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Abstract
We present an (eO(p) log `

log log ` )-approximation algorithm for socially fair clustering with the `p-
objective. In this problem, we are given a set of points in a metric space. Each point belongs
to one (or several) of ` groups. The goal is to find a k-medians, k-means, or, more generally, `p-
clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of
k centers C so as to minimize the maximum over all groups j of

∑
u in group j d(u,C)p.

The socially fair clustering problem was independently proposed by Abbasi, Bhaskara, and
Venkatasubramanian (2021) and Ghadiri, Samadi, and Vempala (2021). Our algorithm improves
and generalizes their O(`)-approximation algorithms for the problem.

The natural LP relaxation for the problem has an integrality gap of Ω(`). In order to obtain
our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of
Θ( log `

log log ` ) for a fixed p. Additionally, we present a bicriteria approximation algorithm, which
generalizes the bicriteria approximation of Abbasi et al. (2021).

1. Introduction

Due to increasing use of machine learning in decision making, there has been an extensive line of
research on the societal aspects of algorithms (Galindo and Tamayo, 2000; Kleinberg et al., 2017;
Chouldechova, 2017; Dressel and Farid, 2018). The goal of research of this area is to understand,
on one hand, what it means for an algorithm to be fair and how to formally define the fairness
requirements and, on the other hand, how to design efficient algorithms that meet the fairness re-
quirements. By now, there have been a rich amount of studies on both fronts for different machine
learning tasks (Dwork et al., 2012; Feldman et al., 2015; Hardt et al., 2016; Chierichetti et al., 2017;
Kleindessner et al., 2019; Jung et al., 2020; Har-Peled and Mahabadi, 2019; Aumüller et al., 2020).
We refer the reader to (Chouldechova and Roth, 2018; Kearns and Roth, 2019) for an overview of
different notions of fairness and their computational aspects.

In this work, we study clustering under the notion of group fairness called social fairness or
equitable group representation, introduced independently by Abbasi, Bhaskara, and Venkatasubra-
manian (2021) and Ghadiri, Samadi, and Vempala (2021). In this framework, we need to cluster
a dataset with points coming from a number of groups. Ghadiri et al. observed that both standard
clustering algorithms and existing fair clustering algorithms (e.g., those that ensure that various
groups are fairly represented in all clusters; see (Chierichetti et al., 2017)) incur higher clustering
costs for certain protected groups (e.g., groups that are defined by a sensitive attribute such as gender
and race). This lack of fairness has motivated the study of clustering that minimizes the maximum
clustering cost across different demographic groups. The objective of socially fair clustering was
previously studied by Anthony, Goyal, Gupta, and Nagarajan (2010) in the context of robust clus-
tering. In this setting, a set of possible scenarios is provided and the goal is to find a solution that is
simultaneously good for all scenarios.
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Definition 1 (Socially Fair `p-Clustering) We are given a metric space (P, d) on n points, `
groups of points P1, · · · , P` ⊆ P , and the desired number of centers k. Additionally, we are given
non-negative demands or weights wj : Pj → R for points in each group Pj . We define the `p-cost
of group Pj w.r.t. a set of centers C ⊆ P as

cost(C,wj) =
∑
p∈Pj

wj(p) · d(p, C)p,

where d(p, C) = minc∈C d(p, c). In socially fair `p-clustering, the goal is to pick a set of k centers
C ⊆ P so as to minimize maxj∈[`] cost(C,wj), which we call the fair cost:

fair-cost(C) = fair-cost(C, {wj}j∈[`]) := max
j∈[`]

∑
p∈Pj

wj(p) · d(p, C)p. (1)

The problem was first studied in the context of robust clustering. Anthony, Goyal, Gupta, and
Nagarajan (2010) introduced it under the name “robust k-medians” (for p = 1) and designed an
O(log |P | + log `)-approximation algorithm for it (for p = 1). Recently, Abbasi, Bhaskara, and
Venkatasubramanian (2021)1 and Ghadiri, Samadi, and Vempala (2021) considered this problem
in the context of social fairness. They studied this problem for the most interesting cases, when
p ∈ {1, 2} and p = 2, respectively; the papers assumed that wj = 1/|Pj |. In these special cases,
the problem is called socially fair k-medians (p = 1) and socially fair k-means (p = 2). Both pa-
pers presentedO(`)-approximation algorithms for the variants of fair clustering they study. Further,
Abbasi et al. gave a bicriteria (2/γ, 1/(1 − γ))-approximation algorithm for fair k-medians and
k-means. Their algorithm finds a solution with at most k/(1 − γ) centers, whose cost is at most
2/γ times the optimal cost for k centers. Also, Ghadiri et al. designed a fair variant of Lloyd’s
heuristic for fair k-means clustering. Further, Bhattacharya, Chalermsook, Mehlhorn, and Neu-
mann (2014) showed that it is hard to approximate socially fair k-medians by a factor better than
Ω(log `/ log log `) unless NP ⊆ ∩δ>0DTIME(2n

δ
). This hardness result holds even for uniform

and line metrics. We remark that since the result by Bhattacharya et al. (2014) holds for uniform
metrics – metrics where all distances are either 0 or 1 – the same Ω(log `/ log log `)-hardness result
also applies to socially fair clustering with other values of p > 1.

Our Results. In this paper, we consider socially fair clustering for arbitrary p ∈ [1,∞) and
arbitrary demands/weights. We do not require groups Pj to be disjoint.

Our main contribution is an (eO(p)· log `
log log `)-approximation algorithm for socially fair `p-clustering

problem. For socially fair k-means, our algorithm improves the O(`)-approximation algorithms
by Abbasi et al. and Ghadiri et al. to O( log `

log log `). For socially fair k-medians, our algorithm

improves the O(log n+ log `)-approximation algorithm by Anthony et al. to O( log `
log log `). The hard-

ness result by Bhattacharya et al. (2014) shows that our approximation guarantee for socially fair
k-clustering with p = O(1), which includes k-medians and k-means, is optimal up to a constant
factor unless NP ⊆ ∩δ>0DTIME(2n

δ
). We also give an (eO(p)/γ, 1/(1 − γ))-bicriteria approx-

imation for the socially fair `p-clustering problem (where γ ∈ (0, 1)). This result generalizes the
bicriteria guarantee of Abbasi et al. (2021) for the k-means and k-medians objectives to the case of
arbitrary p ≥ 1 and arbitrary demands wj .

