
Estimating the Impact of Communication Schemes
for Distributed Graph Processing
Tian Ye

Department of Computer Science
University of Southern California

Los Angeles, USA
tye69227@usc.edu

Sanmukh R. Kuppannagari
Department of Electrical Engineering

University of Southern California
Los Angeles, USA
kuppanna@usc.edu

Cesar A. F. De Rose
School of Technology

PUCRS
Porto Alegre, Brazil
cesar.derose@pucrs.br

Sasindu Wijeratne
Department of Electrical Engineering

University of Southern California
Los Angeles, USA
kangaram@usc.edu

Rajgopal Kannan
Department of Electrical Engineering

University of Southern California
Los Angeles, USA
rajgopak@usc.edu

Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California
Los Angeles, USA
prasanna@usc.edu

Abstract—Extreme scale graph analytics is imperative for
several real-world Big Data applications with the underlying
graph structure containing millions or billions of vertices and
edges. Since such huge graphs cannot fit into the memory of a
single computer, distributed processing of the graph is required.
Several frameworks have been developed for performing graph
processing on distributed systems. The frameworks focus primar-
ily on choosing the right computation model and the partitioning
scheme under the assumption that such design choices will
automatically reduce the communication overheads. For any
computational model and partitioning scheme, communication
schemes — the data to be communicated and the virtual
interconnection network among the nodes — have significant
impact on the performance. To analyze this impact, in this work,
we identify widely used communication schemes and estimate
their performance. Analyzing the trade-offs between the number
of compute nodes and communication costs of various schemes
on a distributed platform by brute force experimentation can
be prohibitively expensive. Thus, our performance estimation
models provide an economic way to perform the analyses given
the partitions and the communication scheme as input. We
validate our model on a local HPC cluster as well as the cloud
hosted NSF Chameleon cluster. Using our estimates as well
as the actual measurements, we compare the communication
schemes and provide conditions under which one scheme should
be preferred over the others.

Index Terms—Distributed Graph Processing, Performance Es-
timation, Communication Schemes, Cluster Computing.

I. INTRODUCTION

Graphs provide a powerful abstraction for representing
real world networked data [1]. Examples such as social
networks [2], biological networks [3] and transportation net-
works [4] illustrate their ubiquity. Extreme scale graph analyt-
ics is imperative for several real-world Big Data applications
with the underlying graph structure containing millions or
billions of vertices and edges [5].

This work is sponsored by the U.S. NSF under grant numbers OAC-
1911229, PPoSS-2119816 , SaTC-2104264.

The massive sizes of graphs have made distributed pro-
cessing essential. Local dedicated clusters are available to the
researchers and practitioners at several institutions to perform
distributed graph processing. In addition, public clouds, with
their flexibility, elasticity and pay-as-you-go-models are also
available for utilization. Moreover, the availability of several
distributed graph processing frameworks, which allow easier
distributed application development, has further increased the
adoption of distributed graph processing [6].

In a typical distributed graph processing framework [7]–[9],
the graph is partitioned and assigned to various compute nodes.
The connectivity across the partitions induces communication
among the compute nodes. Communication latency is signifi-
cant in distributed clusters/clouds. To reduce communication,
most distributed frameworks focus on choosing the right
computation models or partitioning scheme.

While such design choices do reduce communication, they
exert a second order impact on the same. The communica-
tion scheme, which we define as the choice of data (vertex
attributes, intermediate updates, etc.) to be communicated and
the virtual interconnection network among the communica-
tion nodes, has a first-order impact on the communication
performance. Formal analysis on the impact of communi-
cation schemes is lacking. A brute force approach wherein
an application developer evaluates all possible configurations
of number of nodes and communication schemes can be
prohibitively expensive both computationally and economi-
cally. With increasing adoption of cloud platforms for graph
processing, such an analysis is imperative for addressing the
challenges due to high cloud latencies.

In this work, we explicitly decouple the communication and
computation in order to estimate the impact of communication
in distributed environments. We develop performance esti-
mation models for communication schemes used by existing
most popular distributed graph processing frameworks. The
performance models take as input the partitions of the graph

and the communication scheme and output the estimated
communication time. Thus, our estimation models enable a
preliminary analyses of the trade-offs between the partitioning
schemes and the communication in an early development
stage. We validate our models using a local university cluster
and the cloud hosted NSF Chameleon cluster [10].

