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A characteristic-index inequality for closed embeddings of locally
compact groups

Alexandru Chirvasituf

Abstract.  The characteristic index of a locally compact connected group G is the non-
negative integer d for which we have a homeomorphism G = K x R? with K maximal
compact in G. We prove that the characteristic indices of closed connected subgroups are
dominated by those of the ambient groups.
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Introduction

The characteristic index (here denoted by ci(G)) of a locally compact connected group G
was introduced in [13] (Theorem 13 therein) in the course of analyzing the structure of such
groups: one can always find a closed submanifold R? C G for some d € Zs, such that, for
a maximal compact subgroup K < G the multiplication

KxR's (k,r)—=k-red

is a homeomorphism. Now simply define the characteristic index by

a measure, in other words, of “how non-compact” G is. It is not difficult to see that this
definition is appropriate: given homeomorphisms

KxR{=G =K xRY
as above, for maximal compact subgroups K and K’, one can

e assume that K = K’ because all maximal compact subgroups are mutually conjugate
[15, §4.13, first Theorem];
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e and that G is Lie by substituting K/N < G/N for K < G for a compact normal
subgroup N < G with G/N Lie [15, §4.6, Theorem];

e hence affording a dimension count:
d=dimG —-dmK =d'.

The notion of dimension in use here is the standard one in manifold theory [14, Theorem 1.2],
coincident, in the cases of interest here, with various other notions of topological dimension
available in the literature (e.g. the small and large inductive dimension of [6, Definitions
1.1.1 and 1.6.1] and the covering dimension of [6, Definition 1.6.7]).

The characteristic index was useful recently in [5] for the purpose of studying colimits
in the category of locally compact groups. That analysis required an understanding of how
characteristic indices behave under locally-compact-group morphisms, as we now recall.

By a closed embedding of topological groups we mean a continuous group morphism
f: H — G that identifies H homeomorphically with a closed subgroup of G. On the other
hand, a continuous group morphism f : H — G has dense image if imf = G. With this in
place, the pertinent observations are that characteristic indices

(a) they can only decrease along dense-image morphisms f : H — G [5, Theorem 2.3] (a
slight generalization of [13, Lemma 4.10], the analogue for quotients by closed normal
subgroups)

(b) while on the other hand, they can only increase along closed embeddings H — G with
H Lie and semisimple [5, Proposition 2.4].

This latter result, in particular, while sufficient as auxiliary material for [5], leaves open the
natural question of whether or not ci(H) < ci(G) in full generality for any closed embedding
H < G of connected locally compact groups. The aim of the present note is to prove that
this is indeed the case:

Main Theorem. For a closed embedding H < G of connected locally compact groups
the characteristic index of G dominates that of H:

ci(H) < ci(G). (0-1)
In part, the reason why this appears not to be as straightforward as one might hope

is the tension between the two phenomena (a) and (b) above: as Example 2.3 makes clear,
it is possible to

e start with a (semisimple, say) group H;
e enlarge its characteristic index by taking a product with a Euclidean group N = R¢;

e and then bring the characteristic index back down (as in (a)) through a dense embed-
ding HN < HN = G.

The example in question shows that this last step can shrink ci(G) all the way back down
to ci(H), but the point of (0-1) is that so long as H < G is closed there can be no further
characteristic-index shrinkage.
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1. Preliminaries

The topological groups considered here are all Hausdorff. In fact, being Ty-separated ([15,
§1.1, Definition, condition 4)]) will do: being Hausdorff follows [15, §1.16] (in the context of
topological groups, not for arbitrary spaces), along with complete regularity [15, §1.18].

We record the following observation on the behavior of characteristic indices under
passage to quotients, which aggregates a couple of results in the literature (on quotients by
connected / discrete subgroups respectively).

Lemma 1.1.  Let G be a connected locally compact group and N < G a closed normal
subgroup with identity connected component Ny. We then have

ci(G) = ci(Ny) + rank(N/Ny) + ci(G/N).

where N/Ny is finitely-generated abelian and its rank is the largest r for which there is an
embedding 7" < N/Ny.

