 
necessitate novel computational algorithms rooted in 
artificial intelligence (AI) (Benjamin et al., 2019; Samtani et 
al., 2020a).  

While IS scholars are uniquely equipped to tackle these 
challenges, existing IS cybersecurity research has focused on 
behavioral compliance (Wang et al., 2010; Wang et al., 
2015; Vance et al., 2015; Chen & Zahedi, 2016), risk 
management (Spears & Barki, 2010), security investments 
(Li et al., 2012; Ransbotham et al., 2012; Kwon & Johnson, 
2014), and market effects of cybersecurity (Gupta & 
Zhdanov, 2012; Kim & Kim, 2014). Studies in each area use 
behavioral or economic methods to make excellent 
contributions to our understanding of cybersecurity. The 
unique characteristics of hacker forum and vulnerability 
assessment data combined with CTI’s emphasis on the rapid 
development of novel systems and algorithms necessitates 
novel computational information technology (IT) artifacts 
(Rai, 2017; Mahmood et al., 2010; Samtani et al., 2020a). 
Motivated by the ever-increasing attention on developing 
proactive CTI from the online hacker community and by the 
lack of IS and cybersecurity analytics studies, we adopted 
the computational design science paradigm to develop a CTI 
framework with two contributions: 

1. Exploit vulnerability attention deep structured 
semantic model (EVA-DSSM). We designed a novel 
Deep Learning (DL)-based EVA-DSSM that 
automatically links exploits from hacker forums to 
vulnerabilities detected by prevailing vulnerability 
assessment tools. EVA-DSSM incorporates principles 
from emerging methods such as the deep structured 
semantic model (DSSM) from neural information 
retrieval and attention mechanisms from interpretable 
DL to automatically extract and weight the sequential 
dependencies and global relationships present in 
exploit and vulnerability names to create exploit-
vulnerability linkages. 
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Figure 1. Sample Hacker Forum Posts with Exploits 

 
2. Device vulnerability severity metric (DVSM). Based on 

the exploit-vulnerability linkages generated from the 
EVA-DSSM, we devised a new DVSM that incorporates 
exploit and vulnerability metadata such as exploit post 
date and vulnerability severity into a single score. DVSM 
aims to provide a holistic metric to help cybersecurity 
professionals execute their device prioritization, 
vulnerability remediation, and risk management efforts. 

Consistent with the computational design science paradigm 
(Rai, 2017), we rigorously evaluated the EVA-DSSM against 
state-of-the-art non-DL and DL-based short text matching 
methods with a series of technical benchmark experiments on 
four large-scale testbeds of exploits: web application, remote, 
local, and denial of service (DoS). We demonstrated the EVA-
DSSM’s and DVSM’s practical utility with two CTI case 
studies: openly accessible systems in major U.S. hospitals and 
supervisory control and data acquisition (SCADA) systems. 
Finally, we conducted a complementary user evaluation with 45 
cybersecurity professionals that examined the usefulness of the 
EVA-DSSM and DVSM results against those generated by 
prevailing benchmark approaches for the hospital and SCADA 
case studies. Taken together, the EVA-DSSM and DVSM have 
implications for analysts in security operations centers (SOCs), 
incident response (IR) teams, and cybersecurity vendors.  

Related Work 

We review four streams of literature to ground and guide our 
work: (1) hacker community (Dark Web) research to provide 
an overview of major platforms and identify how past studies 
have examined exploits within hacker forums, (2) vulnerability 
assessment principles to understand the prevailing approaches 

for discovering, assessing, and ranking vulnerabilities, (3) the 
DSSM to understand how the prevailing DL-based approach 
for short text matching operates, and (4) attention mechanisms 
identify how they can be incorporated into the DSSM to 
improve exploit-vulnerability linking performance.  

Hacker Community (Dark Web) Research 

As indicated in the introduction, hackers from the US, Russia, 
China, and the Middle East often congregate on hacker forums, 
DarkNet Markets, IRC, and carding shops to exchange 
malicious tools, knowledge, and other content (Du et al., 2018; 
Benjamin et al., 2019). We further describe each platform, its 
CTI value, and analytical challenges in Table 1.  

Hacker forums contain thousands of freely available exploits, 
have rich metadata (e.g., post dates), and focus on major 
themes (e.g., carding, exploits only). DNMs often contain 
considerable non-cybersecurity-related content (e.g., porn, 
drugs) and lack valuable CTI metadata (e.g., date) (Ebrahimi 
et al., 2020). Moreover, products must be purchased (a 
significant risk for researchers) to gain additional details. IRC 
and carding shops allow plain-text conversations or the 
posting of stolen credit cards, respectively, but prevent 
hackers from posting exploits (Benjamin et al., 2016; Li et al., 
2016). Given the analytical challenges that DNMs, IRC, and 
carding shops present, hacker forums are often preferred by 
cybersecurity researchers aiming to examine exploit-related 
content for CTI (Benjamin et al., 2019). We present selected 
recent studies that examine exploits in online hacker forums 
in Table 2. We summarize each study’s CTI task(s), method(s) 
employed, identified exploits, and whether any exploit-
vulnerability linking was conducted.  
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Table 1. Summary of Major Hacker Community (Dark Web) Platforms 
Platform Description CTI value Analytical challenges 

Hacker 
Forums 

Discussion boards 
allowing hackers to 
freely share, 
access, and discuss 
malicious tools  

• Only platform providing freely 
accessible tools  

• Richest metadata (post dates, 
hacker names) for identifying key 
hacker and emerging threats  

• Significant natural, multilingual and non-
natural text content 

• Large quantities of data precludes 
conventional CTI analytics or manual 
analysis 

DarkNet 
Markets  

Online 
marketplaces that 
sell malicious 
content, illicit goods, 
and illegal products 

• Discover breached/stolen content 
• Serve as early indicator for 

breached companies 
• Pinpoint key sellers 

• Lacks key metadata (e.g., post date)  
• Purchase content before access 
• Mostly content unrelated to cybersecurity 

(e.g., drugs, porn) 

Internet-
Relay-Chat  

Online channels 
that allow clear-text, 
real-time chat 

• Commonly used by hacktivist 
groups 

• No mechanism to share exploits 
• Significant text content 

Carding 
Shops 

Platforms selling 
stolen credit/debit 
card information 

• Detect breached individuals, 
organizations, and entities 

• Lacks CTI-relevant metadata (e.g., post 
date) 

• Limited mechanisms for exploit-sharing 

 
Table 2. Selected Recent Studies Examining Exploits in Online Hacker Forums 
Year Author CTI task(s) Method(s) Identified exploits Vulnerability 

linking? 

2020 Ampel et al.  Categorizing and labeling 
hacker exploits 

Deep 
transfer 
learning 

Web applications, DoS, 
Remote, Local, SQLi, XSS, File 
inclusion, Overflow 

No 

2020c Samtani et al.  Detecting emerging hacker 
exploits 

Diachronic 
linguistics 

DoS, Crypters No 

2019 Schäfer et al.  Forum exploration  SNA DDoS, botnets, DoS No 

2018 Deliu et al.  Exploit categorization SVM, LDA Botnet, crypter, DDoS, rootkit No 

2018 Williams et al.  Incremental collection  LSTM Database, network, mobile No 

2017 Deliu et al.  Exploit categorization SVM Spamming, crypters, SQLi No 

2017 Sapienza et al.  Emerging trends Keywords Botnets, DDoS, DoS No 

2017 Samtani et al.  Exploit categorization, key 
hacker ID, CTI system  

SVM, LDA, 
SNA 

Bots, crypters, keyloggers, 
SQLi, XSS  

No 

2017 Grisham et al.  Detecting key hackers for 
mobile malware  

RNN, SNA  Mobile malware No 

2016 Samtani and 
Chen  

Identifying key hackers SNA Keyloggers  No 

2016 Li et al.  Exploring hacker exploits sLDA Malware, phishing, botnets No 

2016 Nunes et al.  Exploring hacker exploits SVM Botnets, keyloggers, 0-days No 

2015 Samtani et al.  Exploring hacker exploits SVM, LDA Bots, crypters, web exploits No 
Note: DDoS = distributed denial of service; DoS = denial of service; DTL= deep transfer learning; LDA = latent Dirichlet allocation; LSTM = long-
short term memory; OLS = ordinary least squares; RNN = recurrent neural network; sLDA = supervised latent Dirichlet allocation; SNA = social 
network analysis; SQLi = structured query language injection; SVM = support vector machine; XSS = cross-site scripting. 
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Most studies have used algorithms such as SVM, RNN, 
LSTM, and LDA to identify and categorize bot nets, email 
hacks, keyloggers, web exploits, and other exploits (Samtani 
et al., 2015; Nunes et al., 2016; Li et al., 2016; Deliu et al., 
2017; Deliu et al., 2018; Williams et al., 2018; Schäfer et al., 
2019; Ampel et al., 2020). Some studies have made efforts to 
study phenomena related to exploits, including identifying key 
hackers sharing exploits (Samtani et al., 2016; Grisham et al., 
2017) and emerging threats (Sapienza et al., 2017; Samtani et 
al., 2020c). While each study provides valuable knowledge 
about exploits in Dark Web forums, we are unaware of any 
studies identifying how exploits link to an organization’s 
vulnerabilities. Designing a forum-based approach to link tens 
of thousands of exploits and vulnerabilities automatically 
requires a principled, data-driven methodology. Therefore, we 
summarize metadata available in hacker forums that provide 
exploits in Table 3. We categorize metadata into three groups: 
(1) description, which pertains to key descriptors associated 
with the exploit; (2) operation, which details how the exploit 
operates; and (3) content, which is the raw text content from 
the exploit. 

Each exploit has metadata such as the post date, author name, 
description, category (e.g., web, remote, etc.), and targeted 
platforms. All fields are fully populated except for “verified 
exploit” and “common vulnerabilities and exposure” (CVE). 
Additionally, data may vary in quality and volume. For 
example, the exploit description and exploit content often 
contain significant noise and are therefore not reliable data 
sources for automated exploit-vulnerability linking (Ampel et 
al., 2020; Samtani et al., 2017). Each exploit name is created 
by a hacker and therefore often includes information about the 
targeted system, version, technology, and functions (typically 
in that order) clearly and unambiguously. These data 
characteristics can be leveraged to link to an organization’s 
vulnerabilities. However, this requires understanding 
approaches to discover and categorize vulnerabilities and their 
data characteristics.  

Vulnerability Assessment Principles 

A vulnerability is “a flaw within a system, application or service 
which allows an attacker to circumvent security controls and 
manipulate systems in ways the developer never intended” 
(Kennedy et al., 2011). Organizations often use assessment 
tools to automatically identify, categorize, and prioritize tens of 
thousands of vulnerabilities, including web application issues, 
unpatched technology, and default logins (Sectools, 2018). We 
illustrate a sample vulnerability listing from Nessus, a 
prevailing vulnerability assessment tool in Table 4. We also 
categorize and describe key metadata available in the listing. 

Each vulnerability in prevailing scanners provides 
description-based metadata such as name, synopsis, 
description, class (family) name, CVE, published and 
updated dates, and a list of vulnerable system versions. 
Additionally, each vulnerability includes risk details such as 
CVSS score and risk factor. The vulnerability name is the 
only fully populated attribute (appears in all records). 
Cybersecurity professionals construct each name to 
summarize its key aspects (e.g., susceptible system, version, 
operations). With respect to risk details, CVSS is essential for 
vulnerability prioritization and risk management. Designed by 
Carnegie Mellon University’s Computer Emergency 
Response Team (CERT) and the National Institute of 
Standards and Technology (NIST), CVSS standardizes 
vulnerability information by considering various base, 
environmental, and temporal factors such as vulnerability 
type, age, and the severity of the consequences if the 
vulnerability is exploited (Mell et al., 2007). CVSS scores 
range from 0.0 to 10.0, and are segmented as “informational,” 
“low,” “medium,” “high,” and “critical” levels. We 
summarize CVSS severity (risk) ranks, CVSS ranges, and 
examples of vulnerabilities in Table 5. 

CVSS provides security practitioners (analysts in SOCs, IR 
teams) a mechanism for prioritizing and managing the risk of 
their vulnerable devices (Farris et al., 2018; Samtani et al., 
2018). Despite the extensive usage of vulnerability scanners 
and CVSS, we are unaware of any study that leverages the 
content within vulnerability names (e.g., system names, 
technology names, etc.) to identify the most relevant exploit 
name (also fully populated) from online hacker forums in the 
Dark Web. Fusing both data sources can help facilitate the 
development of novel device prioritization metrics that 
incorporate key metadata from hacker exploits (e.g., post 
dates) and vulnerability descriptions (e.g., CVSS) (Allodi & 
Massacci, 2014).  

Deep Structured Semantic Model (DSSM)  

Our review of the data characteristics of exploits from hacker 
forums indicates that exploit names are short texts created by 
hackers that sequentially detail the vulnerability and system(s) 
they are designed for. Similarly, vulnerability names are short 
texts produced by cybersecurity professionals that often 
sequentially summarize the system, version, and method of 
exploitation. Both attributes are fully populated in exploit and 
vulnerability data sources and often have relevant and 
overlapping contents (e.g., system names). Therefore, 
automatically linking exploits to vulnerabilities using their 
names only is a scalable, practical, and low-risk approach (no 
vulnerability recreation or exploit dropping is required).  
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Table 3. Summary of Metadata in Hacker Forums that Provide Exploits 
Category Metadata Description 

Description Exploit name Exploit name that defines its function and target 
Author name Name of hacker who posted 
Post date Date when exploit was posted 
Exploit category Major category an exploit belongs to 

Operation Targeted platform Specific platform and exploit targets  
Common vulnerabilities and exposure (CVE) Standardized representation of a vulnerability  
Verified exploit Verified by community that the exploit is operational 

Content Exploit description Natural language explanation of the exploit  
Exploit discussion Discussions between forum members  
Exploit content  Raw exploit source code  

 
Table 4. Illustration and Summary of Vulnerability Assessment Metadata 

 

Category Metadata Description 
Description  Name (Title) Short, descriptive 

name of vulnerability 
Synopsis Short description of 

vulnerability 
Description Text description about 

vulnerability 
Class 
(family) 
name 

Family of the 
vulnerability  

CVE Vulnerability number 
Published 
and updated 
dates 

Date vulnerability was 
publicly published 

Vulnerable 
systems 

List of systems 
susceptible to 
vulnerability  

Risk details CVSS 
score* 

0.0-10.0 vulnerability 
severity value 

Risk factor Categorical rating of 
risk (High, Low) 

Note: *CVSS = common vulnerability scoring system. 
 

