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Abstract

Recent research shows that the dynamics of an infinitely wide neural network (NN)
trained by gradient descent can be characterized by Neural Tangent Kernel (NTK)
[27]. Under the squared loss, the infinite-width NN trained by gradient descent
with an infinitely small learning rate is equivalent to kernel regression with NTK
[4]. However, the equivalence is only known for ridge regression currently [6],
while the equivalence between NN and other kernel machines (KMs), e.g. support
vector machine (SVM), remains unknown. Therefore, in this work, we propose
to establish the equivalence between NN and SVM, and specifically, the infinitely
wide NN trained by soft margin loss and the standard soft margin SVM with NTK
trained by subgradient descent. Our main theoretical results include establishing
the equivalence between NN and a broad family of `2 regularized KMs with finite-
width bounds, which cannot be handled by prior work, and showing that every
finite-width NN trained by such regularized loss functions is approximately a KM.
Furthermore, we demonstrate our theory can enable three practical applications,
including (i) non-vacuous generalization bound of NN via the corresponding
KM; (ii) nontrivial robustness certificate for the infinite-width NN (while existing
robustness verification methods would provide vacuous bounds); (iii) intrinsically
more robust infinite-width NNs than those from previous kernel regression.

1 Introduction

Recent research has made some progress towards deep learning theory from the perspective of infinite-
width NN. For a fully-trained neural network, it follows kernel gradient descent in the function space
with respect to NTK [27]. Under this linear regime and squared loss, it is rigorously proved that the
fully-trained net is equivalent to kernel regression with NTK [4], which gives the generalization ability
of such a model [5]. NTK helps us understand the optimization [27, 18] and generalization [5, 12] of
NN through the perspective of kernels. However, existing theories about NTK [27, 30, 4, 13] usually
assume the loss is a function of the model output, which does not include the case of regularization.
Besides, they usually consider the squared loss which corresponds to a kernel regression, which may
have limited insights to understand classification problems since squared loss and kernel regression
are usually used for regression problems.
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On the other hand, another popular machine learning paradigm with solid theoretical foundation before
the prevalence of deep neural networks is the support vector machine (SVM) [10, 15], which allows
learning linear classifiers in high dimensional feature spaces. SVM tackles the sample complexity
challenge by searching for large margin separators and tackles the computational complexity challenge
using the idea of kernels [43]. To learn an SVM model, it usually involves solving a dual problem
which is cast as a convex quadratic programming problem. Recently, there are some algorithms
using subgradient descent [44] and coordinate descent [23] to further scale the SVM models to large
datasets and high dimensional feature spaces.

We noticed that existing theoretical analysis mostly focused on connecting NN with kernel regression
[27, 4, 30] but the connections between NN and SVM have not yet been explored. In this work, we
establish the equivalence between NN and SVM for the first time to our best knowledge. More broadly,
we show that our analysis can connect NNs with a family of `2 regularized KMs, including kernel
ridge regression (KRR), support vector regression (SVR) and `2 regularized logistic regression, where
previous results [27, 4, 30] cannot handle. These are the equivalences beyond ridge regression for the
first time. Importantly, the equivalence between infinite-width NN and these `2 regularized KMs may
shed light on the understanding of NN from these new equivalent KMs [16, 45, 42, 48], especially
towards understanding the training, generalization, and robustness of NN for classification problems.
Besides, regularization plays an important role in machine learning to restrict the complexity of
models. This equivalence may shed light on the understanding of the regularization for NN. We
highlight our contributions as follows:

• We derive the continuous (gradient flow) and discrete dynamics of SVM trained by subgradient
descent and the dynamics of NN trained by soft margin loss. We show the dynamics of SVM with
NTK and NN are exactly the same in the infinite width limit because of the constancy of the tangent
kernel and thus establish the equivalence. We show same linear convergence rate of SVM and NN
under reasonable assumption. We verify the equivalence by experiments of subgradient descent
and stochastic subgradient descent on MNIST dataset [28].

