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Abstract

A Forster transform is an operation that turns a distribution into one with good anti-1

concentration properties. While a Forster transform does not always exist, we show2

that any distribution can be efficiently decomposed as a disjoint mixture of few3

distributions for which a Forster transform exists and can be computed efficiently.4

As the main application of this result, we obtain the first polynomial-time algorithm5

for distribution-independent PAC learning of halfspaces in the Massart noise model6

with strongly polynomial sample complexity, i.e., independent of the bit complexity7

of the examples. Previous algorithms for this learning problem incurred sample8

complexity scaling polynomially with the bit complexity, even though such a9

dependence is not information-theoretically necessary.10

1 Introduction11

1.1 Background and Motivation12

The motivating application for this paper is the problem of (distribution-independent) PAC learning13

of halfspaces in the presence of label noise, and more specifically in the Massart (or bounded noise)14

model. Recent work [DGT19] obtained the first computationally efficient learning algorithm with15

non-trivial error guarantee for this problem. Interestingly, the sample complexity of the [DGT19]16

algorithm scales polynomially with the bit complexity of the examples (in addition, of course, to17

the dimension and the inverse of desired accuracy). This bit-complexity dependence in the sample18

complexity is an artifact of the algorithmic approach in [DGT19]. Information-theoretically, no such19

dependence is needed — alas, the standard VC-dimension-based sample upper bound [MN06] is non-20

constructive. Motivated by this qualitative gap in our understanding, here we develop a methodology21

that leads to a computationally efficient learning algorithm for Massart halfspaces (matching the22

error guarantee of [DGT19]) with “strongly polynomial” sample complexity, i.e., sample complexity23

completely independent of the bit complexity of the examples.24

Halfspaces and Efficient Learnability We study the binary classification setting, where the goal25

is to learn a Boolean function from random labeled examples with noisy labels. Our focus is on the26

problem of learning halfspaces in Valiant’s PAC learning model [Val84] when the labels have been27

corrupted by Massart noise [MN06].28

A halfspace is any function h : Rd → {±1} of the form h(x) = sign(w ·x−θ), where the vector29

w ∈ Rd is called the weight vector, θ ∈ R is called the threshold, and sign : R→ {±1} is defined by30

sign(t) = 1 if t ≥ 0 and sign(t) = −1 otherwise. Halfspaces (or Linear Threshold Functions) are a31

central concept class in learning theory, starting with early work in the 1950s [Ros58, Nov62, MP68]32

and leading to fundamental and practically important techniques [Vap98, FS97]. Learning halfspaces33

is known to be efficiently solvable without noise (see, e.g., [MT94]) and computationally hard34

with adversarial (aka, agnostic) noise [GR06, FGKP06, Dan16]. The Massart model is a natural35
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compromise, in the sense that it is a realistic noise model that may allow for efficient algorithms.36

This model was already defined in the 80s by Sloan and Rivest [Slo88, Slo92, RS94, Slo96], and a37

very similar definition had been considered even earlier by Vapnik [Vap82].38

Definition 1.1 (Massart Noise). Let C be a class of Boolean functions over X = Rd, DX be an39

arbitrary distribution over X , and 0 ≤ η < 1/2. Let f be an unknown target function in C. A noisy40

example oracle, EXMas(f,DX , η), works as follows: Each time EXMas(f,DX , η) is invoked, it41

returns a labeled example (x, y), where x ∼ DX , y = f(x) with probability 1−η(x) and y = −f(x)42

with probability η(x), for an unknown parameter η(x) ≤ η. Let D denote the joint distribution on43

(x, y) generated by the above oracle. The learner is given i.i.d. samples from D and wants to output a44

hypothesis h such that with high probability the error Pr(x,y)∼D[h(x) 6= y] is small.45

The existence of an efficient algorithm for distribution-independent learning of halfspaces in46

the Massart model had been posed as an open question in a number of works [Slo88, Coh97, Blu03],47

with no algorithmic progress until recently. [DGT19] gave a polynomial-time algorithm achieving48

error η+ ε, where η is the upper bound on the noise rate. Subsequent work [CKMY20] gave a proper49

learning algorithm with the same error guarantee. On the lower bound side, hardness results are now50

known for both exact [CKMY20] and approximate learning [DK20].51

To motivate our results, we state the guarantees of the [DGT19] algorithm in more detail. (The52

proper algorithm of [CKMY20] builds on the same ideas and has qualitatively similar guarantees.) Let53

DX ⊂ Rd be the marginal distribution on the examples and b be an upper bound on the bit complexity54

of points x in the support of DX . Then, the algorithm of [DGT19] requires n = poly(d, b, 1/ε)55

labeled examples, runs in time poly(n, b) and achieves misclassification error η+ ε. The dependence56

on b in the runtime is likely to be inherent. (Learning halfspaces without noise amounts to solving a57

general linear program (LP); removing the b dependence from the runtime would yield a strongly58

polynomial algorithm for general LP.) On the other hand, there is no a priori reason to believe that the59

poly(b) dependence is needed in the sample complexity. In fact, it is known [MN06] that poly(d/ε)60

samples information-theoretically suffice to achieve optimal misclassification error. Of course, this61

sample complexity bound is non-constructive, in the sense that it does not yield a sub-exponential62

time learning algorithm. The above discussion motivates the following natural question:63

