
Top-k List Aggregation: Mathematical

Formulations and Polyhedral Comparisons

Sina Akbari, Adolfo R. Escobedo

School of Computing and Augmented Intelligence, Arizona State
University, Tempe, AZ 85281 USA
{Sina.Akbari, adres}@asu.edu

Abstract

Top-k lists are being increasingly utilized in various fields and applications
including information retrieval, machine learning, and recommendation sys-
tems. Since multiple top-k lists may be generated by different algorithms to
evaluate the same set of entities or system of interest, there is often a need to
consolidate this collection of heterogeneous top-k lists to obtain a more robust
and coherent list. This work introduces various exact mathematical formula-
tions of the top-k list aggregation problem under the generalized Kendall tau
distance. Furthermore, the strength of the proposed formulations is analyzed
from a polyhedral point of view.

Keywords— Top-k list aggregation, rank aggregation, Kendall tau distance, mixed integer
programming, polyhedral analysis

1 Introduction

Top-k lists are a special form of item orderings (i.e., rankings) wherein out of n total items
only a small number of them, k, are explicitly ordered. Top-k lists have many advantages
that can overcome some of the practical drawbacks of the traditional full-list approach: a
collection of items may be too large to rank or even present, processing the full list could
present a massive computational/cognitive load, and it may be impossible or meaningless to
compare and rank items beyond a certain point [7]. Examples of top-k lists are the top-250
movies on IMDB or the top-10 played songs on Spotify [22].

Due to the increased use of such lists, the top-k list aggregation problem (TOP-k-AGG)
has attracted considerable attention. TOP-k-AGG seeks to find a top-k list or full list that
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best represents the input lists. This problem has been utilized in many different applications,
including recommender systems [20], metasearch engines [12], and bioinformatics [17]. TOP-
k-AGG is interrelated with many other problems such as top-k recommendation and top-k
query.

TOP-k-AGG falls under the umbrella of the more general rank aggregation problem
whose objective is to combine individual rankings over a set of items into one representative
collective ranking [5]. Variants of this problem have been studied probabilistically [6, 8] and
deterministically [10, 12]. In the probabilistic approach, it is assumed that the observed
rankings are realizations of a probabilistic model on ranking data, such as Mallows model
[16], and the goal is to recover the ground-truth ranking.

Deterministic approaches can be further categorized into score-based and distance-based
methods. Approaches in the first category apply relatively simple and efficient functions
to calculate the score of each item, and the aggregate ranking is obtained by sorting items
based on their total scores. Score-based methods are relatively susceptible to errors and
manipulation, and they may violate certain fundamental social choice properties [5]. Con-
versely, distance-based methods provide more robust aggregation mechanisms. The aim
of these approaches is to find a consensus list that has the least cumulative disagreement
with the input lists. They are typically founded on axiomatic frameworks, from which the
aggregate solution is formally guaranteed to satisfy certain desirable properties [9]. How-
ever, their aggregation problems tend to be more computationally demanding and are often
NP-hard [5].

Distance-based TOP-k-AGG techniques can be divided based on whether the output
ranking is considered a full list or another top-k list. Dwork et al. [10], Ailon [1], and
Nápoles et al. [19] fall into the first category; Fagin et al. [12] falls into the second category.
The works referenced under the first category define TOP-k-AGG as finding a full list with
the least cumulative distance to the input lists using the induced Kendall tau, Kendall tau,
and Hausdorff distances, respectively. Fagin et al. [12]’s method provides higher flexibility,
and it induces a far smaller solution space. Letting n denote the total number of items,
there are

(
n
k

)
k! possible top-k lists using the latter approach, which is (n−k)! times smaller

than n! (the number of possible full strict lists over n).
There are various distance measures for comparing top-k lists including generalized