II. CONTRIBUTIONS

The significant contributions of this work are as follows:
• We identify the communication schemes used by the most

popular distributed graph processing frameworks;
• Given partitions of a graph, we develop models that esti-

mate the performance of these communication schemes;
• We validate our performance estimation models with

experiments on a local and a cloud hosted cluster;
• We use our models to provide several crucial insights:

– We provide a concrete explanation behind the supe-
rior performance of frameworks that perform edge
proportional communication (Section V-C-Insight 3).

– We show that even though edge proportional com-
munication frameworks have lower communication
in absolute terms, the scalability of frameworks per-
forming vertex proportional communication is much
superior (Section V-C-Insight 2).

– We show a hypothetical scenario where such vertex
proportional communication frameworks can outper-
form the edge proportional communication frame-
works in terms of communication time (Section V-C-
Insight 4).

– We conclude that partitioning scheme has no impact
on vertex proportional communication.

– We also formulate the requirements of the optimal
partitioning scheme for edge proportional commu-
nication frameworks and show that graph partition-
ing heuristics should reduce the number of vertices
which have at least one incoming edge from other
partitions as opposed to minimizing the number of
edges in the cut-set that is typically done (Sec-
tion V-C-Insight 5).

III. GRAPH PROCESSING COMMUNICATION SCHEMES

In this work, we focus on distributed in-memory graph pro-
cessing frameworks which use message passing for communi-
cation [6]. Examples of such frameworks include Pregel [11],
Giraph [12], iGiraph [8], etc. In line with the aforementioned
frameworks, factors such as the time for fetching data from
disks into main memories are treated as preprocessing steps
and not considered in the analysis.

A. Preliminaries

Platform Definition: We assume a distributed graph ana-
lytics platform consisting of a cluster of N compute nodes
for processing a graph G = (V,E). We assume that the data
are represented at the granularity of words, which is platform
dependent. To model the communication time of a message,
we let ts denote the average communication latency between

two nodes, i.e., the time taken for the destination node to
receive the first word from the source node over the network.
Let tw denote the average time it takes to transfer a word.
Finally, let d denote the average degree of G.

Distributed Graph Processing Abstraction: We consider
the Graph Processing Over Partitioning (GPOP) [13] abstrac-
tion for distributed graph processing. In this abstraction the
graph G is partitioned into several partitions. The partitions
are assigned to the N -node cluster. In each iteration, each
node performs computations over the partitions assigned to
it. The results of the computation are communicated using a
partition-centric approach, i.e., the communication occurs at
the granularity of partitions as opposed to vertices or edges.
This process continues for a fixed number of iterations or until
the algorithm converges. Furthermore, as the communication
between the partitions assigned to the same node occurs
via local memory and does not induce a communication on
the network, the discussion in this paper, henceforth, centers
around nodes of the cluster. Widely used frameworks such as
Pregel, Giraph, iGiraph, etc. can be easily modeled using this
abstraction.

B. Motivation for Categorization Based on Communication
Schemes

Analysis of Existing Frameworks: In [14], authors develop
a centralized framework with a master node dispatching the
tasks and collecting the results (updated vertex attributes).
In [15], the authors developed a reduce-scatter algorithm based
on a ring logic. Each node computes a portion of the entire
results (vertex attributes), and repeatedly delivers a portion to
its successive neighbor on the logical ring. Frameworks such
as Pregel [11], Giraph [12], iGiraph [8], Gluon [16] and those
developed in [17], [18], etc. compute a unique message for
each destination vertex using the source vertex attribute and
the edge attribute. Thus, the number of messages generated is
proportional to the number of (incoming) edges in the graph.

Communication Scheme Definition: By analyzing the
most popular graph processing frameworks, we identify the
dimensions along which they differ with respect to their
communication characteristics.

I. Type of Data Being Communicated: A framework
performs either of the following: (i) Broadcast the vertex
attributes in the communication phase. In the computation
phase, each node selects the appropriate broadcast vertex
attributes using the list of incoming edges of the vertices in
its partitions. (ii) In computation phase, each node generates
a unique message for every outgoing edges of the vertices in
its partitions. In communication phase, all-to-all personalized
communication of the message is performed. We denote
the former scheme as Vertex Proportional Communication
(VPC) while the latter as Edge Proportional Communica-
tion (EPC).