Is there an efficient learning algorithm for Massart halfspaces using only poly(d/ε) samples?64

The main result of this paper provides an affirmative answer to this question.65

1.2 Our Results and Techniques66

The main learning theory result of this paper is the following.67

Theorem 1.2 (Main Learning Result). There is an algorithm that for all 0 < η < 1/2, on input a68

set of n = poly(d, 1/ε) i.i.d. examples from a distribution D = EXMas(f,DX , η) on Rd+1, where69

f is an unknown halfspace on Rd, it runs in poly(n, b, 1/ε) time, where b is an upper bound on70

the bit complexity of the examples, and outputs a hypothesis h that with high probability satisfies71

Pr(x,y)∼D[h(x) 6= y] ≤ η + ε.72

Brief Overview of [DGT19] Algorithm To explain the source of our qualitative improvement, we73

start with a high-level description of the previous algorithm from [DGT19]. At a high-level, this74

algorithm works in two steps: First, one designs an efficient learner for the special case where the75

target halfspace has some non-trivial anti-concentration (aka “large” margin). Then, one develops an76

efficient reduction of the general (no margin) case to the large-margin case. Formally speaking, such77

a reduction is not entirely “black-box”; this description is for the purpose of intuition.78

First, we note that without loss of generality the target halfspace is homogeneous (since we are79

working in the distribution-independent setting). The aforementioned reduction, used in [DGT19],80

relies on a method from [BFKV96] (refined in [DV04]). The idea is to slightly modify the distribution81

on the unlabeled points to guarantee a (weak) margin property. After this modification, there exists82

an explicit margin parameter σ = Ω(1/poly(d, b)), such that any hyperplane through the origin has83

at least a non-trivial mass of the distribution at distance at least σ standard deviations from it. If σ is a84

bound on the margin, the algorithm developed in step one has sample complexity (and running time)85

poly(d, 1/σ, 1/ε). This is the source of the “b-dependence” in the sample complexity of the [DGT19]86

algorithm (recalling that σ = Ω(1/poly(d, b))).87

2



As we will explain below, the approach of [BFKV96, DV04] inherently leads to a “b-dependence”88

in the margin parameter σ. At a very high-level, the key to our improvement is to develop a new89

efficient preprocessing routine that achieves σ = Ω(1/poly(d)), which leads to the desired strongly90

polynomial sample complexity.91

Preprocessing Requirements Before we can get into the details of these preprocessing algorithms,92

we first need to specify the anti-concentration property that we need to guarantee. Essentially, our93

algorithms need there to be a decent fraction of points that are reasonably far from the defining94

hyperplane. More specifically, if the true separating hyperplane is defined by a linear function95

L(x) = w∗ ·x (for some weight vector with ‖w∗‖2 = 1), we need that a non-trivial fraction of points96

(say, a 1/poly(d)-fraction) x should have |L(x)| be a non-trivial fraction of E[L2(x)]1/2.97

One might ask how we can hope to achieve such a thing without knowing the true separator L(x)98

ahead of time. This can be guaranteed if, for example, the points are in radial isotropic position. In99

particular, this means that for every point x in the support of our distribution it holds that ‖x‖2 = 1100

and that E[xxT ] = (1/d) Id , where Id is the d× d identity matrix. The latter condition implies that101

E[L2(x)] = 1/d. Combining this with the fact that |L(x)| ≤ 1 for all points x in the support, it is102

not hard to see that with probability at least 1/d we have that L2(x) is at least 1/d — implying an103

appropriate anti-concentration bound. In fact, it will suffice to have our point set be in approximate104

radial isotropic position, allowing E[xxT ] to merely be proportional to (1/d) Id and allowing ‖x‖2105

to be more than one, as long as it satisfies some polynomial upper bound. We note that the size of106

this upper bound will affect the quality of the anti-concentration result, and hence the performance of107

the remainder of the algorithm.108

Unfortunately, not all point sets are in radial isotropic position. However, there is a natural way to109

try to fix this issue. It is not hard to see that our original halfspace learning problem is invariant under110

linear transformation, and it is a standard result that (unless our support lies in a proper subspace)111

that there is always a linear transformation that we can apply to ensure that E[xxT ] = (1/d) Id.112

However, after applying this transformation, we still may have points whose absolute values are too113

large. Essentially, we need to ensure that no point is too large in terms of Mahalanobis distance.114

Namely, that if Σ = E[xxT ], we want to ensure that |xTΣ−1x| is never too large. Unfortunately, in115

the data set we are given, this might still not be the case.116

Preprocessing Routine of [BFKV96, DV04] The key idea in [BFKV96] and [DV04] is to find117

a core set S of sample points such that the Mahalanobis distance of the points in S (with respect118

to the second-moment matrix of S) is not too large. This will correspond to a reasonable sized119

sub-distribution of our original data distribution on which our desired anti-concentration bounds hold,120

allowing our learning algorithm to learn the classifier at least on this subset. In [BFKV96], it is shown121

that this can be achieved by a simple iterative approach, where points with too-large Mahalanobis122

norm are repeatedly thrown away. This step needs to be performed in several stages, as throwing123

away points will alter the second-moment matrix, and thus change the norm in question. Interestingly,124