Table 5. CVSS Score Severity (Risk) Rankings, Ranges, and Examples  
Severity (risk) 
ranking 

CVSS 
range Examples of vulnerabilities 

Critical 9.0 – 10.0 Unsupported* operating system, hypertext preprocessor (PHP) unsupported version 
detection, open secure sockets layer (OpenSSL) unsupported 

High 7.0 – 8.9  SQL injections, OpenSSH vulnerabilities, buffer overflows, Linux chunk handling  
Medium 4.0 – 6.9  Cross-site scripting (XSS), browsable web directories, OpenPAM DoS, unencrypted telnet 

server, Dropbear secure socketshell (SSH) vulnerabilities 
Low 0.1 – 3.9 Cleartext submission of credentials, authentication without HTTPS  

Note: *Unsupported means that the vendor of the system is no longer providing patches and updates for the system. A viable solution to solve 
this issue is to upgrade to the latest system version.  
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Prevailing short-text matching algorithms such as cosine 
similarity, latent semantic analysis (LSA), best matching 25 
(BM25), and term-frequency inverse document frequency 
(TF-IDF) originate from information retrieval literature (Chen 
et al., 2012). Despite their widespread usage, these 
conventional algorithms often suffer in performance when 
analyzing user- or machine-generated text corpora that 
contain misspellings, variations, and non-natural language, 
especially for cybersecurity applications (Nunes et al., 2018). 
These limitations have ushered in DL-based short text 
similarity methods from neural information retrieval 
literature. DL uses multiple layers of neural networks with 
nonlinear activation functions to automatically learn feature 
representations from data (Goodfellow et al., 2016; LeCun et 
al., 2015). DL has achieved unprecedented performance in 
malware analysis, DNM language translation, and other 
cybersecurity applications (Samtani et al., 2020a). The 
prevailing DL-based short text matching algorithm is the 
DSSM (Huang et al., 2013; Mitra & Crasswell, 2018). We 
depict the DSSM operating in a short text matching task 
(retrieving a document title based on a query) in Figure 2.  

A DSSM has three major components (excluding 
preprocessing): 

1. Word hashing: DSSM extracts letter trigrams from 
input texts before proceeding to neural network 
processing. For example, “buffer overflow” is hashed to 
“#bu, buf, uff, ffe, fer, er#, #ov, ove, ver, rfl, flo, low, 
ow#.” This increases robustness to noise (e.g., word 
variations, misspellings, etc.) and captures fine-grained 
linguistic cues such as roots and morphs.  

2. Deep neural network (DNN) processing: Each hashed 
phrase is inputted as a bag of trigrams into a fully 
connected (i.e., dense) feed-forward DNN layer for 
conversion into a low-dimensional embedding. Multiple 
layers can be stacked to reduce dimensionality (e.g., 
layer 1 → 30K dimensions to 300, layer 2 → 300 to 128 
dimensions) and identify semantics missed by non-DL 
approaches.  

3. Computing embedding similarity: Cosine similarity 
calculates the distance between embeddings. A softmax 
function calculates the conditional probability (i.e., 
P(D|Q)) for a document (D) – query (Q) pair. The 
document title with the highest conditional probability 
with the query is the most relevant. During training, this 
probability is compared with the ground truth. The 
residual error is backpropagated to update the weights of 
the DNN.  

Past studies have adjusted DSSM by substituting the feed-
forward network with a convolutional neural network (CNN) 

to capture word co-occurrences from input text (Mitra et al., 
2016; Pang et al., 2016b; Shen et al., 2014b). In situations 
where word orders or sequential dependencies exist in the 
input text, scholars have replaced the first dense layer with a 
long-short term memory (LSTM) layer (Wan et al., 2016; 
Wang & Jiang, 2017). DSSM-based models have been used 
for searching news articles (Guo et al., 2016; Pang et al., 
2016a), retrieving social media posts (Jaech et al., 2017; Song 
et al., 2016), ranking web pages (Shen et al., 2014a), digital 
assistant systems (Sarikaya, 2017), community question 
answering (Zhou et al., 2016), and recommender systems 
(Zhang et al., 2019).  

Despite its widespread usage, DSSM processes input texts 
separately until the final embedding comparison. As a result, 
DSSM cannot capture global relationships across input texts 
during the training process to improve overall matching 
performance. However, exploit and vulnerability names often 
have overlapping contents (e.g., system names) and similar 
semantics; processing them separately cannot weigh and 
prioritize their overlapping input text features to improve 
exploit-vulnerability linking performance. An emerging and 
promising approach that can capture relationships across input 
texts and feature importance during DL training is the use of 
attention mechanisms (Du et al., 2019), which we review next.  

Attention Mechanisms  

Attention mechanisms belong to an emerging branch of 
machine learning known as interpretable deep learning (IDL). 
Two major categories of IDL exist: post hoc and intrinsic (Du 
et al., 2019). Post hoc approaches use a second method to 
examine major model components and/or individual 
parameters after training (after model convergence) to 
identify how they contribute to the final output. Intrinsic 
approaches integrate self-explanatory models into a DL 
architecture and operate during training (e.g., feed-forward, 
backpropagate, and weight updates). Two major categories of 
intrinsic approaches exist: (1) global, which includes 
mechanisms such as capsule networks (Sabour et al., 2017) 
and wide and deep networks (Cheng et al., 2016); and (2) 
local, which primarily comprises attention mechanisms. The 
selection of an IDL approach is dependent on the task, data, 
and requirements of a particular study (Du et al., 2019; 
Samtani et al., 2020b). Attention mechanisms are often 
preferred when aiming to assign trainable weights to 
individual features within a data input, using feature weights 
to improve model performance, and/or identifying how input 
data features affect end model performance (Du et al., 2019). 
We further examine attention mechanisms since exploit and 
vulnerability names often contain overlapping features (global 
relationships) that could be leveraged to improve exploit-
vulnerability linking performance. 
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Figure 2. Deep Structured Semantic Model (DSSM) (adapted from Huang et al., 2013) 

 
Attention mechanisms are implemented as carefully 
formulated layers within a neural network architecture (Du et 
al., 2019). Formally, an attention mechanism is denoted by a 
query Q and a key-value pair (K, V). The attention is computed 
as the weighted sum of value V and the weight assigned for 
each value is determined by the scoring function which 
measures the similarity between the query Q and the key K. 
For instance, in the sequence-to-sequence model for language 
translation, at each step, the query Q is the hidden state of the 
last timestep in the decoder while the hidden states from the 
encoder act as both Q and K. Based on the similarity distance 
computed by the scoring function, the weights for the inputted 
features are updated and indexed with a softmax function. 
Features are iteratively reweighted during training until model 
convergence. Attention mechanisms can be customized to 
focus on entire input sequences or portions, depending on the 
data characteristics and/or network architecture. To date, 
attention mechanisms have improved the performance of 
conventional DL architectures (e.g., DNN, recurrent neural 
network, convolutional neural network, variational 
autoencoders) for neural machine translation (Luong et al., 
2015), sentiment analysis (Letarte et al., 2018), image 
classification (Schlemper et al., 2019), adverse event detection 
(Ahmad et al., 2020), and other applications. Evaluation is 
typically executed by comparing the extended model against 
the original on a gold-standard (i.e., ground-truth) dataset (Du 
et al., 2019). Despite its increasing usage, we are unaware of 
any attention mechanisms designed for DSSMs to support 
exploit-vulnerability linking.  

Research Gaps and Questions 

We identified several key research gaps from the literature 
review. First, most hacker forum studies have focused only on 
exploring hacker exploits. We are unaware of any integrated 
hacker forum-data driven approach linking exploits to 
vulnerabilities. Since organizations have limited security 
budgets and must prioritize exploits based on their 
vulnerabilities, simply exploring exploits has minimal CTI 
value. Second, while automated tools exist for conducting 
vulnerability assessments, there lacks literature examining 
vulnerability text to create exploit-vulnerability links. This 
prevents a holistic perspective of what exploits can target 
vulnerabilities and precludes the development of advanced 
vulnerability severity metrics for enhanced device prioritization 
or risk management. Third, DSSM processes input texts 
separately until embedding comparison and therefore cannot 
capture and prioritize overlapping input text features (e.g., 
system names) and semantics between exploit and vulnerability 
names to improve linking performance. Attention mechanisms 
can be a viable approach for addressing these issues and can 
enhance DSSM’s performance in creating exploit-vulnerability 
linkages. However, we are unaware of any design artifacts that 
integrate attention mechanisms into DSSMs for exploit-
vulnerability tasks. Taking these gaps together, we pose the 
following research questions for study: 
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• What vulnerabilities do hacker exploits from hacker 
forums target? 

• How can device-level severity scores be calculated that 
incorporate vulnerability and hacker exploit metadata to 
facilitate CTI? 

• How can attention mechanisms be incorporated into the 
DSSM to capture and prioritize overlapping features 
within exploit and vulnerability names to create exploit-
vulnerability links? 

Proposed Exploit-Vulnerability Linking 
Framework 

The research gaps described above are underscored by the 
lack of a technical framework within academia or industry that 
can automatically link thousands of hacker exploits to 
vulnerabilities (Samtani et al., 2020d). Therefore, we propose 
an exploit-vulnerability linking framework for CTI with four 
major components: (1) data collection, (2) exploit-
vulnerability linking and prioritization, (3) technical 
benchmark experiments, and (4) case studies and expert 
evaluation. We present the proposed framework in Figure 3. 
Each major framework component is described in the 
following subsections. 

Data Collection 

We aimed to collect a large set of hacker exploits and 
vulnerabilities to facilitate the proposed analysis. For the hacker 
exploit collection, we identified a large and long-standing 
exploit-specific hacker forum well-known in the hacker 
community for containing a variety of malicious tools. This 
forum (anonymized to protect us) has contributors from the 
Middle East, the U.S., Russia, and other regions. Many exploits 
are 0-days used in well-publicized attacks. A web crawler routed 
through Tor collected and parsed all exploit-category, post-date, 
author-name, platforms-targeted, and exploit-description data 
into a relational database. This resulted in nearly 21,000 exploits. 
We filtered out exploits that did not include the targeted platform 
or category, as they prevented our proposed analysis. A 
summary of each exploit category and the number of authors and 
platforms targeted is presented in Table 6.   

In total, our collection and filtering processes resulted in 18,052 
exploits across four categories: web applications (10,368 
exploits), local (2,399 exploits), remote (2,602 exploits), and 
DoS (2,683 exploits). All exploits were non-overlapping; no 
exploit appeared in more than one dataset. In total, these 
exploits targeted 31 operating systems, web applications, and 

programming languages. In addition to collecting hacker forum 
exploits, we also compiled a comprehensive list of vulnerability 
names, their descriptions, and severity scores from 
Securityfocus.com, a trusted INFOSEC resource providing 
vulnerability information for tools such as Nessus, Qualys, and 
Burp Suite (Mell et al., 2007). The overall collection is 
summarized in Table 7. 

The vulnerability collection contained 87,109 “critical,” “high,” 
“medium,” “low,” and “informational” listings. We note that 
two categories of vulnerabilities are not amenable to the 
proposed text analytics. The first pertains to social engineering 
(e.g., usernames/passwords). These lack “technical” exploits. 
Rather than posting credentials on forums as exploits, hackers 
directly consult the user manuals for default login credentials 
(Samtani et al., 2016). Second, none of the “informational” 
vulnerabilities were not suitable for linking as they simply 
provide system information and do not associate a vulnerability 
severity (thus preventing their inclusion into severity metrics). 
When accounting for these two situations, 64,104 / 87,019 
(73.67%) of vulnerabilities were suitable for linking.  

Exploit Vulnerability Linking and Prioritization: 
Exploit-Vulnerability Attention Deep Structured 
Semantic Model (EVA-DSSM) 

Given the aforementioned issues with the conventional 
DSSM, we designed a novel EVA-DSSM architecture that 
integrates a bidirectional LSTM (Bi-LSTM) layer and two 
attention mechanisms (context attention and self-attention) to 
enhance the exploit-vulnerability linkage performance. We 
compare the key operational differences between the DSSM 
and the proposed EVA-DSSM in Figure 4. Model novelty is 
highlighted in red. 

EVA-DSSM operates in seven steps: (1) preprocessing, (2) 
letter trigram word hashing, (3) Bi-LSTM processing, (4) 
context attention layer, (5) self-attention layer, (6) DNN 
processing with shared dense layer(s), and (7) computing 
embedding similarity. EVA-DSSM’s core novelty lies in Steps 
3-5. The overall EVA-DSSM process and design rationale are 
described below: 

Step 1 (preprocessing): Preprocessing is essential for attaining 
strong model performances (Chen et al., 2012; Zeng et al., 2010). 
Only exploit and vulnerability names are used in this study, as 
they are populated in all records. While additional content could 
be used, that is out of scope in our targeted analysis. All exploit 
and vulnerability names are stemmed, lowercased, and have stop 
words removed. Implementing these steps normalizes 
irregularities (e.g., capitalization) and follows common hacker 
forum analysis practices (Nunes et al., 2018). 
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Figure 3. Proposed Exploit-Vulnerability Linking Framework for CTI 

 

Note: *Authors are overlapping (i.e., a single author can post exploits in multiple categories). The number presented is the number of unique 
authors. Similarly, a single exploit category can target multiple platforms, and the number presented in the unique platforms. 

 

Table 7. Summary of Vulnerability Information Collection 
Risk level CVSS score Number of vulnerability listings Number amenable for text analytics 
Critical 9.0 – 10.0 8,355 8,170 
High 7.0 – 8.9  24,098 23,897 
Medium 4.0 – 6.9  28,707 28,674 
Low 0.1 – 3.9  3,163 3,163 
Informational 0.0 – 0.0  22,696 0 
Total: - 87,019 64,104 

 
 

Table 6. Summary of Hacker Forum Exploit Collection 

Category Description # of 
exploits 

# of 
authors 

# of platforms 
targeted 

Web applications Exploits targeted at web technologies 10,368 2,810 19 

Local  Exploits executed on a local system  2,399 952 25 

Remote Network attack where the attacker exploits a 
vulnerability without local access  

2,602 1,293 24 

DoS Attacks that deny service to systems 2,683 1,460 23 

Totals: - 18,052 *5,547 *31 
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Conventional DSSM 

 

Proposed EVA-DSSM 

 

Conventional DSSM Procedure 
1. Preprocessing 
2. Letter trigram word hashing  
3. DNN processing with dense layer(s) 
4. Computing embedding similarity 

EVA-DSSM Procedure (Novelty appears in red) 

1. Preprocessing 
2. Letter trigram word hashing 
3. Bi-LSTM processing 
4. Context attention layer 
5. Self-attention layer 
6. DNN processing with shared dense layer(s) 
7. Computing embedding similarity 

Figure 4. Conventional DSSM (left) vs. Proposed EVA-DSSM (right) 

Step 2 (word hashing): A core aspect of DSSM processing 
is hashing inputted text. Consistent with best practices in 
past DSSM studies, letter trigrams are extracted from 
preprocessed text (Mitra & Crasswell, 2018). Extracting 
letter trigrams is also consistent with past literature 
examining non-natural language (Nunes et al., 2018). Each 
word hashed input is passed through a single fixed 
embedding layer to control embedding length size.  

Step 3 (Bi-LSTM processing): The standard DSSM uses a 
bag-of-trigrams representation of input texts and therefore 
does not capture sequential dependencies within text. 
However, exploit and vulnerability names often possess 
sequential dependencies (e.g., system name appears before 
version type). To capture dependencies, we first replace 
dense (i.e., fully connected feed-forward) layer of the DSSM 
with a Bi-LSTM layer. Each Bi-LSTM time-step processes 

a letter trigram sequentially in both forward and backward 
directions (rather than the single direction proposed in past 
studies (e.g., Wan et al., 2016; Wang & Jiang, 2017)). In this 
fashion, the last output (i.e., after processing all previous 
time-steps) comprehensively captures the context of the 
entire letter trigrams sequence.  