II. Underlying Virtual Communication Network: A
framework either uses a centralized scheme where a master
node collects all the data and sends it to the worker nodes

or it uses a distributed network, where the nodes commu-
nicate directly with each other. We denote the centralized
network as Master-Worker (MW). For distributed network
based frameworks, frameworks that use EPC perform all-to-
all personalized communication with direct communication
between nodes. We denote this network as Peer-to-Peer
(P2P). However, for frameworks that use VPC and require a
broadcast operation, [15] shows that an embedded ring logic
is an efficient network for the same. We denote this network
as Ring.

C. Communication Schemes

Based on the analysis in the previous section, we now
formally define the communication schemes.

1) Vertex Proportional Communication (VPC): We say that
a distributed application follows Vertex Proportional Commu-
nication scheme if the messages being communicated are the
vertex attributes. Note that we do not make any assumptions
regarding the computational model. Algorithm 1 shows an
example of VPC-based PageRank algorithm. Each vertex
computes its PageRank value and then broadcasts the value to
other vertices so that they can use it in the next iteration. Thus,
the amount of data to communicate depends on the number
of vertices in the graph.

Algorithm 1: VPC BASED PAGERANK

Input: A graph G∗ = (V ∗, E∗)
Output: PageRank results for all vertices PR[:]

1 PR[:]← 1/|V |
2 while Convergence > Expected Convergence do
3 for each vertex u ∈ V ∗ do
4 sum← 0
5 for each v ∈ Adj(u) do
6 sum← sum+ PR[v]/OutDeg(v)

7 PR[u]← (1− df)/|V |+ df × sum
// df = damping factor

8 All to All Broadcast(PR)

Now, based on the virtual interconnection network, we
further categorize VPC into two categories:

a) Vertex Proportional Communication on Master-
Worker Network (VPC-MW): In this category, the distributed
application follows a master-worker model. As shown in
Figure 1(a), every worker node is connected to a master
node. There is no direct data communication between worker
processes. All-to-all Broadcast is implemented in two steps.
In the first step, each worker node in the cluster sends its data
to the master, and the master node collects data from all worker
processes. In the second step, the master node broadcasts the
data received in the first step to every worker.

b) Vertex Proportional Communication on Ring Network
(VPC-Ring): In this category, the distributed application uses
a virtual ring network to implement broadcast operation. All-
to-all Broadcast: Let us denote the N nodes as M0, M1,

Fig. 1. (a) Master-Worker Network (b) Ring Network

..., MN−1. As shown in Figure 1(b), the ring model only
contains a bidirectional link between each Mk and M(k+1)%N ,
where k = 1, 2, . . . , N . In Iteration 1, each node Mk sends
its initial data to its right neighbor M(k+1)%N , and receives
data from its left neighbor M(k+N−1)%N . Both sending and
receiving operations are non-blocking primitives, so they can
be performed at the same time. After receiving data from its
left neighbor, each node stores data in its local memory. For
the remaining iteration j (j = 1, 2, ..., N − 1), each node
sends data that was initially contained in M(k−j+1)%N to its
right neighbor M(k+1)%N , and receives data that was initially
contained in M(k−j)%N from its left neighbor M(k+N−1)%N .
After (N − 1) iterations, every node can get a copy of data
originated from all other nodes. [15] also proves that such
implementation on ring network is bandwidth optimal.

2) Edge Proportional Communication (EPC): We say that
a distributed application follows Edge Proportional Commu-
nication scheme if the messages being communicated are
generated due to an operation on the edge weight and the
attribute of the source vertex. Here again, we do not make any
assumptions regarding the computational model. The virtual
interconnection network that we assume in this case is a
fully connected Peer-to-Peer network, i.e., each node can
communicate with every other node directly. We do not append
P2P to EPC as this is the only virtual network that is used.

Algorithm 2 shows an example of EPC-based PageRank.
Each vertex computes its contribution to each of its neighbors.
The computed values are communicated among nodes using
all-to-all personalized communication. We also consider a
widely used optimization [7], [16] that combines messages
destined to the same vertex from a partition.