Proof.  We first handle the quotient by Njy:
ci(G) = ci(Ny) + ci(G/Ny) (1-1)

by [13, Lemma 4.10] (and [15, §4.6, Theorem|, which ensures that the hypothesis of that
lemma is met by connected locally compact groups).

Substituting N/Ny < G/Ny, we can now assume that the normal subgroup (/N/Np,
in this case) is discrete. But then it will be finitely-generated abelian (by [5, Lemma 2.1],
for instance), and hence [5, Proposition 0.3] applies to prove

ci(G/Ny) = rank(N/Ny) + ci(G/N). (1-2)

Combining (1-1) and (1-2) gives the desired result. n

2. Dense embeddings

Altering the notational lettering momentarily in order to avoid confusion later, consider a
dense embedding S < G of connected Lie groups (not closed, in general: S = G'). According
to [5, Theorem 2.3] we have ci(S) > ci(G). It will be handy below to have a more careful
estimate of the difference between the two characteristic indices. Recall that the radical of
a Lie group is its largest connected, normal, solvable subgroup [18, §1.3].

Lemma 2.1. Let G be a connected Lie group and further consider
e a dense embedding S < S =G with S connected;
e a maximal compact subgroup K < G with radical A < K ;

e the connected component Ay := (AN S).
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Given a decomposition
A1 2T x R" (2—1)

in the intrinsic topology on the Lie group S where T™ := R™/Z™ is the standard torus, we
have

ci(S) — ci(G) = n.

Proof. Dense embeddings of Lie groups are analyzed in enough detail in the proof of [7,
Theorem 1] for us to be able to repurpose that argument.
Consider, as in that proof, the universal cover

G—G=G/D

(where D < G is discrete and central, isomorphic to the fundamental group of GG). Generally,

tildes will adorn the connected components of preimages through this cover: we have S, A,
Ay, etc. S. Note that

e S <G is closed because it is normal in a simply-connected Lie group [3, p.127].

° ;4: < G is a closed Euclidean group, and having chosen a (closed, Euclidean) supple-
ment for it in A in the sense that

A=A x Ay
the product o o
SxAy> (s,a)—sae€SA =G

is an isomorphism of analytic manifolds (not of groups, necessarily, because S and :12
need not commute). This, again, emerges as part of the proof of |7, Theorem 1].

e per the discussion immediately preceding [7, Theorem 1|, we may as well assume

that the discrete abelian group D is a closed subgroup of K whence the torsion-free
component Dy, in a decomposition

D = Dyors X Dypee = (torsion) x Zr2nk(D) (2-2)
embeds in A.
Through a double application of Lemma 1.1 we have
ci(G) = ci(G) — rank(D)
ci(S) + dim A, — rank(D)
ci(S) + rank(D N S) + dim Ay — rank(D),

so the goal is to argue that
rank(D) = rank(D N S) 4 dim A3 + n (2-3)

for n asin (2-1). A first observation is that since
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e we are assuming that the free abelian summand in (2-2) is a subgroup of A ;
e and quotienting by D turns the Euclidean group A into a torus of the same dimension,

we have

rank(D) = dim A = dim A; + dim As,
and hence the target equation (2-3) becomes
dim A; = rank(D N S) + n.

To prove this last equality, notice that on the one hand the left-hand side dim;lvl = dim A,
is exactly the m + n of (2-1), while on the other, given the notation (2-2), we have

rank(D N §) = rank(D e N Z) = rank(D free N :4:)
This is nothing but dim(A;) = m, and we are done. n

Lemma 2.2. Let H < G be a closed embedding of connected Lie groups with G = HN
for a normal subgroup
Ri>~ N <QG.

We then have the inequality (0-1): ci(H) < ci(G).
Proof. In passing from H < HN to
H/HNN < HN/HNN

an application of Lemma 1.1 (or a double application, rather) shows that the two charac-
teristic indices decrease by the same amount, so we may as well assume that H N N is
trivial.