1. Abbasi et al. call this problem fairness under equitable group representation.
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Theorem 2 There exists a polynomial-time algorithm that computes an (eO(p) log `
log log `)-approximation

for the socially fair `p-clustering problem (where ` is the number of groups).

Theorem 3 There exists an algorithm that computes a bicriteria (eO(p)/γ, 1/(1−γ))-approximation
for the socially fair `p-clustering problem (where γ ∈ (0, 1)). The algorithm finds a solution with
at most k/(1− γ) centers, whose cost is at most eO(p)/γ times the optimal cost for k centers.

Below, we will mostly focus on proving Theorem 2. We prove Theorem 3 in Section 6. Our al-
gorithms are based on linear programming. However, as shown by Abbasi et al., the integrality gap
of the natural LP relaxation for the socially fair `p-clustering is Ω(`). In order to get an approxima-
tion factor better than Θ(`), we strengthen the LP by introducing an extra set of constraints. Loosely
speaking, new constraints require that each point u be connected only to centers at distance at most
∆ from u, where the value of ∆ depends on the specific point u (we discuss these constraints in
detail below). Once we solve the LP relaxation with additional constraints, we apply the framework
developed by Charikar, Guha, Tardos, and Shmoys (2002) for the k-medians problem. Using their
framework, we transform the problem instance and the LP solution. We get an instance with a set of
points P ′ and an LP solution that “fractionally” opens a center at every point u ∈ P ′; specifically,
each point u ∈ P ′ will be at least (1 − γ)-fractionally open where γ = 1/10. Now to obtain our
approximation results, we use independent sampling in combination with some techniques from
Charikar et al. (2002). The analysis crucially uses the LP constraints we introduced. Our bicriteria
approximation algorithm simply outputs set C = P ′.

Related Work. Clustering has been an active area of research in the domain of fairness for un-
supervised learning. One notion of group fairness for clustering, introduced by Chierichetti et al.
(2017), requires that output clusters are balanced. This notion of fairness has been extended in
a series of papers (Abraham et al., 2019; Bercea et al., 2019; Bera et al., 2019; Schmidt et al.,
2019; Backurs et al., 2019; Ahmadian et al., 2019; Huang et al., 2019; Abraham et al., 2019).
Another well-studied notion of group fairness for clustering requires the chosen centers fairly rep-
resent the underlying population. Various aspects of clustering under this notion of fairness have
been studied in the literature (Hajiaghayi et al., 2010; Krishnaswamy et al., 2011; Chen et al., 2016;
Krishnaswamy et al., 2018; Kleindessner et al., 2019; Chiplunkar et al., 2020; Jones et al., 2020).
There has been also extensive research on other notions of fairness for clustering (Chen et al., 2019;
Jung et al., 2020; Mahabadi and Vakilian, 2020; Micha and Shah, 2020; Kleindessner et al., 2020;
Brubach et al., 2020; Anderson et al., 2020).

2. Preliminaries

We denote the distance from point u to set C by

d(u,C) = min
v∈C

d(u, v).

To simplify notation, we will assume below that weights wj are defined on the entire set P , but
wj(u) = 0 for u /∈ Pj . We denote w(v) =

∑
j∈[`]wj(v). We will use the following definitions and

results in the paper.

Definition 4 (approximate triangle inequality) A distance function satisfies the α-approximate
triangle inequality over a set of points P if, ∀u, v, w ∈ P, d(u,w) ≤ α · (d(u, v) + d(v, w))
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Claim 5 (Corollary A.1 in (Makarychev et al., 2019)) Let (P, d) be a metric space. Consider
distance function d(u, v)p. It satisfies the αp-approximate triangle inequality for αp = 2p−1.

Theorem 6 (Bennett’s Inequality (Bennett, 1962); also see Theorem 2.9.2 in (Vershynin, 2018))
Let X1, . . . , Xn be independent mean-zero random variables and S =

∑n
i=1Xi. Assume that (a)

Var[S] ≤ σ2 and (b) for all i ∈ [n], |Xi| ≤M always. Then, for every t ≥ 0, we have

Pr[S ≥ t] ≤ exp

(
− σ2

M2
h

(
tM

σ2

))
≤ exp

(
− t

2M
log

(
tM

σ2
+ 1

))
,

for h(x) = (1 + x) ln(1 + x)− x2 ≥ 1
2 · x log(x+ 1).

3. LP Relaxations for Socially Fair `p-Clustering

In this section, we describe an LP-relaxation for the socially fair `p-clustering. We start with a natu-
ral LP relaxation for the problem studied by Abbasi et al. (2021). The relaxation is a generalization
of the standard LP for k-means and k-medians clustering (Charikar et al., 2002): For every v ∈ P ,
we have an LP variable yv that denotes whether v belongs to the set of selected centers (in an inte-
gral solution, yv = 1 if v ∈ C and 0 otherwise); for every u, v ∈ P , we have an LP variable xuv
that denotes whether v is the closest center to u in the selected set of centers C.

LP Relaxation: BasicClusterLP ({wj})

minimize max
j∈[`]

∑
u∈Pj ,v∈P

wj(u) · d(u, v)p · xuv

s.t.
∑
v∈P

xuv = 1 ∀u ∈ P∑
v∈P

yv ≤ k

xuv ≤ yv ∀u, v ∈ P
xuv, yu ≥ 0 ∀u, v ∈ P

Note that the objective is not linear as written. However, we can rewrite this relaxation as a true LP
by introducing a new variable A, adding LP constrains A ≥

∑
u∈Pj ,v∈P wj(u) · d(u, v)p · xuv for

each j, and then minimizing A in the objective.
As was shown by Abbasi et al., this LP relaxation has an integrality gap of Ω(`) (for all p ∈

[1,∞)). As discussed in the Introduction, we strengthen this LP by introducing an extra set of
constraints. To describe these constraints, we need some notation. For each point v ∈ P , we denote
the ball of radius r ≥ 0 around v by B(v, r) := {u ∈ P | d(v, u) ≤ r}. We define the volume of a
ball B(v, r) as volv(r) = maxj∈[`]

∑
u∈B(v,r)wj(u) · rp.

