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Full quantum crossed products, invariant
measures, and type-I lifting

Alexandru Chirvasitu

Abstract. We show that for a closed embedding H < G of locally compact quantum groups
(LCQGSs) with G/H admitting an invariant probability measure, a unitary G-representation
is type-I if its restriction to H is. On a related note, we also prove that if an action G O A
of an LCQG on a unital C*-algebra admits an invariant state then the full group algebra
of G embeds into the resulting full crossed product (and into the multiplier algebra of that
crossed product if the original algebra is not unital).

We also prove a few other results on crossed products of LCQG actions, some of which
seem to be folklore; among them are (a) the fact that two mutually dual quantum-group
morphisms produce isomorphic full crossed products, and (b) the fact that full and reduced
crossed products by dual-coamenable LCQGs are isomorphic.

INTRODUCTION

The paper fits within the framework of locally compact quantum groups
(LCQGs, on occasion), in the sense of [21, 22, 20] (with additional background
in, say, [41, 30, 31, 26]). The results extend, to this quantum setting, a number
of statements on (classical, i.e. non-quantum) locally compact groups that
blend, in various proportions, the three items mentioned in the title. Relegating
the background-recollection to 1, these are

~

o full crossed products C§(G) x ; A attached to an action G O A by an
LCQG on a C*-algebra A (with G denoting the Pontryagin dual of G).
The usual classical construction (e.g. [4, §11.10.3.7]) transports to
the quantum setting and features prominently, say, in [38].
e invariant measures, which phrase, in the present non-commutative set-
ting, refers to G-invariant states or functionals on A acted upon by G.
o type-I lifting, which refers to results of the following general shape:
Given a closed embedding H < G with such and such a suite of
properties (varying with the source/result), a unitary G representation
is of type I [12, Definition 5.4.2] provided its restriction to H is.
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It is this latter strand of thought, in particular, that provided the initial
motivation. Classically, such problems are posed and solved for instance in
[17, 18, 14, 15]. [18, Conjecture II], for instance, states that type-I lifting in
the above sense goes through if H < G is cocompact, i.e. the homogeneous
space G/H is compact.

Various cases of that conjecture are then proven, but one emerging pattern,
of particular relevance to the present work, is that G-invariant measures on
G/H are extremely useful in delivering such lifting results. In fact, by [18,
Proposition 2.2], lifting holds as soon as such a finite measure exists, even
without the compactness assumption on G/H.

This, then, brings two of the above-mentioned ingredients into the fold;
the third (crossed products) comes about naturally as part of the standard
induction-restriction toolkit for studying unitary representations. As is clear
from a perusal of [15] and [14, §1] (modulo different notation), it is fruitful to

e recover H-representations as representations of the full crossed product
CY(G) x5 Co(G/H) by imprimitivity [25, §3.7];
e and then make use of whatever additional structure the crossed product

affords.

Much of this conceptual amalgam transports over to the quantum setting.
We summarize (and by necessity, abbreviate) some of the results.

The analogue of [18, Proposition 2.2] holds for quantum groups, as do some
of the proof techniques (Theorem 3.2 and Corollaries 3.4 and 3.5):

Theorem 0.1. Let H < G be a closed quantum subgroup of an LCQG and
assume G/H admits a G-invariant finite measure.

(a) For a unitary G-representation U, the commutant R(H)" of the restriction

Ulg carries a normal conditional expectation onto the commutant R(G)’
of U.

(b) In particular, the latter commutant is type-I if the former is, and hence
the type-I property for Uly entails that of U.

(¢) Specializing once more, if H is type-I then so is G.

Classically, if G/H carries a finite G-invariant measure and is compact, then,
as a matter of presumably independent interest, the obvious map

C*(G) = C*(G) x; C(G/H)

is an embedding; this is noted in the course of the proof of [15, Proposition 4.2]
and gives an alternative proof for type-I lifting in this (more restrictive) case
[15, Corollary 4.5]. Once more, the quantum-flavored result holds; an amalgam
of Theorem 4.2 and Corollary 4.3, somewhat weakened here for brevity reads

Theorem 0.2. If a C*-algebra A has an invariant state with respect to an
action G O A, then the canonical C* morphism

Ce(G) — M(CH(G) xs A)
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is an embedding, which factors through
CYG) = C¥@G) xs A
if A is in additional unital.