Kendall tau, generalized Spearman’s footrule, Hausdorff [12], and Goodman and Kruskal’s
gamma [14]. This paper focuses on the distance-based variant of TOP-k-AGG induced by
the generalized Kendall tau distance [12]. This focus is motivated by its widespread use for
comparing top-k lists, and more importantly, its flexibility at handling partial information
from these lists. This distance measure has been used in this capacity for similarity search
[21], search engines [18], and influence maximization [4]. Additionally, variants of this
distance have been used for comparing and aggregating bucket orders [11, 3] and top-k
XML lists [23]. However, to the best of our knowledge, this distance measure has not been
utilized for the purpose of aggregating top-k lists since its introduction in Fagin et al. [12],
possibly due to a lack of existing exact methods. To facilitate this essential use of the
distance measure, this paper studies various exact mathematical formulations.
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Contributions. Section 3 introduces a binary nonlinear programming formulation
and four mixed integer linear programming (MIP) formulations of TOP-k-AGG under the
generalized Kendall tau distance. Two of these formulations result from the introduction
of preference cycle-prevention constraints specific to TOP-k-AGG. Section 4 compares the
strengths of the MIP formulations using techniques from polyhedral theory. The mathemat-
ical formulations and polyhedral analyses presented herein can be extended to TOP-k-AGG

using any other distance measure between top-k lists by modifying the objective functions
accordingly.

2 Preliminaries

The rank aggregation problem was originally defined over strict rankings. Formally, a strict
ranking π is a bijection of [n] = {1, 2, . . . , n} onto itself, which represents a strict order of the
n items. The Kendall tau distance [15] is one of the most prominent measures of dissimilarity
between rankings, which counts the number of distinct item-pairs whose relative order is
different in two rankings. The Kendall tau distance between strict rankings π1,π2 is given
by K(π1,π2) =

∑
i∈[n]

∑
j∈[n]

Ki,j(π
1,π2), where Ki,j(π

1,π2) is set to 1 if the relative orderings

of i and j are different in π1 and π2, and 0 otherwise. The rank aggregation problem under
Kendall tau distance is known alternatively as Kemeny Aggregation (KEMENY-AGG).

A top-k list τ is a bijection from a domain Iτ (the members of τ ) to [k] = {1, . . . , k},
where k < n. All items in τ are presumed to be ranked ahead of items not in τ ; however,
the exact ordering of items not in the list is unknown. Let i ∈ τ indicate that item i
appears in the top-k list, and let τ (i) denote the rank or position of i therein. Additionally,
let i ≻τ j denote that item i is rank ahead of item j in τ , that is, if (i ∈ τ ∧ j /∈ τ )
OR (i, j ∈ τ ∧ (τ (i) < τ (j))). Given top-k lists τ 1 and τ 2, let Λ(τ 1, τ 2) be the set of all
unordered pairs of distinct items in Iτ1

⋃
Iτ2 . (TOP-k-AGG) Let L = {1, 2, . . . ,m} be

the set of indices of the input top-k lists, τ l be the input top-k list l ∈ L, I =
⋃
l∈L

Iτ l

be the universe of items, n := |I| be the number of items in the universe I, T be the
set of all possible top-k lists over I, and d(., .) be a distance measure between top-k lists.
TOP-k-AGG seeks to find a top-k list τ ∗ ∈ T with the lowest cumulative distance to the
input lists; it can be written succinctly as

τ ∗ = argmin
τ∈T

∑
l∈L

d(τ , τ l). (1)

The rest of this paper focuses on the generalized Kendall tau distance [12]. Accordingly,
the distance is restated in the following. Let p be a fixed parameter, with 0 ≤ p ≤ 1, and

let K
(p)
i,j (τ

1, τ 2) be the contribution to the distance function, for each item-pair (i, j) ∈
Λ(τ 1, τ 2). The generalized Kendall tau distance with penalty parameter p, denoted by
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K(p), is defined as

K(p)(τ 1, τ 2) =
∑

(i,j)∈Λ(τ1,τ2)

K
(p)
i,j (τ

1, τ 2), (2)

where

K
(p)
i,j (τ

1, τ 2) =


1 (i ≻τ1 j ∧ j ≻τ2 i) ∨ (j ≻τ2 i ∧ i ≻τ1 j)

p (i, j ∈ τ 1 ∧ i, j /∈ τ 2) ∨ (i, j /∈ τ 1 ∧ i, j ∈ τ 2)

0 otherwise.

K(p) is a near metric since it satisfies a relaxed version of the triangle inequality [12]. TOP-
k-AGG under K(p) is a combinatorial NP-hard problem [12], which includes KEMENY-AGG

as a special case (when k = n).

3 Integer Programming Formulations

To the best of our knowledge, no efforts have been made to derive an explicit mathematical
model of TOP-k-AGG. This section presents various formulations.