[BFKV96] show that the number of iterations required by this procedure can be bounded in terms of125

the numerical complexity of the points involved.126

Unfortunately, in order to avoid throwing away too many of the original samples, the procedure127

in [BFKV96] needs to sacrifice the quality of the resulting anti-concentration bound. This reduced128

quality will result in an increased sample complexity of the resulting algorithm, in particular causing129

it to scale polynomially with the bit complexity of the samples. The subsequent work [DV04]130

makes some quantitative improvements to the “outlier removal” procedure, however the final anti-131

concentration quality still has polynomial dependence on the bit complexity of the inputs, which is132

then passed on to the sample complexity of the resulting algorithm. What is worse is that [DV04]133

prove a lower bound showing that any outlier removal algorithm must have a similar dependence on134

the bit complexity.135

Our Approach The lower bound of [DV04] shows that no combination of point removal and linear136

transformation can put the input points into approximate radial isotropic position without losing137

polynomial factors of the bit complexity in either the quality or the fraction of remaining points.138

However, there is another operation that we can apply without affecting the learning problem.139

In particular, since we are dealing with homogeneous halfspaces, then the problem will be140

unaffected by replacing a sample x with λx for any scaling factor λ > 0, since sign(L(x)) =141

sign(L(λx)) no matter what L is. This gives us another tool to leverage in our preprocessing step.142
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In particular, by applying an appropriate linear combination to our points, we can ensure that143

they are in isotropic position (i.e., having second-moment matrix (1/d) Id). Similarly, by rescaling144

individual points, we can ensure that our points are in radial position (i.e., that ‖x‖2 = 1 for all x).145

The question we need to ask is whether by applying some combination of these two operations, we146

can ensure that both of these conditions hold simultaneously. In other words, we would like to find147

an invertible linear transformation A such that after replacing each point x by the point Ax/‖Ax‖2148

(in order to make it unit-norm), the resulting points are in (approximate) isotropic position.149

The problem of finding such transformations was studied by Forster [For02] (see also [Bar98])150

who showed that it is possible under certain assumptions, including for example the natural setting151

where the points are drawn from a continuous distribution. Unfortunately, there are cases where152

appropriate linear transformations A do not exist. In particular, if there was some d/3-dimensional153

subspace that contained half of the points, then after applying any such transformation to our dataset,154

this will still be the case, and thus there will be a d/3-dimensional subspace over which the trace of155

the covariance matrix is at least 1/2. In a refinement of Forster’s work, [HKLM20] recently showed156

that this is the only thing that can go wrong. That is, a matrix A exists unless there is a k-dimensional157

subspace containing more than a k/d-fraction of the points.158

Suppose that we end-up in the latter case. Then, by restricting our attention to only the points of159

this subspace (and a subspace of that, if necessary), we can always find a relatively large subset of our160

initial dataset so that after applying a combination of linear transformations and pointwise-rescaling,161

they can be put into radial isotropic position.162

Of course, to take advantage of such a transformation, one must be able to find it efficiently.163

While prior work [HM13, AKS20] has obtained algorithmic results for this problem, none appear to164

apply in quite the generality that we require. Our main algorithmic result is that such transformations165

exist and can be efficiently (approximately) computed.166

We start with the following simple definition:167

Definition 1.3. Given an inner product space V and an invertible linear transformation A : V → V ,168

we define the mapping fA : (V \{0})→ (V \{0}) by fA(x) = Ax/‖Ax‖2.169

We can now state our main algorithmic result (see Theorem 3.4 for a more detailed statement):170

Theorem 1.4 (Algorithmic Generalized Forster Transform). There exists an algorithm that, given171

a set S of n points in Zd\{0} of bit complexity at most b and δ > 0, runs in poly(n, d, b, log(1/δ))172

time and returns a subspace V of Rd containing at least a dim(V )/d-fraction of the points in S and173

a linear transformation A : V → V such that 1
|S∩V |

∑
x∈S∩V fA(x)fA(x)T = (1/ dim(V )) IV +174

O(δ) , where the error is in spectral norm.175

By applying Theorem 1.4 iteratively to the points of S \ (S ∩ V ), we obtain a decomposition of S176

into not too many subsets T , so that each T has a Forster transform over the subspace which it spans.177

1.3 Preliminaries178

For n ∈ Z+, we denote [n]
def
= {1, . . . , n}. We write E & F to denote that E ≥ c F , where c > 0179

is a sufficiently large universal constant. For V ⊆ Rd and f : Rd → R, we use 1V (f) for the180

characteristic function of f on V , i.e., 1V (f) : V → {0, 1} and 1V (f)(x) = 1 iff f(x) 6= 0, x ∈ V .181

For a vector x ∈ Rd, and i ∈ [d], xi denotes the i-th coordinate of x, and ‖x‖2
def
= (

∑d
i=1 x

2
i )

1/2182

denotes the `2-norm of x. We will use x · y for the inner product between x, y ∈ Rd. For a (linear)183

subspace V ⊂ Rd, we use dim(V ) to denote its dimension. For a set S ⊂ Rd, span(S) will denote184

its linear span. For a matrix A ∈ Rd×d, we use ‖A‖2 for its spectral norm and tr(A) for its trace. For185