• We generalize our theory to general loss functions with `2 regularization and establish the equiva-
lence between NN and a family of `2 regularized KMs as summarized in Table 1. We prove the
difference between the outputs of SVM and NN sacles as O(lnm/�

p
m), where � is the coefficient

of the regularization and m is the width of the NN. Additionally, we show every finite-width neural
network trained by a `2 regularized loss function is approximately a KM.

• We show that our theory offers three practical benefits: (i) computing non-vacuous generalization
bound of NN via the corresponding KM; (ii) we can deliver nontrivial robustness certificate for the
over-parameterized NN (with width m ! 1) while existing robustness verification methods would
give trivial robustness certificate due to bound propagation [22, 52, 55]. In particular, the certificate
decreases at a rate of O(1/

p
m) as the width of NN increases; (iii) we show that the equivalent

infinite-width NNs trained from our `2 regularized KMs are more robust than the equivalent NN
trained from previous kernel regression [27, 4] (see Table 3), which is perhaps not too surprising as
the regularization has a strong connection to robust machine learning.

2 Related Works and Background

2.1 Related Works

Neural Tangent Kernel and dynamics of neural networks. NTK was first introduced in [27] and
extended to Convolutional NTK [4] and Graph NTK [20]. [26] studied the NTK of orthogonal
initialization. [6] reported strong performance of NTK on small-data tasks both for kernel regression
and kernel SVM. However, the equivalence is only known for ridge regression currently, but not
for SVM and other KMs. A line of recent work [19, 1] proved the convergence of (convolutional)
neural networks with large but finite width in a non-asymptotic way by showing the weights do
not move far away from initialization in the optimization dynamics (trajectory). [30] showed the
dynamics of wide neural networks are governed by a linear model of first-order Taylor expansion
around its initial parameters. However, existing theory about NTK [27, 30, 4] usually assume the loss
is a function of the model output, which does not include the case of regularization. Besides, they
usually consider the squared loss which corresponds to a kernel regression, which may have limited
insights to understand classification problems since squared loss and kernel regression are usually
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used for regression problems. In this paper, we study the regularized loss functions and establish the
equivalence with KMs beyond kernel regression and regression problems.

Besides, we studied the robustness of NTK models. [24] studied the label noise (the labels are
generated by a ground truth function plus a Gaussian noise) while we consider the robustness of
input perturbation. They study the convergence rate of NN trained by `2 regularized squared loss to
an underlying true function, while we give explicit robustness certificates for NNs. Our robustness
certificate enables us to compare different models and show the equivalent infinite-width NNs trained
from our `2 regularized KMs are more robust than the equivalent NN trained from previous kernel
regression.

Neural network and support vector machine. Prior works [50, 49, 34, 47, 31] have explored the
benefits of encouraging large margin in the context of deep networks. [14] introduced a new family
of positive-definite kernel functions that mimic the computation in multilayer neural nets and applied
the kernels into SVM. [17] showed that neural networks trained by gradient flow are approximately
KMs with a new conceptual kernel named path kernel. [44] proposed a subgradient algorithm to solve

the primal problem of SVM, which can obtain a solution of accuracy ✏ in Õ(1/✏) iterations, where Õ
omits the logarithmic factors. In this paper, we also consider the SVM trained by subgradient descent
and connect it with NN trained by subgradient descent. [46, 3] studied the connection between SVM
and regularization neural network [41], one-hidden layer NN that has very similar structures with
that of KMs and is not widely used in practice. NNs used in practice now (e.g. fully connected ReLU
NN, CNN, ResNet) do not have such structures. [40] analyzed NN trained by two-layer NN trained
by hinge loss without regularization on linearly separable dataset. Note for SVM, it must have a
regularization term such that it can achieve max-margin solution.