Along the way, we also record a few scattered results on full LCQG crossed
products for which it seems difficult to locate proofs in the literature, at least
in this specific setup:

e One phenomenon that seems to be familiar is the “reciprocity” of 2.9:
morphisms H — G and their duals G — H induce isomorphic full
crossed products.

This is what [29, Proposition 2.5] boils down to, for instance, for
the identity morphism of a classical locally compact group, while for
closed embeddings of LCQGs an implicit application of the principle
can be read into the chain of isomorphisms following [38, Remark 6.5].
Proposition 2.10 records the common generalization:

Proposition 0.3. Consider an LCQG morphism H — G, with its
induced action H O C§(G), and the dual morphism G — H with its

induced action G O Cy(H).
We then have an isomorphism

Co (H) x5 Cg(G) = Cg(G) x g Cg'(H).
between the two resulting full crossed products.

e On the other hand, it is a well-established classical result that full
and reduced crossed products by amenable locally compact groups are
canonically isomorphic [28, Theorem 7.7.7].

References to a quantum version appear in the literature [2, Remar-
ques A.13 (c)] and again the isomorphism chain on [38, p.340, bottom].
There is a proof in [5, Proposition 5.6] for regular multiplicative uni-
taries which likely extends. We give an alternative proof below that
directly uses the existence of a counit on the reduced function algebra
Co(G).

The modern linguistic conventions require that we work with dual-
coamenable LCQGs rather than amenable ones (see Definition 2.13),
but with that in mind, Theorem 2.14 says precisely what is expected:

Theorem 0.4. For an action G O A of a dual-coamenable LCQG the
canonical surjection

CHG) xs A— Co(G) x, A
s an isomorphism.
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1. PRELIMINARIES

For preparatory material on operator algebras not recalled explicitly below
the reader can consult any number of good sources, such as [4, 28, 33], [12] in
conjunction with [13], etc.

Throughout the paper,

e M(-) denotes the multiplier algebra construction [4, §I1.7.3] and as in
[2, discussion preceding Définition 0.1] we set, for a C*-algebra A and
an ideal J < A,

(1-1) M(A; J)={xe M(A) | zA+ Ax C J} C M(J).
The latter inclusion is by means of the restriction map
M(A)>zw— x|y € M(J),

which, as observed in loc.cit., embeds M(A; J) into M (J).
o K(H) and B(H) = M(K(H)) [40, Theorem 15.2.12] are the algebras
of compact and bounded operators on a Hilbert space H respectively.
e The tensor-product symbol ‘®’ denotes whatever version of that con-
cept is appropriate, depending on the objects it is placed between:
— the usual tensor product of Hilbert spaces [4, §1.1.4.2];
— the minimal or spatial tensor product [4, §11.9.1.3] of C*-algebras;
— similarly for von Neumann algebras (the spatial tensor product of
[4, §111.1.5.4]).

For C*-algebras A and B the strict maps A — M (B) are of particular
interest, and pervasive in the literature on locally compact quantum groups.
Recall (e.g. [40, Definition 2.3.1]) that the strict topology on M(A) is that
induced by the seminorms

z = |az|, x— ||za|l, a € A

and ([4, §811.7.3.13 and I1.7.5.1] or [21, Notations and conventions]) that linear
maps A — M (B) are strict if they are norm-bounded and continuous on the
unit ball with respect to the strict topologies of A C M(A) and M(DB).

Remark 1.1. In the broader context of Hilbert modules the term ‘strict topol-
ogy’ can be ambiguous [4, §11.7.2.9], but the ambiguities vanish for M(A) [4,
I1.7.3.1]. The upshot is that as far as M(A) goes, all of the various notions of
strictness coincide: [23, discussion preceding Proposition 1.3], [4, §I1.7.3.11],
etc.

For C*-morphisms f : A — M(B), in addition to strictness, non-degeneracy
is another property of interest ([4, §11.7.3.8] or [23, discussion preceding Propo-
sition 2.1]): the requirement that

f(A)B :=span{f(a)b|a € A, be B}

be (norm-)dense in B. Non-degeneracy implies strictness [23, discussion pre-
ceding Proposition 5.5]. In fact, the two properties can be characterized in
terms of maps between the two multiplier algebras:
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e strictness is equivalent to the extensibility of f to a C* morphism
f: M(A) — M(B) strictly continuous on bounded sets;

e while non-degeneracy is equivalent to said extensibility, plus the con-
dition that the extension f be unital [23, Proposition 2.5].