Remark 7 We use this definition of volv(r) so as to ensure that the following property holds. Con-
sider a set of centers C and assume that the distance from all points in B(v, r) to C is at least r.
Then the cost of solution C is at least volv(r).

Clearly, function volv(r) is a non-decreasing function of r that goes to infinity as r → ∞ (unless
all demands wj are identically 0). Further, if there are no points at distance exactly r from v,
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then volv(r) is continuous at r; otherwise, it is right-continuous at r and may or may not be left-
continuous. Denote volv(r − 0) = lims→r−0 volv(s) (the limit of volv at r from the left); we let
volv(0 − 0) = 0. Given a budget parameter z, define ∆z(v) = min{r : volv(r) ≥ z}. Note that
volv(∆z(v)− 0) ≤ z ≤ volv(∆z(v)). Claim 8 explains why we consider ∆z(v).

Claim 8 Consider an instance of the socially fair `p-clustering problem. Denote its optimal cost by
z∗. LetC∗ be an optimal set of centers and z ≥ z∗. Then for all v ∈ P withw(v) =

∑
j∈[`]wj(v) >

0, we have d(v, C∗) ≤ 2∆z(v).

Proof Denote R = ∆z(v). Assume to the contrary that there exists a point v such that d(v, C∗) >
2R. Then, for every u ∈ B(v,R), we have d(u,C∗) ≥ d(v, C∗)− d(u, v) > R.

If z > 0, choose j so that
∑

u∈B(v,R)wj(u) · Rp = volv(R) ≥ z. If z = 0, choose j so that
wj(v) > 0. Note that in either case, S :=

∑
u∈B(v,R)wj(u) > 0. We have,

fair-cost(C∗) ≥ cost(C∗, wj) ≥
∑

u∈B(v,R)

wj(u)d(u,C∗)p

since S>0
>

∑
u∈B(v,R)

wj(u)Rp ≥ z ≥ z∗ = fair-cost(C∗).

We get a contradiction.

We now state our strengthened LP relaxation, which has a new family of constraints (5).

LP Relaxation: ClusterLP ({wj}, z, λ)

minimize maxj∈[`]

∑
u∈Pj ,v∈P wj(u) · d(u, v)p · xuv

s.t.
∑
v∈P

xuv = 1 ∀u ∈ P (2)∑
v∈P

yv ≤ k (3)

xuv ≤ yv ∀u, v ∈ P (4)

xvu = 0 ∀u, v s.t. w(v) > 0 and d(u, v) > λ∆z(v) (5)

xuv, yu ≥ 0 ∀u, v ∈ P (6)

It follows from Claim 8 that this is a valid relaxation if λ ≥ 2 and z is at least z∗ (the cost
of the optimal fair clustering). We remark that the bicriteria approximation can be achieved from
rounding BasicClusterLP ; however, for the simplicity of exposition, we also use ClusterLP in
our bicriteria approximation algorithm.

We show that the integrality gap of ClusterLP ({wj}, z, λ) is Ω(log `/ log log `) and thus our
rounding procedure is essentially optimal.

Theorem 9 The integrality gap of ClusterLP ({wj}, z, λ) is Ω(log `/ log log `).

We make the statement of Theorem 9 precise and prove it in Appendix C.
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Outline of Our Algorithms. We provide two approximation guarantees for fair `p-clustering.
The first algorithm gives an (eO(p) log `

log log `)-approximation and the second one gives a bicriteria
(eO(p)/γ, 1/(1− γ))-approximation.

We will assume below that we have an approximation zg for the cost z∗ of the optimal solution
such that z∗ ≤ zg ≤ 2z∗. A standard argument shows that we can do that: we can simply run our
algorithm with various values of zg and, loosely speaking, output the best clustering the algorithm
finds. We formally explain why we can assume that we have such a value of zg in Appendix B.

Our algorithms consist of two steps. In the first step, which is common for both our algorithms,
we construct a (1− γ)-restricted solution of ClusterLP , defined as follows.

Definition 10 A solution (x, y) of ClusterLP ({wj}, z, λ) is called (1− γ)-restricted w.r.t. P ′ ⊆
P if yu ≥ 1− γ for all u ∈ P ′ and y′u = 0 for all u /∈ P ′.

We find a (1 − γ)-restricted solution by closely following the approach by Charikar, Guha, Tar-
dos, and Shmoys (2002). However, as we work with a different objective function and LP, some
careful modifications to the approach by Charikar et al. are required. The second steps for our ap-
proximation and bicriteria approximation algorithms are different. The former uses an independent
randomized rounding in combination with some techniques from Charikar et al.; the latter algorithm
does not actually need any rounding – it simply outputs C = P ′.

4. Step 1: Constructing (1− γ)-Restricted Solutions

4.1. Overview

In this section, we present a polynomial-time algorithm that given an instance I with demand func-
tions {wj} constructs an instance I ′ with new demands {w′j} on the same set of points P . Let P ′

be the support of {w′j}: P ′ = {u : w′j(u) 6= 0 for some j ∈ [`]}. The new instance will satisfy the
following properties (which we now state informally).

1. All points in P ′ are well separated (the distance between every two points in P ′ is “large”).

2. Let (x, y) be an optimal LP solution for ClusterLP ({wj}, zg, 2). The LP cost of (x, y) w.r.t.
new demands {w′j} is at most that w.r.t. the original demands {wj}.

3. The cost of every solution C w.r.t. original demands {wj} is at most a constant factor greater
than the cost of C w.r.t. demands {w′j} (for every fixed p).

After we show how to transform I to I ′ and prove that I ′ satisfies properties (1)-(3), we describe
how to convert the optimal LP solution (x, y) for I to a solution (x′, y′) for I ′, which is (1 − γ)-
restricted w.r.t. P ′ (see Definition 10).

No we observe that it is sufficient to design a “good” rounding scheme only for (1−γ)-restricted
LP solutions: we use the transformations discussed above, then apply the rounding scheme to the
LP solution (x′, y′) for I ′, obtain a “good” solution C for I ′, and then output C as a solution for I.