Remark: [6] provides a classification of distributed pro-
cessing frameworks based on graph topology. Under that
terminology, our categorization is applicable to the frameworks
falling under the Vertex-Centric (Edge-Cut) and Component-
Centric frameworks. Also note that there is no one-to-one
correspondence between their categorization and ours, i.e.,
a Vertex-Centric (Edge-Cut) (or a Component-Centric frame-
work) can follow either VPC or EPC scheme.

Algorithm 2: EPC BASED PAGERANK

Input: A graph G∗ = (V ∗, E∗)
Output: PageRank results for all vertices PR[:]

1 PR[:]← 1/|V |
2 while Convergence > Expected Convergence do
3 sum iter[:]← 0
4 for each vertex u ∈ V ∗ do
5 contribute← PR[u]/OutDeg(u)
6 for each destination v ∈ Adj(u) do
7 sum iter[v]← sum iter[v] + contribute

8 All to All Personalized Communication(sum iter)
9 for each vertex u ∈ V ∗ do

10 PR[u]← (1− df)/|V |+ df × sum

IV. COMMUNICATION SCHEME PERFORMANCE
MODELING

In this section, we build models to estimate the performance
of the aforementioned communication schemes. The models
take the partitions, their logical mapping to nodes and the
communication scheme as input.

A. Theoretical Analysis of Communication Time

Let V denote the number of vertices and N denote the
number of nodes. If multiple partitions are mapped to a
node, we consider the union of them as a single partition.
Thus, the number of partitions is equal to the number of
nodes in our model. For VPC-MW scheme, there exists an
additional node acting as master besides worker nodes. The
average communication latency between two nodes is denoted
by ts while tw denotes the per word transfer time in the
communication network.

(1) For VPC-MW scheme, the communication time is

TV PC−mw = (ts + V × tw)×N + (ts +
V

N
× tw)×N

= 2Nts + (N + 1)(V × tw)
(1)

Assuming that each worker receives data from the master
sequentially, the first term is the time for sending a vector with
a length of V , containing attributes for all vertices, from the
master to workers. The second term is the time for sending a
vector with a length of V/N from every worker to the master.

(2) For VPC-Ring scheme, the execution time for perform-
ing a broadcast on the ring can be estimated as

TV PC−ring = (N − 1)(ts +
V

N
× tw) (2)

In each step, every node performs two actions: receiving
a vector with a length of V/N from its left neighbor and
sending a vector with the same length to its right neighbor.
All the nodes take the two actions at the same time. Such steps
are repeated (N − 1) times in a broadcast process.

(3) For EPC scheme, the communication time is given as

TEPC =
N∑
i=1

(ts + tw
∑
j 6=i

ηijαij) (3)

Here, αij denotes the number of vertices in partition j that
have at least one incoming edge from partition i. Formally,
αij = ‖Aji1‖0, where Aji denotes the sub-matrix in the
adjacency matrix of the graph with rows corresponding to
partition j and columns corresponding to partition i and 1
denotes all ones vector of suitable size. ηij denotes the average
size of the combined messages. For commutative operator,
ηij = 1. Note that in the worst case, αij =

V
N .

Given a graph partitioning, we can calculate the parameters
V , N and αij . However, to obtain the values of ts and tw,
measurements on the target platform are required which is
discussed in the next subsection.

B. Estimation of Latency and Throughput

We perform the following experiment on two platforms
(more details in Section V-A) - HPC platform and Chameleon
Cloud to estimate the value of latency ts and throughput tw.

On each platform, we use MPI primitives to perform
round-trip communication between two different nodes and
measure the communication time. Let L denote the length of
communicated data. The round-trip time can be estimated as
TRTT = 2(ts+L×tw). We can estimate ts and tw by varying
the value of L and fitting the measured TRTT using a linear
function with the least mean square error. For the Chameleon
cloud, we estimate the latency and throughput as 0.35 ms and
1.05 ms/MiB, respectively. For HPC, we estimate them to be
0.2 ms and 0.20 ms/MiB, respectively.