Remark 1.2. To gain a fuller picture of the issue of the (unique) extensibility
of maps f: A — M(B) to M(A), recall further that
o all strict linear maps in the sense above have such an extension f :
M(A) — M(B), strictly continuous on bounded sets [19, Proposition
7.2];
e and that furthermore there is no distinction between bounded-set strict
continuity and just plain strict continuity [35, Corollary 2.7], so the
qualification need not be observed.

Convention 1.3. So pervasive (e.g. Definition 2.3) is the assumption of non-
degeneracy for a C*-algebra representation
A— B(H) 2 M(K(H))

(in the multiplier-algebra sense, or, equivalently, meaning [4, §I1.6.1.5] that A
does not annihilate any non-zero vectors in H), that it will be profitable to
simply assume non-degeneracy whenever representations are mentioned, unless
specified otherwise.

1.4. Locally compact quantum groups. Much background on locally com-
pact quantum groups is assumed implicitly, with [21, 22, 20] serving as the
main references and a few others mentioned explicitly below. For our pur-
poses, the fastest entry point to locally compact quantum groups is probably
[22, Definition 1.1].

Definition 1.5. A locally compact quantum group (abbreviated LCQG) G
consists of
e a von Neumann algebra M, denoted by L*°(G), equipped with a nor-
mal, unital x-algebra morphism
A=Ag: M —> MM,

coassociative in the sense that (id ®A)A = (A ® id)A.

e a normal, semifinite, faithful (nsf, for short) weight [34, Definition
VIL.1.1] ¢ on M (the left Haar weight of G), that is left-invariant in
the sense that

p((w@id)A(z)) = w(l)e(z)
for all w € M} and all
xem;f ={re M| o)< oo}

e similarly, an nsf weight ¢ (the right Haar weight of G), right-invariant
in the sense that

P((id@w)A(z)) = w(1)(z)
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for all w € M} and z € my,.

Apart from Definition 1.5, a few common items attached to an LCQG G
that will appear frequently are

o Co(G), the reduced function C*-algebra of G: this is the object intro-
duced in [21, Definition 4.1], and is the focus of [21].

e the universal version C¢(G) of the previous object: the A, of [20, §5]
(where A = Cy(G)); it comes equipped with a surjection C§(G) —
Co(G).

e the GNS construction[32, §I.2]

(L*(G), T, Ap) = (Hepy Ty, Ap)

attached to the left Haar weight of G.

o the (Pontryagin-)dual LCQG G constructed in [21, §8]; LOO(@) is also
naturally realized as a von Neumann subalgebra of B(L?(G)), so this
single Hilbert space carries the entire structure.

e the multiplicative unitary

W =WE e M(Cy(G) ® Co(G)) C B(L*(G) ® L*(G))

of [21, p.873] (see also [21, p.913, top] for the multiplier-algebra-membership
claim).
For a morphism p : H — G of LCQGs (a notion studied extensively in its
many guises in [27]) we write
[ ]
p* = Cg(G) = M(Cy'(H))
for the corresponding morphism of universal function C*-algebras [27,
Theorem 4.8];
[ ]
p1: L2(G) —» L*(H) ® L*=(G)
for the incarnation of p as a left H-action on G (using the same symbol
for the other versions of this map, such as universal or reduced C*
rather than W*-algebras) [27, Theorem 5.5];
e similarly,
pr: L2(G) — L*=(G) @ L™ (H)
for the right-handed version [27, Theorem 5.3].

Uy € M(Cy(H) @ C(G))
for the universal bicharacter associated to p [27, §3] (noting the differ-
ence in handedness conventions).
e 7: G — H for its dual (27, Corollary 4.3].
A closed embedding v : H < G (realizing H as a closed quantum subgroup of
G) is a morphism whose dual 7 is given by an embedding

~ ~

L>*(H) € L=(G)
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intertwining the comultiplications Ag and Az. These are ([10, Theorem 3.3]),
in other words, the closed quantum subgroups of [38, Definition 2.5] and the
closed quantum subgroups in the sense of Vaes of [10, Definition 3.1].

An LCQG is G classical if Cy(G) is commutative, and hence the algebra
of continuous functions vanishing at infinity on an ordinary locally compact
group, and dual-classical if G is classical. Other LCQG-specific notions (uni-
tary representations, actions, crossed products, etc.) will be recalled below, as
needed.