A,B ∈ Rd×d we use A � B for the Loewner order, indicating that A−B is positive semidefinite186

(PSD). We denote by Id the d× d identity matrix and by IV the identity matrix on subspace V . We187

use E[X] for the expectation of X and Pr[E ] for the probability of event E .188

2 Algorithmic Forster Decomposition: Proof of Theorem 1.4189

Given a distribution X on Rd, our goal is to transform X so that the transformed distribution has190

good anti-concentration properties. Specifically, we would like it to be the case that for any direction191
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v, there is a non-trivial probability that |v ·X|2 is at least a constant multiple of E[|v ·X|2]. It is easy192

to see that this condition can be achieved as long as no particular value in the support ofX contributes193

too much to E[|v ·X|2]. In particular, it suffices that there exists some constant B > 0 such that194

|v · x|2 < BE[|v ·X|2] for all vectors v and all x in the support of X . If this holds, it is easy to see195

that with at least Ω(1/B) probability a randomly chosen x ∼ X satisfies |v · x|2 ≥ E[|v ·X|2]/2.196

Unfortunately, a given distribution X may not have this desired property. However, it seems197

in principle possible that one can modify X so that it satisfies this property. In particular, for any198

given weighting function c : Rd → R+, we can replace the distribution x ∼ X with the distribution199

c(x)x without affecting our linear classifier. Intuitively, by scaling down the outliers, we might hope200

that this kind of scaling would have the desired properties. This naturally leads us to a number of201

questions to be addressed:202

1. How do we know that such a weighting function c exists?203

2. If such a function exists, (how) can we efficiently compute a function c, even for a discrete204

distribution X?205

3. If X has continuous support, how can we find a function c that works for X , given access to a206

small set of i.i.d. samples?207

To address these questions, it will be useful to understand the second moment (autocorrelation) matrix208

of the transformed random variable c(X)X , i.e., Σ = E[(c(X)X)(c(X)X)T ]. Observe that our209

desired condition boils down to |v · c(x)x|2 ≤ Bv · Σv, or equivalently210

c(x) ≤ B inf
v 6=0

√
(vTΣv)/|v · x|2 , (1)

for all points x in the support of X . We note that this setup forces us to strike a balance between c(x)211

being large and c(x) being small. On the one hand, if c(x) is too large, it will violate Equation (1). On212

the other hand, if c(x) is too small, the expectation of c(X)2XXT will fail to add up to Σ. However,213

it is easy to see that making Σ larger is never to our detriment; that is, given Σ, we might as well take214

c(x) so that equality holds in Equation (1).215

An additional technical difficulty here is related to the infimum term in Equation (1). This issue216

is somewhat simplified by making a change of variables so that the transformed autocorrelation217

matrix becomes equal to the identity, i.e., Σ = I . In this case, Equation (1) reduces to the condition218

c(x) ≤ B/‖x‖2, for x in the support of X . Changing variables back, we can see that the original219

equation is equivalent to c(x) ≤ B/‖Σ−1/2x‖2; however, making the change of variables explicitly220

will make it easier to relate this problem to existing work on Forster’s theorem [For02].221

If we find a linear transformation A such that the matrix ΣA := E[fA(X)fA(X)T ] satisfies222

ΣA � (1/B) I , then since each value of fA(X) is a unit vector, the distribution fA(X) will satisfy223

our anti-concentration condition. Also observe that since tr(ΣA) = 1, we cannot expect the parameter224

B > 0 to be smaller than dim(V ). Moreover, even this may not be possible in general. In particular,225

if a large fraction of the points in the support of X lie on some proper subspace W , most of the mass226

of fA(X) will lie in the subspace AW . Therefore, the trace of ΣA along this subspace will be more227

than dim(W )/ dim(V ), forcing some of the other eigenvalues to be smaller than 1/dim(V ).228

Interestingly, Forster [For02] showed that unless many points of X have these kinds of linear229

dependencies, then a linear transformation A with the desired properties always exists. This condition230

was refined in a recent work [HKLM20] who proved the following existence theorem.231

Theorem 2.1 (Generalized Forster Transform). Let X be a distribution with finite support on232

an inner product space V . Then, unless there is a proper subspace W of V so that Pr[X ∈233

W ] ≥ dim(W )/ dim(V ), there exists an invertible linear transformation A : V → V such that234

ΣV = (1/ dim(V )) I .235

Theorem 1.4 is an algorithmic version of the above theorem. The proof has two main ingredients.236

We start by handling the case of rescaling points rather than finding a linear transformation. It turns237

out that handling this case is quite simple, as shown in the following result.238

Proposition 2.2. There is an algorithm that, given a set S of n points in Zd each of bit complexity239

at most b, lying in a subspace V ⊆ Rd, and a parameter δ > 0, runs in poly(n, d, b, log(1/δ)) time240
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and, unless there is a proper subspace W ⊂ V containing at least a dim(W )/ dim(V )-fraction of241

the points in S, returns a weight function c : S → R+ such that for every x ∈ S we have that242

c2(x)xxT � dim(V )+δ

n

∑
y∈S

c2(y)yyT . (2)

Moreover, the function c2 takes integral values of bit complexity poly(n, d, b, log(1/δ)).243

Proof. We start by showing that such a weight function c exists. By Theorem 2.1, under the given
condition on subspaces, there must exist an invertible linear transformation A : V → V such that
(1/n)

∑
y∈S fA(y)fA(y)T = (1/ dim(V )) IV . This means that for any w ∈ V and x ∈ S, we have

that |w · (Ax/‖Ax‖2)|2 ≤ (dim(V )/n)
∑
y∈S |w · (Ay/‖Ay‖2)|2. Rearranging, this implies that

|ATw · (x/‖Ax‖2)|2 ≤ (dim(V )/n)
∑
y∈S
|ATw · (y/‖Ay‖2)|2 .