First, we define required parameters for defining the objective functions of the presented
formulations. Let µil be an indicator parameter that is equal to 1 if i ∈ τ l, where l ∈ L.
Additionally, let sij denote the number of input lists where item i is ranked ahead of item
j, which can be expressed as

sij =
∑
l∈L

1(i, j∈ τ l ∧ (τ l(i) < τ l(j)) ∨ (i ∈ τ l∧ j /∈ τ l)

=
∑
l∈L

[
µilµjl1τ l(i) < τ l(j) + µil(1− µjl)

]
.

(3)

In words, sij tallies the number of input lists in which i is ranked ahead of j, that is, the
number of input lists in which both items are present and i is ranked ahead of j, plus the
number of inputs lists in which i is present but j is not.

Using these parameters, the cumulative K(p) distance between a given top-k list τ ∈
T and all of the input top-k lists, i.e.,

∑
τ l∈L

∑
(i,j)∈Λ(τ ,τ l)

K
(p)
ij (τ , τ l), can be expressed as∑

(i,j)∈Λ
K

(p)
ij (τ ) where Λ is set of all unordered pairs of distinct items in I, and

K
(p)
ij (τ ) =


sji + p

∑
l∈L

(1− µil)(1− µjl) if i, j ∈ τ ∧ (τ (i) < τ (j)),

sji if i ∈ τ ∧ j /∈ τ ,

p
∑
l∈L

µilµjl if i, j /∈ τ .

(4)
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Eq. (4) states that, whenever item i and j are both present in τ (the solution top-k list)
and i is ranked ahead of item j, the imposed K(p) distance between τ and all of the input
lists for this pair of items equals the number of input lists where j is ranked ahead of i, plus
p-times the number of input lists neither i nor j is present in the same list. Whenever i but
not j is present in τ , the imposed K(p) distance equals the number of input lists where j
is ranked ahead of i. Finally, whenever neither i nor j is present in τ , the imposed K(p)

distance equals p times the number of input lists where i and j are simultaneously present.
The first formulation is an MIP possessing an assignment problem-like structure, with

which exactly k items are assigned to the k available positions of the solution top-k list. Its
decisions variables are as follows:

uit =

{
1 if i is assigned to position t ∈ [k]

0 otherwise;

wij =

{
1 if i and j are in the top-k list, and i is ranked ahead of j

0 otherwise;

w′
ij =

{
1 if i is in the top-k list, but not j

0 otherwise;

w′′
ij =

{
1 if neither i nor j is present in the top-k list, where j > i

0 otherwise.

From the definitions, item i is present in the top-k list if
∑k

t=1 uit = 1, and it is absent if∑k
t=1 uit = 0. The variables w,w′, and w′′ determine the relative ordering of the items;

these are dependent variables, as their exact values are determined by the values of the
u-variables. The first formulation (MIP#1) is as follows.

min
u,w,w′,w′′

∑
i∈I

∑
j∈I

[
(sji + p

∑
l∈L

(1− µil)(1− µjl))wij + sjiw
′
ij

]
+

p
∑

i,j∈I,j>i

∑
l∈L

µilµjlw
′′
ij

(5a)

s.t.
∑
i∈I

uit = 1 ∀t ∈ [k] (5b)∑
t∈[k]

uit ≤ 1 ∀i ∈ I (5c)

wij ≥
t∑

t′=1

uit′ +

k∑
t′′=t+1

ujt′′ − 1 ∀i, j ∈ I, i ̸= j; ∀t ∈ [k − 1] (5d)

∑
i,j∈I

wij ≤
k(k − 1)

2
(5e)
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w′
ij ≥

∑
t∈[k]

uit −
∑
t∈[k]

ujt ∀i, j ∈ I, i ̸= j (5f)

∑
i,j∈I

w′
ij = k(n− k) (5g)

w′′
ij ≥ 1−

∑
t∈[k]

uit −
∑
t∈[k]

ujt ∀i, j ∈ I, i ̸= j (5h)

∑
i,j∈I,j>i

w′′
ij =

(n− k)(n− k − 1)

2
(5i)

uit ∈ {0, 1} ∀i ∈ I; ∀t ∈ [k] (5j)

wij , w
′
ij ≥ 0 ∀i, j ∈ I, i ̸= j (5k)

w′′
ij ≥ 0 ∀i, j ∈ I, j > i. (5l)