2. REMARKS ON FULL CROSSED PRODUCTS

Crossed products by quantum-group actions are studied extensively in [2]
(see also [38, §2.3] for a brief refresher). We recall some of the concepts. First,
following [2, Définition 0.3], [38, Definition 2.3], [11, Definition 2.1], etc.:

Definition 2.1. A unitary representation of an LCQG G on a Hilbert space
K is a unitary U € M (Cy(G) ® K(K)) such that (A ® id)U = Uy3Uas.
Equivalently, it is enough to require that U € L*(G) ® B(K); see [11,
discussion following Definition 2.1], which in turn cites [7, Theorem 4.12].
A unitary representation U as above can also be recast as a non-degenerate

C* morphism 7y : C¥(G) — B(K); U and 7y determine each other uniquely
[20, Proposition 5.2]: the bijective correspondence U < 7y is given by

(2-1) U = (id @my )W,

where W € M (Cy(G)®C¥(G)) is the right-half-universal multiplicative unitary
denoted by V in [20, Proposition 4.2].

Actions of an LCQG on a C*-algebra A, with a caveat (cf. [2, Définition
0.2] and Remark 2.8), are the continuous coactions of [38, Definition 2.6].

Definition 2.2. Let G be an LCQG, A a C*-algebra, and A its unitization

[4, §II.1.2].

An action of G on A is a non-degenerate C* morphism
(2-2) p: A= M(Cy(G)® A)
such that

(a) (id®p)p = (Ac ®id)p;
(b) p takes values in the subalgebra

M (C’O(G) ® A; Co(G) ® A) C M(Cy(G) ® A)
defined as in (1-1), so that
p(A)(Co(G) ® 1) € Co(G) ® A;

(¢) and p(A)(Co(G) ® 1) is dense in Cy(G) ® A.
We occasionally depict actions as circular arrows, as in the Introduction: G O
Aorp: GO A.
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The caveat alluded to before is condition (b); this is presumably intended
in [38, Definition 2.6] (though not mentioned explicitly), since otherwise there
is no reason, a priori, why a(B)(A ® 1) would be contained in A ® B.

As for unitary G-representations compatible with G-actions on C*-algebras
(see [2, 1.2. Exemples. (5)] or [38, p.325], where such representations are
termed ‘covariant’):

Definition 2.3. For an action p : A = M(Cy(G) ® A) of an LCQG G on a
C*-algebra A a p-equivariant (or G-equivariant) representation on a Hilbert
space K is a pair (U, 7) where
o U e M(Cy(G)® K(K)) is a unitary G-representation;
e 7: A — B(K) is a non-degenerate representation of the C*-algebra on
the same Hilbert space;
e and the equivariance condition

(2-3) (id®@m)p(a) = U*(1 @ m(a))U, Ya € A.

We regard ‘covariant’ and ‘equivariant’ (and similarly, ‘covariance’ and ‘equiv-
ariance’) as synonymous, in order to preserve agreement with the cited sources.

We will also occasionally package the Hilbert space into the mix, in order
to display the symbol denoting it; thus, an equivariant representation (U, )
on K might be depicted as (U, 7, K).

One can now mimic the classical procedure (e.g. [4, §§11.10.3.7, 11.10.3.14])
of defining both full and reduced crossed products: see for instance

o [38, §2.3] (where the full version of the crossed product is defined im-
plicitly, via its universality property);

e [2, Définition 7.1] for reduced crossed products and [2, Remarques A.13
(b)] for a mention that covariant representations can be used to define
full crossed products;

e [5, Définition 5.3] in the context of regular multiplicative unitaries;

e which is then extended in [39, Définition 4.2] in sufficient generality
(the weak Kac systems of [39, p.39)]).

Definition 2.4 below retraces [29, Definition 2.3].
Definition 2.4. Let p: A - M(Cy(G) ® A) be an action of an LCQG on a
C*-algebra.

(a) For a p-equivariant representation (U, 7) on K we define the C*-algebra
(2-4) C*(U,7):= (C*—algebra generated by m(A) - wU(Cg(@)))

= (C*—algebra generated by 7y (CY (@)) . ’/T(A)) C B(K),

~

where 7y : C§(G) — B(K) is as in Definition 2.1.
(b) An equivariant representation (U, 7) weakly contains another, (U', ', K'),
if there is a representation

Y : C*(U,m) = B(K') with p oy = i and o = 7',
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(¢) A p-equivariant representation is weakly universal if it weakly contains
every other equivariant representation.
(d) We define the full crossed product

~

CH(G)x; A:=C"(U,n)
for a weakly universal covariant representation (U, 7).
For reduced crossed products, one can adopt either of two approaches.