Step 4 (context attention layer): Rather than treating input 
texts separately until embedding comparison (like the 
standard DSSM), we aimed to examine the relationships 
(overlapping contents) across the inputted vulnerability and 
exploit names. While they cannot be directly matched due to 
content variations, they share similar contents (e.g., system 
names). Extracting and weighting vulnerability trigrams 
given a particular exploit can boost overall linking 
performance. To achieve this, we formulated a novel context 
attention layer that operates with five elements: 
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1. Key (K): K commonly refers to the source data in the 
attention mechanism. Since the Bi-LSTM is used upon 
the raw vulnerability input text, each Bi-LSTM hidden 
state corresponds to a vulnerability trigram. We denote 
the hidden states as (𝒉1

v, 𝒉2
v, … 𝒉𝑛

v ) where 𝑛 is the length 
of the sequence and the superscript v represents 
vulnerability. Therefore, the key K refers to (𝒉1

v, 𝒉2
v, … 

𝒉𝑛
v ).   

2. Query (Q): for the 𝑖-th exploit trigram, the 
corresponding hidden state 𝒉𝑖

e  (superscript e represents 
exploits) from the Bi-LSTM is a query. 

3. Value (V): Since the Bi-LSTM operates directly upon 
the source data, the key and the value are the same in the 
EVA-DSSM.  

4. Scoring function (S): given a query 𝒉𝑖
e and key K, the 

scoring function computes the attention weights via  

𝐴𝑐(𝒉𝑖
e, 𝒉𝑗

v) =
exp (similarity(𝒉𝑖

e, 𝒉𝑗
v))

∑ exp (similarity(𝒉𝑖
e, 𝒉𝑗

v))𝑛
𝑗=1

,

∀ 𝑖 ∈ [1,2 … , 𝑚], 𝑗 ∈ [1,2 … , 𝑛], (1)

 

where 𝑚 is the length of the exploit text. This 
computation results in a set of weights identifying which 
aspect of the vulnerability the 𝑖-th exploit trigram is most 
related to. In EVA-DSSM, we adopt the multiplicative 
attention, a widely recognized attention mechanism by 
scholars (Luong et al., 2015). Formally, 
similarity(𝒉𝑖

e, 𝒉𝑗
v) = (𝒉𝑖

e)T𝑾𝑐𝒉𝑗
v where 𝑾𝑐 is a 

trainable parameter.  

5. Context vector (C): calculate weighted sum of the 
values for each exploit trigram,  

𝒄𝑖 = ∑ 𝐴𝑐(𝒉𝑖
e, 𝒉𝑗

v)

𝑛

𝑗

∙ 𝒉𝑗
v, ∀ 𝑖 ∈ [1,2 … , 𝑚]          (2) 

Following the above process, a context vector is generated for 
each hidden state of the exploit trigrams. For each trigram, we 
concatenate the exploit trigram hidden state 𝒉𝑖

e with 
corresponding context vector 𝒄𝑖. We use 𝒐𝑖 to denote the 
concatenated vector and the computation is given by 

𝒐𝑖 = [𝒉𝑖
e;  𝒄𝑖] (3) 

Operating in this fashion captures the relationships across 
exploit and vulnerability texts (i.e., global information) with 
the context vector, and information within the exploit texts 
(i.e., local information).  

Step 5 (self-attention layer): Given the concatenated vectors 
[𝒐1, 𝒐2, … , 𝒐𝑚], the self-attention mechanism computes the 
attention weights assigned for the hidden states 
[𝒉1

e, 𝒉2
e , … , 𝒉𝑚

e ]. A focused exploit embedding 𝑬e is obtained 
as the weighted sum of the hidden states (Vashishth et al., 
2019). Formally, we use 𝐴𝑖

s to denote the attention weight 
assigned for the 𝑖-th trigram. The computation is:  

 𝐴𝑖
s =

exp(𝑢𝑖𝑤)

∑ exp(𝑢𝑖𝑤)𝑚
𝑖

, (4) 

𝑢𝑖 = tanh(𝑾s𝒐𝑖 + 𝑏) , (5) 

where {𝑤, 𝑾s, 𝑏} are trainable parameters. Then, the exploit 
embedding 𝑬e is given by: 

 𝑬e = ∑ 𝐴𝑖
s ∙ 𝒉𝑖

e

𝑚

𝑖

. (6) 

In this way, the embedding 𝑬e summarizes the exploit texts 
information according to the relationships across exploit and 
vulnerability texts and the relationship within the exploit texts. 

Step 6 (DNN processing with shared dense layer[s]): The 
focused exploit embedding 𝑬e and the last output of the Bi-
LSTM assigned to the vulnerability text 𝒉𝑛

v  (that summarizes 
information of all vulnerability letter trigrams) are both 
embeddings that summarize the input trigram sequences. To 
facilitate embedding similarity calculation, we input both 
generated embeddings into shared dense layers to project them 
into the same embedding space (Step 7). Formally, 𝑹e =

ShareDense(𝑬e), 𝑹v = ShareDense(𝒉𝑛
v ) where ShareDense(∙) 

refers to the projection of the same dense layers. 

Step 7 (Computing Embedding Similarity): Cosine 
similarity computes the distance between 𝑹e and 𝑹v. 
Consistent with Huang et al. (2013), the softmax is used to 
obtain the conditional probability of 𝑃(E|V) and the loss 
function is defined as 

ℒ = − log ∏ 𝑃(E|V+)

E,V+

(7) 

where 𝑉+ denote the relevant vulnerabilities. During the 
model training phase, the loss is backpropagated to update 
network parameters according to gradient-based methods.  

EVA-DSSM was implemented with the Keras, TensorFlow, 
Natural Language Toolkit (NLTK), numpy, pandas, genism, and 
scikit-learn packages. We present the EVA-DSSM pseudocode 
in Algorithm 1 to help interested readers implement the core 
algorithm in their chosen programming language.  
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Algorithm 1. Pseudocode of the Proposed EVA-DSSM Algorithm 

Inputs: 𝑀 exploits 𝐄 = {E𝑖 , 𝑖 = 1, 2, … , 𝑀}, 𝑁 vulnerabilities 𝐕 = {V𝑗 , 𝑖 = 1,2, … . , 𝑁} 
Outputs: EVA-DSSM parameters 
procedure: 
# Generate the initial trigram-hash embeddings for all vulnerabilities and exploits 
triHashEmbE = {Embedding(trigramHashing(E𝑖)), 𝑖 = 1, 2, … , 𝑚} 
triHashEmbV = {Embedding(trigramHashing(V𝑗)), 𝑗 = 1, 2, … , 𝑛} 
 
while not convergence* do: 

for each V𝑗 in 𝐕 do: 
# Bi-LSTM processing 
Obtaining hidden states [𝒉1

V𝑗, 𝒉2
V𝑗, … 𝒉𝑛

V𝑗] = SharedBi-LSTM(triHashEmb𝑗
V)  

Computing final embedding of vulnerability 𝑹𝑗
v = SharedDense(𝒉𝑛

V𝑗) 
for each E𝑖 in 𝐄 do: 

Obtaining hidden states [𝒉1
E𝑖, 𝒉2

E𝑖, … 𝒉𝑚
E𝑖 ] = SharedBi-LSTM(triHashEmb𝑖

E)  
# Context attention computation 
for each 𝑘 in {1, 2, … , 𝑛} do: 

Exploit attention weight according to Equation (1) 
Computing context vector according to Equation (2)  
Getting concatenated vector according to Equation (3) 

end for 
 

# Self-attention computation 
Computing self-attention weights according to Equation (4) and (5) 
Computing focused exploit embedding 𝑬𝑖

e according to Equation (6) 
    

# DNN processing with Dense layers 
Compute final embedding of exploit 𝑹𝑖

e = SharedDense(𝑬𝑖
e) 

Compute similarity Sim𝑖 = cos(𝑹𝑗
v, 𝑹𝑖

e) 
end for 
Calculate the probability 𝑃(Ei|Vj) = Softmax(Sim𝑖|Sim1, Sim2, … , Sim𝑀) 

end for 
       Compute loss ℒ according to Equation (7) 

Update weights according to gradient descent method 
end while 
return model parameters 

Note: *convergence is determined by the change of ℒ; SharedBi-LSTM(∙) refers to processing vulnerabilities and exploits using the same Bi-
LSTM as suggested by Huang et al., 2013 

 
Exploit-Vulnerability Linking and Prioritization: 
Device Vulnerability Severity Metric (DVSM)  

The EVA-DSSM is a novel approach for automatically 
identifying relevant hacker exploits for a vulnerability. 
Coupling hacker exploit and vulnerability metadata based on 
EVA-DSSM’s output to create specialized severity (risk) scores 
can further create holistic CTI and facilitate enhanced device 
prioritization capabilities (Allodi & Massacci, 2014; Samtani et 
al., 2020a). First, devices are often afflicted with multiple 
vulnerabilities, each with their own severity score. However, we 

are unaware of any approach to aggregating vulnerability 
severities in devices with multiple vulnerabilities. Second, each 
hacker exploit has a post date. Newer exploits, such as 0-days, 
often have significantly more CTI value than older exploits. As 
an exploit ages, knowledge about its operations is quickly 
disseminated to the cybersecurity community and therefore 
exponentially loses value (Mell et al., 2007). Since EVA-
DSSM determines the most relevant exploit for a vulnerability, 
we developed a novel device vulnerability severity metric 
(DVSM). All DVSM features and their justification for 
inclusion are presented in Table 8.  
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Table 8. Features Incorporated into the Device Vulnerability Severity Metric (DVSM) 
Feature 
Category 

Feature Justification for inclusion References 

Vulnerability Vulnerability severity 
(CVSS, 0.0-10.0) 

A higher severity score indicates more severe 
consequences if device is compromised. 

Mell et al. 2007; 
Weidman 2014; 
Kennedy et al. 2011 Number of device 

vulnerabilities 
Devices with more vulnerabilities have a higher 
exploit susceptibility. 

Hacker 
exploit 

# of exploits targeting 
vulnerabilities 

More hacker exploits targeting a vulnerability 
increases the probability of the device’s harm. 

Friedman 2015; 
Robertson et al. 2017 

Age of hacker exploits (i.e., 
forum post date) 

Newer exploits are more valuable for CTI since 
there is less time to formulate defenses.  

Shackleford 2016 

DVSM encompasses the number of vulnerabilities in a device, 
each vulnerability’s severity, and the hacker exploit age for 
each vulnerability. Formally, the DVSM is denoted as: 

𝐷 = ∑ (
𝑠𝑗

log(𝑑𝑗 + 2)
)

𝐽

𝑗=0

 

Where D is the overall device severity score, J is the number 
of vulnerabilities in a system, sj represents the severity of a 
specific vulnerability within the device (determined by the 
CVSS score for the vulnerability), dj is the # of days since the 
most relevant exploit for the vulnerability sj was posted, 
creating a decaying effect of the inverse log function. The 
most relevant exploit for a vulnerability is determined by the 
EVA-DSSM. A vulnerability’s severity score is divided by the 
log of the number of days elapsed since the most relevant 
exploit for that vulnerability was posted (a decaying function). 
Severities receive a higher weighting in the metric if the 
vulnerability’s most relevant exploit is newer. The inverse log 
best captures the exponential loss of value detailed in prior 
CTI literature (Mell et al., 2007). All vulnerability score and 
hacker exploit age pairs for a device are summed to create 
DVSM. A device’s overall score is higher if it has more severe 
vulnerabilities or newer exploits for vulnerabilities.  

Technical Benchmark Experiments 

Consistent with computational design science principles 
(Rai, 2017) and DL fundamentals (Samtani et al., 2020b), 
we evaluated the proposed EVA-DSSM with three technical 
benchmark experiments: (1) EVA-DSSM vs. conventional 
short text matching algorithms, (2) EVA-DSSM vs. deep 
learning-based short text matching algorithms, and (3) EVA-
DSSM sensitivity analysis. We describe each benchmark 
method included in each experiment in Table 9.  

In Experiment 1, we examined EVA-DSSM’s performance 
against conventional non-DL approaches based on direct 
matching (simple matching), distributional semantics (LSA), 
probabilistic matching (BM25), and term frequency (TF-IDF) 
approaches. Experiment 2 examined EVA-DSSM’s 
performance against state-of-the-art DL-based short text 
matching algorithms proposed in neural IR academic literature. 
Each algorithm is based on DNN (aNMM, DSSM, DRMM, 
DUET), CNN (ARC-I, ARC-II, KNRM, Conv-KNRM), and/or 
LSTM (Match-LSTM, MV-LSTM) operations. We also 
evaluated a variation of the EVA-DSSM (EVA-DSSM-2) 
where the context attention operates on the exploit, and self-
attention operates to create a focused vulnerability embedding.  

The EVA-DSSM model used for Experiments 1 and 2 uses 
letter trigrams, a one-layer Bi-LSTM, two attention 
mechanisms (context vector and self-attention), and two dense 
layers. However, each EVA-DSSM model component can be 
varied. Therefore, Experiment 3 evaluated EVA-DSSM’s 
sensitivity to word hashing, LSTM processing, attention 
mechanisms, and network depth. With regards to the word 
hashing and Bi-LSTM processing, the conventional DSSM 
uses letter trigrams and a feed-forward layer instead, 
respectively. However, vulnerability and hacker exploit names 
contain non-natural language content and sequential 
dependencies. Identifying word hashing and LSTM processing 
sensitivities can aid future DSSM research operating on non-
natural language. Therefore, we evaluated EVA-DSSM’s 
performance when using letter bigrams, letter trigrams, letter 4-
grams, and word n-grams. We also evaluated EVA-DSSM’s 
performance when EVA-DSSM uses an LSTM layer (as seen 
in Wan et al. (2016) and Wang and Jiang (2017)) instead of a 
Bi-LSTM layer. Both LSTM layer types are tested at one-layer 
and two-layer variations. With respect to the attention 
mechanisms, we examined how EVA-DSSM performs when 
using only one attention mechanism at a time. We also 
evaluated EVA-DSSM’s performance when using one, two, or 
three dense layers. Across all variations, only one model 
component is varied at a time; the remainder of the model 
remained the same. 
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Table 9. Summary of Technical Benchmark Experiments 
Experiment Benchmark 

methods 
Brief description of operations Reference(s) 

Experiment 1: 
EVA-DSSM 
vs. 
Conventional 
Short Text 
Matching 
Algorithms 

BM25 Probabilistic bag-of-words retrieval function that uses term 
frequencies. 

Robertson et 
al. 1995 

LSA Calculates the semantic similarity based on distributional 
semantics. 

Deerwester et 
al. 1990 

Simple matching Directly matches two short texts by counting same appearances.  - 
TF-IDF Short texts are weighted based on term frequency within and 

across the corpus.  
Saltyon and 
Buckley 1988 

Experiment 2: 
EVA-DSSM 
vs. 
Deep 
learning-
based short 
text matching 
algorithms 

aNMM Matching matrix captures text interactions, and an attention 
mechanism weights interactions. 

Yang et al. 
2018 

DSSM Standard, seminal DSSM architecture.  Huang et al. 
2013 

DRMM Builds matching histograms of interactions between query term 
and document. MLP and query term gates match short texts. 

Guo et al. 2016 

DUET Combines local exact matching and semantic embedding using 
parallel local and distributed neural models. 