C. Impact of the Performance Estimation Model

For a thorough design space exploration, an application
developer will need to vary the number of nodes, partitioning
techniques, communication patterns, etc. leading to a combi-
natorial explosion of the design space. Moreover, given the
increasing large scale of graphs – billions of vertices and
edges, a sub-optimal choices will have tremendous time and
monetary costs as typical graph processing algorithms run for
hundreds or thousands of iterations. Our performance estima-
tion model can enable quick trade-off analysis. Additionally,
our model can be used to understand the impact of various
parameters, e.g., communication schemes, number of nodes,
on the performance of graph processing applications. Conclu-
sions drawn from the estimations can help accelerate design
space exploration. For example, as per Section V-C-Insight 5,
partitioning strategy has no impact on VPC communication
time with VPC models and need not be analyzed.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

We conduct our experiments on two computing platforms.
First, we experiment on the High-Performance Cluster (HPC)
provided by the university. We use machines with Dual Intel

Fig. 2. Theoretical Estimation and Experimental Results for VPC on HPC. From top to bottom, the three rows are for PageRank and WCC, respectively.
From left to right, the three columns are using as datasets uk-union-2006-06-2007-05, twitter-2010 and webbase-2001, respectively.

Fig. 3. Theoretical Estimation and Experimental Results for PageRank using EPC on HPC. From left to right, the three columns are using as datasets
uk-union-2006-06-2007-05, twitter-2010 and webbase-2001, respectively.

TABLE I
PROPERTIES OF DATASETS

Graph Edges Vertices Avg. degree
uk-union-2006-
06-2007-05 [19] 5 507 679 822 133 633 040 41.215

twitter-2010 [20] 1 468 365 182 41 652 230 35.253
webbase-2001 1 019 903 190 118 142 155 8.633

Xeon 10-core 2.4 GHz processors and up to 64GB memory on
HPC cluster. Then we repeat our experiments on the MPICH3
bare-metal cluster provided by Chameleon cloud, an NSF-
funded platform for large-scale cloud research. Each node has
24 Intel Xeon E5-2670 v3 2.3GHz CPUs and 128GB memory.
Different machines are connected with InfiniBand.

We choose PageRank and Weakly Connected Compo-
nents (WCC) algorithms as our benchmarks. We perform ex-
periments using uk-union-2006-06-2007-05, twitter-2010 and

webbase-2001 each containing over 1 billion edges with
average degree varying from 8.63 to 41.21 (Table I). The
graphs, processed by Webgraph [21] and LLP [22] tools, have
very high locality due to optimized vertex ordering.

B. Validation of the Performance Models

We implement each algorithm using the three communica-
tion schemes. For each algorithm and communication scheme,
we conduct experiments with {16, 32, 64, 128, 256} partitions
mapped to {1, 2, 4, 8, 16} nodes respectively. That is each
node, with 16 processor cores, is assigned 16 partitions so that
each partition can be processed in parallel. For Chameleon, we
failed to allocate enough nodes for the case of 256 partitions.
As a pre-processing step, we first partition the initial graphs
into subgraphs and save them into the file system. For each
experiment, we measure communication time per iteration by
averaging over all the iterations of the algorithm.

Fig. 4. Theoretical Estimation and Experimental Results for VPC on Chameleon. From top to bottom, the three rows are for PageRank and WCC, respectively.
From left to right, the three columns are using as datasets uk-union-2006-06-2007-05, twitter-2010 and webbase-2001, respectively.

Fig. 5. Theoretical Estimation and Experimental Results for PageRank using EPC on Chameleon. From left to right, the three columns are using as datasets
uk-union-2006-06-2007-05, twitter-2010 and webbase-2001, respectively.

Figures 2-5 show the results. Dashed lines represent the
estimations derived from our performance model while solid
lines represent experimental results. As the platforms are
running other applications at the same time, communication
congestion occurs depending upon the network utilization in
the data center. The impact of such congestion is hard to
predict since it does not depend upon the applications we
analyze. However, it is still evident that the solid lines are
close to corresponding dashed lines or have similar trends in
the graphs, thereby validating our models.

A few observations from the graphs are as follows: VPC-
MW has a worse performance than VPC-Ring and EPC. VPC-
MW’s execution time increases almost linearly and hence it
has a poor scalability compared with VPC-Ring. EPC performs
better than VPC-Ring experimentally.

C. Discussion

Insight 1: VPC-Ring and EPC consistently outperform VPC-
MW.