Definition 2.5. Let p: A - M(Cy(G) ® A) be an action of an LCQG on a
C*-algebra.

e First, per [2, Définition 7.1] or [38, p.324]: the reduced crossed product
attached to p is

Co(G) x, A= (C’*—algebra generated by p(A) - (Co(G) @ (C)) C M(K(L*(G)) ® A).

e Equivalently, by analogy to the classical (or dual-classical) construc-
tions in, say, [4, §§11.10.3.14, 11.3.10.14] or [29, Definition 2.7]:
(a) For any representation o : A — B(K) consider the p-equivariant
representation
Uy, 0) :=(WR1, (mg®0)p)

~

on L?(G)®K, where W € M (Co(G)®Cy(G)) is the multiplicative
unitary of G and 7g : Co(G) — B(L?(G)) is the GNS representa-
tion of the left Haar weight of G.

(b) The reduced crossed product attached to p is

~

Co(G) x, A :=C*(U,, o)
as in Definition 2.4 (a) for a faithful representation o : A — B(K).

It is not difficult to see that in the second definition the resulting C*-algebra
does not depend on o (so long as the latter is faithful) and that the two
definitions are indeed equivalent.

Given an action (2-2) and an equivariant representation (U,w, k) one ex-
pects the corresponding algebra C*(U, ) of (2-4) to come equipped with non-
degenerate morphisms
(2-5) Cy(G) - M(C*(U,m)) and A— M(C*(U,n)).

This is indeed the case according to [39, Lemme 4.1], whose first two items
we paraphrase as follows.
Proposition 2.6. Let (U, n, K) be a p-equivariant representation for an action
p:GO A
(1) The C*-algebra C*(U, ) of (2-4) can be recovered as
[l

C*(U,7) = my(CH(@G)) - m(A)

|-
= |

=7(4) -7 (C(G))
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i.e. these linear spans are already closed under multiplication and <’
(2) The non-degenerate morphisms

7y : CY(G) = B(K) and w:A— B(K)
factor through non-degenerate morphisms (2-5).
Remark 2.7. As noted in [39, §2.3], that paper’s weak-Kac-system formalism

applies to locally compact quantum groups formalized as in [21]; we will thus
apply results in [39] freely, as needed.

Other, earlier versions of the result appear as [24, Lemma 2.5], [2, Lemme
7.2 and following discussion] and [5, Proposition 5.2]; the proofs all ultimately
revolve around the same idea of factoring an arbitrary functional w € B(L?(G))
as w'z for some

W' € B(L*(G))., and =z € Cy(G);
this is a consequence, say, of the Cohen factorization theorem [24, p.750, The-
orem]| or [16, Theorem 32.22].

Remark 2.8. In particular, applying Proposition 2.6 to a weakly universal
equivariant representation in the sense of Definition 2.4 (c) we obtain the uni-
versal unitary
U, € M(Cy(G) ® Cy(G) x5 A)
and non-degenerate representation
Tu: A— M(CYG) xs A)
of [38, p.325] (where U, is denoted by X,,).

Note, though, that the proofs implying the existence of these two objects rely
crucially on actions (2-2) actually taking values in M (CO (G)® A; Co(G)® A).
The same constraint is imposed in [29, Definition 2.1] and [24, Definition 2.1]
in the context of dual-classical LCQGs, both sources using the notation

M(A® B) := M(A® B; A® B),
with the latter identified with a C*-subalgebra of M(A ® B). [24, §1], in
particular, contains an illuminating discussion of the advantages of M over M.

2.9. Full-crossed-product reciprocity. The following remark, for closed
embeddings, is implicit in the computation on [38, p.340, bottom].

Proposition 2.10. Let p : H — G be an LCQG morphism. We have the
following isomorphism between the umversal crossed products built out of the
left actions induced by p and its dual p : G — H:

Cy (H) x; C(G) = C(G) x s Cg(H).