Objective function (5a) minimizes the cumulative K(p) distance to the input lists according
to Eq. (4). Constraint (5b) enforces that exactly one item must be assigned to each position
of the top-k list. Constraint (5c) enforces that every item must be assigned to at most one
position of the list. Constraint (5d) determines the respective values of the w-variables.
More specifically, wij = 1 if i occupies one of the first t positions (

∑t
t′=t+1 uit′ = 1) and j

occupies position t′′, where t + 1 ≤ t′′ ≤ k (
∑k

t′′=t+1 ujt′′ = 1); otherwise, this constraint
becomes redundant. Constraint (5d) and (5e) together impose preference transitivity (i.e.,
prevent preference cycles); this means that if h is ranked ahead of i, and i is ranked of j,
then h must be ranked ahead of j as well (see Theorem 1). Constraint (5f) determines the
respective values of w′-variables; it enforces that w′

ij = 1 if i is present in the top-k list but
not j; otherwise, this constraint becomes redundant. Constraint (5g) enforces that at most
k(n− k) of the w′-variables can take a value of 1 as there are k(n− k) distinct item-pairs
where exactly one of the items appears in the list. Constraint (5h) enforces that w′′

ij = 1
if neither i nor j is present in the top-k list; otherwise, this constraint becomes redundant.
Constraint (5i) enforces that at most (n − k)(n − k − 1)/2 of the w′′-variables can take a
value of 1 as this is the number of distinct item-pairs where both items are absent from the
list. Constraints (5j)-(5l) specify the domain of the variables.

Taking a closer look at the structure of the constraints, we can observe that even though
variables w,w′ and w′′ are specified as binary, they can be treated as non-negative contin-
uous variables since the constraints of the model alone enforce them to only take a value
of 0 or 1. It is important also to remark that the reason for including constraints (5f) and
(5g) is that the objective function coefficients are not necessarily positive. More specifically,
if both i and j are present in the solution top-k list, constraint (5f) implies that w′

ij ≥ 0;
however, if the objective function coefficient sij is 0, then any value of w′

ij results in the
same objective function value, which is not desirable.

Theorem 1. Constraints (5d)-(5e) impose preference transitivity.

Proof. Assume that items h, i, j are present in the solution top-k list with h placed in
position t ≥ 1, i in position t′ > t, and j in position t′′, where k ≥ t′′ > t′. Constraint (5d)
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enforces that whi = whj = wij = 1. However, this constraint only implies that wjh ≥ −1.
In other words, the optimization model may have incentive to assign wjh = 1, creating a
preference cycle, in order to decrease the objective function value. Hence, Constraint (5d)
on its own does not prevent preference cycles.

However, the total number of w-variables that must take a value of 1 is given by
(k − 1) + (k − 2) + · · ·+ 1 + 0 = k(k − 1)/2—the first-ranked item is ahead of k − 1 other
items in the list, the second-ranked item is ahead of k − 2 items, . . . , and the item at the
bottom of the list is not ranked ahead of any other items on the list. For this reason,
constraint (5e) allows at most k(k− 1)/2 of the w-variables to take a value of 1, forcing all
other variables (including wjh) to equal 0. Therefore, constraints (5d)-(5e) together impose
preference transitivity on the solution top-k list returned by solving MIP#1.

Since KEMENY-AGG is a special case of TOP-k-AGG, MIP#1 provides a novel formu-
lation for that problem as well; however, it does not apply to the variant of the problem
with ties (see Yoo and Escobedo [24]). It is important to mention that Cook [9] proposed
a binary linear programming formulation of KEMENY-AGG using the structure of the as-
signment problem; however, their set of preference cycle prevention constraint is different
from constraints (5d)-(5e).

Next, we present a binary non-linear programming formulation for TOP-k-AGG. The
formulation uses the w-variables defined for MIP#1 as well as the following decision vari-
ables:

zi =

{
1 if i is in the top-k list

0 otherwise.