Thus, letting c(x) = 1/‖Ax‖2 causes our desired Equation (2) to hold for all vectors ATw. Since A244

is invertible, this covers all vectors in V . Moreover, since all points in S lie in V , that is sufficient to245

check in order to ensure that we satisfy Equation (2) in general.246

We will show that we can efficiently compute values c(x) > 0 for each x ∈ S, such that247

Equation (2) holds. We note that this is just a semidefinite program (SDP) in the variables c2(x).248

The constraints can be written as: c2(x)xxT � (dim(V )/n)
∑
y∈S c

2(y)yyT , for all x ∈ S, and the249

positivity constraint can be written as c(x)2 ≥ 1 for all x ∈ S. It remains to argue that the above250

SDP can be solved efficiently in time poly(n, d, b, log(1/δ)), after relaxing the constraints by δ as251

in the theorem statement, via the Ellipsoid algorithm. This argument is somewhat technical and is252

deferred to Appendix A.253

It remains to handle the case when a proper subspace W exists. We show that one can identify254

such a subspace efficiently.255

Proposition 2.3. There is a polynomial-time algorithm that, given a set S of n points in Zd of bit256

complexity b all lying in a subspace V⊆ Rd, determines whether or not there exists a proper subspace257

W ⊂ V containing at least a dim(W )/ dim(V )-fraction of the points in S, and if so returns such a258

subspace.259

Proof. Let S = {x(i)}ni=1 ⊂ Rd, V = span(S), and k = dim(V ). We will first show that if n is a260

multiple of k, we can efficiently find a “heavy” subspace W of dimension κ = dim(W ), i.e., one261

with at least nkκ+ 1 points, if one exists. To achieve this, we set up the following feasibility linear262

program (LP), with a variable vi ∈ [0, 1] for every point x(i). We require that for any subset S′ ⊆ S263

of k linearly independent vectors the following linear inequality is satisfied264

n∑
i=1

vi ≥
n

k

∑
xi∈S′

vi + 1 . (3)

Efficient Computation We note that even though there are exponentially many constraints, the265

above LP can be solved efficiently via the Ellipsoid algorithm. To show this, we provide a separation266

oracle that given any guess v∈ [0, 1]n efficiently identifies a violating constraint. In more detail,267

given any vector v, the linear independent basis B that maximizes the RHS of (3) can be efficiently268

computed by a greedy algorithm. Starting from the empty set, we repeatedly add one point at a269

time, at each step choosing a point x(i) of maximum vi, among the elements whose addition would270

preserve the independence of the augmented set. The greedy algorithm correctly identifies a basis of271

maximum weight, as the family of linearly independent subsets of points forms a matroid.272

Feasibility We now show that the above LP will be feasible if and only if there exists a heavy273

subspace W . We start with the forward direction, i.e., assume the existence of a heavy subspace W .274

In this case, setting vi = 1 if x(i) ∈W and vi = 0 otherwise, we can see that all constraints of the275

LP are satisfied:276

• The LHS of (3) is always at least nkκ+ 1, since there at least these many points on the subspace277

W .278
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• The RHS of (3) is at most nkκ+ 1, as one can pick at most κ points x(i) with corresponding values279

1.280

For the reverse direction, if the LP is feasible and we can find a feasible vector v, we can efficiently281

identify a heavy subspaceW . To do this we proceed as follows: Assume w.l.o.g. that v1 ≥ v2 ≥ . . . ≥282

vn. Run the greedy algorithm described above to find the basis B with points x(i1), x(i2), . . . , x(id),283

where 1 = i1 < i2 < . . . < ik, that maximizes the RHS of (3) . Then, we find some κ such that284

iκ+1 >
n
kκ+ 1. As we will soon show, such a κ must always exist. Having such a κ means that the285

first nkκ+ 1 points lie in a κ-dimensional subspace W , since otherwise the greedy algorithm would286

have picked the (κ+ 1)-th point in the basis earlier in the sequence.287

We now argue by contradiction that some κ ∈ [0, k − 1] such that iκ+1 >
n
kκ+ 1 must always

exist. Indeed, suppose that for all κ, iκ+1 ≤ n
kκ+ 1. Then, we have that

viκ+1 ≥ vnk κ+1 ≥
∑n/k
j=1 vnk κ+j

n/k
.