Proof. Denote by B" and A" the universal C*-algebras attached to H and
G respectively, and similarly for duals (with ® indicating duality); the target
isomorphism then becomes

By A% A%, BY.
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According to Definition 2.4, a Bv x y A¥-representation on a Hilbert space H
consists of

e A representation 7 : A% — B(H) of the C*-algebra A* on H;

e and a unitary representation

(2-6) X eMB"® K(H))
of the quantum group Hi
e such that
(2-7) (idem)p(x) = X" (1@ 7w(x))X, Vo € A"

We write X; for X, to highlight the left-hand placement of the B-leg in (2-6)
(there will be an X,. shortly).

Now, the universality property of A* provides [20, Proposition 5.3 and/or
dual to Proposition 6.5] a bijection between 7 : A* — B(H) as above and
unitaries

X, € M(K(H)® A%)

(satisfying appropriate conditions).
Consider the universal unitary U" = Ul € M (A" @ A") of [20, Proposition

6.4]. Applying the two sides of (2-7) to its left leg and using the identity

(A ® ld)U = U13U23,
(2-7) translates to
(2-8) Up13Xro3 = X109 X 03 X112,
where

Uy = (p" ®@id)Uy € M(B" @ A")

is the bicharacter associated to p. Moving two factors around, this is equivalent
to

(2-9) Xi12U 13 = Xr23 X112 X o3
Now,

e applying the * operation to (2-9);

e and also reversing the tensorands

transforms that equation into

(2-10) @135\(7023 = Xz*lz)?rzs)?zu,

where
[}
Uy = flip(U") = UY € M(A" @ B")
is the universal bicharacter attached to the dual quantum-group mor-
phism p: G — H [27, Proposition 3.9];
e and similarly,

X, = flip(X*) € M(A* @ K(H));
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e and
X, = flip(X}) € M(K(H) @ AY).
Note, though, that (2-10) is precisely (2-8) decorated with hats; in other words,
specifying a pair (X;, X,.) is the same as specifying a pair ()A(l, )A(r), playing the
same role for the dual group morphism p. This means that the representations
of B x fA" and A% x B are classified by the same data, and we are done. [

Remark 2.11. [29, Proposition 2.5] is, essentially, Proposition 2.10 applied
to the identity morphism on a classical locally compact group.

2.12. Coamenability and full crossed products. Theorem 2.14 below is,
presumably, well known:

e it is a straightforward quantum generalization of the fact that full and
reduced crossed products by amenable locally compact groups coincide
[28, Theorem 7.7.7];
e it is invoked implicitly in [38, paragraph following Remark 6.5];
e claimed explicitly in [2, Remarques A.13 (c)] in the setting of regular
LCQGs;
e proven in [5, Proposition 5.6] for regular multiplicative unitaries (and
hence locally compact quantum groups);
e and presumably the proof extends generally, as the statement [39,
Définition] seems to imply.
The earlier sources refer to amenable locally compact quantum groups (‘moyennable’
in [2, Remarques A.13 (¢)]). To preserve agreement with the language of [3]
(now in wide use), the term adopted below would is ‘dual-coamenable’, i.e. an
LCQG G whose dual G is coamenable in the following sense ([3, Definition 3.1,
Theorem 3.1]).

Definition 2.13. An LCQG G is coamenable if either of the two following
equivalent conditions holds

e The surjection C¥(G) — Cy(G) is an isomorphism.
e The reduced function algebra Cy(G) has a counit: a C*-morphism
€ : Co(G) — C such that (id ®e)Ag = id.

G is dual-coamenable if G is coamenable.

The proof of Theorem 2.14 below proceeds along the same lines as that
of the dual-classical [24, Theorem 3.7], directly using the counit (rather than
alternative characterizations of coamenability, as in [5, Proposition 5.6]).

Theorem 2.14. For an action p : A = M(Cy(G) ® A) of a dual-coamenable
locally compact quantum group the canonical morphism

CH(G) xs A— Co(G) x, A
is an isomorphism.

Proof. We have to show that every pair consisting of
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e a representation

(2-11) m: A— B(H);
e and a G-representation

(2-12) X e M(Cy(G)® K(H));
e satisfying the equivariance condition

(2-13) (idem)pla) = X" (1@ 7n(a)X €, Vae A

arises from a representation of the reduced crossed product Cy(G) X, A on the
same Hilbert space H.
Consider the representation

M(K(L*(G))® A) 3 1®a o X(z @ 7(a))X* € B(L2(G) @ H),

and restrict it to the reduced crossed product ([38, §2.3])
(2-14)
Co(G) x, A =span{p(a)(z @1) | z € Cy(G), a € A} € M(K(L*(G)) ® A).