We derive this conclusion from both our model and ex-
perimental results. Since the latency ts is relatively much
lower than communication time, we can simplify our model
by ignoring terms with ts. The estimated communication time
for the three schemes are as follows

TV PC−ring = (N − 1)(
V

N
× tw) ≈ V tw (4)

TV PC−mw = (N + 1)V tw (5)

TEPC = tw

N∑
i=1

∑
j 6=i

αij ≤ NV tw (6)

From the simplified model we can see that VPC-MW requires
O(N) times higher communication that VPC-Ring. Moreover,
even in the worst case the communication of EPC is slightly
better than VPC-MW.
Insight 2: VPC-Ring has the best scalability.

Both the simplified model and experimental results show
that the communication time for VPC-Ring remains constant

with the increasing number of partitions. Whereas, the commu-
nication time for VPC-MW and EPC increases almost linearly.
For the latter two schemes, there is a trade-off between
the communication time and the storage at each machine,
which is determined by the number of partitions. Using VPC-
MW or EPC as communication scheme, if we divide the
original graph into more partitions, more time will be spent
on communication, but each machine will require less storage.
Insight 3: In practice, EPC outperforms VPC-Ring.

For a partition i,
∑

j 6=i αij =
∑

j 6=i ‖Aji1‖0 ≤∑
j 6=i ‖Aji1‖1 ≤ d

i
po, where dipo is the out degree of partition

i, i.e., total number of edges with source vertex in partition
i but destination vertex not in it. Now,

∑N
i=1 d

i
po = Ndpo =

V
Ndpo

V , where dpo is the average out degree of the partitions.
In real-world graphs which follow power law, a partitioning

that leads to high in-partition connectivity and low connectiv-
ity across partitions will lead to a very small value of dpo.
Thus, Ndpo

V < 1 implies better performance for EPC.
Insight 4: Hypothetical scenario where VPC-Ring will out-
perform EPC.

The above analysis indicates that VPC-Ring will outperform
EPC when Ndpo

V > 1. This happens if the partitioned graph
has low locality and few vertices from the same node share
common destinations, which increases the average out degree
among the partitions.
Insight 5: Impact of partitioning on the performance of the
communication schemes.

As per our models, both TV PC−ring and TV PC−mw are
only dependent on the number of vertices in the graph and the
number of partitions/nodes. Thus, partition scheme has no im-
pact on the communication performance of VPC frameworks.
An application choosing this scheme can focus on partitioning
which is optimal for computation only.

For EPC, assuming ηij = 1, an optimal partitioning is
given by min

∑N
i=1

∑
j 6=i αij . As αij denotes the number of

vertices in partition j that have at least one incoming edge
from partition i, an optimal partitioning will minimize the
number of such vertices across all pairs of partitions. Clearly,
this is an NP-hard problem due to the l0 norm. Heuristics
can be developed to explicitly optimize for this objective.
Note that a partitioning that reduces the number of edges in
the cut-set is given by

∑
j 6=i ‖Aji1‖1, i.e., l1 norm instead

of l0. Thus, instead of focusing on minimizing the l1 norm,
heuristics should explicitly focus on minimizing the l0 norm.

VI. RELATED WORK

The main focus of this paper is to model communication
performance of graph processing frameworks rather than de-
veloping a new framework. Thus, we limit the discussion in
this section on works that either focus on communication opti-
mizations or develop performance models for communication
time estimation for graph processing frameworks.

Communication Focused Frameworks: McCune et al.
[18] provided a detailed survey of message passing and
shared memory based graph processing. Heidari et al. [6]
characterized communication models into message passing,

shared memory and push/pull style. Both works characterize
the communication models but do not provide a quantitative
analysis of the communication performance. Patarasuk et al.
[15] presented a framework that uses virtual ring interconnect
(Ring in our work) to optimize bandwidth utilization for
clusters with tree topology. Alfatafta et al. [23] proposed algo-
rithms and architectures for several MPI collective operations,
including using ring scheme to implement AllReduce and
AllGather operations. However, it relies on the knowledge
of the underlying system architecture and network structure
which might not always be available.