The proofs of all claims and lemmas from Sections 4.2 and 4.3 appear in Appendix A.
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4.2. Consolidating Locations

In this subsection, we describe how we transform instance I to instance I ′. We call this step
location consolidation. Let (x, y) be an optimal LP solution for ClusterLP ({wj}, zg, 2) where
zg ∈ [z∗, 2z∗] and z∗ is the cost for the optimal integral solution of the fair clustering instance. To
describe the location consolidation algorithm, we need to define a notion of “fractional distance of
point u to the center” according to (x, y). We define the fractional distance R(u) for u ∈ P as
follows:

R(u) :=

(∑
v∈P

d(u, v)p · xuv

)1/p

(7)

Note that if (x, y) is an integral solution, then R(u) is simply the distance from u to the center of
the cluster u is assigned to.

Claim 11 For each group j ∈ [`], we have
∑

u∈P wj(u) · R(u)p ≤ z∗.

Algorithm 1 performs location consolidation. After we initialize variables (lines 2–3), we sort

Algorithm 1 Consolidating locations.
1: Input: (x, y) is an optimal solution of ClusterLP ({wj},∆, γ)

2: R(v) =
(∑

u∈P d(v, u)p · xvu
)1/p for all v ∈ P

3: w′j(v) = wj(v) for all v ∈ P and j ∈ [`]
4: sort the points in P so thatR(v1) ≤ R(v2) ≤ · · · ≤ R(vn)
5: for i = 1 to n− 1 do
6: for j = i+ 1 to n do
7: if d(vi, vj) ≤ 2

γ1/p
R(vj) and

∑
c∈[`]w

′
c(vi) > 0 then

8: w′t(vi) = w′t(vi) + w′t(vj) for all t ∈ [`]
9: w′t(vj) = 0 for all t ∈ [`]

10: end if
11: end for
12: end for

all points in P according to their fractional distance in a non-decreasing order – v1, · · · , vn – so that
R(v1) ≤ R(v2) ≤ · · · ≤ R(vn) (line 4). Then, we consider the points in this order one-by-one.
When processing a point vi with non-zero demand, we check whether there exists another point
vj with non-zero demand such that j > i and d(vi, vj) ≤ 2

γ1/p
R(vj) (line 7). If there is such a

point, we add the demands of vj to vi and set the demands of vj to zero (lines 8-9). When the
algorithm runs the described procedure, we say that it moves the demand of vj to vi. Note that after
the algorithm processes vi, it never moves the demand of vi to another point. Thus, the demand of
each point can be moved at most once.

We run Algorithm 1 on optimal LP solution (x, y) and obtain a new set of demands {w′j}. Let
w′(v) =

∑
j∈[`]w

′
j(v), and P ′ be the support of w′. Claim 12 shows that all points in P ′ are

well-separated.

Claim 12 For every pair of u, v ∈ P ′, d(u, v) > 2
γ1/p
·max(R(u),R(v)).
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Finally, we show that every solution (x, y) for the original LP relaxation is also a feasible solution
with the same or smaller cost for the LP with new demands {w′j}.

Lemma 13 Let (x, y) be a feasible solution for ClusterLP ({wj}, z, λ) with cost z′. Then (x, y)
is a feasible solution for ClusterLP ({w′j}, z, λ) with cost at most z′.

4.3. Consolidating Centers

In the previous section, we constructed an instance with a well-separated set of points P ′ that have
positive demands {w′j}. In this section, we simplify the structure of the set of “opened centers” in
the LP solution – points u ∈ P with yu > 0. Note that yu may be positive even if u /∈ P ′. We will
transform the LP solution (x, y) and obtain a new solution (x′, y′) with approximately the same LP
cost such that y′u > 0 only if u ∈ P ′. We will see then that (x′, y′) is a (1 − γ)-restricted solution
of ClusterLP .

Our approach is identical to that in Charikar et al. (2002). If v ∈ P \ P ′ and yv > 0, we move
center v to the closest to v point v′ in P ′ by letting y′v′ = y′v′ + yv. Then we close the center v by
letting y′v = 0. If v ∈ P ′, we keep the center at v. See Algorithm 2 for the formal description of
this procedure.

Algorithm 2 Consolidating centers.
1: Input: P ′, x, y
2: x′ = x, y′ = y
3: for all v ∈ P \ P ′ with y′v > 0 do
4: let v′ be a closest to v point in P ′.
5: y′v′ = min(1, y′v′ + y′v), y′v = 0
6: x′uv′ = x′uv′ + x′uv and x′uv = 0 for all u ∈ P ′
7: end for

Consider a point u ∈ P ′ that is fractionally served by center v /∈ P ′ in LP solution (x, y); that
is, xuv > 0 and v /∈ P . In the new solution (x′, y′), it is served by center v′. We show that the
distance from u to the new center is greater than that to the old one by at most a factor of 2.

Claim 14 Consider a point v ∈ P \ P ′ and let v′ be the nearest neighbor of v in the set P ′. Then,
for every u ∈ P ′, d(u, v′) ≤ 2d(u, v).

Lemma 15 Algorithm 2, given a solution (x, y) for ClusterLP ({w′j}, z, λ) of cost z′, constructs
a (1− γ)-restricted w.r.t. P ′ solution (x′, y′) for ClusterLP ({w′j}, z, 2λ) of cost at most 2p z′.

We run Algorithm 2 on the optimal solution (x, y) for ClusterLP ({wj}, zg, 2) and obtain a feasi-
ble (1−γ)-restricted solution (x′, y′) forClusterLP ({wj}, zg, 4). SinceClusterLP ({wj}, zg, 2)
is a relaxation for the fair `p-clustering, the cost of (x, y) w.r.t. demands {wj} is at most z∗. By
Lemma 13, the cost of (x, y) w.r.t {w′j} is also at most z∗. Finally, by Lemma 15, the cost of (x′, y′)
is at most 2pz∗
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4.4. Relating the solution costs w.r.t. I ′ and I

In the previous sections, we transformed given instance I to instance I ′ with demands {w′j} and
well-separated locations P ′, then converted an optimal LP solution (x, y) to a (1 − γ)-restricted
solution (x′, y′). Now we upper bound the cost of every solution C w.r.t. original demands {wj} in
terms of the cost w.r.t. demands {w′j}.