2.2 Neural Networks and Tangent Kernel

We consider a general form of deep neural network f with a linear output layer as [32]. Let
[L] = {1, ..., L}, 8l 2 [L],

↵(0)(w, x) = x, ↵(l)(w, x) = �l(w
(l),↵(l�1)), f(w, x) =

1p
mL

hw(L+1),↵(L)(w, x)i, (1)

where each vector-valued function �l(w
(l), ·) : Rml�1 ! R

ml , with parameter w(l) 2 R
pl (pl is

the number of parameters), is considered as a layer of the network. This definition includes the
standard fully connected, convolutional (CNN), and residual (ResNet) neural networks as special

cases. For a fully connected ReLU NN, ↵(l)(w, x) = �( 1p
ml�1

w(l)↵(l�1)) with w(l) 2 R
ml⇥ml�1

and �(z) = max(0, z).

Initialization and parameterization. In this paper, we consider the NTK parameterization [27],
under which the constancy of the tangent kernel has been initially observed. Specifically, the param-

eters, w := {w(1);w(2); · · · ;w(L);w(L+1)} are drawn i.i.d. from a standard Gaussian, N (0, 1), at
initialization, denoted as w0. The factor 1/

p
mL in the output layer is required by the NTK parame-

terization in order that the output f is of order O(1). While we only consider NTK parameterization
here, the results should be able to extend to general parameterization of kernel regime [53].

Definition 2.1 (Tangent Kernel). The tangent kernel associated with function f(w, x) at some

parameter w is Θ̂(w;x, x0) = hrwf(w, x),rwf(w, x
0)i. Under certain conditions (usually infinite

width limit and NTK parameterization), the tangent kernel at initialization converges in probability

to a deterministic limit and keeps constant during training, Θ̂(w;x, x0) ! Θ1(x, x0). This limiting
kernel is called Neural Tangent Kernel (NTK).

2.3 Kernel Machines

Kernel machine (KM) is a model of the form g(�, x) = '(h�,Φ(x)i + b), where � is the model
parameter and Φ is a mapping from input space to some feature space, Φ : X ! F . ' is an optional
nonlinear function, such as identity mapping for kernel regression and sign(·) for SVM and logistic
regression. The kernel can be exploited whenever the weight vector can be expressed as a linear
combination of the training points, � =

Pn

i=1 ↵iΦ(xi) for some value of ↵i, i 2 [n], implying that

we can express g as g(x) = '(
Pn

i=1 ↵iK(x, xi)+b), where K(x, xi) = hΦ(x),Φ(xi)i is the kernel
function. For a neural network in NTK regime, we have f(wt, x) ⇡ f(w0, x) + hrwf(w0, x), wt �
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w0i, which makes the neural network linear in the gradient feature mapping x ! rwf(w0, x).
Under squared loss, it is equivalent to kernel regression with Φ(x) = rwf(w0, x) (or equivalently
using NTK as the kernel), � = wt � w0 and ' identity mapping [4].

As far as we know, there is no work establishing the equivalence between fully trained networks and
SVM. [17] showed that neural networks trained by gradient flow are approximately KMs, but didn’t
discuss any specific KM. In this work, we compare the dynamics of SVM and neural network trained
by subgradient descent with soft margin loss and show the equivalence between them in the infinite
width limit.

2.4 Subgradient Optimization of Support Vector Machine

We first formally define the standard soft margin SVM and then show how the subgradient descent
can be applied to get an estimation of the SVM primal problem. For simplicity, we consider the
homogenous model, g(�, x) = h�,Φ(x)i.1
Definition 2.2 (Soft Margin SVM). Given labeled samples {(xi, yi)}

n
i=1 with yi 2 {�1,+1}, the

hyperplane �⇤ that solves the below optimization problem realizes the soft margin classifier with
geometric margin � = 2/k�⇤k.

min
�,⇠

1

2
k�k2 + C

n
X

i=1

⇠i, s.t. yih�,Φ(xi)i � 1� ⇠i, ⇠i � 0, i 2 [n],

Proposition 2.1. The above primal problem of soft margin SVM can be equivalently formulated as

min
�

1

2
k�k2 + C

n
X

i=1

max(0, 1� yih�,Φ(xi)i), (2)

where the second term is a hinge loss. Denote this function as L(�), which is strongly convex in �.