Summing the above, over all κ ∈ [0, k − 1], we get that∑
xi∈B

vi ≥
k

n

n∑
i=1

vi ,

which leads to the desired contradiction contradiction, as this implies that v is infeasible.288

In summary, we have shown that when n is a multiple of k, we can find a “heavy” subspace289

W of dimension κ = dim(W ) with at least nkκ+ 1 points. This is off-by-one by the guarantee we290

were hoping for, which was to find a subspace with at least nkκ points. We can address this issue291

by running our algorithm on a modified point-set after replacing one point outside the subspace of292

interest with one inside to increase the number of inliers by 1. Even though we do not know which293

pair of points to change, we can run the algorithm for all pairs of points until a solution is found. We294

can also handle the general case where n is not a multiple of k, by making k copies of every point295

and running the algorithm above.296

We are now ready to prove Theorem 1.4.297

Proof of Theorem 1.4. The algorithm begins by iteratively applying the algorithm from Proposition298

2.3 until it finds a subspace V containing at least a k/d-fraction of the points in S, such that no proper299

subspace W ⊂ V contains at least a dim(W )/ dim(V )-fraction of the points in S ∩ V .300

We then apply the scaling algorithm of Proposition 2.2 to find a weight function c : S∩V → R+,
and consider the matrix

A =

[
1

|S ∩ V |
∑

x∈S∩V
c(x)2xxT

]−1/2
.

We note that Equation (2) now reduces to the following
c2(x)|w · x|2 ≤ (dim(V ) + δ)‖A−1w‖22 ,

for all vectors w. Setting w = A2x, we obtain
c2(x)‖Ax‖42 ≤ (dim(V ) + δ)‖Ax‖22 ,

which gives

c2(x) ≤ dim(V ) + δ

‖Ax‖22
.

On the other hand, we have that

IV =
1

|S ∩ V |
∑

x∈S∩V
c(x)2(Ax)(Ax)T � dim(V ) + δ

|S ∩ V |
∑

x∈S∩V
fA(x)fA(x)T .

By the above inequality, it follows that all eigenvalues λ1, . . . , λdim(V ) of the matrix301
1

|S∩V |
∑
x∈S∩V fA(x)fA(x)T are at least 1

dim(V )+δ . However, since 1
|S∩V |

∑
x∈S∩V fA(x)fA(x)T302

has trace 1, we also have that
∑dim(V )
i=1 λi = 1. This means that the maximum eigenvalue of this ma-303

trix is at most 1+δ
dim(V )+δ . Therefore, 1

|S∩V |
∑
x∈S∩V fA(x)fA(x)T is withinO(δ) of (1/ dim(V )) IV304

in spectral norm. This completes the proof of Theorem 1.4.305
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The final ingredient that will be important for us is showing that if we can find a subspace V and306

linear transformation A (as specified in the statement of Theorem 1.4) that works for a sufficiently307

large set of i.i.d. samples from the distribution X , then the same transform will work nearly as well308

for X . This is established in the following proposition.309

Proposition 2.4. Let X be any distribution on Rd \ {0} and S be a multiset of n & d2/ε2 i.i.d.310

samples from X . Then with high probability over the choice of S the following holds: For every311

subspace V of Rd, every invertible linear transformation A : V → V , and any unit vector w ∈ V ,312

we have that:313

1. |S ∩ V |/|S| = Pr[X ∈ V ] +O(ε).314

2. (1/|S|)
∑
x∈S∩V |w · fA(x)|2 = E[1V (X)|w · fA(X)|2] +O(ε).315

The proof uses the VC inequality (see, e.g., [DL01]) and is deferred to Appendix B.316

3 Application: Learning Halfspaces with Massart Noise317

We show how to apply the idea of Forster decompositions from Section 2 to PAC learn halfspaces with318

Massart noise. We will show how to adapt the algorithm of [DGT19], by appropriately transforming319

the set of points it is run on, to obtain a new algorithm with strongly polynomial sample complexity320

guarantees. To that end, we will need the definition of an outlier and a partial classifier:321

Definition 3.1. (Γ-Outlier) A point x in the support of a distribution X over a vector-space V is322

called a Γ-outlier, Γ > 0, if there exists a vector v ∈ V such that |v · x| > Γ
√

E[|v ·X|2].323

Definition 3.2. (Partial Classifier) A partial classifier is a function h : Rd → {−1, ∗, 1}. It can be324

thought of as acting as a classifier that for some input values returns an output in {±1}, and for the325

remaining values returns ∗, as a way of saying “I don’t know”.326

A key step of the algorithm in [DGT19] for learning halfspaces with Massart noise, is computing327

a partial classifier that returns an output on a non-trivial fraction of inputs for which its error rate is at328

most η + ε. The sample complexity and running-time of this algorithm depends polynomially on329

the size of the largest outlier in the distribution and the inverse of the accuracy parameter 1/ε. More330

specifically, the following theorem is implicit in the work of [DGT19].331

Theorem 3.3 ([DGT19]). Let V be a vector space and (X,Y ) a distribution over V × {±1}, where332

X does not have any Γ-outliers in its support. Suppose that there is a vector w and η ∈ (0, 1/2)333

such that for any given value x it holds Pr[Y = sign(w · x) | X = x] ≥ 1− η. In particular, Y is334

given by a homogeneous halfspace with at most η Massart noise. Then there exists an algorithm that,335

given η,Γ, and parameters ε′, δ′ > 0, draws poly(dim(V ),Γ, 1/ε′, log(1/δ′)) samples from (X,Y ),336

runs in sample-polynomial time, and returns a partial classifier h on V such that with probability at337

least 1− δ′ the following holds: (i) Pr[h(X) 6= ∗] > 1/poly(dim(V ),Γ, 1/ε′, log(1/δ′)), and (ii)338