Lemma 16 Let z∗ be the cost of the optimal solution for I. Assume that zg ∈ [z∗, 2z∗]. For any
integral solution C ′ with fair-cost(C ′, {w′j}) ≤ z′,

fair-cost(C ′, {wj}) ≤
22p−1

γ
· z∗ + 2p−1 · z′.

Proof Consider the execution of Algorithm 1. The algorithm may either move the demand of point
u to some other point v or keep it at u. Let u′ = v in the former case and u′ = u in the latter case
(for every u ∈ P ). Note that in either case d(u, u′) ≤ 2

γ1/p
R(u). Therefore,

d(u,C ′)p ≤ αp · (d(u, u′)p + d(u′, C ′)p) B Claim 5 (approximate triangle inequality)

≤ αp ·
(

2p

γ
· R(u)p + d(u′, C ′)p

)
B we upper bound d(u, u′) (8)

where αp = 2p−1. Hence, for each group j,∑
u∈P

wj(u) · d(u,C ′)p ≤
∑
u∈P

wj(u) ·
(

22p−1

γ
· R(u)p + 2p−1 · d(u′, C ′)p

)
B by (8)

≤ 22p−1

γ
· z∗ + 2p−1 ·

∑
u∈P

wj(u) · d(u′, C ′)p B Claim 11

=
22p−1

γ
· z∗ + 2p−1 ·

∑
v∈P ′

w′j(v) · d(v, C ′)p ≤ 22p−1

γ
· z∗ + 2p−1 · z′.

It follows that fair-cost(C ′, {wj}) ≤ 22p−1

γ · z∗ + 2p−1 · z′.

5. Step 2: Rounding (1− γ)-Restricted Solutions

5.1. Randomized Rounding for Multiplicative Approximation

Before describing our randomized rounding procedure, we prove several lemmata, which we will
use in the analysis of the algorithm.

Lemma 17 Consider an instance of socially fair clustering. Let {w′j} be the set of weights com-
puted by Algorithm 1 and (x′, y′) be a feasible solution for ClusterLP ({w′j}, zg, 4) computed by
Algorithm 2. Consider some group j and some point v ∈ P ′ with x′vv < 1. Let v′ be a point closest
to v in P ′ other than v itself. Then,

w′j(v) · d(v, v′)p ≤
(

2 · 4p +
8p

γ

)
z∗,

where z∗ is the cost of the optimal solution and zg ∈ [z∗, 2z∗].

9
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Proof We assume that w′j(v) > 0, as otherwise the statement is trivial. Let Q ⊆ P be the set of
points whose demands have moved to v by Algorithm 1. Further, letQ1 = Q∩B(v,∆zg(v)−0) :=
{u : d(u, v) < ∆zg(v)} and Q2 = Q \Q1. Note that

w′j(v) =
∑
u∈Q1

wj(u) +
∑
u∈Q2

wj(u).

We first get an upper bound on d(v, v′). Since x′vv < 1, we know that x′vu > 0 for some u ∈ P ′
other than v. Constraint (5) implies that d(v, u) ≤ 4∆zg(v) (here we use that (x′, y′) is a feasible
solution for ClusterLP ({w′j}, zg,4)). Now recall that v′ is a closest point to v in P ′ other than
v. Thus, d(v, v′) ≤ d(v, u) ≤ 4∆zg(v). In particular, d(v, v′) ≤ 4d(v, q) for points q ∈ Q2.
Further, Algorithm 1 moves demand from q to v, only if d(v, q) ≤ 2

γ1/p
R(q). For q ∈ Q2, we get

d(v, v′) ≤ 4d(v, q) ≤ 8
γ1/p
R(q). Therefore,

w′j(v) · d(v, v′)p =
∑
u∈Q1

wj(u)d(v, v′)p +
∑
u∈Q2

wj(u)d(v, v′)p

≤
∑
u∈Q1

wj(u)(4∆zg(v))p +
8p

γ

∑
u∈Q2

wj(u)R(u)p

Note that
∑

u∈Q1
wj(u)∆zg(v)p ≤ volv(∆zg − 0) ≤ zg by the definition of ∆zg . Using this

inequality and Claim 11, we get

w′j(v) · d(v, v′)p ≤ 4pzg +
8p

γ
z∗.

The statement of the lemma follows, since we assume that zg ≤ 2z∗.

Let us now define a forest F = (P ′, E) on P ′. We sort all pairs {u, v} of distinct points in
P ′ according to the distance between them in ascending order (breaking ties arbitrarily). For every
point u ∈ P ′, we choose the first pair {u, v} it appears in and let u′ = v. Then, u′ is a closest point
to u in P ′ other than u itself. For every u, we add edge (u, u′) to our graph F (we add every edge
at most once). It is easy to see that the obtained graph is a forest.

Lemma 18 (cf. Charikar et al. (2002)) Let (x′, y′) be a feasible (1 − γ)-restricted solution re-
turned by Algorithm 2 with γ < 1/2. There exists a feasible solution (x′′, y′) of cost at most that of
(x′, y′) such that the following holds. For every v ∈ P ′, we have x′′vv = y′v ≥ 1− γ, x′′vv′ = 1−x′′vv
and x′′vu = 0 for u 6= {v, v′}, where v′ is as in the definition of F .

Proof We simply let x′′vv = 1 − y′v for every v ∈ P ′, x′′vv′ = 1 − y′v, and x′′vu = 0 for u /∈ {v, v′}.
Since (x, y) is a (1 − γ)-restricted solution and γ < 1/2, x′′vu = 1 − y′v ≤ 1 − (1 − γ) = γ ≤
1− γ ≤ y′u, as required. It is easy to see that all other LP constraints are also satisfied. Further, we
chose x′′ in an optimal way for the given y′. Thus, the cost of (x′′, y′) is at most that of (x′, y′).

Fix γ = 1/10. For each u ∈ P ′, let pu = (1− y′v)/γ. Note that 0 ≤ pu ≤ 1 since 0 ≤ 1− y′v ≤ γ.
We have ∑

u∈P ′
pu = γ−1

∑
u∈P ′

(1− y′u) = γ−1

(
|P ′| −

∑
u∈P ′

y′u

)
≥ γ−1(|P ′| − k).

10
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For every tree T in the forest F , do the following. Choose an arbitrary root r in T . Partition T into
layers based on their depth, starting with the root. Let AT be the union of every other layer; that is,
AT is the set of vertices of even depth. Finally, let A be the union of all sets AT over T in F . Note
that all neighbors of u ∈ A are not in A; all neighbors of u /∈ A are in A.