Communication Performance Modeling of Graph Pro-
cessing Frameworks: Xu et. al. [24] developed a performance
model for vertex centric graph algorithms that captures com-
munication bandwidth and communication latency. However,
their target platform is a shared memory single node archi-
tecture and the communication is defined as the data transfer
between the LLC (Last Level Cache) and external memory. In
our work, we focus on modeling inter-node communication
within a cluster/cloud platform. Al-Tawil et. at. [25] used
LogGP, which is a simple performance model that reflects the
most important parameters required to estimate the commu-
nication performance of parallel computers, to evaluate the
performance of message passing interface (MPI) on different
cluster platforms. Their main focus was on modeling at MPI
primitive level whereas we model at a higher abstraction
level of communication schemes as defined in this paper.
Abdolrashidi et. al. [26] developed a model for computation
and communication for vertex-centric graph algorithms and
used the model to explore the trade-off of different partition-
ing schemes. Thus, their model can estimate communication
performance for only vertex-centric algorithms. In contrast, by
focusing on how the data is communicated instead of how it
is generated, our model is agnostic to the underlying compu-
tation model. Thus, our model is applicable to a wide range
of graph processing frameworks. Bhimani et. al. [27], [28]
developed queuing theory based performance prediction model
for distributed MPI systems. Their communication model is
similar to the Master Worker Model (Section III-B) which
requires one-to-many and many-to-one node communication.
In contrast, we also model P2P communication model as
widely used graph processing frameworks employ this model.
Moreover, their focus is to perform accurate performance
prediction of a given application, thereby requiring complex
queuing theory and Machine Learning based modeling of
packet transfer costs. In contrast, the focus of this paper is to
develop a model that can enable trade-off analyses of various
partitioning and communication scheme choices.

VII. FUTURE WORK

We will focus on the following: Improving Performance
Estimations: Our focus in this work was to enable early
stage trade-off analysis of various design choices. While our
models already capture these trade-offs and trends in general,
there is still some room to improve the accuracy for each
individual configuration. Similar to [28], we plan to develop

stochastic and Machine Learning (ML) based models for
network latency and round trip time predictions; and Modeling
Non-Stationary Algorithms: In this work, we focused on
stationary algorithms, i.e., algorithms in which all vertices par-
ticipate in computations in all the iterations [13]. In contrast,
in non-stationary algorithms, the vertices which participate
in computations varies between iterations, e.g., Shortest path
problems [13]. We will focus on developing heuristics to
estimate average per-iteration performance.

VIII. CONCLUSION

In this work, we developed and validated performance
estimation models for communication schemes used in popular
distributed graph processing frameworks. The models enable
analyses of the trade-offs between the partitioning schemes
and the communication schemes in early development stages.

Current distributed graph processing frameworks have done
extensive research on improving the performance by optimiza-
tions such as partitioning and load balancing. However, with
increasing adoption of cloud platforms, optimizations which
drastically reduce the communication time will be required.
We believe a formal analysis into the communication schemes
as presented in this paper will accelerate such innovations.

REFERENCES

[1] D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, 2001, vol. 2.

[2] G. Robins, T. Snijders, P. Wang, M. Handcock, and P. Pattison, “Recent
developments in exponential random graph (p*) models for social
networks,” Social networks, vol. 29, no. 2, pp. 192–215, 2007.

[3] R. Sharan and T. Ideker, “Modeling cellular machinery through biolog-
ical network comparison,” Nature biotechnology, vol. 24, no. 4, p. 427,
2006.

[4] K. Goczyłla and J. Cielatkowski, “Optimal routing in a transportation
network,” European Journal of Operational Research, vol. 87, no. 2, pp.
214–222, 1995.

[5] “Friendster social network and ground-truth communities,”
https://snap.stanford.edu/data/com-Friendster.html.

[6] S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, “Scalable
graph processing frameworks: A taxonomy and open challenges,” ACM
Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–53, 2018.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural graphs,”
in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 17–30. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387883

[8] S. Heidari, R. N. Calheiros, and R. Buyya, “igiraph: A cost-efficient
framework for processing large-scale graphs on public clouds,” in 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2016, pp. 301–310.

[9] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li, “Improving
large graph processing on partitioned graphs in the cloud,” in
Proceedings of the Third ACM Symposium on Cloud Computing, ser.
SoCC ’12. New York, NY, USA: ACM, 2012, pp. 3:1–3:13. [Online].
Available: http://doi.acm.org/10.1145/2391229.2391232

[10] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds, the
chameleon cloud testbed, and software defined networking (sdn),” in
2015 International Conference on Cloud Computing Research and
Innovation (ICCCRI). IEEE, 2015, pp. 73–79.