Next, apply 6 to the typical element p(a)(z ® 1) displayed in (2-14), obtaining
(2-15) X(id@m)p(a)X* X (z@1)X* = (197(a)) X (z®1)X* € B(L*(G)®H),

via the equivariance condition (2-13).

Denote by mx : C&(G) — B(H) attached to X and recall the half-universal
multiplicative unitary W of (2-1) (which in the dual-coamenable case also
coincides with the plain multiplicative unitary we have been denoting by W).

Then:
e we have
X = (derx)W
by [20, Proposition 5.2];
e and in general, even without the coamenability assumption,

Co(G) 3z W (z®1)W* € M(Co(G) ® CY(G))

is the flipped coaction of C§(G) on its reduced version by comultipli-
cation (as follows from the formula for Ag on [20, p.294]).
It follows, then, that the rightmost element of (2-15) satisfies

~

(2-16) (1®7m(a) X (z®1)X* € M(Co(G) ® K(H)).

Now, since we are assuming G is coamenable, C’o(@) =~ Cé‘(@) is equipped

with a counit € : Cy(G) — C [3, Theorem 3.1]. It follows that we can apply
that counit to the left leg of (2-16) obtaining, in the end, a representation

0 := (e ®id)0 : Co(G) x, A — B(H).
That that representation gives back the original (2-11) and (2-12) by

7=0op and X = (idxf)(W 1)
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for the multiplicative unitary

~

W e M(Co(G) ® Co(G))
is now a simply matter of unwinding the construction, which we omit. O

Remark 2.15. The proof of Theorem 2.14 given above follows the same gen-
eral plan as that of [24, Theorem 3.7]: the latter covers the case when G is
classical, so that indeed G is dual-coamenable (because classical locally com-
pact groups are coamenable).

3. RESTRICTING REPRESENTATIONS TO FINITE-COVOLUME SUBGROUPS

The aim of the section is to produce a quantum version of [18, Proposition
2.2]: if G/H has a finite G-invariant measure then unitary G-representations
whose restriction to H is type-I are themselves type-I. Recall (e.g. [12, Defini-
tion 5.4.2 and §§5.5.1 and 13.9.4)):

Definition 3.1. A representation 7 : A — B(H) of a C*-algebra is type-I (or
of type I) if the commutant w(A)’ is type-I as a von Neumann algebra [12, A
35].

For an LCQG G, a unitary representation U € M (Cy(G) @ K(H)) is type-I
if the associated C*-algebra representation 7y : C{f(@) — B(H) of Definition
2.1 is type-I in the previous sense.

G itself is type-I if all of its unitary representations are.

Theorem 3.2. Fiz

e q closed embedding 1 : H — G of LCQGSs;
e o G-invariant normal state 0 € L (G/H).;
e and a unitary G-representation U € M (Cy(G) @ K(H)).
There is a normal conditional expectation E : R(H) — R(G)’.
Although crossed products do not feature directly here, we work our way
back into the topic later, as part of the same circle of ideas. The proof strategy
is very much parallel to that of [18, Proposition 2.2]. Let ¢ : H < G be a closed

quantum subgroup of a locally compact quantum group. For a unitary G-
representation U € M(Co(G) ® K(H)) we write

U‘H or U, € M(Co(H) ® K(H))

for its restriction to H: see [27, Proposition 6.5] and [6, §2.2]. We also write,
given such a representation, R(G) and R(H) for the von Neumann subalgebras
of B(H) generated by G and H respectively, i.e. the weak* closures of

{(w®id)U | w € L™(G).} and {(w @ id)U|g | w € L= (H),}
respectively. We naturally have
R(H) C R(G) = R(G)' C R(H)'.
To check the first inclusion (whence the second follows), note that R(G) is
the W*-algebra generated by he image of the representation my : C¥(G) —
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B(#H) attached to U, similarly for H and U, = Uly, and ([6, §2.2]) there is a
factorization

T oy
(G — - B(H)
U
through the morphism 7% associated to ¢ : HH — G.
Note also, for future reference:
(3-1) RG)={TeBH) | U1eT)U=11T}
(3-2) RMH) ={TeBH)|U(1T)U,=1xT}.