If
∑

u∈A pu ≥
1

2γ (|P ′| − k), let S = A; otherwise, let S = P ′ \ A. In either case,
∑

u∈S pu ≥
1

2γ (|P ′| − k). Finally, we construct our combinatorial solution C:

• if |P ′| ≤ k, let C = |P ′|; otherwise, proceed as follows

• add all points from P ′ \ S to C,

• add each point v ∈ S to C with probability 1− pv (independently).

We show now that |C| ≤ k with probability at least 3/4 and fair-cost(C) ≤ O
(
23p
) log `

log log ` · z
∗

(where z∗ is the cost of the optimal solution) with probability at least 1− 1/(2`).

Theorem 19 With probability at least 1/4, |C| ≤ k and fair-cost(C, {w′j}) = O(23p · log `
log log `z

∗).

Proof If |P ′| ≤ k, then |C| = |P ′| ≤ k and the cost of C w.r.t. demands {w′j} is 0; thus, the
statement of the theorem trivially holds. We assume below that |P ′| > k. By Lemmata 15 and 18,
(x′, y′) and (x′′, y′) are feasible solutions for ClusterLP ({w′j}, zg, 4). Let z be the LP cost of
(x′′, y′) w.r.t. demands {w′j}. Then z ≤ 2pz∗.

First, we bound the size of C. Let Xv be the indicator random variable of the event v /∈ C;
i.e., Xv = 1 if v /∈ C and 0 otherwise. Define X =

∑
v∈P ′ Xv. Now we are lower bounding the

number X of points in P ′ that are not centers in C.

E[X] = E

[∑
v∈P ′

Xv

]
=
∑
v∈S

E[Xv] +
∑

v∈P ′\S

E[Xv] =
∑
v∈S

pv ≥
|P ′| − k

2γ
.

Applying the Chernoff bound, we get for ε = 1− 2γ,

Pr(X ≤ |P ′| − k) ≤ Pr(X ≤ (1− ε)E(X)) ≤ exp(− ε2E[X]
/

2)

Note that E[X] ≥ 1
2γ = 5 and ε ≥ 4/5, since |P ′| ≥ k + 1 and γ = 1/10. Thus, Pr[X ≤

(1− ε)E(X)] < 1/4. Hence, with probability at least 3/4,

|C| ≤ |P ′| −X ≤ |P ′| − (|P ′| − k) = k. (9)

Fix j ∈ [`]. Now we show that cost(C,w′j) is at most O
(
23p−1 log `/ log log `

)
z∗ with high

probability. Then applying the union bound, we will get the same bound for all j ∈ [`] and thus for
fair-cost(C, {w′j}).

For every v ∈ P ′, let Yv = w′j(v) · d(v, C)p. Note that for every v ∈ P ′ either v /∈ S or v′ /∈ S
(since v and v′ are neighbors in F ). Therefore, we always have that at least one of the points v and v′

is in C. Further, if Xv = 0, then v ∈ C, and thus d(v, C) = 0; if Xv = 1, then d(v, C) = d(v, v′).
Hence, Yv = w′j(v)d(v, v′)pXv. From Lemma 17, we get for each v ∈ P ′,

Yv ≤ w′j(v) · d(v, v′)p ≤
(

2 · 22p +
23p

γ

)
z∗ = O

(
23pz∗

)
(always).

11
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Let Zj :=
∑

v∈Pj Yv =
∑

v∈S Yv be the cost of group j w.r.t. weights {w′j}. Note that all random
variables {Yv}v∈Pj are independent. Random variables Yu for u /∈ S are identically equal to 0. We
have,

E[Zj ] ≤
∑
v∈S

w′j(v)d(v, v′)ppv =
1

γ

∑
v∈S

w′j(v)d(v, v′)p (1− y′v)︸ ︷︷ ︸
x′′
vv′

≤ z

γ
≤ 2p

γ
z∗

(recall that z is the cost of the LP solution (x′′, y′)) and

Var[Zj ] =
∑
v∈S

Var[Yv] ≤
∑
v∈S

(w′j(v)d(v, v′)p)2 pv
by Lemma 17

≤ O
(
23pz∗

)
·E[Zj ] = O

(
24p(z∗)2

)
.

Now we will use Bennett’s inequality (Theorem 6) to bound random variables Yj . To do
so, we define zero-mean versions of random variables Yv and Zj . Let Y ′v := Yv − E[Yv] and
Z ′j :=

∑
v∈P ′j

Y ′v . Note that, |Y ′v | = O(23pz∗) (always) and Var[Z ′j ] = Var[Zj ] = O
(
24p(z∗)2

)
.

Applying Bennett’s inequality to Z ′j , we get for τ > 0

Pr
(
Z ′j ≥ τz∗

)
≤ exp

(
−Ω

( τ

23p

)
log
(

Ω
( τ

2p

)
+ 1
))

Letting τ = c · 23p log `
log log ` for large enough c, we get that Pr

(
Z ′j ≥ τz∗

)
≤ 1

2`2
, which implies that

Pr
(
Zj ≥ c′ · 23p log `

log log `z
∗
)
≤ 1

2`2
for some absolute constant c′. Applying the union bound, we

get that with probability at least 1− 1
2` , the following upper bound on the fair cost holds

fair-cost(C, {w′j}) = max
j∈[`]

∑
v∈P ′

w′j(v) · d(v, C)p = O

(
23p · log `

log log `
z∗
)
. (10)

We conclude that with probability at least 1− 1
2` − 1/4 ≥ 1

4 , both |C| ≤ k and (10) holds.

Algorithm 3 (eO(p) log `
log log `)-approximation algorithm for socially fair `p-clustering

1: Input: An instance {wj} of socially fair clustering, zg ∈ [z∗, 2z∗], desired error probability ε
2: γ = 1/10, λ = 2
3: Solve ClusterLP ({wj}, zg, 2). Let (x, y) be an optimal fractional solution.
4: Run Algorithm 1 and obtain new demands ({w′j}) and set P ′

5: Run Algorithm 2 and obtain LP solution (x′, y′)
6: Define x′′ as in Lemma 18.
7: Construct forest F and find set S.
8: Run randomized rounding dlog4/3(1/ε)e times
9: Let C be the best of the solutions (with at most k centers) that randomized rounding generates.