Mitra et al. 
2017 

ARC-I Siamese CNNs represent sentences; MLP conducts matching. Hu et al. 2014 
ARC-II Sentences interact by a 1D convolution. A 2D CNN represents 

sentences, and a MLP matches. 
KNRM Translation matrix models word-level similarities. Kernel-pooling 

extracts multi-level features. Ranking layer conducts ranking. 
Xiong et al. 
2017 

Conv-KNRM A KNRM that uses convolutional and pooling layers. Dai et al. 2018 
Match-LSTM Represents and matches input texts using multiple LSTM layers. Wang and 

Jiang 2017 
MV-LSTM Bi-LSTMs represent input sentences, similarity k-max functions 

aggregate interactions, and an MLP matches representations. 
Wan et al. 
2016 

EVA-DSSM-2 Same as EVA-DSSM, but the left branch focuses on exploit text 
and the right branch on vulnerability text 

- 

Experiment 3: 
EVA-DSSM 
sensitivity 
analysis** 

Letter bigrams Letter bigram representation (e.g., buffer → #b, bu, ff, fe, er, r#) Huang et al. 
2013 Letter trigrams Letter trigram representation (e.g., buffer → #bu, uff, ffe, fer er#) 

Letter 4-grams Letter 4-gram representation (e.g., buffer → #buf, uffe, ffer, fer#) 
Word n-grams Word n-gram representation (e.g., buffer overflow → buffer, 

overflow) 
Bi-LSTM layer Swapping out a Bi-LSTM with an LSTM layer Wan et al. 

2016; Wang 
and Jiang 2017 

Attention 
mechanism 

Removing either the context attention layer or the self-attention 
mechanism 

Du et al. 2019 

Quantity of dense 
layers 

Varying the quantity of dense layers (1, 2, or 3) after the context 
embedding in the EVA-DSSM 

- 

Note:  
*aNMM = attention neural matching model; ARC-I = architecture-I; ARC-II = architecture-II; BM25 = best matching 25; CNN = convolutional 
neural network; DRMM = deep relevance matching model; KNRM = kernel-based neural ranking model; LSA = latent semantic analysis; LSTM 
= long-short term memory; MLP = multilayer perceptron; TF-IDF = term frequency inverse document frequency. 
** Given that Experiment 3 is an internal evaluation (i.e., varying model components), no statistical significance was conducted. This is consistent 
with deep learning studies presented in recent IS literature (Zhu et al., 2020; Zhu et al., 2021) and best practices (Samtani et al., 2020b) 
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Executing benchmark evaluations requires a ground-truth 
dataset (Nunamaker et al., 1990; Hevner et al., 2004; Peffers et 
al., 2007). This dataset is also commonly referred to as a gold-
standard dataset in past IS studies at top journals, as it comprises 
all correct instances that are representative of the phenomena 
being studied (Abbasi & Chen, 2008; Abbasi et al., 2018). To 
build our gold-standard dataset, we leveraged the CVE metadata 
available in hacker forums and vulnerability assessment data. In 
our datasets, 163 / 10,368 of web application exploits, 348 / 
2,602 remote exploits, 230 / 2,399 local exploits, and 445 / 2,683 
DoS exploits have CVEs. When linked to their CVE 
vulnerability counterparts, this resulted in 673 unique 
vulnerabilities for web application exploits, 1,806 for remote, 
1,326 for local, and 1,877 for DoS. While this quantity was not 
high enough (<10% total) to warrant using them exclusively for 
creating vulnerability-exploit linkages (thus necessitating and 
further motivating EVA-DSSM), it was enough to develop a 
gold-standard dataset. Specifically, the 163-673 exploit-
vulnerability combinations resulted in 1,208 unique exploit-
vulnerability pairs in the web applications dataset, the 230-1,326 
created 2,193 for local exploits, the 348-1,806 created 3,800 
pairs in the remote exploits, and 442-1,877 created 3,445 for 
DoS. These unique combinations were all labeled as relevant 
(i.e., tagged with 1). To validate the labels, we recruited a 
seasoned SOC security analyst from a well-known, international 
healthcare organization. For this task, we presented the datasets 
individually to the security analyst without the label and asked 
the analyst to label the exploit-vulnerability pair as 1 for relevant 
or 0 for irrelevant. The analyst was presented with the exploit 
name, exploit category, vulnerability name, and vulnerability 
description to make a fully informed labeling decision. We 
computed the Cohen’s kappa statistic between the rating 
provided by the analyst and the dataset generated from linking 
CVE’s. The Cohen’s kappa statistics for the web application, 
remote, local, and DoS datasets were 0.97, 0.96, 0.98, and 0.94, 
respectively. Given this near-perfect agreement between the 
analyst and the labels provided by the hacker exploit forum 
community and vulnerability assessment, we used these as the 
relevant labels for algorithm training, tuning, and testing. 

Gold-standard datasets commonly used in DSSM literature often 
have 3-4 irrelevant instances (each labeled as 0) for every 
relevant instance (Huang et al., 2013). Therefore, the final 
dataset would include each exploit in a unique exploit-
vulnerability pair five times—once for relevant, four for 
irrelevant. Unlike the relevant pairs that can be linked based on 
CVE, there are no clear labels provided in hacker forums about 
which vulnerabilities the exploits do not target. Therefore, we 
designed a custom script that examined the family name (50+, 
including Windows, Linux, and PHP) for the vulnerability in 
each relevant exploit-vulnerability pair to create four additional 
exploit-vulnerability pairs that were irrelevant. Once we 
identified the vulnerability family within the relevant pair, the 
script randomly selected four vulnerabilities from families 

outside of the one provided in the relevant pair. To ensure the 
quality of our script-generated labels, we recruited the same 
analyst from earlier, as well as a cybersecurity instructor with 
significant systems development experience. Each annotator 
was provided the irrelevant pairs without the label and asked to 
label them as 1 for relevant, and 0 for irrelevant. All annotations 
were completed separately to reduce social-desirability bias. 
Labeling efforts occurred over a three-week period. Both raters 
were presented with the exploit name, exploit category, 
vulnerability name, and vulnerability description without the 
label. Raters were instructed not to complete more than 2,000 
ratings within a two-hour period.  

We used Cohen’s kappa to compute the level of agreement 
between ratings. After the first round of annotation, the Cohen’s 
kappa between the raters resulted in 0.69, 0.72, 0.77, and 0.76 
for the web application, remote, local, and DoS datasets, 
respectively. Both raters then met to discuss differences. After 
discussions, we identified the irrelevant links both raters 
disagreed on and altered our initial script to generate random 
pairs to replace these instances. The annotators were instructed 
to label the regenerated irrelevant pairs. In the second round of 
annotation, the Cohen’s kappa resulted in 0.89, 0.92, 0.93, and 
0.88 for the web application, remote, local, and DoS datasets, 
respectively. The overall testbed contained 52,590 total pairs. 
Adhering to best practices, each set was split using an 80%, 10%, 
10% ratio across training, tuning (development), and testing 
subsets, respectively (Mitra & Crasswell, 2018). We summarize 
unique exploit and vulnerability counts, the total counts of 
exploit-vulnerability pairs, and the sizes of the training, 
development, and testing sets for each gold-standard dataset in 
Table 10.  

Overall, the web applications dataset contained a total of 5,400 
pairs (163 unique exploits and 673 unique vulnerabilities), the 
local dataset contained 10,965 pairs (230 unique exploits and 
1,326 unique vulnerabilities), the remote dataset contained 
19,000 pairs (348 unique exploits and 1,806 unique 
vulnerabilities), and the DoS dataset contained 17,225 pairs (442 
unique exploits and 1,877 unique vulnerabilities). To illustrate 
examples of what was included in our gold-standard datasets, we 
report sample relevant and irrelevant exploit-vulnerability pairs 
for each dataset in Table 11.  

In addition to establishing a gold-standard dataset, conducting 
benchmark experiments requires appropriate and well-
established metrics and statistical tests to evaluate the 
performance of the baseline algorithms (Rai, 2017). In this 
research, we employed three performance metrics that are 
commonly used to evaluate DSSMs (Mitra & Crasswell, 2018): 
Normalized discounted cumulative gain (NDCG) at 1, 3, and 5; 
mean reciprocal rank (MRR); and mean average precision 
(MAP). A description and formulation for each metric is 
presented in Table 12.  
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Table 10. Summary of Gold-Standard (i.e., Ground-Truth) Datasets* 
 Web applications Local Remote DoS 
 Exploit Vulnerability Exploit Vulnerability Exploit Vulnerability Exploit Vulnerability 
Unique 163 673 230 1,326 348 1,806 442 1,877 
Total Exploit-
Vulnerability 
Pairs 

1,208 Relevant Pairs 
4,832 Irrelevant Pairs 
Total: 5,400 

2,193 Relevant Pairs 
8,772 Irrelevant Pairs 
Total: 10,965 

3,800 Relevant Pairs 
15,200 Irrelevant Pairs 
Total: 19,000 

3,445 Relevant Pairs 
13,780 Irrelevant Pairs 
Total: 17,225  

Training 4,320 8,771 15,200 13,759 
Development 540 1,097 1,900 1,733 
Testing 540 1,097 1,900 1,733 

Note: * The size of each dataset exceeds the size used in many past IS studies.    
 

Table 11. Examples of Labeled Relevant and Irrelevant Exploit-Vulnerability Pairs in the Constructed 
Gold-Standard (i.e., Ground Truth) Datasets 
Dataset Exploit name Relevant vulnerability Irrelevant vulnerability 
Web 
applications  

MoinMoin 1.9.8 Cross Site Scripting 
Vulnerability  

FreeBSD: moinmoin -- XSS 
vulnerabilities  

Fedora 20: tcpdump-4.5.1-2.fc20 
(2014-15541)  

PHPMailer 5.2.20 - Remote Code 
Execution Exploit 

FreeBSD: phpmailer -- 
Remote Code Execution  

CentOS 6: mysql (CESA-
2017:0184) 

Trend Micro InterScan Web 
Security Virtual Appliance 6.5 SP2 - 
Multiple Vulnerabilities  

Trend Micro IWSVA 6.5 < 6.5 
Build 1746 Multiple 
Vulnerabilities  

Adobe AIR for Mac & 20.0.0.204 
Multiple Vulnerabilities (APSB16-
01)  

Local  DirtyCow Linux Kernel Race 
Condition Exploit  

SUSE SLES12 Security 
Update: kernel (Dirty COW)  

Cisco UCS Director Code 
Injection (Shellshock)  

Linux Kernel (Ubuntu / Fedora / 
Redhat) - “Overlayfs” Privilege 
Escalation Exploit  

Ubuntu 12.04 LTS: linux 
regression (USN-2640-2)  

MS16-014: Security Update for 
Microsoft Windows to Address 
Remote Code Execution  

Perl 5.20.1 Deep Recursion Stack 
Overflow Vulnerability  

Mandriva Linux Security 
Advisory: perl  

AIX 7.1 TL 1: libodm (IV60312)  

Remote  ElasticSearch Search Groovy 
Sandbox Bypass Exploit  

Elasticsearch Groovy Script 
RCE  

RHEL 5 / 6: php (RHSA-
2013:1824)  

JIRA Issues Collector Directory 
Traversal Exploit  

Atlassian JIRA & 6.0.4 
Arbitrary File Creation  

FreeBSD telnetd Daemon Remote 
Buffer Overflow  

Apache Struts ClassLoader 
Manipulation Remote Code 
Execution Exploit  

Apache Struts 2 class 
Parameter ClassLoader 
Manipulation  

Fedora 22: fuse-2.9.4-1.fc22 
(2015-8756)  

DoS  Varnish Cache Server Denial of 
Service  

Amazon Linux AMI: varnish 
(ALAS-2014-276)  

CentOS 6: java-1.6.0-openjdk 
(CESA-2013:0605)  

Bind 9 DNS Server - Denial of 
Service Exploit 

Debian DSA-3680-1: bind9 - 
security update 

TWiki debugenableplugins 
Parameter RCE 

OpenSSH 7.2 - Denial of Service 
Exploit 

Debian DLA-594-1: openssh 
security update 

Apple TV & 9.2 Multiple 
Vulnerabilities 

 
Table 12. Summary of Performance Metrics Used for Benchmark Experiments 
Metric Metric description  Formulation 
Normalized discounted 
cumulative gain (NDCG) 
at 1, 3, and 5 

NDCG measures ranking quality. It identifies how closely the 
ranked vulnerabilities match the gold-standard set. In our 
experiments, it identified quality at ranks 1, 3, and 5.  

𝑁𝐷𝐶𝐺 =
1

𝑀
∑ (

𝐷𝐶𝐺𝑢@𝑝

𝐼𝐷𝐶𝐺𝑢@𝑝
)

𝑀

𝑖=1

 

Mean reciprocal rank 
(MRR) 

Average of the reciprocal rank (multiplicative inverse of the 
rank for the first correct answer) of all results for a sample of 
queries (in this study, exploits). 

𝑀𝑅𝑅 =
1

|𝑄|
∑ (

1

𝑟𝑎𝑛𝑘𝑖
)

|𝑄|

𝑖=1

 

Mean Average Precision 
(MAP) 

MAP first calculates average precision at multiple ranks (e.g., 
at P@1, P@3, P@5, etc.), then the mean of all average 
precision scores form MAP. 

𝑀𝐴𝑃 =
∑ 𝐴𝑣𝑒𝑃(𝑞)

𝑄
𝑞=1

𝑄
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Given our goal of retrieving the most relevant exploit for a 
vulnerability, NDCG@1 and MAP (and its constituent P@1), 
hold the most importance for evaluating algorithm 
performance. Each algorithm used the training sets for model 
training, the development set for model tuning, and the test set 
for measuring model performance. Each algorithm was run 
ten times for all metrics. Performances across the ten runs 
were averaged and reported. Paired t-tests were used to 
calculate statistically significant differences between EVA-
DSSM’s performance and benchmark algorithms. All 
experiments were conducted on a single Ubuntu Linux 
16.04.3 LTS server with 132GB of random access memory 
(RAM), a NVIDIA GeForce GTX 1080 Ti graphical 
processing unit (GPU), an Intel central processing unit (CPU) 
E5-2640 v4 at 2.40 gigahertz (GHz), and a four terabytes of 
disk space.  

Case Studies with Expert Evaluations of 
Usefulness  

Case studies with expert evaluations of usefulness can 
demonstrate proof of concept, usability, usefulness, and the 
potential value of a novel technical approach (Nunamaker et al., 
1990; Hevner et al., 2004). The practical value of the EVA-
DSSM and DVSM (the two main contributions of this work) 
would ideally be illustrated on the external and internal 
networks within an organization. However, many firms are 
hesitant to disclose their vulnerabilities and the exploits against 
them, preferring instead to keep this knowledge classified. 
Therefore, we demonstrate the proof of concept of our research 
with case studies on publicly accessible devices from the top 
eight U.S. hospitals and from SCADA devices deployed 
worldwide. Both domains are common targets for malicious 
hackers. Hospitals often contain significant sensitive medical 
records that can net substantial revenue on DarkNet 
Marketplaces (Ayala, 2016). SCADA devices control modern 
infrastructure including power plants, sewage systems, 
transportation services, and more. Hackers often target such 
devices to severely cripple societal operations. The steps to 
execute each case study mimic the process a cybersecurity 
professional can implement in using the EVA-DSSM and 
DVSM in their workflow:  

• Step 1 (IP address identification): For hospitals, we 
identified hacker exploits for vulnerabilities on the 
externally facing networks of the top eight U.S. hospitals 
as ranked by the 2017 U.S. News and World Report: (1) 
Mayo Clinic, (2) Cleveland Clinic, (3) Massachusetts 
General, (4) Johns Hopkins, (5) University of California, 
Los Angeles (UCLA) Medical Center, (6) New York 
Presbyterian, (7) University of California, San Francisco 
(UCSF) Medical Center, and (8) Northwestern Memorial. 
Shodan, a search engine that discovers publicly accessible 

Internet-of-Things (IoT) devices, then finds all devices 
available on each hospital’s IP range. For the SCADA 
case study, we retrieved 20,641 SCADA devices and their 
IPs from Shodan using SCADA-specific vendor 
keywords (e.g., Rockwell, Siemens, and Schneider). 
Retrieving SCADA devices in this fashion is consistent 
with past vulnerability assessment literature (Samtani et 
al., 2016; El et al., 2017; Samtani et al., 2018). 