Pr[h(X) 6= Y | h(X) 6= ∗] < η + ε′.339

The main idea behind obtaining an efficient algorithm with strongly polynomial sample complex-340

ity is to repeatedly apply the Forster decomposition theorem from Section 2 to ensure that no large341

outliers exist on a “heavy” subspace. Then, using Theorem 3.3, we can identify a partial classifier342

that has small misclassification error on a non-trivial fraction of the probability mass for which it343

outputs a {±1} prediction. By recursing on the remaining probability mass, we can ensure that we344

accurately predict the label for nearly all the distribution of points. This yields a misclassification345

error of at most η + ε in the entire space and is summarized by the following theorem.346

Theorem 3.4 (Main Learning Result). Let (X,Y ) a distribution over Rd × {±1}, where Y is347

given by a homogeneous halfspace in X with at most η < 1/2 rate of Massart noise, and where348

the elements in the support of X are all integers with bit complexity at most b. For parameters349

ε, δ > 0, there exists an algorithm that draws poly(d, 1/ε, log(1/δ)) samples from (X,Y ), runs in350

poly(d, b, 1/ε, log(1/δ)) time, and with probability at least 1− δ returns a classifier h : Rd → {±1}351

with misclassification error at most η + ε.352
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Algorithm 1 Main Learning Algorithm
1: Let C > 0 be a sufficiently large universal constant.
2: Let h0 : Rd → {−1, ∗, 1} always return ∗.
3: Let i = 0
4: while Ex∼uŜ [hi(x) = ∗] > ε/3 for a random sample Ŝ of C log(dε/δ)/ε2 points (X,Y ) do
5: Let S be a set of Cd4 log(1/δ) samples from X conditioned on hi(X) = ∗.
6: Run the algorithm from Theorem 1.4 on S to find a subspace V and linear transformation
A : V → V with Ex∼uS∩V [fA(x)fA(x)T ] > (1/(2 dim(V ))) IV .

7: Obtain a partial classifier g by running the algorithm from Theorem 3.3 with:

δ′ = δ/poly(d log(1/δ)/ε), ε′ = ε/2, and Γ = 4 dim(V )

on the distribution (fA(X), Y ) over all (X,Y ) conditioned on X ∈ V and hi(X) = ∗.
8: Define a new partial classifier

hi+1(x) =

{
g(fA(x)) if hi(x) = ∗ and x ∈ V
hi(x) otherwise

9: Set i← i+ 1.
10: Return the classifier hi.

Proof. In order to analyze Algorithm 1, we will say that an event happens with “high probability” if it353

happens with probability at least 1− δ/poly(d log(1/δ)/ε) for a sufficiently high degree polynomial.354

There are a number of events in each iteration of our while loop that we will want to show happen355

with high probability, and we will later claim that if they do for each iteration of the loop, then our356

algorithm will return an appropriate answer after poly(d log(1/δ)/ε) iterations of the while loop.357

This will imply that with probability at least 1 − δ all high probability events occur and that our358

algorithm will return an appropriate answer.359

We start by noting that with high probability the sample set chosen in the check of the while360

statement approximates the true probability that hi(X) = ∗ to additive error at most ε/6. This means361

that, with high probability, (1) we will not break out of the while loop unless this probability is less362

than ε/2, and that (2) while we are in the while loop, h(X) = ∗ with probability at least ε/6. This363

latter statement implies that the expected number of samples from (X,Y ) needed in order to find one364

with h(X) = ∗ is O(1/ε). Assuming this holds, the set S in the next line can be found with high365

probability by taking a polynomial number of samples from the original distribution.366

Line 6 runs in deterministic poly(db log(1/δ)/ε) time and, by Proposition 2.4, with high proba-367

bility finds a pair V,A such that:368

1. Pr[X ∈ V : hi(X) = ∗] ≥ 1/(2d).369

2. E[fA(X)fA(X)T : X ∈ V, hi(X) = ∗] > (1/(4 dim(V ))) IV .370

If Condition 1 holds, then with high probability only polynomially many samples from (X,Y ) are
needed to run the algorithm in Line 7. If Condition 2 holds, then the conditional distribution has
no (4 dim(V ))-outliers. Since (fA(X), Y ) is a linear classifier with Massart noise η, with high
probability we have that Pr[g(fA(X)) 6= ∗ | X ∈ V, hi(X) 6= ∗] > 1/poly(d log(1/δ)/ε) and

Pr [g(fA(X)) 6= Y | hi(X) = ∗, X ∈ V, g(fA(X)) 6= ∗] < η + ε/2 .

The former statement implies along with Condition 1 that
Pr[hi+1 6= ∗ | hi(X) = ∗] > 1/poly(d log(1/δ)/ε) ,

and the latter implies that
Pr[hi+1(X) 6= Y | hi+1(X) 6= ∗] ≤ max(η + ε/2,Pr(hi(X) 6= Y |hi(X) 6= ∗)) .