10: return C

Proof of Theorem 2 We put together all the steps we described in this paper. The entire algorithm
is shown as Algorithm 3. As discussed in Appendix B, we may assume that zg ∈ [z∗, 2z∗] is given
to us. By Theorem 19, the probability that our randomized rounding procedure will find a feasible

12
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solution C for demands {w′j} of cost at most O
(
23p
) log `

log log ` · z
∗ is at least 1/4. Since we run

randomized rounding dlog4/3(1/ε)e times, we will succeed at least once with probability at least
1− ε. By Lemma 16, the cost of C w.r.t. the original demands {wj} is upper bounded as follows,

fair-cost(C, {wj}) ≤
22p−1

γ
· z∗ + 2p−1 · fair-cost(C, {w′j}) = O

(
24p
) log `

log log `
z∗

6. Deterministic Rounding for Bicriteria Approximation

In this section we show how to get our bicriteria approximation algorithm.
Proof of Theorem 3 We solve LP relaxation ClusterLP ({wj}, zg, 2) and then run Algorithms 1
and 2. We obtain a fractional solution (x′, y′) and set P ′. By Lemma 13, (x′, y′) is a (1 − γ)-
restricted solution for ClusterLP ({w′j}, z, 4) w.r.t. P ′ of cost at most 2pz∗. We return set C = P ′.

By LP constraint (3), we have
∑

u∈P yu ≤ k. Now, since (x′, y′) is a (1−γ)-restricted solution,
yu ≥ 1−γ for u ∈ P ′. Therefore, |C| = |P ′| ≤ k/(1−γ), as required. Note that for every u ∈ P ′,
we have d(u,C)p = 0. Therefore,

fair-cost(C, {w′j}) = 0.

Now, we apply Lemma 16 to bound fair-cost(C, {wj}),

fair-cost(C, {wj}) ≤
22p−1

γ
· z∗ + 2p−1 · fair-cost(C, {w′j}) =

22p−1

γ
z∗.
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Appendix A. Proofs from Section 4

A.1. Proofs form Section 4.3

Proof of Claim 11 Consider an arbitrary group j ∈ [`].∑
u∈P

wj(u) · R(u)p =
∑
u,v∈P

wj(u) · d(u, v)p · xuv ≤ z∗

where the last inequality holds, since (x, y) is an optimal LP solution for ClusterLP ({wj}, zg, 2)
and ClusterLP ({wj}, zg, 2) is a relaxation for fair `p clustering.

Proof of Claim 12 The proof follows from the consolidation rule of the algorithm. Suppose that
u comes before v in the ordering considered by Algorithm 1. Then, since both u, v have non-
zero demands and the algorithm has not moved the demand of v to u at the time it processed u,
d(u, v) > 2

γ1/p
R(v) = 2

γ1/p
max(R(u),R(v)).
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Proof of Lemma 13 In LP relaxations ClusterLP ({wj}, z, λ) and ClusterLP ({w′j}, z, λ), all
constraints other than (5) do not depend on demands and thus are the same in both relaxations. Ob-
serve that if w(v) = 0 then also w′(v) = 0. Therefore, if constraint (5) is present in linear program
ClusterLP ({w′j}, z, λ) for some u and v, then it is also present in ClusterLP ({wj}, z, λ) for the
same u and v. We conclude that the set of constraints ofClusterLP ({w′j}, z, λ) is a subset of those
of ClusterLP ({wj}, z, λ). Thus, since (x, y) is a feasible solution for ClusterLP ({wj}, z, λ), it
is also a feasible solution for ClusterLP ({w′j}, z, λ).

Now we show that the LP cost of every group j does not increase. The LP cost of group
j is

∑
u∈P w

′
j(u)R(u). When Algorithm 1 initializes w′j in the very beginning (see line 3 of

the algorithm), we have w′j(u) = wj(u) for all u, and thus at that point
∑

u∈P w
′
j(u)R(u) =∑

u∈P wj(u)R(u) ≤ z′. When the algorithm moves demand from u to v on lines 8-9, we always
haveR(v) ≤ R(u). Thus, every time lines 8-9 are executed, the value of expression

∑
u∈P w

′
j(u)R(u)

may only go down. Therefore, when the cost of LP solution (x, y) with respect to demands w′j re-
turned by the algorithm is at most z′.

A.2. Proofs from Section 4.3

Proof of Claim 14 Since (i) v′ is a closest point in P ′ to v and (ii) u ∈ P ′, we have d(v, v′) ≤
d(v, u). Applying the triangle inequality, we get

d(u, v′) ≤ d(u, v) + d(v, v′) ≤ 2d(u, v).

Claim 20 For each u ∈ P ′,
∑

v∈B(u,ru) xuv ≥ 1− γ where ru = R(u)

γ1/p
.

Proof ∑
v/∈B(u,ru)

xuv ≤
∑

v/∈B(u,rv)

xuv
d(u, v)p

rpu
≤ 1

rpu

∑
v∈P

xuvd(u, v)p =
Rpu
rpu

= γ.

Thus,
∑

v∈B(u,ru) xuv ≥
∑

v∈P xuv − γ = 1− γ.

Proof of Lemma 15 Consider solutions (x, y) and (x′, y′). Let u ∈ P ′. From Claim 20 and the
inequality xuv ≤ yv (for all v ∈ P ), we get that∑

v∈B(u,ru)

yv ≥ 1− γ where ru =
R(u)

γ1/p
.

We now show that for each v ∈ B(u, ru), point u is the closest neighbor of v in P ′ and, therefore,
Algorithm 2 reassigns yv to point u. Let ũ be a point in P ′ other than u. Then,

d(ũ, v) ≥ d(u, ũ)− d(u, v) B by the triangle inequality

>
2

γ1/p
· R(u)− d(u, v) B from Claim 12, since u, ũ ∈ P ′

≥ 2ru − ru = ru ≥ d(u, v) B since v ∈ B(u, ru)
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We conclude that Algorithm 2 assigns at least
∑
B(u,ru) yv ≥ 1− γ to y′u. We have, y′u ≥ 1− γ for

all u ∈ P ′ and y′u = 0 for u /∈ P ′. Therefore, (x′, y′) is a (1− γ)-restricted solution.
Now we upper bound the cost of (x′, y′). By Claim 14, when Algorithm 2 moves a center from

point v /∈ P ′ to v′ ∈ P ′, the connection cost to v increases by at most a factor of 2p: d(u, v′)p ≤
2pd(u, v) for u ∈ P ′. Thus, the cost of (x′, y′) is at most 2p z′.