From this, we see that the SVM technique is equivalent to empirical risk minimization with `2
regularization, where in this case the loss function is the nonsmooth hinge loss. The classical
approaches usually consider the dual problem of SVM and solve it as a quadratic programming
problem. Some recent algorithms, however, use subgradient descent [44] to optimize Eq. (2), which
shows significant advantages when dealing with large datasets.

In this paper, we consider the soft margin SVM trained by subgradient descent with L(�). We use the
subgradient r�L(�) = ��C

Pn

i=1 (yig(�, xi) < 1)yiΦ(xi), where (·) is the indicator function.

As proved in [44], we can find a solution of accuracy ✏, i.e. L(�)� L(�⇤)  ✏, in Õ(1/✏) iterations.
Other works also give convergence guarantees for subgradient descent of convex functions [11, 9]. In
the following analysis, we will generally assume the convergence of SVM trained by subgradient
descent.

3 Main Theoretical Results

In this section, we describe our main results. We first derive the continuous (gradient flow) and
discrete dynamics of SVM trained by subgradient descent (in Section 3.1) and the dynamics of
NN trained by soft margin loss (in Section 3.2 and Section 3.3). We show that they have similar
dynamics, characterized by an inhomogeneous linear differential (difference) equation, and have the
same convergence rate under reasonable assumption. Next, we show that their dynamics are exactly
the same in the infinite width limit because of the constancy of tangent kernel and thus establish
the equivalence (Theorem 3.4). Furthermore, in Section 3.4, we generalize our theory to general
loss functions with `2 regularization and establish the equivalence between NN and a family of `2
regularized KMs as summarized in Table 1.

3.1 Dynamics of Soft Margin SVM

For simpicity, we denote �t as � at some time t and gt(x) = g(�t, x). The proofs of the following
two theorems are detailed in Appendix C.

1Note one can always deal with the bias term b by adding each sample with an additional dimension,
Φ(x)T ← [Φ(x)T , 1],�T

← [�T , 1].
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Theorem 3.1 (Continuous Dynamics and Convergence Rate of SVM). Consider training soft margin

SVM by subgradient descent with infinite small learning rate (gradient flow [2]):
d�t

dt
= �r�L(�t),

the model gt(x) follows the below evolution:

dgt(x)

dt
= �gt(x) + C

n
X

i=1

(yigt(xi) < 1)yiK(x, xi), (3)

and has a linear convergence rate:

L(�t)� L(�⇤)  e�2t (L(�0)� L(�⇤)) .

Denote Q(t) = C
Pn

i=1 (yigt(xi) < 1)yiK(x, xi), which changes over time until convergence.
The model output gt(x) at some time T is

gT (x) = e�T

✓

g0(x)+

Z T

0

Q(t)et dt

◆

, lim
T!1

gT (x) = C

n
X

i=1

(yigT (xi) < 1)yiK(x, xi). (4)

The continuous dynamics of SVM is described by an inhomogeneous linear differential equation (Eq.
(3)), which gives an analytical solution. From Eq. (4), we can see that the influence of initial model
g0(x) deceases as time T ! 1 and disappears at last.

Theorem 3.2 (Discrete Dynamics of SVM). Let ⌘ 2 (0, 1) be the learning rate. The dynamics of
subgradient descent is

gt+1(x)� gt(x) = �⌘gt(x) + ⌘C

n
X

i=1

(yigt(xi) < 1)yiK(x, xi). (5)

Denote Q(t) = ⌘C
Pn

i=1 (yigt(xi) < 1)yiK(x, xi), which changes over time. The model output
gt(x) at some time T is

gT (x) = (1�⌘)T
✓

g0(x)+

T�1
X

t=0

(1�⌘)�t�1Q(t)

◆

, lim
T!1

gT (x) = C

n
X

i=1

(yigT (xi) < 1)yiK(x, xi).