The formulation is given by:

min
w,z

∑
i∈I

∑
j∈I

[
(sji + p

∑
l∈L

(1− µil)(1− µjl))wij + sjizi(1− zj)

]
+

p
∑

i,j∈I,j>i

∑
l∈L

µilµjl(1− zi)(1− zj)
(6a)

s.t.
∑
i∈I

zi = k (6b)

whi + wij + wjh ≤ 2 ∀h, i, j ∈ I, i, j > h, i ̸= j (6c)

wij + wji = zizj ∀i, j ∈ I, j > i (6d)

zi, wij ∈ {0, 1} ∀i, j ∈ I, i ̸= j. (6e)

Objective function (6a) minimizes the cumulative K(p) distance to the input lists. Con-
straint (6b) restricts k items to be present in the top-k list. Constraint (6c) imposes pref-
erence transitivity only whenever items h, i, j all appear in the list; otherwise it becomes
redundant, with the help of constraint (6d). Constraint (6d) enforces that, when both i and
j are present in the list, one must proceed the other. Constraint (6e) specifies the domains
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of the variables. Given a feasible solution, the output top-k items are defined by the set
τ := {i ∈ I|zi = 1}, and the exact rank of item i ∈ τ is obtained as τ (i) := k −

∑
j∈τ wij .

The above non-linear optimization model can be linearized using a technique from Glover
and Woolsey [13]. Specifically, constraint (6d) can be replaced with three linear constraints
for each distinct item pair (i, j): wij +wji ≤ zi, wij +wji ≤ zj , and wij +wji ≥ zi+ zj − 1.
Similarly, the term zi(1 − zj) in the objective function is replaced by auxiliary continuous
variable x′ij and constraints x′ij ≥ zi − zj and x′ij ≥ 0; and the term (1 − zi)(1 − zj)
in the objective function is replaced by auxiliary continuous variable x′′ij and constraints
x′′ij ≥ 1 − zi − zj and x′′ij ≥ 0. The latter two cases use the fact the objective function
coefficients of zi(1− zj) and (1− zi)(1− zj) are non-negative, leading to a reduction in the
number of constraints required by the linearization. The resulting formulation (MIP#2) is
given by:

min
w,x′,x′′,z

∑
i∈I

∑
j∈I

[
(sji + p

∑
l∈L

(1− µil)(1− µjl))wij + sjix
′
ij

]
+

p
∑

i,j∈I,j>i

∑
l∈L

µilµjlx
′′
ij

(7a)

s.t. (6b), (6c), (6e) (7b)

wij + wji ≥ zi + zj − 1 ∀i, j ∈ I, j > i (7c)

wij + wji ≤ zi ∀i, j ∈ I, i ̸= j (7d)

x′ij ≥ zi − zj ∀i, j ∈ I, i ̸= j (7e)∑
i,j∈I

x′ij = k(n− k) (7f)

x′′ij ≥ 1− zi − zj ∀i, j ∈ I, j > i (7g)∑
i,j∈I,j>i

x′′ij =
(n− k)(n− k − 1)

2
(7h)

x′ij ≥ 0 ∀i, j ∈ I, i ̸= j, (7i)

x′′ij ≥ 0 ∀i, j ∈ I, j > i. (7j)

The rationale behind including constraints (7f) and (7h) is the same as constraints (5g) and
(5i) in MIP#1.

Next, we define two variants of the preference transitivity constraints utilized in MIP#2.

Proposition 1. Constraint (6c) can be replaced by non-linear constraints

whi + wij + wjh ≤ 3− zhzizj ∀i, j > h, i ̸= j, or (8)

whi + wij + wjh ≤ 1 + zhzizj ∀i, j > h, i ̸= j. (9)

Furthermore, these constraints can be linearized respectively as

whi + wij + wjh ≤ 3− 1

3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i ̸= j, (10)
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whi + wij + wjh ≤ 1 +
1

3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i ̸= j. (11)

Proof. The right-hand side of constraints (8)-(11) becomes 2, as desired, when items h, i, j
are all in the solution top-k list, i.e., when zh = zi = zj = 1. For the remaining cases, these
constraints become redundant, with the help of constraint (7d). In particular, assume i is
not in the top-k list; constraint (7d) enforces that wij + wji ≤ 0 and wih + whi ≤ 0; hence,
constraints (8)-(11) effectively reduce to wjh ≤ 1, which is redundant.

Replacing constraint (6c) with constraints (10) and (11), respectively, induces two ad-
ditional MIPs.

MIP#3:

min
w,x′,x′′,z

(7a)

s.t. (6b), (6e), (7c)− (7g)

whi + wij + wjh ≤ 3− 1

3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i ̸= j.

MIP#4:

min
w,x′,x′′,z

(7a)

s.t. (6b), (6e), (7c)− (7g)

whi + wij + wjh ≤ 1 +
1

3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i ̸= j.