[11] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135–146.

[12] M. Han and K. Daudjee, “Giraph unchained: Barrierless asynchronous
parallel execution in pregel-like graph processing systems,” Proceedings
of the VLDB Endowment, vol. 8, no. 9, pp. 950–961, 2015.

[13] K. Lakhotia, R. Kannan, S. Pati, and V. Prasanna, “Gpop: a cache
and memory-efficient framework for graph processing over partitions,”
in Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming, 2019, pp. 393–394.

[14] K. G. Narra, Z. Lin, M. Kiamari, S. Avestimehr, and M. Annavaram,
“Slack squeeze coded computing for adaptive straggler mitigation,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: ACM, 2019, pp. 14:1–14:16. [Online]. Available:
http://doi.acm.org/10.1145/3295500.3356170

[15] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms
for clusters of workstations,” J. Parallel Distrib. Comput.,
vol. 69, no. 2, pp. 117–124, Feb. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2008.09.002

[16] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden,
M. Snir, and K. Pingali, “Gluon: A communication-optimizing
substrate for distributed heterogeneous graph analytics,” in Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 752–768. [Online].
Available: https://doi.org/10.1145/3192366.3192404

[17] Z. Li, T. N. Hung, S. Lu, and R. S. M. Goh, “Performance and
monetary cost of large-scale distributed graph processing on amazon
cloud,” in 2016 International Conference on Cloud Computing Research
and Innovations (ICCCRI), May 2016, pp. 9–16.

[18] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Comput. Surv., vol. 48, no. 2, Oct. 2015. [Online].
Available: https://doi.org/10.1145/2818185

[19] P. Boldi, M. Santini, and S. Vigna, “A large time-aware graph,” SIGIR
Forum, vol. 42, no. 2, pp. 33–38, 2008.

[20] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th International
Conference on World Wide Web, ser. WWW ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 591–600. [Online].
Available: https://doi.org/10.1145/1772690.1772751

[21] P. Boldi and S. Vigna, “The webgraph framework i: Compression
techniques,” in Proceedings of the 13th International Conference on
World Wide Web, ser. WWW ’04. New York, NY, USA: Association
for Computing Machinery, 2004, p. 595–602. [Online]. Available:
https://doi.org/10.1145/988672.988752

[22] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation:
A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th International Conference on
World Wide Web, ser. WWW ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 587–596. [Online]. Available:
https://doi.org/10.1145/1963405.1963488

[23] M. Alfatafta, Z. AlSader, and S. Al-Kiswany, “Cool: A cloud-optimized
structure for mpi collective operations,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), July 2018, pp. 746–753.

[24] X. Wang, Y. Zhu, and Y. Chen, “Quantitative analysis of graph
algorithms: Models and optimization methods,” in 2016 IEEE 2nd
International Conference on Big Data Security on Cloud (BigDataSecu-
rity), IEEE International Conference on High Performance and Smart
Computing (HPSC), and IEEE International Conference on Intelligent
Data and Security (IDS). IEEE, 2016, pp. 191–196.

[25] K. Al-Tawil and C. A. Moritz, “Performance modeling and evaluation
of mpi,” Journal of Parallel and Distributed Computing, vol. 61, no. 2,
pp. 202–223, 2001.

[26] A. Abdolrashidi, L. Ramaswamy, and D. S. Narron, “Performance
modeling of computation and communication tradeoffs in vertex-centric
graph processing clusters,” in 10th IEEE International Conference on
Collaborative Computing: Networking, Applications and Worksharing.
IEEE, 2014, pp. 55–63.

[27] J. Bhimani, N. Mi, and M. Leeser, “Performance prediction techniques
for scalable large data processing in distributed mpi systems,” in 2016
IEEE 35th International Performance Computing and Communications
Conference (IPCCC). IEEE, 2016, pp. 1–2.

[28] J. Bhimani, N. Mi, M. Leeser, and Z. Yang, “New performance modeling
methods for parallel data processing applications,” ACM Transactions on
Modeling and Computer Simulation (TOMACS), vol. 29, no. 3, pp. 1–24,
2019.