The discrete dynamics is characterized by an inhomogeneous linear difference equation (Eq. (5)).
The discrete dynamics and solution of SVM have similar structures as the continuous case.

3.2 Soft Margin Neural Network

We first formally define the soft margin neural network and then derive the dynamics of training a
neural network by subgradient descent with soft margin loss. We will consider a neural network

defined as Eq. (1). For convenience, we redefine f(w, x) = hW (L+1),↵(L)(w, x)i with W (L+1) =
1p
mL

w(L+1) and w := {w(1);w(2); · · · ;w(L);W (L+1)}.

Definition 3.1 (Soft Margin Neural Network). Given samples {(xi, yi)}
n
i=1, yi 2 {�1,+1}, the

neural network w⇤ defined as Eq. (1) that solves the following two equivalent optimization problems

min
w,⇠

1

2
kW (L+1)k2 + C

n
X

i=1

⇠i, s.t. yif(w, xi) � 1� ⇠i, ⇠i � 0, i 2 [n],

min
w

1

2
kW (L+1)k2 + C

n
X

i=1

max(0, 1� yif(w, xi)), (6)

realizes the soft margin classifier with geometric margin � = 2/kW (L+1)
⇤ k. Denote Eq. (6) as L(w)

and call it soft margin loss.

This is generally a hard nonconvex optimization problem, but we can apply subgradient descent to

optimize it heuristically. At initilization, kW (L+1)
0 k2 = O(1). The derivative of the regularization for

w(L+1) is w(L+1)/
p
mL = O(1/

p
mL) ! 0. For a fixed ↵(L)(w, x), this problem is same as SVM

with Φ(x) = ↵(L)(w, x), kernel K(x, x0) = ↵(L)(w, x) · ↵(L)(w, x0) and parameter � = W (L+1).
If we only train the last layer of NN, it corresponds to an SVM with a NNGP kernel [29, 36]. But for

a fully-trained NN, ↵(L)(w, x) is changing over time.
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3.3 Dynamics of Neural Network Trained by Soft Margin Loss

Denote the hinge loss in L(w) as Lh(yi, f(w, xi)) = Cmax(0, 1� yif(w, xi)). We use the same
subgradient as that for SVM, L0

h(yi, f(w, xi)) = �Cyi (yif(w, xi) < 1).

Theorem 3.3 (Continuous Dynamics and Convergence Rate of NN). Suppose an NN f(w, x) defined
as Eq. (1), with f a differentiable function of w, is learned from a training set {(xi, yi)}

n
i=1 by

subgradient descent with L(w) and gradient flow. Then the network has the following dynamics:

dft(x)

dt
= �ft(x) + C

n
X

i=1

(yift(xi) < 1)yiΘ̂(wt;x, xi).

Let Θ̂(wt) 2 R
n⇥n be the tangent kernel evaluated on the training set and �min(Θ̂(wt)) be its

minimum eigenvalue. Assume �min(Θ̂(wt)) � 2
C

, then NN has at least a linear convergence rate,
same as SVM:

L(wt)� L(w⇤)  e�2t (L(w0)� L(w⇤)) .

The proof is in Appendix D. The key observation is that when deriving the dynamics of ft(x), the
1
2kW (L+1)k2 term in the loss function will produce a ft(x) term and the hinge loss will produce
the tangent kernel term, which overall gives a similar dynamics to that of SVM. Comparing to the
previous continuous-time gradient descent [27, 30], our result has an extra �ft(x) here because of
the regularization term of the loss function. The convergence rate is proved based on a sufficient

condition for the PL inequality. The assumption of �min(Θ̂(wt)) � 2
C

can be guaranteed in a

parameter ball when �min(Θ̂(w0)) >
2
C

, by using a sufficiently wide NN [33].