• Step 2 (vulnerability assessment): Consistent with best 
practices, we used Nessus, a state-of-the-art vulnerability 
assessment tool, to discover the vulnerabilities of each 
device without port scanning and payload dropping. 
Scanning for vulnerabilities in this fashion has been noted 
in past literature to avoid adverse events (e.g., downtime) 
(Harrell et al., 2018; Williams et al., 2017; McMahon et 
al., 2017; McMahon et al., 2018; Lazarine et al., 2020; 
Ullman et al., 2020). 

• Step 3 (exploit-vulnerability linking via EVA-DSSM): 
After identifying vulnerabilities, EVA-DSSM determined 
the most relevant hacker exploit for each vulnerability. To 
emulate a cybersecurity analyst’s workflow (Farris et al., 
2018), we only considered the top linked exploit for 
DVSM.  

• Step 4 (risk management via DVSM): After creating 
exploit-vulnerability links, we used the metadata from the 
exploit (post date) and vulnerability (CVSS score) for 
each exploit-vulnerability pair for each device. The 
DVSM score for each device is computed using these 
data. The final outputted DVSM values are ranked in 
descending order to help facilitate vulnerable device 
prioritization. 

The exploit-vulnerability linkages identified by EVA-DSSM 
and the DVSM scores can offer cybersecurity experts an 
excellent starting point for their mitigation and remediation 
activities. However, it is impossible to validate whether the 
EVA-DSSM exploit can take advantage of the detected 
vulnerability without executing the exploit. Such an act has 
significant legal and ethical ramifications. Moreover, even if 
vulnerabilities were susceptible to detected exploits, the 
usefulness and value of these linkages may vary within and 
between organizations due to technical capabilities, security 
priorities, and organizational policies. Therefore, we aimed 
to conduct a complementary user evaluation that aimed to 
ascertain how useful cybersecurity professionals find the 
results of our proposed EVA-DSSM and DVSM compared 
to results outputted from baseline approaches (e.g., DSSM 
and CVSS). To execute this evaluation, we sent over 60 
email invitations through our university’s cybersecurity 
centers to identify cybersecurity experts that were willing to 
evaluate the usefulness of our proposed approaches. In total, 
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45 cybersecurity experts responded to the invitation. Each 
expert possessed at least five years of experience in roles 
pertaining to security operations centers (SOCs), incident 
response (IR), vulnerability management, Dark Web 
analytics, IT audit, and/or operational cybersecurity. Each 
position would likely use EVA-DSSM and DVSM in their 
professional practice. No incentive or compensation was 
provided for the participant, since the time commitment was 
expected to be less than 15-20 minutes.  

We instructed each cybersecurity expert to evaluate the perceived 
usefulness of the exploit-vulnerability pairs generated from the 
EVA-DSSM against those generated from benchmark 
approaches (e.g., DSSM). For each generated exploit-
vulnerability pair, we also asked each expert to evaluate the 
usefulness of the DVSM against CVSS. Following common 
practice in IS literature (Abbasi et al., 2018; Chau et al., 2020), 
we adapted items pertaining to perceived usefulness from Davis 
(1989), Davis et al. (1989), and Venkatesh et al. (2003). For the 
exploit-vulnerability pair, the experts were asked if “the exploit-
vulnerability link is useful for identifying what exploit could 
target this vulnerability.” The experts were also asked if “the risk 
score is useful to prioritize exploit-vulnerability pairs more 
effectively” for the DVSM and CVSS scores. Adapting items in 
this fashion helps ensure the face validity of the items as well as 
correctly measure the phenomena of interest (i.e., construct 
validity) (Abbasi et al., 2018; Chau et al., 2020). For both items, 
we asked the experts to provide their responses on a scale of 1-7 
(with 1 being strongly disagree and 7 being strongly agree). 
Exploit-vulnerability pairs with their associated severity scores 
were randomly interspersed and blinded (i.e., no details were 
provided about which algorithm or severity metric produced the 
results) for the hospital and SCADA case studies. The experts 
were not allowed to consult with each other to avoid biases. We 
calculated the mean for each item and used a paired t-test to 
identify if a statistically significant difference between our 
proposed approach and the benchmark (i.e., EVA-DSSM vs. best 
performing method and DVSM vs. CVSS) existed. The results of 
this complementary evaluation are presented in Appendix A.  

Results and Discussion 

Experiment 1 Results: EVA-DSSM vs. 
Conventional Short Text Matching Algorithms 

In Experiment 1, we evaluated EVA-DSSM against four 
prevailing non-DL short text matching algorithms: BM25, 
LSA, simple matching, and TF-IDF. All models were evaluated 
based on MAP, MRR, and NDCG ranks of 1, 3, and 10. We 
present the average performances (across ten runs) for each 
algorithm on each dataset in Table 13. The highest scores for 
each dataset and metric are highlighted in bold font.  

EVA-DSSM outperformed non-DL short text matching 
algorithms in NDCG (at all levels), MRR, and MAP. The 
differences in average performances between the EVA-DSSM 
and the next best performing algorithm BM25 ranged between 
0.0509 (0.3842 for EVA-DSSM vs. 0.3333 for BM25) on the 
DoS dataset to 0.4214 (0.6714 for EVA-DSSM vs. 0.2500 for 
BM25) on the local dataset. The simple matching approach was 
consistently one of the poorest performing algorithms across all 
datasets, attaining NDCG@1 scores between 0.0314 to 0.1822. 
The differences between EVA-DSSM’s performances and each 
of the benchmark methods were statistically significant at p-
value thresholds of 0.05, 0.01, and 0.001 for each metric. These 
results suggest that EVA-DSSM’s attention mechanisms 
combined with feed-forward, backpropagation, and error 
correction enable the model to identify finer-grained linguistic 
patterns within exploit and vulnerability names that benchmark 
methods miss. To better quantify EVA-DSSM’s performance 
against the benchmark algorithms, we calculated the number of 
instances where the algorithm correctly matched a vulnerability 
to an exploit on the first link by multiplying each algorithm’s 
best Precision @ 1 (P@1) score by the total number of instances 
in each testing dataset (denoted as n in Table 14). P@1 was 
calculated based on the MAP metric. We present the P@1 score 
as a percentage (calculated by multiplying an algorithm’s P@1 
score by 100) and the number of correct instances in Table 14. 
Top performances for each dataset are highlighted in bold. 

EVA-DSSM achieved a significantly higher P@1 score over 
the benchmark methods in all datasets. In the web dataset, 
EVA-DSSM correctly identified 145 (423-278) more links 
(26.87% [78.40%-51.53%] increase) than the closest 
performing benchmark, BM25. EVA-DSSM showed similar 
performance gains in the local dataset (EVA-DSSM detected 
459 [853-394] more instances than BM25 for a 41.83% 
[77.75%-35.92%] increase), remote dataset (EVA-DSSM 
correctly identified 694 [1,413-719] more instances than 
BM25 for a 36.51% [74.36%-37.85%] increase), and DoS 
dataset (EVA-DSSM detected 359 [1,019-660] more 
instances than BM25 for a 20.74% [58.84%-38.10%] 
increase). These differences were more pronounced for other 
competing algorithms (e.g., simple matching). Overall, these 
results indicate that EVA-DSSM’s grounding in DL helps it 
capture linguistic cues within the exploit and vulnerability 
names that are missed by direct and probabilistic matching-
based approaches. To better identify what EVA-DSSM 
detected over benchmark methods, we illustrate a sample 
exploit-vulnerability link in each test dataset that EVA-DSSM 
correctly identified but was missed by the best competing 
approach (BM25 for each dataset) in Table 15. We also 
illustrate the exploits linked by the simple word matching 
approach in each dataset. The exploits appearing in bold were 
correct (i.e., listed as relevant in the ground-truth dataset). 
Additional examples can be requested by contacting the lead 
author of this article. 
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Table 13. Experiment 1 Results: EVA-DSSM vs. Conventional Short Text Matching Algorithms 

Algorithm Web applications 
NDCG@1 NDCG@3 NDCG@5 MRR MAP 

BM25 0.2500*** 0.2573*** 0.4291*** 0.3747*** 0.3584*** 
LSA 0.1156*** 0.3301*** 0.4308*** 0.3846*** 0.4037*** 
Simple Matching 0.1142*** 0.3127*** 0.4139*** 0.3553*** 0.3998*** 
TF-IDF 0.1250*** 0.3394*** 0.4253*** 0.3659*** 0.4123*** 
Proposed EVA-DSSM  0.6570 0.7550 0.7944 0.7789 0.7932 

Algorithm Local  
NDCG@1 NDCG@3 NDCG@5 MRR MAP 

BM25 0.2500*** 0.3034*** 0.3938*** 0.3764*** 0.3060*** 
LSA 0.1275*** 0.3106*** 0.4314*** 0.3633*** 0.4141*** 
Simple Matching 0.1822*** 0.3307*** 0.4161*** 0.3915*** 0.4318*** 
TF-IDF 0.2000*** 0.3472*** 0.4209*** 0.4036*** 0.4400*** 
Proposed EVA-DSSM 0.6714 0.6905 0.7322 0.6953 0.7504 

Algorithm Remote 
NDCG@1 NDCG@3 NDCG@5 MRR MAP 

BM25 0.3030*** 0.3214*** 0.4543*** 0.3567*** 0.4467*** 
LSA 0.0393*** 0.2178*** 0.3254*** 0.2792*** 0.3132*** 
Simple Matching 0.0693*** 0.2215*** 0.3317*** 0.2839*** 0.3200*** 
TF-IDF 0.0714*** 0.2369*** 0.3425*** 0.2932*** 0.3336*** 
Proposed EVA-DSSM 0.5501 0.6730 0.6972 0.6852 0.7006 

Algorithm DoS  
NDCG@1 NDCG@3 NDCG@5 MRR MAP 

BM25 0.3333 0.3421*** 0.3843*** 0.4134*** 0.3762*** 
LSA 0.0719*** 0.1834*** 0.2318*** 0.2272*** 0.2754*** 
Simple Matching 0.0314*** 0.1363*** 0.1717*** 0.1788*** 0.2341*** 
TF-IDF 0.0351*** 0.1331*** 0.1923*** 0.1883*** 0.2408*** 
Proposed EVA-DSSM 0.3842 0.4314 0.4829 0.5394 0.5937 

Note: *p-value<0.05, **:p-value<0.01, ***:p-value<0.001 
 

Table 14. Quantities and Percentages Correct at P@1 for Top Exploit-Vulnerability Link* 
Algorithm Web applications (n=540) Local (n=1,097) Remote (n=1,900) Dos (n=1,733) 

P@1 % # correct P@1 % # correct P@1 % # correct P@1 % # correct 
Bm25 51.53% 278 35.92% 394 37.85% 719 38.10% 660 
Lsa 27.20% 146 25.15% 276 23.91% 454 23.85% 413 
Simple 
matching 

30.30% 163 30.20% 331 36.72% 698 18.62% 322 

Tf-idf 33.86% 182 33.55% 368 36.54% 694 21.05% 364 
Proposed 
EVA-DSSM 

78.40% 423 77.75% 853 74.36% 1,413 58.84% 1,019 

Note: *The # correct is calculated by multiplying the P@1 score of each algorithm by 100.  

 
Table 15. Example Exploit-Vulnerability Link Correctly Detected by EVA-DSSM but Missed by Best 
Competing Non-Deep Learning Approaches 
Dataset Selected 

vulnerability 
Model Top linked exploits 

Web 
applications 

Zend Framework / 
zend-mail 2.4.11 - 
Remote Code 
Execution Exploit 

Simple word 
matching 

MS15-080: Vulnerabilities in Microsoft Graphics Component 
Could Allow Remote Code Execution (3078662)  

BM25 MS09-050: Vulnerabilities in SMBv2 Could Allow Remote Code 
Execution  

EVA-DSSM  FreeBSD: phpmailer— Remote Code Execution  
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Local Systemd 228 - 
Privilege Escalation 
Vulnerability 

Simple word 
matching 

Debian DSA-2765-1: davfs2 - privilege escalation 

BM25 PHP 5.6.x < 5.6.30 Multiple DoS 
EVA-DSSM  PHP 7.1.x < 7.1.1 Multiple Vulnerabilities 

Remote SAP Solman 7.31 
Information 
Disclosure 
Vulnerability 

Simple word 
matching 

Triangle MicroWorks SCADA Data Gateway < 3.3.729 Heartbeat 
Information Disclosure (Heartbleed) 

BM25 Oracle Linux 5: bind (ELSA-2015-1514) 
EVA-DSSM  CentOS 6: squid34 (CESA-2017:0183) 

DoS Ubuntu 11.10/12.04 
- binfmt_script Stack 
Data Disclosure 
Vulnerability 

Simple word 
matching 

Ubuntu 10.04 LTS / 11.04 / 11.10 / 12.04 LTS: Firefox 
vulnerabilities (USN-1600-1) 

BM25 Ubuntu 16.04 LTS: linux, linux-snapdragon vulnerabilities  
EVA-DSSM  Ubuntu 12.04 LTS: linux-lts-quantal—Linux kernel hardware 

enablement from Quantal regression (USN-1704-2) 

The examples listed in Table 15 indicate that the simple 
matching and BM25 approaches directly match contents from 
the exploit and vulnerability texts and result in incorrect 
linkages. For example, the simple word matching in each 
dataset incorrectly retrieved exploits that had direct overlaps 
with listed vulnerabilities. For the web applications dataset, this 
was the phrase “remote code execution”; for the local dataset, 
this was the phrase “privilege escalation”; for the remote 
dataset, this was the phrase “information disclosure”; and for 
the DoS dataset, this was the term “Ubuntu.” The consistency 
of these issues across all four datasets indicates that simple 
matching approaches, while appearing to have some face 
validity for exploit-vulnerability matching because of 
overlapping technology names in exploit and vulnerability 
names, cannot capture the semantics or context of selected 
technology names that EVA-DSSM can. This is most 
pronounced on the web dataset. In the listed examples, the Zend 
framework in PHP and FreeBSD is commonly associated with 
the Linux operating system and the PHP. Our approach 
correctly identified these relationships, whereas the matching-
based approaches match simply on the appearance of the phrase 
“remote code execution.” Taken together, these results indicate 
that EVA-DSSM’s use of DL processing makes it more robust 
to noise and word variations and in its ability to identify 
semantic cues (e.g., technology frameworks) missed by 
prevailing non-DL short text matching algorithms.  