4 Polyhedral Comparison

Next, we compare the strength of the proposed MIPs based on their linear programming
(LP) relaxation models. First, we compare the strength of MIPs #2, #3, and #4. To that
end, notice that these three MIPs become equivalent when k ≤ 2—when the preference
transitivity relations are irrelevant—or when n = k—when all items appear in the solution
top-k list. Afterwards, we show that each of these formulations is stronger than MIP#1.
For the remainder of the paper, let P1,P2,P3,P4 be the polyhedral corresponding to the
LP relaxations of MIPs #1, #2, #3, #4, respectively.

Theorem 2. For any instance of TOP-k-AGG, P4 ⊆ P2 ⊆ P3, and these inclusions can
be strict.

Proof. Note that MIPs #2, #3, and #4 differ only in their preference transitivity con-
straints. First, we show that P4 ⊆ P2 ⊆ P3.

Since 0 ≤ zi ≤ 1 ∀i ∈ I, for every feasible solution in P2,P3,P4, we have that (zh +
zi + zj)/3 ≤ 1 ∀h, i, j ∈ I, i, j > h, i ̸= j. Letting (w,x′,x′′, z)(4) ∈ P4 be a feasible
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solution to MIP#4, we have that

w
(4)
hi + w

(4)
ij + w

(4)
jh ≤ 1 +

1

3
(z

(4)
i + z

(4)
j + z

(4)
h ) ≤ 2 ≤ 3− 1

3
(z

(4)
i + z

(4)
j + z

(4)
h ).

Therefore, all feasible solutions to MIP#4 are also feasible to MIPs #2 and #3. Using
the same logic, all feasible solutions to MIP#2 are feasible to MIP#3. This gives that
P4 ⊆ P2 ⊆ P3.

To show that the inclusion P4 ⊆ P2 can be strict, consider a small instance with
I = {1, 2, 3, 4} and k = 3. Fix the solution (w,x′,x′′, z)(2) ∈ P2 as

x
′(2)
14 = x

′(2)
24 = x

′(2)
34 = 0.24, w

(2)
12 = w

(2)
23 = w

(2)
31 = 0.62, w

(2)
14 = w

(2)
24 = w

(2)
34 = 0.38,

z
(2)
1 = z

(2)
2 = z

(2)
3 = 0.81, z

(2)
4 = 0.57;

with all other variables equal to 0. By inspection, this solution satisfies all constraints of
MIP#2. However, we have that

w
(2)
12 + w

(2)
23 + w

(2)
31 = 1.86 ≰ 1 +

0.81 + 0.81 + 0.81

3
= 1.81.

This indicates that this solution does not satisfy the preference transitivity constraints of
MIP#4.

Next, we use a similar process to show that the inclusion P2 ⊆ P3 can be strict. Consider
a small instance with I = {1, 2, 3, 4} and k = 3. Fix the solution (w,x′,x′′, z)(3) ∈ P3 as

x
′(3)
14 = x

′(3)
24 = x

′(3)
34 = 0.4, w

(3)
12 = w

(3)
23 = w

(3)
31 = 0.7, w

(3)
14 = w

(3)
24 = w

(3)
34 = 0.3,

z
(2)
1 = z

(3)
2 = z

(3)
3 = 0.85, z

(3)
4 = 0.45;

with all other variables equal to 0. By inspection, this solution satisfies all constraints of
MIP#3. However, we have that

w
(3)
12 + w

(3)
23 + w

(3)
31 = 2.1 ≰ 2.

This indicates that this solution does not satisfy the preference transitivity constraints of
MIP#2.

Theorem 3. For any instance of TOP-k-AGG, projw P2, projw P3, projw P4 ⊆ projw P1,
and these inclusions can be strict.

Proof. First, we prove that projwP3 ⊆ projwP1. We show that, starting from an arbitrary
solution (w,x′,x′′, z) ∈ P3, we can deduce a solution (u,w,w′,w′′) ∈ P1. To this end,
we define the following affine mappings of variables from P3 to P1:

uit =
zi
k

∀i ∈ I, ∀t ∈ {1, . . . , k} →
k∑

t=1

uit = zi ∀i ∈ I, (13a)
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w′
ij = x′ij ∀i, j ∈ I, i ̸= j, (13b)

w′′
ij = x′′ij ∀i, j ∈ I, j > i. (13c)

Mapping (13b)-(13c) guarantees that the objective function values achieved by the respec-
tive feasible points are equal. To establish that projwP3 ⊆ projwP1, it is sufficient to show
that, given a feasible solution in P3, the mapped variables are guaranteed to satisfy all
constraints of MIP#1 (i.e., this point belongs to P1).