If the tangent kernel Θ̂(wt;x, xi) is fixed, Θ̂(wt;x, xi) ! Θ̂(w0;x, xi), the dynamics of NN is the

same as that of SVM (Eq. (3)) with kernel Θ̂(w0;x, xi), assuming the neural network and SVM have
same initial output g0(x) = f0(x).

2 And this consistency of tangent kernel is the case for infinitely
wide neural networks of common architectures, which does not depend on optimization algorithm
and the choice of loss function, as discussed in [32].

Assumptions. We assume that (vector-valued) layer functions �l(w,↵), l 2 [L] are L�-Lipschitz
continuous and twice differentiable with respect to input ↵ and parameters w. The assumptions serve
for the following theorem to show the constancy of tangent kernel.

Theorem 3.4 (Equivalence between NN and SVM). As the minimum width of the NN, m =

minl2[L] ml, goes to infinity, the tangent kernel tends to be constant, Θ̂(wt;x, xi) ! Θ̂(w0;x, xi).
Assume g0(x) = f0(x). Then the infinitely wide NN trained by subgradient descent with soft margin

loss has the same dynamics as SVM with Θ̂(w0;x, xi) trained by subgradient descent:

dft(x)

dt
= �ft(x) + C

n
X

i=1

(yift(xi) < 1)yiΘ̂(w0;x, xi).

And thus such NN and SVM converge to the same solution.

The proof is in Appendix E. We apply the results of [32] to show the constancy of tangent kernel in
the infinite width limit. Then it is easy to check the dynamics of infinitely wide NN and SVM with
NTK are the same. We give a finite-width bound for general loss functions in the next section. This
theorem establishes the equivalence between infinitely wide NN and SVM for the first time. Previous
theoretical results of SVM [16, 45, 42, 48] can be directly applied to understand the generalization
of NN trained by soft margin loss. Given the tangent kernel is constant or equivalently the model is
linear, we can also give the discrete dynamics of NN (Appendix D.4), which is identical to that of
SVM. Compared with the previous discrete-time gradient descent [30, 53], our result has an extra
�⌘ft(x) term because of the regularization term of loss function.

ft+1(x)� ft(x) = �⌘ft(x) + ⌘C
n
X

i=1

(yift(xi) < 1)yiΘ̂(w0;x, xi).

2This can be done by setting the initial values to be 0, i.e. g0(x) = f0(x) = 0.
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Table 1: Summary of our theoretical results on the equivalence between infinite-width NNs and a
family of KMs. Thanks to the representer theorem [42], our `2 regularized KMs can all apply kernel
trick, meaning infinite NTK can be applied in these `2 regularized KMs.

� Loss l(z, yi) Kernel machine

� = 0([27, 4]) (yi − z)2 Kernel regression

� → 0 (ours) max(0, 1− yiz) Hard margin SVM

� > 0 (ours)

max(0, 1− yiz) (1-norm) soft margin SVM

max(0, 1− yiz)
2 2-norm soft margin SVM

max(0, |yi − z|− ✏) Support vector regression

(yi − z)2 Kernel ridge regression (KRR)

log(1 + e−yiz) Logistic regression with `2 regularization

3.4 General Loss Functions

We note that above analysis does not have specific dependence on the hinge loss. Thus we can
generalize our analysis to general loss functions l(z, yi), where z is the model output, as long as the
loss function is differentiable (or has subgradients) with respect to z, such as squared loss and logistic
loss. Besides, we can scale the regularization term by a factor � instead of scaling l(z, yi) with C as
it for SVM, which are equivalent. Suppose the loss function for the KM and NN are

L(�) =
�

2
k�k2 +

n
X

i=1

l(g(�, xi), yi), L(w) =
�

2
kW (L+1)k2 +

n
X

i=1

l(f(w, xi), yi). (7)