We apply Lemma 2.1 to the dense inclusion

S:=HN <G,

retaining the notation therein (for the groups K, A, A;, etc.). Consider a decomposition
(2-1) for Ay < S = HN. Since A is a torus and H < G is closed, the torus component
T™ of that decomposition must contain the connected component (H N A)y. Passing to Lie
algebras, it follows in particular that the Euclidean component

R"™ < ay := Lie(A;)
of (the Lie-algebra version of) (2-1) intersects
b := Lie(H) C Lie(HN) = R x b
trivially. It is a simple matter to prove, then, that the projection

R'Ca <hCRYxh— R
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linear but IlOt, in eneral, a Lie-algebra morphism) is on—to—one, whence n < d. We now
have

ci(G) =ci(HN) —n
=ci(RYx H) —n
=d+ci(H)—n
> ci(H),

where the first equality uses Lemma 2.1 (as indicated, with S = HN = R? x H), the third
is an application of Lemma 1.1, and the last inequality is the above remark that n < d. m

To elucidate the phenomenon that underpins Lemma 2.2, some comments and exam-
ples are perhaps in order. Assume, as done at the start of the proof of Lemma 2.2, that
H intersects N trivially. Abstractly, with its intrinsic topology (rather than the subspace
topology inherited from G), HN is then isomorphic to the semidirect product R? x H with
respect to the adjoint action of

H<GoR'2N<QG.
On the one hand, according to Lemma 1.1 we have
i(HN) = ci(R? x H) = d + ci(H). (2-4)

On the other hand though, by [5, Theorem 2.3], in passing to G = HN we have to then
adjust the characteristic index down from that value because the embedding HN < G is
dense:

ci(HN) > ci(G).

The point of Lemma 2.2, though, is that because H < GG was closed, this latter discrepancy
resulting from the dense embedding cannot be larger than the d we originally supplemented
H with in (2-4). That dense embeddings can (in this regard) be pathological enough to
achieve this upper bound can be illustrated with an example adapted from [7, Appendix]
(used there for different but related purposes).

Example 2.3.  We want a dense (connected-)Lie-group embedding R? x H < G with H
and R? both closed in G and such that

ci(G) = ci(H). (2-5)

It will be enough to do this for d = 1, as the d"* Cartesian power of that example will then
handle the general case.
Consider, as on [7, p.118], the universal cover

e~

1 —>Z= (o) — SL(2,R) — SL(2,R) — 1.

The relevant objects are
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P

o H:=SL(2,R);
e acting trivially on N :=R;
e and G := H x N x R/D with
D :={(c"™" m+n, m+ny) €G|mneZ}
for an irrational v € R.

As noted in loc.cit., HD/H and ND/D (easily seen to be isomorphic to H and N respec-
tively) are both closed in G, while their product is not. It follows, for dimension reasons,
that we must have HN = G. o

As to characteristic indices, note first that ci(H) = 3, since in fact H = SL(2,R) is
homeomorphic to R3. On the other hand, G is obtained from H x R? by quotienting out
a discrete (closed, central) subgroup D = Z?  meaning that by Lemma 1.1 its characteristic
index is

ci(G) = ci(H) + ci(R?) — rank(Z?) = ci(H);

(2-5), in other words.

3. Characteristic indices of maximal subgroups

In the discussion below diagrams of the form

F—E
N (3-1)
B

indicate (locally trivial) fibrations [20, §2] with total space E, fiber F' and base B. We chain
several of these together (as will become apparent) to indicate that the fibers themselves are
total spaces of further fibrations.

The fibrations we are concerned with here will be at least locally trivial with every-
thing in sight a Hausdorff, metrizable topological manifold, such as, say,

M- G
\, (3-2)
M/G

for any closed subgroup M < G of a Lie group (that this is indeed a fibration follows, for
instance, from [20, §7.5]). They are in particular Serre fibrations in the sense of [1, Chapter
VII, Definition 6.2], i.e. the ‘espaces fibrés’ of [19, Chapitre II, §2, Définition] (as mentioned
in [19, Chapitre II, §2, Exemples]), so the results of this latter source apply.

In general, for a manifold X and coefficients R (an abelian group, or ring, or system
of local coefficients [9, Appendix 3.H], etc.; whatever is appropriate), we write

dimhg(X) := max{m € Z>o | H(X,R)}.