Consider constraint (5b). For any t ∈ {1, . . . , k}, we have

∑
i∈I

uit =
∑
i∈I

zi
k

=

∑
i∈I zi

k

∑
i∈I zi=k

−−−−−−−→
∑
i∈I

uit = 1.

Therefore, mapping (13a) provides a solution that is guaranteed to satisfy constraint (5b).
Consider constraint (5c). For every i ∈ I, we have

k∑
t=1

uit =
k∑

t=1

zi
k

=
kzi
k

= zi ≤ 1.

The last inequality follows from the fact that the z-variables are binary. Therefore, mapping
(13a) provides a solution that is guaranteed to satisfy constraint (5c).

Next, consider constraint (5d); we focus on the maximum value of the right-hand side
of this constraint given mapping (13a). For any arbitrary item-pair (i, j) and any t ∈
{1, . . . , k − 1} we have

t∑
t′=1

uit′ +

k∑
t′′=t+1

ujt′′ − 1 =

t∑
t′=1

zi
k
+

k∑
t′′=t+1

zj
k

− 1

=
tzi
k

+
(k − t)zj

k
− 1

≤ t

k
+

k − t

k
− 1 =

k

k
− 1 = 1− 1 = 0.

The above equation states that using mapping (13a), the left-hand side values of constraint
(5d) will be non-positive. Since wij ≥ 0, mapping (13a) provides a solution that is guaran-
teed to satisfy constraint (5d).

Next, consider constraint (5e). By summing over constraint (7d), we have

2
∑
i,j∈I

wij ≤ (k − 1)
∑
i∈I

zi = k(k − 1)

→
∑
i,j∈I

wij ≤
k(k − 1)

2
,

which is exactly constraint (5e).
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Finally, consider constraints (5f)-(5i). Mappings (13a)-(13c) imply that all feasible solu-
tions to constraints (7e)-(7h) are feasible to constraints (5f)-(5i). Putting all pieces together,
we have projw P3 ⊆ projw P1.

Note that the preference cycle-prevention constraints of MIP#3 have no counterpart
in MIP#1. Therefore, we can show that the inclusion projw P3 ⊆ projw P1 can be strict
by providing a solution that satisfies constraints (7c)-(7f) but violates preference cycle-
prevention constraint (10), as this solution satisfies all constraints of MIP#1. There is an
infinite number of such solutions; for example, consider a small instance with I = {1, 2, 3, 4}
and k = 3. Fix the solution (w,x′,x′′, z)(3) as

x
′(3)
14 = x

′(3)
24 = x

′(3)
34 = 0.44, w

(3)
12 = w

(3)
23 = w

(3)
31 = 0.72, w

(3)
14 = w

(3)
24 = w

(3)
34 = 0.28,

z
(2)
1 = z

(3)
2 = z

(3)
3 = 0.86, z

(3)
4 = 0.42;

with all other variables equal to 0. By inspection, this solution satisfies constraints (7c)-
(7f); however, it violates the preference transitivity constraints involved in MIP#3, as we
have

w12 + w23 + w31 = 2.16 ̸≤ 3− (0.86 + 0.86 + 0.86)/3 = 2.14.

Finally, from Theorem 2, we have that P4 ⊆ P2 ⊆ P3; therefore, we can conclude that
projw P2,projw P4 ⊆ projw P1, and these inclusions can be strict.

5 Concluding Remarks

This paper studies the top-k list aggregation problem, which includes Kemeny aggregation
as a special case. It presents a binary non-linear and four mixed-integer linear program-
ming formulations. Furthermore, it studies the strength of the four mixed-integer linear
programming formulations using polyhedral analysis. Our findings shows that the pre-
sented formulations can be ordered based on the strength of their LP relaxations. The
strongest formulation is induced by a novel set of preference cycle-prevention constraints
tailored to the specific structure of the top-k list aggregation problem introduced herein.

Future research will explore heuristic and approximation algorithms for this problem.
Additionally, investigating whether lower bounding techniques of Kemeny aggregation [2]
can be modified for the top-k list aggregation problem can be another avenue of research.
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