Then the continuous dynamics of gt(x) and ft(x) are

dgt(x)

dt
= ��gt(x)�

n
X

i=1

l0(gt(xi), yi)K(x, xi), (8)

dft(x)

dt
= ��ft(x)�

n
X

i=1

l0(ft(xi), yi)Θ̂(wt;x, xi), (9)

where l0(z, yi) = @l(z,yi)
@z

. In the situation of Θ̂(wt;x, xi) ! Θ̂(w0;x, xi) and K(x, xi) =

Θ̂(w0;x, xi), these two dynamics are the same (assuming g0(x) = f0(x)). When � = 0, we
recover the previous results of kernel regression. When � > 0, we have our new results of `2
regularized loss functions. Table 1 lists the different loss functions and the corresponding KMs that
infinite-width NNs are equivalent to. KRR is considered in [25] to analyze the generalization of NN.
However, they directly assume NN as a linear model and use it in KRR. Below we give finite-width
bounds on the difference between the outputs of NN and the corresponding KM. The proof is in F.

Theorem 3.5 (Bounds on the difference between NN and KM). Assume g0(x) = f0(x), 8x and

K(x, xi) = Θ̂(w0;x, xi)
3. Suppose the KM and NN are trained with losses (7) and gradient flow.

Suppose l is ⇢-lipschitz and �l-smooth for the first argument (i.e. the model output). Given any
wT 2 B(w0;R) := {w : kw � w0k  R} for some fixed R > 0, for training data X 2 R

d⇥n and a

test point x 2 R
d, with high probability over the initialization,

kfT (X)� gT (X)k = O(
e�lkΘ̂(w0)kR3L+1⇢n

3

2 lnm

�
p
m

),

kfT (x)� gT (x)k = O(
e�lkΘ̂(w0;X,x)kR3L+1⇢n lnm

�
p
m

).

where fT (X), gT (X) 2 R
n are the outputs of the training data and Θ̂(w0;X,x) 2 R

n is the tangent
kernel evaluated between training data and test point.

3Linearized NN is a special case of such g.
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4 Discussion

In this section, we give some extensions and applications of our theory. We first show that every finite-
width neural network trained by a `2 regularized loss function is approximately a KM in Section 4.1,
which enables us to compute non-vacuous generalization bound of NN vis the corresponding KM.
Next, in Section 4.2, we show that our theory of equivalence (in Section 3.3) is useful to evaluating
the robustness of over-parameterized NNs with infinite width. In particular, our theory allows us to
deliver nontrivial robustness certificates for infinite-width NNs, while existing robustness verification
methods [22, 52, 55] would become much looser (decrease at a rate of O(1/

p
m)) as the width of

NN increases and trivial with infinite width (the experiment results are in Section 5 and Table 2).

4.1 Finite-width Neural Network Trained by `2 Regularized Loss

Inspired by [17], we can also show that every NN trained by (sub)gradient descent with loss function
(7) is approximately a KM without the assumption of infinite width.

Theorem 4.1. Suppose an NN f(w, x), is learned from a training set {(xi, yi)}
n
i=1 by

(sub)gradient descent with loss function (7) and gradient flow. Assume sign(l0(yi, ft(xi))) =
sign(l0(yi, f0(xi))), 8t 2 [0, T ].4 Then at some time T > 0,

fT (x) =

n
X

i=1

aiK(x, xi) + b, with K(x, xi) = e��T

Z T

0

|l0(ft(xi), yi)|Θ̂(wt;x, xi)e
�t dt,

and ai = �sign(l0(f0(xi), yi)), b = e��T f0(x).

See the proof in Appendix G, which utilizes the solution of inhomogeneous linear differential equation
instead of integrating both side of dynamics (Eq. (9)) directly [17]. Note in Theorem 4.1, ai is
deterministic and independent with x, different with [17] that has ai depends on x. Deterministic ai
makes the function class simpler. Combing Theorem 4.1 with a bound of the Rademacher complexity
of the KM [7] and a standard generalization using Rademacher complexity [37], we can compute the
generalization bound of NN via the corresponding KM. See Appendix B for more background and
experiments. The generalization bound we get will depend on ai, which depends on the label yi. This
differs from traditional complexity measures that cannot explain the random label phenomenon [54].