If the above hold for every iteration of the while loop, then after T = poly(d log(1/δ)/ε) iterations,
we will have that Pr[hT (X) = ∗] < ε/6 (and thus with high probability we will break out of the
loop in the next iteration), and when we do break out, it holds that
Pr[hi(X) 6= Y ] ≤ Pr[hi(X) 6= Y | hi(X) 6= ∗] + Pr[hi(X) = ∗] ≤ (η + ε/2) + (ε/2) = η + ε .

This completes the proof of Theorem 3.4.371
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APPENDIX480

A Omitted Details from Proposition 2.2481

Relaxing the constraints of the SDP by δ guarantees that if the original SDP has a solution {c2(x)},482

then the new SDP will have a solution set containing a box of volume at least (δ/dim(V ))d defined483

with variables c20(x) satisfying c2(x) ≤ c20(x) ≤ (1 + δ/dim(V ))c2(x). It is easy to see that these484

solutions satisfy the necessary constraints. In order to show that the ellipsoid algorithm will work,485

it will suffice to show that this box can be taken to be contained in a ball of radius R. This will486

imply that the ellipsoid algorithm will find a solution to the relaxed SDP assuming one existed for the487

original in time poly(d, log(R/δ)). We will in fact show, using a more refined version of Forster’s488

theorem from [AKS20], that R can be taken to be npoly(b,d).489

We leverage (i) the constraint that no subspace of dimension κ contains more than κ · dim(V )/n490

points and (ii) that all coordinates are integers bounded by 2b, to argue that the function c2 must take491

values within a bounded range. We will first prove this for the case where dim(V ) = d, and argue492

that the same bound holds for the general case.493

Towards this end, we will use Theorem 1.5 from [AKS20], which states that if one has a494

collection of unit-norm points which are in “(η, δ)-deep position”, they can be brought in radial495

isotropic position by rescaling points with factors between 1 and n/(ηδ)O(d).496

For a (unit-norm) point-set X to be (η, δ)-deep according to the standard radial isotropic497

transformation, they require that for any subspace Eκ of dimension κ, the number of points lying498

within Euclidean distance δ from that subspace is at most (1− η)κn/d, i.e., for the set Eκδ = {x ∈499

X : d(x,Eκ) ≤ δ} it holds |Eκδ | ≤ (1− η)κn/d.500

We now show that the condition is satisfied for η = 1/(nd) and δ = 1
2d2−bd−d. Since for501

any set S of d linearly-independent points with integer coordinates, the determinant |XS | is at least502

1, after renormalizing so that all points are unit norm, the determinant is at least ∆ = 2−bdd−d.503

As it shown in Lemma 4.6 of [AKS20], choosing δ =
√

∆/(2d) ensures that the set Eκδ lies in a504

κ-dimensional subspace. Moreover, since for any set S of points lying in a κ-dimensional subspace505

for κ < dim(V ), it holds that |S| < κn/dim(V ), this implies that |S| ≤ (1− 1/(nd))κn/ dim(V ).506

Thus, for our choice of κ and δ, the given point-set is (η, δ)-deep.507

The same argument goes through if the points lie on a subspace of dimension dim(V ) < d.508

The only subtle point is bounding the dim(V )-dimensional volume of any parallelepiped defined by509

dim(V ) linearly independent points. This corresponded to the absolute value of the determinant when510

the point-set was full dimensional. This volume is given by
√
|detXT

SXS |, where XS is the matrix511

with the points in S written as columns. For any point-set of integer coordinates this determinant is at512

least 1. After renormalizing all the points so that they have unit-norm, this determinant is at least513

2−dbd−d, as before.514

Overall, we get that the renormalizing factors c2 are between 1 and npoly(b,d).515

B Proof of Proposition 2.4516

The proof is by a simple application of the VC inequality (see, e.g. [DL01]), stated below.517

Theorem B.1 (VC Inequality). Let F be a class of Boolean functions with finite VC dimension518

VC(F) and let a probability distribution D over the domain of these functions. For a set S of n519

independent samples from D, we have that520

sup
f∈F
|PrX∼S [f(X)]−PrX∼D[f(X)]| .

√
VC(F)

n
+

√
log(1/τ)

n
,

with probability at least 1− τ .521

Item 1 follows directly by noting that the set of vector subspaces of Rd has VC-dimension d.
Item 2 follows from the fact that the collection of sets

FV,A,w,t = {x ∈ V : |w · fA(x)|2 ≥ t}
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has VC-dimension O(d2). This holds for the following reason: A set of this form is the intersection
of the subspace V (which comes from a class of VC-dimension at most d), with the set of points x
such that the quadratic polynomial (w · (Ax))2 − t‖Ax‖22 is non-negative. Recall that the space of
degree-2 threshold functions is a class of VC-dimensionO(d2). Therefore, by the VC inequality, with
high probability, for each such F we have that the fraction of S in F is within O(ε) of the probability
that a random element of X lies in F . The claim now follows by noting that for a distribution Y
(either X or the uniform distribution over S) we have that

E[1V (Y )|w · fA(Y )|2] =

∫ 1

t=0

Pr[Y ∈ FV,A,w,t]dt .

This completes the proof of Proposition 2.4.522
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