This is a version of, say, the (co)homological dimension of [17, §35].
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Proposition 3.1.  Consider a topological manifold M fitting into a chain

Rd—_}Mn_l""Ml"M
\ VoA (3-3)
B,y By By

of manifold fibrations with all manifolds connected and all bases B; compact. Then, d can
be recovered as

d = dim(M) — dimhg»(M). (3-4)

Proof. Consider a fibration (3-1) of connected topological manifolds, with B compact
and such that

It then follows from

e the fact that
dimhz/g(B) = dlm(B) and Hdim(B)(B,Z/Q) = Z/Q

([1, Chapter VI, Corollary 7.12]);
e together with the Serre spectral sequence
E. = H,(B,H,(F,Z/2)) = H,((E,Z/2)
attached to the fibration ([19, Chapitre II, §2, Théoreme 2|)

that
dlmhz/g(E) =k + dlm(B) and Hk+dim(B)<E7Z/2) = Z/2

Applying this remark recursively, starting with the leftmost fibration

F—F
\
B

in (3-3) and proceeding rightward, we obtain
dlmhz/g(M) = dlm(M) —d and Hdim(M)—d(My Z/Q) = Z/2
As this is in fact an enhancement of the sought-after conclusion (3-4), we are done. |

Proposition 3.2.  For a mazimal proper Lie subgroup M < G of a connected semisimple
Lie group G we have
ci(M) < ci(@).

Proof. First, we reduce to the case of linear G by modding out a discrete central subgroup

D <G:
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e the universal cover G has a linear quotient by a discrete central subgroup D; < G [18,

§1.4];
e whereas G is a quotient of G by some other discrete central subgroup Dy < é;

e whereupon we can take

D :=DDy/Dy<aG=G/Dy:

the quotient G/D = G /D1 D5 of the semisimple linear Lie group G /Dy will automat-
ically be linear [8, Lemma 9].

By Lemma 1.1 we have

ci(G) — ci(G/D) = rank(D)

and
ci(M) — ci(MD/D) = rank(M N D),

so subtracting the two and using the obvious inequality rank(D) > rank(M N D) we obtain
ci(G) — ci(M) > ci(G/D) — ci(MD/D).

In other words, if the conclusion holds for the embedding M D/D < G/D of linear groups
then it holds in its original form. For that reason, we will henceforth assume that everything
in sight is linear.

[16, Theorem 3.1] then applies, ensuring that either

e the radical R of M is compact;
e or the homogeneous space G/M is compact.

In the former case (M has compact radical R) we have
ci(M) =ci(M/R) = ci(L)

for a Levi factor L < M [18, §1.3] and the problem reduces to the inclusion L < G where the
smaller group L is also semisimple. The desired conclusion is now precisely [5, Proposition
2.4].

This leaves the case when G/M is compact. We then have, on the one hand, the
fibration (3-2) with compact base and fiber M = Kj; x R for a maximal compact
subgroup Ky, < M, and on the other the analogous decomposition G = Kg x R The
fact that the “non-compact piece” must have the same dimension

ci(G) = ci(M)

now follows from Proposition 3.1. [ ]
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4. The main result

In this section we prove the main theorem stated in the Introduction.

Remark 4.1. The case when G is abelian is not difficult to deduce from the existing
literature.

First, one can pass to the quotient G/comp(G) by the largest compact subgroup
([11, Definition 5.4, Proposition 5.8]), thus assuming without loss of generality that G is
compact-free. It then follows [11, Proposition 5.25] that G is a vector group R? and H is a
vector-space summand thereof [11, Theorem 5.19]; the conclusion follows from the fact that
for a vector group (R? +) the characteristic index is d.

Before embarking on the proof, a remark on what will not work. Suppose that in
(0-1) we have restricted attention to Lie groups (as we will). Since a connected Lie group is
analytically isomorphic to a manifold of the form

G =K x R

for a maximal compact subgroup K < G (as follows, for instance, from [15, §4.13, first
Theorem)), one might hope that the main theorem would follow from a general result to the
effect that for any analytic closed embedding

M1 x R™ - M2 x R" (4—1)

for compact analytic manifolds M; we have to have m < n. This is not the case:

Example 4.2.  Consider the closed analytic embedding
R? 3 (2, y) = (p(z,y), 2° +4%) € S xR,

where ¢ : R? — S? is the inverse of the stereographic projection [14, Problem 1-7], mapping
R? isomorphically onto the complement of the north pole in the unit sphere S? ¢ R*. This
is

e analytic because its two components ¢ and (z,y) — 2% + y? are;
e one-to-one because ¢ already is;
e proper because (z,y) — z? + y? is.