4.2 Robustness of Infinite-width Neural Network

Our theory of equivalence allows us to deliver nontrivial robustness certificates for infinite-width
NNs by considering the equivalent KMs. For an input x0 2 R

d, the objective of robustness is to find
the largest ball such that no examples within this ball x 2 B(x0, �) can change the classification
result. Without loss of generality, we assume g(x0) > 0. The robustness problem can be formulated
as follows,

max �, s.t. g(x) > 0, 8x 2 B(x0, �). (10)

For an infinitely wide two-layer fully connected ReLU NN, f(x) = 1p
m

Pm

j=1 vj�(
1p
d
wT

j x), where

�(z) = max(0, z) is the ReLU activation, the NTK is

Θ(x, x0) =
hx, x0i

d
(
⇡ � arccos(u)

⇡
) +

kxkkx0k
2⇡d

p

1� u2.

where u = hx,x0i
kxkkx0k 2 [�1, 1]. See the proof of the following theorem in Appendix H.1.

Theorem 4.2. Consider the `1 perturbation, for x 2 B1(x0, �) = {x 2 R
d : kx�x0k1  �}, we

can bound Θ(x, x0) into some interval [ΘL(x, x0),ΘU (x, x0)]. Suppose g(x) =
Pn

i=1 ↵iΘ(x, xi),
where ↵i are known after solving the KM problems (e.g. SVM and KRR). Then we can lower bound
g(x) as follows.

g(x) �
n
X

i=1,↵i>0

↵iΘ
L(x, xi) +

n
X

i=1,↵i<0

↵iΘ
U (x, xi).

Using a simple binary search and above theorem, we can find a lower bound for (10). Because
of the equivalence between the infinite-width NN and KM, the lower bound we get for the KM is
equivalently a robustness lower bound for the corresponding infinite-width NN.

4This is the case for hinge loss.
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equivalent infinite-width NN through SVM and KRR, which is intrinsically more robust than the
previous kernel regression model.

Table 3: Robustness of equivalent infinite-width NN models with different loss functions (see Table 1)
on binary classification of MNIST (0 and 1). � is the parameter in Eq. (7).

Model � Test accuracy Robustness certificate � Robustness improvement

� = 0([27, 4]) KRR 0 99.95% 3.30202×10−5 -

� > 0 (ours)

KRR 0.001 99.95% 3.756122×10−5 1.14X

KRR 0.01 99.95% 6.505500×10−5 1.97X

KRR 0.1 99.95% 2.229960×10−4 6.75X
KRR 1 99.95% 0.001005 30.43X
KRR 10 99.91% 0.005181 156.90X
KRR 100 99.86% 0.020456 619.50X
KRR 1000 99.76% 0.026088 790.06X
SVM 0.064 99.95% 0.008054 243.91X

6 Conclusion and Future Works

In this paper, we establish the equivalence between SVM with NTK and the NN trained by soft
margin loss with subgradient descent in the infinite width limit, and we show that they have the
same dynamics and solution. We also extend our analysis to general `2 regularized loss functions
and show every neural network trained by such loss functions is approximately a KM. Finally, we
demonstrate our theory is useful to compute non-vacuous generalization bound for NN, non-trivial
robustness certificate for infinite-width NN while existing neural network robustness verification
algorithm cannot handle, and with our theory, the resulting infinite-width NN from our `2 regularized
models is intrinsically more robust than that from the previous NTK kernel regression. For future
research, since the equivalence between NN and SVM (and other `2 regularized KMs) with NTK has
been established, it would be very interesting to understand the generalization and robustness of NN
from the perspective of these KMs. Our main results are currently still limited in the linear regime. It
would be interesting to extend the results to the mean field setting or consider its connection with the
implicit bias of NN.
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