Experiment 2 Results: EVA-DSSM vs. Deep 
Learning-based Short Text Matching Algorithms 

In Experiment 2, we evaluated the performance of EVA-
DSSM against state-of-the-art DL-based short text matching 
algorithms. Eleven models were selected for benchmarking, 
including those based on feed-forward DNN, CNN, or 
LSTM. As in Experiment 1, all models were evaluated based 
on MAP, MRR, and NDCG ranks of 1, 3, and 5. All 

algorithm performances for each dataset are presented in 
Table 16. The highest performance scores for each dataset 
and metric are boldfaced. 

EVA-DSSM attained an NDCG@1 score of 0.6570 for the web 
applications dataset, 0.6714 on the local dataset, 0.5501 on the 
remote dataset, and 0.3342 on the DoS dataset. Each of these 
performances was statistically significant over all benchmark 
algorithms across each dataset except DRMM, DUET, Conv-
KNRM, and MV-LSTM in the remote dataset; however, EVA-
DSSM still attained higher performances than these algorithms. 
Apart from the standard DSSM, the DNN-based models 
(aNMM, DRMM, DUET) consistently attained the lowest 
NDCG@1 scores on each dataset. The CNN-based models 
(ARC-I, ARC-II, KNRM, Conv-KNRM) and LSTM-based 
models (Match-LSTM, MV-LSTM) attained stronger 
performances over the DNN-based variations. This indicates 
that leveraging convolutional or long-short term dependency 
operations captures cues within the input texts missed by 
assuming a bag-of-trigrams. EVA-DSSM’s outperformance of 
both CNN and LSTM-based methods suggests that 
incorporating attention mechanisms can help capture global 
relationships and semantics across exploit and vulnerability 
short texts missed by prevailing approaches. We quantified the 
number of instances where the algorithm correctly matched a 
vulnerability to an exploit on the first link by multiplying each 
algorithm’s best P@1 score by the total number of instances in 
each testing dataset (denoted as n in Table 17). Top 
performances for each dataset are highlighted in bold. 

EVA-DSSM achieved a higher P@1 score over the 
benchmark methods in all datasets. In the web application 
dataset, EVA-DSSM correctly identified 28 more instances 
than the original DSSM for a 5.20% increase. EVA-DSSM 
also demonstrated a similar performance gain in the remote 
dataset, where it detected 81 more links correctly than the 
closest benchmark, DRMM (4.24% increase).  
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Table 16. Experiment 2 Results: EVA-DSSM vs. Deep Learning-based Short Text Matching Algorithms 
Algorithm 
category Algorithm Web applications 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 
DNN-based aNMM 0.3125*** 0.4527*** 0.5114*** 0.5075*** 0.4704*** 

DSSM 0.5968* 0.7325 0.7796 0.7468 0.7947 
DRMM 0.3619** 0.4874*** 0.5497*** 0.5156*** 0.5373*** 
DUET 0.0907*** 0.3489*** 0.4257*** 0.3704*** 0.3959*** 

CNN-based ARC-I 0.0906*** 0.3378*** 0.4275*** 0.3637*** 0.4042*** 
ARC-II 0.3250*** 0.4894*** 0.5410*** 0.5275*** 0.5405*** 
KNRM 0.5312** 0.6248** 0.6728** 0.6772** 0.6786* 
Conv-KNRM 0.5531** 0.6716* 0.6973* 0.7122 0.6864* 

LSTM-based Match-LSTM 0.1063*** 0.2906*** 0.4187*** 0.3606*** 0.3839*** 
MV-LSTM 0.4531*** 0.6416** 0.6648** 0.6481** 0.6473** 

Proposed EVA-
DSSM 

EVA-DSSM-2 0.6480 0.7224 0.7634 0.7561 0.7676 
EVA-DSSM 0.6570 0.7550 0.7944 0.7789 0.7932 

Algorithm 
Category Algorithm Local 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 
DNN-based aNMM 0.3525*** 0.4421*** 0.5099*** 0.5229*** 0.4897*** 

DSSM 0.1700*** 0.2511*** 0.4242*** 0.3807*** 0.3606*** 
DRMM 0.4850*** 0.5837*** 0.6311*** 0.6388** 0.6188*** 
DUET 0.3725*** 0.4356*** 0.5231*** 0.5146*** 0.5268*** 

CNN-based ARC-I 0.3275*** 0.4152*** 0.4923*** 0.4754*** 0.4914*** 
ARC-II 0.4025*** 0.5010*** 0.5681*** 0.5646*** 0.5692*** 
KNRM 0.4000*** 0.4603*** 0.5389*** 0.5478*** 0.5155*** 
Conv-KNRM 0.5175*** 0.6455* 0.6723** 0.6696 0.6984** 

LSTM-based Match-LSTM 0.2300*** 0.3459*** 0.4389*** 0.4053*** 0.4485*** 
MV-LSTM 0.5325*** 0.5943*** 0.6483*** 0.6541* 0.6365*** 

Proposed EVA-
DSSM 

EVA-DSSM-2 0.6378* 0.6752 0.7127 0.6649 0.7441 
EVA-DSSM 0.6714 0.6905 0.7322 0.6953 0.7504 

Algorithm 
Category Algorithm Remote 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 
DNN-based aNMM 0.4214*** 0.5453*** 0.5670*** 0.6009*** 0.5434*** 

DSSM 0.3339*** 0.5019*** 0.5579*** 0.5391*** 0.5722*** 
DRMM 0.5339 0.6420 0.6830 0.6943 0.6760* 
DUET 0.5232 0.6104** 0.6601* 0.6671 0.6061*** 

CNN-based ARC-I 0.2589*** 0.3683*** 0.4409*** 0.4384*** 0.4038*** 
ARC-II 0.3964*** 0.5450*** 0.5855*** 0.5999*** 0.5616*** 
KNRM 0.4571*** 0.5521*** 0.6152*** 0.6433** 0.5549*** 
Conv-KNRM 0.5411 0.6330* 0.6745* 0.7053 0.6553** 

LSTM-based Match-LSTM 0.1536*** 0.3220*** 0.4164*** 0.3881*** 0.4026*** 
MV-LSTM 0.5393 0.6250** 0.6549** 0.6831 0.6420** 

Proposed EVA-
DSSM 

EVA-DSSM-2 0.5478 0.6742 0.6936 0.6684 0.6992 
EVA-DSSM 0.5501 0.6730 0.6972 0.6852 0.7006 

Algorithm 
Category Algorithm DoS 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 
DNN-based aNMM 0.1790*** 0.2691*** 0.3640*** 0.3969*** 0.3532*** 

DSSM 0.2632** 0.3625* 0.4079* 0.5011 0.4367** 
DRMM 0.2333** 0.2954*** 0.3493*** 0.4052** 0.3851*** 
DUET 0.1561*** 0.2388*** 0.2917*** 0.3179*** 0.3368*** 

CNN-based ARC-I 0.1176*** 0.2111*** 0.2717*** 0.2828*** 0.3233*** 
ARC-II 0.2053*** 0.2881*** 0.3395*** 0.3697*** 0.3864*** 
KNRM 0.2684** 0.3166*** 0.3461*** 0.3817*** 0.4002*** 
Conv-KNRM 0.2825** 0.3291*** 0.3913** 0.4293** 0.4468** 

LSTM-based Match-LSTM 0.2986* 0.3452* 0.4102* 0.4652 0.4472** 
MV-LSTM 0.2614** 0.3397** 0.4095* 0.4524* 0.4371** 

Proposed EVA-
DSSM 

EVA-DSSM-2 0.3801 0.4285 0.4881 0.5333 0.6009 
EVA-DSSM 0.3842 0.4314 0.4829 0.5394 0.5937 

Note: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 
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Table 17. Quantities and Percentages Correct at P@1 for Top Exploit-Vulnerability Link* 

Algorithm 
Category Algorithm 

Web Applications 
(n=540) Local (n=1,097) Remote (n=1,900) DoS (n=1,733) 

P@1 % # 
correct P@1 % # 

correct P@1 % # 
correct P@1 % # correct 

DNN-based ANMM 52.62% 284 41.82% 459 54.51% 1,036 30.52% 528 
DSSM 73.20% 395 66.91% 734 49.84% 947 46.33% 802 
DRMM 52.22% 281 39.25% 431 70.12% 1,332 40.63% 704 
DUET 33.21% 179 47.53% 521 64.65% 1,228 28.53% 494 

CNN-based ARC-I 27.73% 149 45.72% 502 40.60% 771 20.96% 363 
ARC-II 52.66% 284 51.42% 564 51.52% 979 35.86% 621 
KNRM 68.69% 370 50.89% 558 59.63% 1,133 44.87% 777 
Conv-KNRM 71.64% 386 60.69% 666 69.65% 1,323 47.60% 824 

LSTM-
based 

Match-LSTM 37.63% 203 41.77% 458 47.21% 897 48.50% 840 
MV-LSTM 67.99% 367 61.12% 671 60.22% 1,144 45.24% 784 

Proposed 
EVA-DSSM 

EVA-DSSM-2 78.22% 422 76.14% 835 72.32% 1,374 57.98% 1,004 
EVA-DSSM 78.40% 423 77.75% 853 74.36% 1,413 58.84% 1,019 

*The # correct is calculated by multiplying the P@1 score of each algorithm by 100.  

 
EVA-DSSM showed similar improvements for both the 
local and DoS datasets with 10.84% and 10.34% 
performance gains, respectively. In Table 18, we illustrate 
sample exploit-vulnerability linkages in each test dataset that 
EVA-DSSM correctly identified but were missed by the best 
competing approach for each dataset (DSSM for the web 
application and local datasets, DRMM for the remote dataset 
and Match-LSTM for the DoS dataset). The exploits 
appearing in bold were correct (i.e., listed as relevant in the 
ground-truth dataset). Additional examples can be requested 
by contacting the lead author of this article. 

The results suggest that the proposed EVA-DSSM captured the 
semantics of terms more effectively than benchmark 
approaches. In the web applications dataset, for instance, EVA-
DSSM correctly identified that “FreeBSD” was associated 
with the “Zend Framework.” Similarly, EVA-DSSM captured 
that “CentOS” term was more closely associated with “SAP 
Solman” (a technology that can run CentOS) than “Cisco 
Telepresence” in the remote dataset. These results indicate that 
EVA-DSSM’s ability to capture global relationships across 
input texts and iterative reweighting of features via the 
attention mechanisms helps capture finer-grained semantic 
overlaps than conventional approaches. The results also 
suggest that EVA-DSSM captured sequences of texts more 
effectively in the DoS dataset than Match-LSTM (capturing 
“Ubuntu” at the start of the exploit and vulnerability names). 
This indicates that the incorporation of the BiLSTM layer 
captures the location of particular terms more effectively than 
the LSTM-based counterpart.  

Experiment 3 Results: EVA-DSSM Sensitivity 
Analysis  
In Experiment 3, we aimed to identify EVA-DSSM’s 
sensitivity to word hashing, LSTM, the number of dense 
layers, and attention mechanism inclusion. As previously 
mentioned, standard word hashing segments input text into 
letter trigrams for natural language applications. However, 
cybersecurity text has non-natural terms such as version 
numbers, system names, and others. Experiment 3 examined 
the performance of utilizing letter bigrams, letter trigrams, 
letter 4-grams, and word n-gram for the EVA-DSSM. While 
concerns have been raised that hashing increases collisions 
(Huang et al., 2013) of identical letter n-grams, only the short 
text exploit and vulnerability names are hashed, not the 
underlying descriptions or discussions. Thus, the hashing 
collisions in our data are negligible (0.0058%) for all 
experiments. In addition to evaluating the performance of 
hashing variations, we also evaluated EVA-DSSM’s 
sensitivity to variations in the LSTM layers (one- and two-
layer LSTM and BiLSTMs), number of dense layers, and the 
removal of attention mechanisms. We present the results of 
Experiment 3 in Table 19; top performances of each 
variation are highlighted in bold. Across all datasets, the 
base EVA-DSSM model using letter trigrams, one-layer Bi-
LSTM, two dense layers, and self-attention and context 
attention mechanisms achieved the strongest performance. 
When considering the word hashing sensitivity analysis, the 
strong performance of letter trigrams is likely attributable to 
its ability to capture semantics that letter bigrams and word 
n-grams miss.  
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Table 18. Example Exploit-Vulnerability Linkages Correctly Detected by EVA-DSSM but Missed by Best 
Competing Deep Learning Approaches  
Dataset Vulnerability Model Top linked exploit 
Web 
applications 

Zend Framework / zend-mail 
2.4.11 - Remote Code 
Execution Exploit 

DSSM Oracle Linux 6: thunderbird (ELSA-2013-0821)  
EVA-DSSM  FreeBSD: phpmailer -- Remote Code Execution  

Local Systemd 228 - Privilege 
Escalation Vulnerability 

DSSM GLSA-201309-11: Subversion 
EVA-DSSM  PHP 7.1.x < 7.1.1 Multiple Vulnerabilities 

Remote SAP Solman 7.31 Information 
Disclosure Vulnerability 

DRMM Cisco TelePresence Video Communication Server 
Heartbeat Information Disclosure (Heartbleed)  

EVA-DSSM  CentOS 6: squid34 (CESA-2017:0183) 
DoS Ubuntu 11.10/12.04 - 

binfmt_script Stack Data 
Disclosure Vulnerability 

Match-LSTM RHEL 6: kernel (RHSA-2017:0316)  
EVA-DSSM  Ubuntu 12.04 LTS: linux-lts-quantal - Linux 

kernel hardware enablement from Quantal 
regression  

 
Table 19. Experiment 3 Results: EVA-DSSM Sensitivity Analysis 

EVA-DSSM variation Web applications Local 
NDCG@1 NDCG@3 NDCG@5 MRR MAP NDCG@1 NDCG@3 NDCG@5 MRR MAP 

Input text Letter bigrams 0.4976  0.6892  0.7022  0.6891  0.7355  0.5049  0.5844  0.6282  0.6578  0.6890  
Letter trigrams 0.6570  0.7550  0.7944  0.7789  0.7932  0.6714  0.6905  0.7322  0.6953  0.7504  
Letter 4-grams 0.6392  0.7684  0.7898  0.7753  0.7815  0.5663  0.6480  0.6742  0.6959  0.7098  
Word n-gram 0.4015  0.5310  0.5647  0.5856  0.6106  0.4837  0.5549  0.5997  0.5891  0.6240  

LSTM One Layer LSTM 0.6349  0.7258  0.7667  0.7710  0.7543  0.6125  0.6811  0.7172  0.7044  0.7340  
One Layer Bi-LSTM 0.6570  0.7550  0.7944  0.7789  0.7932  0.6714  0.6905  0.7322  0.6953  0.7504  
Two Layer LSTM 0.6601  0.7667  0.7890  0.7729  0.7967  0.6456  0.6909  0.7230  0.6948  0.7214  
Two Layer Bi-LSTM 0.6535  0.7458  0.7803  0.7414  0.7838  0.6810  0.7033  0.7349  0.7057  0.7310  

Dense 
layer 

One dense layer 0.6202  0.7135  0.7639  0.7733  0.7573  0.6489  0.7014  0.7280  0.7006  0.7332  
Two dense layers 0.6570  0.7550  0.7944  0.7789  0.7932  0.6714  0.6905  0.7322  0.6953  0.7504  
Three dense layers 0.6668  0.7424  0.7898  0.7830  0.7841  0.6631  0.6970  0.7185  0.7104  0.7459  