We thus have a closed analytic embedding of the form (4-1), with m =2 > 1 =n.

In the proof of the main result we will, at one point, have to work with connected Lie
subgroups M < G of a semisimple Lie group that are mazimal among proper connected Lie
subgroups. These have been studied extensively by Mostow in [16], which deals mostly the
case of linear G'.

Although this is not stated explicitly in [16] (as far as I can tell), such maximal
subgroups are always automatically closed, regardless of whether or not G is linear. This
follows by assembling together a number of remarks.
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e Let us focus for the moment on the linear-G case. As noted in loc.cit. (in the course
of the proof of [16, Theorem 3.1]), the Lie algebra

m = Lie(M) C g := Lie(G) (4-2)
is maximal and hence algebraic in the sense of [2, Definition 1].

To see this, recall that in general, a Lie algebra h of matrices has an algebraic hull h*
[2, Definition 2|: the smallest algebraic Lie algebra containing h. Now, Lie algebras
have the same derived subalgebras as their algebraic hulls [2, Proposition 1 part 3))],
and since g is semisimple and hence coincides with its derived subalgebra [12, §5.2,
Corollary], we cannot have

mCm'=g.

e But then the Lie group corresponding to m is expressible by polynomial equations (e.g.
as explained on [4, p.195]), so it will be closed.

e All of that is still in the context of a linear semisimple GG. Generally, given a maximal
connected Lie subgroup M C G, the Lie-algebra inclusion (4-2) will stay as-is upon
quotienting by a discrete central subgroup D C G with G/D linear (see the proof of
Proposition 3.2 for more on D). But we have just argued that

MD/D~M/MNDC G/D

is closed, and hence so is the connected component M = (M D), of its preimage
through G — G/D.

Henceforth, whenever handling maximal Lie subgroups (always of semisimple Lie
groups), they will be assumed connected and proper. Their automatic closure will also be
taken for granted, per the above remarks.

Proof of the Main Theorem. There is no cost to assuming that G and H are Lie: G
has a normal compact subgroup K < G with G/K Lie [15, §4.6, Theorem]|, and the passage
from H <@ to

HK/K=2H/HNK <G/K
changes nothing (HK < G is still closed because K is compact, and the characteristic
indices do not change because again, we are modding out compact normal subgroups).

The Lie-group version of the result, in turn, is now amenable to induction by dim(G)—
dim(H) (which quantity we refer to as the dimension difference of the inclusion). There is,
of course, nothing to prove in the base case of dimension-difference 0.

So long as we can find an abelian, connected, proper and non-trivial normal subgroup
N < G we can decompose the original inclusion as

H<HN<LG.

Each of thee two successive inclusions has strictly smaller dimension difference, so we can
appeal to the induction hypothesis assuming those inclusions have been taken care of. Note
furthermore that the right-hand embedding

HN <G
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further reduces to

HN/N <G/N
by Lemma 1.1. In this fashion, we can boil down the problem to two cases:
(a) G is of the form HN for a connected, normal, abelian group N < G';
(b) G is semisimple.

Case (a) we defer until later (Lemma 2.2), noting here only that since N is abelian and
connected it must be of the form
torus x R"

(see for instance [10, Chapter II, Exercise C.2]), and the torus component can always be
annihilated with no change to characteristic indices. For that reason, when we return to
(a) in Lemma 2.2, we will be assuming that N is a Euclidean group (i.e. one of the form
(R",+)).

The rest of the present proof, then, focuses on the semisimple-G case ((b) above).
The strategy will be to again shrink the dimension difference for as long as it is possible.
Specifically, assuming H < G is not maximal among connected (proper) Lie subgroups, it
can be embedded into such a maximal subgroup M < G. We would then have to handle
the two inclusions

H<M and M<G

separately, given our induction hypothesis. For the former, we can simply proceed as before:
if M is not semisimple break up H < M into successive embeddings again resorting to
induction, etc. As to the latter, we once more handle it separately as a special case in
Proposition 3.2. [ ]
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