Lastly, we show that (x′, y′) is a feasible solution of ClusterLP ({w′j}, z, 2λ). Since in each
iteration, the value of

∑
v∈P y

′
v does not increase and the value of

∑
v∈P x

′
uv (for all u ∈ P ) does

not change, solution (x′, y′) satisfies constraints (2) and (3). Also, every time we close a center
v /∈ P ′ (see lines 4-6 of Algorithm 2), we increase x′uv′ by xuv ≤ yv and increase y′v′ by yv (unless
doing so would make yv > 1; in this case, we let y′v = 1). Therefore, constraint (4) remains satisfied
throughout the execution of the algorithm.

It now remains to show that (x′, y′) satisfies constraint (5) of ClusterLP ({w′j}, z, 2λ). Con-
sider a pair u, v′ ∈ P ′ with x′uv′ > 0. First, assume that xuv′ > 0. Note that (x, y) is a feasible
solution of ClusterLP ({w′j}, z, λ) and thus satisfies constraint (5). Therefore, d(u, v′) ≤ λ∆z(u),
and we are done. Now assume that xuv′ = 0. This means that we have closed a fractional center
v ∈ P \ P ′ for u and reassigned u from center v to center v′. Then xuv > 0 and v′ is the closest to
v point in P ′. Hence,

d(u, v′) ≤ 2d(u, v) ≤ 2λ∆z(u)

where the first inequality holds by Claim 14, and the second inequality holds since (x, y) is a feasible
solution for ClusterLP ({w′j}, z, λ). We conclude that solution (x′, y′) is a feasible solution for
ClusterLP ({w′j}, z, 2λ).

Appendix B. Finding the value of zg
In this section, we explain why we may assume that we know zg ∈ [z∗, 2z∗].

Observation 21 There exist u, v ∈ P and j ∈ [`] such that

wj(u) · d(u, v)p ≤ z∗ ≤ n · wj(u) · d(u, v)p

Proof Let C∗ be an optimal solution. Assume that group j has the largest cost: cost(C∗, wj) ≥
cost(C∗, wi) for all i ∈ [`]. Then, z∗ = cost(C∗, wj). Consider u ∈ Pj that maximizes wj(u) ·
d(u,C∗)p. Let v ∈ C∗ be the closest center to u. Note that wj(u) · d(u, v)p = wj(u) · d(u,C∗)p

and
wj(u) · d(u, v)p ≤ cost(C∗, wj) ≤ |Pj | · wj(u) · d(u, v)p ≤ n · wj(u) · d(u, v)p.

Now we assume that we have an algorithm that with high probability, returns a β-approximate
solution for socially fair `p-clustering when z∗ ≤ zg ≤ 2z∗. We run this β-approximation algorithm
with different estimates for zg of the form 2iwj(u) d(u, v)p where i ∈ {0, · · · , blog2 nc}, u, v ∈ P ,
and j ∈ [`]. We output the best solution we find. Note that our algorithm runs in polynomial time,
since it invokes the β-approximation algorithm at most O(n2` log n) times. We note this step can
often be significantly sped up; in particular, if the cost is represented as a floating-point number with
D binary digits, we can run the β-approximation algorithm at most D times.
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Appendix C. Integrality Gap for Linear Relaxation ClusterLP ({wj}, z, 2)

In this section, we define what the integrality gap for ClusterLP ({wj}, z, 2) is (this is not neces-
sarily straightforward, since the LP depends on z) and show that the gap is Ω(log `/ log log `).

Main approximation result restated. The main result of our paper can be formulated as follows
(which is implicit in the proof of Theorem 2). Let f(z) be the LP cost of the optimal solution for
ClusterLP ({wj}, z, 2) and g(z) = max(z, f(z)). Then the following items hold.

1. For every z, there exists a combinatorial solution of cost at most eO(p) log `
log log ` g(z). Further,

this solution can be found in polynomial time.

2. For z ≥ z∗, g(z) = z.

To obtain our result, we take zg ∈ [z∗, 2z∗]. By item 2, g(zg) = zg ≤ 2z∗. By item 1, we can find a
solution of cost eO(p) log `

log log `g(zg) ≤ eO(p) log `
log log `z

∗.

Integrality gap. We now show that dependence on ` in item 1 cannot be improved. Namely,
we prove that there exists a sequence of instances and parameters z such that every combinatorial
solution has cost at least Ω

(
log `

log log `g(z)
)

.

We construct the following instance for every k ≥ 1. Let t = b
√
kc and n = k + t. Consider

a metric space P on n points, in which the distance between every two distinct points is 1. For
every set A of t points, create a group PA = A. Note that the total number of groups is ` =

(
n
t

)
=

eΘ(
√
k log k).

Let z = 1. Then ∆z(u) = 1 for every u. Note that constraint 5 is trivially satisfied by any LP
solution, since there are simply no two points u and v with d(u, v) > 2∆z(v) = 2. Observe that the
cost of every solution C of size k is t, since the cost of C for group PP\C = P \ C is∑

u∈P\C

d(u,C)p =
∑

u∈P\C

1 = t

and the cost of every group PA is at most |PA| = t. Now we construct an LP solution of cost at
most 1. For every u, we let yu = k/n, xuu = k/n, xuvu = 1− k/n = t/n for an arbitrary vu 6= u,
and xuv′ = 0 for v′ /∈ {u, vu}. It is immediate that this is a feasible LP solution. Its cost is the
maximum over all groups PA of∑

u∈PA

(
k

n
· d(u, u)p +

t

n
· d(u, vu)p

)
=
∑
u∈PA

t

n
= t2/n ≤ 1.

We conclude that f(z) ≤ 1 and g(z) = max(z, f(z)) = 1. Therefore, the integrality gap of this
instance is

t/1 = b
√
kc = Θ

(
log `

log log `

)
.
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