Attention Removing self-
attention 

0.6011  0.6754  0.6938  0.7042  0.7284  0.5716  0.6547  0.6834  0.6885  0.7078  

Removing context 
attention 

0.5327  0.6372  0.6566  0.6477  0.6890  0.5580  0.6246  0.6468  0.6599  0.6823  

Base EVA-DSSM Performance* 0.6570 0.7550 0.7944 0.7789 0.7932 0.6714 0.6905 0.7322 0.6953 0.7504 

EVA-DSSM variation Remote DoS 
NDCG@1 NDCG@3 NDCG@5 MRR MAP NDCG@1 NDCG@3 NDCG@5 MRR MAP 

Input text Letter bigrams 0.4850  0.5927  0.6289  0.6314  0.6425  0.2711  0.3765  0.4099  0.4522  0.4492  
Letter trigrams 0.5501  0.6730  0.6972  0.6852  0.7006  0.3842  0.4314  0.4829  0.5394  0.5937  
Letter 5-grams 0.5688  0.6689  0.6840  0.6841  0.6833  0.3901  0.4149  0.4670  0.5187  0.5573  
Word n-gram 0.4201  0.5317  0.5890  0.6013  0.5893  0.3055  0.3834  0.4258  0.4780  0.5058  

LSTM One Layer LSTM 0.5077  0.6439  0.6639  0.6750  0.6574  0.3422  0.4078  0.4361  0.5005  0.5379  
One Layer Bi-LSTM 0.5501  0.6730  0.6972  0.6852  0.7006  0.3842  0.4314  0.4829  0.5394  0.5937  
Two Layer LSTM 0.5392  0.6644  0.6858  0.6820  0.6715  0.3535  0.4144  0.4592  0.5196  0.5768  
Two Layer Bi-LSTM 0.5569  0.6698  0.6953  0.6872  0.7019  0.3720  0.4496  0.4797  0.5304  0.5880  

Dense 
layer 

One dense layer 0.5305  0.6590  0.6744  0.6616  0.6658  0.3671  0.4058  0.4485  0.4870  0.5564  
Two dense layers 0.5501  0.6730  0.6972  0.6852  0.7006  0.3842  0.4314  0.4829  0.5394  0.5937  
Three dense layers 0.5489  0.6683  0.6948  0.6839  0.6959  0.3864  0.4406  0.4760  0.5460  0.6017  

Attention Removing self-
attention 

0.5244  0.6277  0.6550  0.6618  0.6647  0.3437  0.4318  0.4552  0.5065  0.5580  

Removing context 
attention 

0.4597  0.5721  0.6014  0.6145  0.6338  0.3053  0.3822  0.4174  0.4768  0.5295  

Base EVA-DSSM Performance* 0.5501 0.6730 0.6972 0.6852 0.7006 0.3842 0.4314 0.4829 0.5394 0.5937 
Note: *The base EVA-DSSM uses letter trigrams, one layer Bi-LSTM, two dense layers, and both self-attention and context attention 
mechanisms. When conducting the sensitivity analysis, only one model component was varied at a time to identify the contribution of that model 
component to the overall EVA-DSSM. This is consistent with best practices in deep learning literature in prevailing IS journals (Zhu et al., 2020; 
Zhu et al., 2021). 
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Examining outputted results indicated that many exploit and 
vulnerability names contained three-letter acronyms such as 
“SSH” for Secure Shell, “PHP” for Hypertext Preprocessor, 
“XSS” for Cross-Site Scripting, and many others. These 
acronyms are key components of vulnerability and exploit 
names like “OpenSSH Security Bypass,” “SSH Cracker,” and 
“Casper PHP Trojan.” Letter bigrams create too small of a 
window (e.g., “PH” and “HP” for “PHP”), while word n-
grams create windows too large (e.g., “OpenSSH” instead of 
capturing just “SSH”). Letter trigrams create a window large 
enough to capture these key three-letter acronyms. When 
considering the Bi-LSTM sensitivity analysis, results 
indicated that using only the LSTM that processes in a single 
direction rather than two directions resulted in performance 
degradation. This is likely due to the nature of how sequential 
dependencies appear in exploit and vulnerability names. With 
regard to the dense layers, the performance increased when 
having two layers as opposed to one, but the differences were 
negligible when adding a third layer. However, removing 
either attention mechanism from the EVA-DSSM 
substantially reduced the performance. This performance 
decrease was most pronounced when removing the context 
attention, which dropped by nearly 15% in some cases. This 
indicates that the context attention’s ability to capture and 
weigh global relationships across input text significantly 
improves overall exploit-vulnerability linking.  

U.S. Hospital Case Study Results 

The vulnerability assessment of the top eight hospitals 
revealed that 344 / 1,879 (18.31%) of scanned devices have 
vulnerabilities, and 176 of those have multiple vulnerabilities, 
while the remaining 168 have only one. Vulnerabilities in the 
“Critical” threshold were due to outdated PHP, OpenSSL, or 
Unix versions. “High” and “Medium” had Apache, SQL, 
SSH, and XSS issues. Table 20 summarizes selected 
vulnerabilities in the “Critical,” “High”, and “Medium” levels. 
For each vulnerability, we list the most relevant exploit 
determined by EVA-DSSM.  

Vulnerabilities at the “Critical” risk level pertained to 
unsupported PHP, OpenSSL, and Unix technologies. Their 
associated exploits aimed to take advantage of common issues 
associated with unsupported technologies such as 
susceptibilities to injections, memory disclosures, and 
backdoors. Vulnerabilities in the “High” risk level were 
related to Apache vulnerabilities, with the most relevant 
exploit related to DoS. Finally, the vulnerabilities in the 
“High” risk level pertained to tracing HTTP methods and 
weak SSH algorithms. The number of devices afflicted with 
vulnerabilities increased as the risk level decreased. To 
identify the top devices that security analysts can prioritize for 
remediation, we calculated the DVSM for each device. For 

space considerations, we list only the top-ranked device on 
each hospital’s network in Table 21. We randomized the order 
in which they appear, as well as anonymized the last three 
octets of each hospital’s IP range and selected device to 
protect their privacy. 

Results indicate that SSH servers, web servers, Apple TV, 
and medical portals are vulnerable. All but one device had 
between two and six vulnerabilities due to web application, 
SSH, and outdated software issues. Hackers can potentially 
exploit these vulnerabilities with the linked exploits to gain 
a foothold into the hospital’s network (Weidman, 2014). The 
most susceptible device was an eCare portal on the 17x.x.x.x 
network (DVSM 61.761) that likely provides healthcare-
related services to patients. We depict the system’s interface, 
selected vulnerabilities, most relevant exploit name for each 
vulnerability, the individual severity score for each exploit-
vulnerability link, and the overall device vulnerability score 
in Figure 5. 

Nessus detected 47 vulnerabilities for the device hosting the 
“Partners eCare Portal.” After running the EVA-DSSM to 
create exploit-vulnerability linkages, the overall DVSM score 
resulted in 61.761. The large and diverse attack surface of this 
device increases its exploit probability. Vulnerabilities in this 
device include XSS, OpenSSL issues, buffer overflow, and 
DoS. This device also has a login form, indicating that it 
connects to a database. Hackers can exploit the form to access 
the underlying database and gain a foothold into the hospital’s 
network to pivot to other devices. Each weak point can allow 
an attacker to remotely take the system offline or hijack it for 
their own use (Weidman, 2014).  

SCADA Device Case Study Results 

The case study examining SCADA devices aims to illustrate 
how CTI professionals can apply our framework to identify 
systemic vulnerabilities and their relevant hacker exploits 
for a specific device category rather than multiple networks 
with a diverse set of devices. Nessus results for the SCADA 
case study found that 4,009/20,461 (19.59%) devices have 
“critical” (182), “high” (189), “medium” (2,737), or “low” 
(901) risks. Most vulnerabilities pertain to unencrypted 
telnet servers and SSH servers. We summarize these 
vulnerabilities, their severities, most relevant exploit name, 
number of affected devices and major afflicted vendors of 
devices containing these vulnerabilities in Table 22. 

Vulnerabilities that affect SCADA devices such as 
programmable logic controllers (PLCs) are from major 
vendors including Rockwell Automation, Siemens, and 
Schneider Electric. PLCs are computers that automate and 
monitor electromechanical processes such as electrical 
relays, hydraulics, and motors.  



Samtani et al. / Linking Exploits from the Dark Web to Known Vulnerabilities  
 

936 MIS Quarterly Vol. 46 No. 2 / June 2022 
 

Table 20. Selected Hospital Vulnerabilities and Their Most Relevant Exploits Identified by the EVA-
DSSM 
Risk 
level 

Vulnerability names (severity) Top linked exploit name and its post date # of 
devices 

Critical “PHP Unsupported Version Detection” 
(10.0) 

“phpshop 2.0 Injection Vulnerability” (1/14/2013) 11 

“OpenSSL Unsupported” (10.0) “OpenSSL TLS Heartbeat Extension - Memory 
Disclosure” (4/8/2014) 

7 

“Unix OS Unsupported Version 
Detection” (10.0) 

“TCP/IP Invisible Userland Unix Backdoor with Reverse 
Shell” (6/30/2012) 

6 

High “Multiple Apache Vulnerabilities” (8.3) “Apache 2.4.17 - Denial of Service” (12/18/2015) 17 
Medium “HTTP TRACE / TRACK Methods 

Allowed” (5.0) 
“traceroute Local Root Exploit” (11/15/2000) 58 

“SSH Weak Algorithms” (4.3) “OpenSSH attack DoS” (7/4/2010) 55 

 
Table 21. Most Susceptible Device on Each Hospital’s Network 

Selected devices for each hospital Severity score information 
IP Range IP Address Device type # of 

Vulnerabilities 
Vulnerabilities DVSM 

12x.x.x.x 12x.x.x.x FTP/SSH Server 3 FTP issues 4.591 
19x.x.x.x 19x.x.x.x SSH Server 3 SSH issues 4.376 
17x.x.x.x 17x.x.x.x eCare web portal 47 XSS, DoS, OpenSSL, 

buffer overflow  
61.761 

16x.x.x.x 16x.x.x.x Medical computing 
portal 

5 PHP and SSH issues 4.863 

14x.x.x.x and 
14x.x.x.x 

14x.x.x.x Web server 3 SQL Injections 7.528 

 14x.x.x.x Apple TV 2 Buffer overflow 5.381 
14x.x.x.x 14x.x.x.x SSH/Web server 4 PHP and SSH issues 3.871 
6x.x.x.x 6x.x.x.x Informational diabetes 

portal 
3 Unix vulnerabilities 7.159 

16x.x.x.x 16x.x.x.x Web server 6 XSS 9.367 

 

 
Figure 5. Selected Vulnerabilities from Partners eCare Portal on the 17.x.x.x Hospital Network 

 
Table 22. Selected SCADA Vulnerabilities and their Most Relevant Exploits as Identified by the EVA-
DSSM 
Vulnerability name (severity) Exploit name (post date) # of afflicted devices Afflicted vendors 
“Unencrypted Telnet Server” 
(5.8) 

“Telnet-Ftp Server <= v1.218 
Remote Crash” (3/19/2012) 1,407 Rockwell Automation, 

Siemens, Schneider, Power 
Measurement, Acromag, 
Honeywell 

“Dropbear SSH Server 
Vulnerabilities” (5.0) 

“DropBear SSHD 2015.71 - 
Command Injection” (3/3/2016) 524 
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These components often appear in factories, industrial heating 
systems, and cooling units. Exploiting Telnet or SSH on these 
devices would allow hackers to remotely control, monitor, and 
alter communications to and from the system. The SSH botnet 
tool identified by the EVA-DSSM indicates that a skilled 
hacker can potentially exploit many PLCs simultaneously and 
turn them into bots to attack other targets. This kind of attack 
is not unprecedented: the Mirai malware infected hundreds of 
thousands of IoT devices to conduct a large-scale distributed 
denial of service (DDoS) against the internet’s DNS servers in 
2016 (Mathews, 2016). Many of the vulnerabilities detected 
in both case studies are addressable by following fundamental 
cyberhygiene. For example, Telnet is insecure by design; thus, 
it is recommended that users upgrade to more secure SSH 
clients. Outdated software issues related to PHP, Unix, and 
SSH can be mitigated by updating software.  

Contributions and Limitations 

In this paper, we carefully selected a relevant societal issue 
(automatic exploit-vulnerability linking) from a high-impact 
application environment (CTI) and searched for a solution 
space to identify and develop viable artifact designs (EVA-
DSSM and DVSM). We conducted rigorous evaluations and 
proof-of-concept case study demonstrations to illustrate the 
validity and potential practical utility of our approaches. In the 
ensuing subsections, we present the contributions to the IS 
knowledge base, practical implications, and limitations of this 
work.  

Contributions to the IS Knowledge Base 

To date, IS scholars have extensively studied behavioral 
compliance, risk management, security investments, and the 
market effects of cybersecurity. While there is a growing body 
of cybersecurity analytics research, past Dark Web-based CTI 
efforts have almost entirely relied on one data source only 
(e.g., forums) (Samtani et al., 2020a). Moreover, hacker 
exploit and vulnerability assessment data contain significant 
natural and non-natural text content that sharply contrasts with 
data sources used in extant IS cybersecurity research. 
Consequently, there is a significant need for novel 
computational IT artifacts that can fuse multiple cybersecurity 
data sources (e.g., Dark Web and vulnerability assessment) to 
facilitate proactive CTI. In this study, we make two major 
contributions to the IS knowledge base: the EVA-DSSM 
algorithm and the DVSM score. We further describe each 
contribution and its related implications below.  

EVA-DSSM Algorithm  

Algorithms developed through the lens of the computational 
design science paradigm should contribute back to the 

methodological knowledge base from where they originated 
(Hevner et al., 2004; Rai, 2017). In this study, we drew upon 
an emerging body of DL-based short text matching algorithms 
to achieve our goal of automatically linking exploit and 
vulnerability names. Despite the promise of existing DL-
based short text matching algorithms for our task, each extant 
algorithm relies on a single architecture (DNN, CNN, or 
LSTM) to represent and process input texts and often does not 
enhance the architecture with additional model components 
(e.g., attention mechanisms, highway networks, etc.) to 
improve model performance (Mitra & Crasswell, 2018). 
Against this backdrop, EVA-DSSM contributes a novel 
hybrid DL-based short text matching algorithm that integrates 
multiple architectures (Bi-LSTM and DNN) and emerging 
model components (attention mechanisms) to the growing 
body of short text matching algorithms. EVA-DSSM has three 
key design novelties:   

• First, the first dense layer in the DSSM is replaced with 
a Bi-LSTM layer. As a result, the EVA-DSSM captures 
sequential dependencies (in both forward and backward 
directions) from the input exploit and vulnerability 
names as opposed to bag of letter trigrams.  

• Second, EVA-DSSM includes a novel context attention 
layer to capture the global relationships across the 
exploit and vulnerability texts. Compared to the 
DSSM’s approach of processing each input text 
separately throughout the entire matching process, this 
attention layer aims to identify and weigh overlapping 
contents prior to the final embedding matching.  

• Finally, a self-attention mechanism is incorporated into 
the EVA-DSSM to weigh the vectors generated by the 
context attention layer. In contrast to DSSM not 
assigning weights to inputted texts or embeddings to 
improve exploit-vulnerability linking, the self-attention 
mechanism aims to iteratively re-weight embeddings to 
improve final matching performance.  

Rigorously evaluating EVA-DSSM against prevailing short 
text matching approaches on web application, remote, local, 
and DoS exploit testbeds reveals several key insights about 
EVA-DSSM’s design. First, the results of Experiment 1 
(EVA-DSSM vs. non-DL short text matching algorithms) 
suggest that EVA-DSSM’s basis in DL helped it capture 
semantics and word variations missed by algorithms with 
direct matching, distributional semantics, probabilistic 
matching, and term frequencies operations. Second, the results 
of Experiment 2 (EVA-DSSM vs. DL-based short text 
matching algorithms) suggest that EVA-DSSM’s 
incorporation of bidirectional text processing and attention 
mechanisms captures sequences of text and linguistic 
characteristics of exploit and vulnerability names that are 
missed by approaches based in DNNs, LSTMs, or CNNs. 
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Finally, the results of the EVA-DSSM sensitivity analysis 
suggest that the letter trigram hashing that EVA-DSSM 
employs captures windows of text (e.g., three-letter 
technology names) that help it consistently attain stronger 
performances than bigram, 4-gram, or word n-gram 
variations. Additionally, removing either attention mechanism 
resulted in a precipitous decline in performance.  

Since the EVA-DSSM extends the conventional DSSM for a 
new context (CTI), it falls into the exaptation quadrant of 
design science contributions (Gregor & Hevner, 2013). 
Although proposed for CTI, EVA-DSSM’s grounding in short 
text matching principles suggests that it could be applied in 
related short text matching tasks such as query-document title 
matching, question-answering systems, and dialog response 
(e.g., automated chatbots for customer service). Each task has 
been noted by IS scholars as holding significant potential for 
addressing key tasks in important application areas (Chen et 
al., 2012; Samtani et al., 2020). Since differences may exist 
between the domains that these short text matching tasks are 
deployed, we identified three important design implications 
(through the design and evaluation of the EVA-DSSM) that 
IS scholars can consider when exapting EVA-DSSM or 
designing their short text matching algorithm:  

1. Identifying appropriate short text representations: 
The results of Experiment 3 indicate that the manner in 
which input texts are represented (e.g., letter trigrams vs. 
word n-grams) affects overall matching performance. 
Therefore, future studies can consider capturing the 
semantics and structure of the input text based on the key 
characteristics and requirements of the domain they are 
studying; this could improve the performance of their 
DL-based algorithms for short text matching. Although 
letter trigrams were used in this study, other text 
representations that can be considered include 
associating named entities with each word, text graphs, 
and prematched grids.  

2. Integrating multiple DL architectures: It has been 
well-established in short text matching literature that 
DL-based algorithms outperform non-DL variants 
(Mitra & Crasswell, 2018). The results of our study 
indicate that integrating multiple DL architectures (Bi-
LSTM to capture sequential dependencies and DNN to 
generate embeddings for final exploit-vulnerability 
comparison) can lead to substantial improvements in 
performance over algorithms relying on a single DL 
architecture alone. Therefore, IS scholars can consider 
integrating multiple DL architectures (each assigned to 
conduct a particular processing task) for their short text 
matching applications.  

3. Extending base DL architectures: EVA-DSSM’s 
strong performance is largely attributable to extending 
its base Bi-LSTM and DNN architectures to operate 
with two attention mechanisms. When designing short 
text matching algorithms, scholars can consider 
extending their base model architecture with attention 
mechanisms and other emerging extensions to DL 
architectures (e.g., complex order embeddings, long 
short-range attention, and residual networks) to increase 
the model’s capacity to learn from the input data and 
improve overall matching performance.  

While these three considerations apply to many DL-based 
analytics, the results from our experiments suggest that they 
are especially important for attaining strong performance for 
our application of linking cybersecurity short texts.  

DVSM Score 

A key benefit of conducting multimodal analysis for 
cybersecurity is leveraging the metadata from heterogeneous 
data sources to construct specialized metrics to enhance 
cybersecurity decision-making (Samtani et al., 2020a). In this 
study, we proposed a novel DVSM score based on the exploit-
vulnerability links generated by the EVA-DSSM. DVSM 
improves the conventional CVSS score (and therefore falls 
into the improvement quadrant of design science 
contributions) by accounting for the age of the hacker exploits 
linked to each vulnerability based on EVA-DSSM results. An 
inverse log function discounts each exploit’s age to weigh 
newer exploits more heavily than older ones. All exploit-
vulnerability severity calculations for a device are aggregated 
to form an overall device level score. We discovered that 
cybersecurity experts found the DVSM more useful than the 
conventional CVSS for risk prioritization in both the U.S. 
hospital and SCADA systems case studies through a carefully 
designed user evaluation. Since DVSM is flexible to 
numerous extensions (e.g., accounting for asset criticality) 
based on the context and needs of an organization and its 
cybersecurity team(s), it holds important implications for 
designing enhanced vulnerability severity scores and 
facilitating targeted risk management activities.  

Practical Implications  

The proof-of-concept case studies on U.S. hospitals and 
SCADA systems helped demonstrate the potential practical 
utility of the EVA-DSSM and DVSM. Three major groups of 
stakeholders can potentially benefit from the proposed 
approaches: analysts in SOCs, IR teams, and cybersecurity 
operations vendors. We further describe the implications of 
this study for each major stakeholder group in turn.  
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Analysts in SOCs. The heart of cybersecurity efforts within 
enterprise-level organizations often resides in SOC 
environments. Analysts in SOCs are typically responsible for 
identifying and prioritizing vulnerabilities (often based on 
quantity, severity, and relevant exploits) on their 
organization’s networks. The number of devices (in the tens 
of thousands) and vulnerabilities (in the hundreds of 
thousands) that SOC analysts often manage can exceed human 
cognitive capacity and result in information overload. EVA-
DSSM can provide a unique capability for SOC analysts to 
automatically sift through large quantities of Dark Web and 
vulnerability data to produce targeted exploit-vulnerability 
linkages.  

IR Teams 

The responsibility of remediating vulnerabilities typically 
belongs to IR teams. However, the scale of devices on 
enterprise networks often requires selecting devices for 
remediation. The DVSM can help IR teams prioritize devices 
for immediate remediation. IR teams can also adjust the base 
DVSM formulation to closely reflect the characteristics of 
their asset base. The DVSM scores for various aspects of their 
environment (e.g., subnets, assets, vulnerabilities, etc.) can 
also be included in the reports (e.g., visualizations, threat 
feeds, reports, etc.) that IR teams generate for their chief 
information security officers (CISOs) and to external 
information sharing and analysis organizations. 

Cybersecurity Operations Vendors 

Many enterprise organizations have the resources to fund 
dedicated cybersecurity teams with SOC analysts and IR 
teams. However, many small and midsize businesses cannot 
fund their own teams and therefore rely on third-party 
cybersecurity operations vendors (e.g., FireEye) for their CTI 
activities (e.g., vulnerability scanning, risk prioritization, 
mitigation). Recent studies reviewing the CTI industry have 
indicated that Dark Web-based analytics are included in less 
than 15% of CTI platforms (Samtani et al., 2020d). 
Recognizing this opportunity, EVA-DSSM and DVSM could 
potentially be included in CTI platforms to produce targeted 
and holistic threat intelligence.  

Limitations 

As with any study, our work has several limitations. First, 
EVA-DSSM cannot link exploits and vulnerabilities that are 
not yet published (i.e., publicly accessible). Second, DVSM 
does not explicitly account for the internal security controls 
that an organization may have deployed (information not 
available in our study). Third, we do not have access to the 

assets or organizational insight at any of the hospitals or 
SCADA networks to validate whether the detected 
vulnerabilities are truly susceptible to the linked hacker 
exploits. As a result, the expert evaluation of usefulness for 
the EVA-DSSM and DVSM is only a complementary 
evaluation (not the main evaluation) for the proposed 
approaches, rather than a thorough evaluation of risk 
likelihood and asset criticality in production environments 
(Agrawal et al., 2014). We note that these limitations are not 
limited to our study, but any study exploring vulnerabilities 
without organizational access (Mell et al., 2007; Farris et al., 
2018).   

Conclusion and Future Directions 

Cybersecurity is undoubtedly one of modern society’s grand 
challenges. CTI offers organizations the opportunity to 
mitigate cyberattacks. However, many organizations struggle 
to implement effective CTI capabilities due to their inability 
to automatically pinpoint relevant exploits for their 
vulnerabilities. Hacker forums from the Dark Web provide a 
novel data source that, when coupled with known 
vulnerabilities, can help develop proactive and holistic CTI. 
Although IS scholars are equipped to produce significant CTI 
research contributions in this regard, extant IS cybersecurity 
literature focuses primarily on behavioral compliance, risk 
management, investments in securing digital assets, and 
market effects of securing digital assets. Moreover, extant 
cybersecurity analytics literature has primarily focused on 
analyzing single data sources rather than multiple data sources 
simultaneously. Significant opportunity remains for IS 
scholars to develop novel computational IT artifacts that 
automatically link Dark Web data and vulnerability 
assessment data to enhance CTI capabilities.  

In this study, we aimed to develop a novel approach to link 
hacker exploits from the Dark Web to vulnerabilities detected 
by vulnerability assessment tools (e.g., Nessus). To achieve 
this goal, we developed a novel EVA-DSSM algorithm that 
draws upon principles in deep learning, bidirectional text 
processing, and attention mechanisms. Through a series of 
technical benchmark experiments, we demonstrated how 
EVA-DSSM outperforms state-of-the-art non-DL and DL-
based short text matching baseline methods across four major 
categories of exploits. In addition to contributing the EVA-
DSSM, we also developed a novel DVSM score that 
incorporates vulnerability severity, quantity, and hacker 
exploit age to help support enhanced device prioritization. We 
demonstrated EVA-DSSM’s and DVSM’s potential practical 
utility with proof-of-concept case studies of openly accessible 
devices at the top eight U.S. hospitals and SCADA systems 
deployed worldwide. A complementary user evaluation 
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indicated that 45 cybersecurity professionals (currently 
serving in SOC, IR, vulnerability management, and/or 
operational cybersecurity roles) found the EVA-DSSM and 
DVSM results more useful than those generated by baseline 
approaches for both case studies.  

There are several promising directions for future research. 
First, researchers could apply EVA-DSSM and DVSM on 
foreign hacker forums (e.g., Russian, Middle Eastern) to 
identify the systems various geopolitical regions target. 
Second, behavioral IS studies could use cybercrime theories 
to better understand why hackers target specific 
vulnerabilities. Third, future work could build a user interface 
upon the EVA-DSSM and DVSM and deploy it into a 
production environment. Such a deployment could facilitate 
semistructured interviews with CISOs, longitudinal field 
studies, and case studies to help researchers understand how 
the approaches are adopted into practice. Finally, future 
computational IT artifacts could examine how to create 
exploit-vulnerability linkages for vulnerabilities present in 
emerging technologies such as GitHub, containers, dynamic 
virtual networks, and others. Each extension can provide 
much-needed cybersecurity capabilities to help secure 
cyberspace.  
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Appendix A 
Results of the Expert Evaluation of Usefulness 

In the main text, we discussed the procedure for conducting a complementary user evaluation that examined how useful cybersecurity experts 
found the exploit-vulnerability pairs and risk (severity) scores generated from our proposed Exploit-Vulnerability Attention Deep Structured 
Semantic Model (EVA-DSSM) and Device Vulnerability Severity Metric (DVSM) compared to conventional Deep Structured Semantic 
Model (DSSM) and Common Vulnerability Scoring System (CVSS). This complementary user evaluation was conducted for both the case 
studies on the top eight hospitals in the U.S. and on the over 20,000 Supervisory Control and Data Acquisition (SCADA) devices worldwide. 
In Table A1, we provide sample links and scores for the hospital case study that were presented to the experts.  

The contents in the first and fourth rows were generated by the EVA-DSSM and DVSM. The rest were from the conventional DSSM and 
CVSS. Blinding and interspersing links and scores in this way helped ensure that the cybersecurity experts did not favor one approach. For 
each link, we asked the expert if “the exploit-vulnerability link is useful for identifying what exploit could target this vulnerability.” For each 
score, we asked if “the risk prioritization score is useful to prioritize exploit-vulnerability pairs more effectively.” Following recent studies 
in information systems (IS) literature (Abbasi et al., 2018; Chau et al., 2020), each item was adapted from Davis (1989), Davis et al. (1989), 
and Venkatesh et al. (2003). Both items were rated on a scale of 1-7, with 1 being strongly disagree and 7 being strongly agree. To control 
the scope of each study, we selected the 76 exploit-vulnerability links presented from the hospital case study in Table 20 and the top 50 
exploit-vulnerability pairs (based on the number of devices afflicted) for the SCADA case study. Executing the usefulness evaluations with 
these samples simulates the kind of situations a cybersecurity analyst commonly faces when prioritizing vulnerabilities, wherein they can 
identify the top-rated issues for multiple types of devices across their networks (hospital case study) and/or identify the top n of vulnerabilities 
that afflict a category of their devices (SCADA case study) (Agrawal, 2014). We present the mean values of the proposed approaches, mean 
values of the benchmark approaches, and the p-value attained by the paired t-test for both case studies in Table A2. 

Overall, the panel of 45 cybersecurity experts found the EVA-DSSM and DVSM results more useful than the results of the prevailing 
benchmark approaches (DSSM and CVSS). The mean averages were higher for the SCADA case study than for the hospital case study. This 
is likely attributable to the nature of the exploit-vulnerability links that are present in SCADA devices, many of which pertain to the remote 
monitoring vulnerabilities present in these devices. These types of vulnerabilities are more commonly seen by cybersecurity experts, and 
therefore they can more effectively ascertain their usefulness compared to the diversity of exploits in the hospital example. Taken together, 
these results indicate that the EVA-DSSM and the DVSM both hold promise for serving as the foundation for advanced CTI systems.  

 

Table A1. Sample Exploit-Vulnerability Links and Severity Scores Used for the User Evaluation on the 
Hospital Case Study 
# Vulnerability Exploit Risk score  

1 Web server transmits 
Cleartext credentials 

Joomla component event manager Blind SQL injection  0.313 

2 Web server transmits 
Cleartext credentials 

Mozilla Firefox 3.6 (multitudinous looping) denial of service 
exploit  

2.6 

3 Browsable web directories OpenOffice .slk file parsing null pointer vulnerability  5.0 

4 Browsable web directories Safari v4.0.4  Firefox v3.5.6  SeaMonkey v2.0.1  Opera 
v10.10 DoS exploit  

0.604 

 

Table A2. Results of the Expert Evaluations of Usefulness* 
Case 
study 

Items EVA-DSSM + 
DVSM 

DSSM + CVSS P-value 

Mean Mean 

Hospitals The exploit-vulnerability link is useful for identifying what 
exploit could target this vulnerability. 

6.23 5.12 p < 0.05 
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The risk score is useful to prioritize exploit-vulnerability pairs 
more effectively. 

6.13 4.91 p < 0.05 

SCADA The exploit-vulnerability link is useful for identifying what 
exploit could target this vulnerability. 

6.54 5.45 p < 0.05 

The risk prioritization score is useful to prioritize exploit-
vulnerability pairs more effectively. 

6.47 5.17 p < 0.05 

Note: * Following the survey, the lead author followed up with each participant to debrief them about the intent, objective, and results of the 
study. 