Recall (e.g. [33, Definition I11.3.3] and [34, Definition IX.4.1]):

Definition 3.3. For an inclusion A C B of C*-algebras a norm-1 projection
or conditional expectation E: B — A is an idempotent, norm-1 map onto B.

When the inclusion is one of W*-algebras we typically require that condi-
tional expectations be normal, i.e. weak*-continuous.

Proof of Theorem 3.2. The construction is very much as in the proof of [17,
Theorem 1], adapted to the present quantum setting.
Write

V :=flip(U) € B(H) ® L*™(G) and V, :=flip(U,.) € B(H) ® L*°(H)

for the unitaries obtained from U and U, = Uly by interchanging tensorands,
so that

(3-4) (id®t)V = ViaV3  [6, Lemma 2.9, equation (2.2)]
The map
(3-5) BH)>T+— V(T®1)V* € B(H) ® L*=(G)

is the (right) conjugation action of G on B(H) attached to U, and the expec-
tation F will be

RH) 5T % ([de0)V(T © 1)V* € R(G)'.
We have to argue that
(a) the definition indeed makes sense, i.e.
(3-6) TeRMH) =V(I'®1)V* € B(H)® L*(G/H),

so that (id ®6) is then applicable;
(b) E is a normal and has norm 1;
(c) E is the identity on R(G) C R(H)’;
(d) and its range is contained in R(G)'.
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We tackle these in turn.
(a) To verity (3-6), fix T € R(H)'; then:

(d@e) V(T @ )V* = VigVis(T @ 1@ )Vi3Vi5  (3-4)
=V12(T®1®1)V}5 because T € R(H)
=VITe1)V'®1l,

which indeed means that
Ve 1)V* € B(H) ® L>*(G/H) C B(H) ® L>=(G);

this ensures that E is indeed well defined, taking care of (a).

(b) E is a composition of a von-Neumann-algebra morphism (3-5) and a
normal, (completely) positive map id ®6 [33, Theorem IV.5.13], so it too must
be normal and completely positive. Since it is moreover clearly unital, its norm
is |[E(1)|| =1 (as in [1, Proposition 1.6.2], for instance).

(c) It follows from (3-1) that

TERG) =VITo)V'=T®]l,
and a further application of the unital 1 ® 6 will produce T.
(d) We have to show that V' commutes with operators of the form E(T)®1.
For a fixed T' € R(H'), that computation is as follows.
VIET) HV* =V (((de)V(T @ 1)V 1)V* by definition

= ([d®id®0)V12Vi3(T ® 1 @ H)V5VE,
= (id®id®0)(id @Aq)V(T @ HV*  (3-3)
=([{de)V(T'®1)V*®1 G-invariance of 0
=E(T)®1.

This concludes the proof. O

Consequently:

Corollary 3.4. With the same hypothesis as in Theorem 3.2, if R(H) is
semifinite or of type I then so is R(G)'.

Proof. Indeed, by [36, Theorems 3 and 4] semifinite (type-I) von Neumann
algebras only admit normal expectations onto semifinite (respectively type-I)
von Neumann subalgebras. g

The type-I branch of the statement says that G-representations are type-I
provided their restrictions to H are: this, classically, is [18, Proposition 2.2].
Specializing again to all unitary representations ([17, Theorem 1] being the
classical analogue):

Corollary 3.5. Let H < G be a closed embedding of LCQGSs such that L> (G /H)
has an invariant normal state.

If H is of type I then so is G.
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4. INVARIANT MEASURES ON (COMPACT) QUANTUM SPACES

The “compact quantum spaces” in question are simply unital C*-algebras.
The section connects back to the preceding material as follows.

The authors of [15] address type-I-lifting (classical) results analogous to [17,
Theorem 1] and [18, Proposition 2.2] by

e noting that for a cocompact embedding H < G of locally compact
groups such that G/H has a finite G-invariant measure the canonical
map

(4-1) Ci(G) = CY(G) x C(G/H)

is an embedding [15, proof of Proposition 4.2];
e and then leveraging imprimitivity [25, §3.7] to recast H-representations
as C’g(@) X ; C(G/H)-representations (see [15, p.275] as well as [14,
Introduction], where this is further elaborated upon).
Some of the results (e.g. [15, Corollary 4.5]) turn out to be weaker than [17,
Theorem 1] or [18, Proposition 2.2] because the latter only assumes a finite
invariant measure (and no compactness), but the injectivity of (4-1) seems of
interest on its own, and is what motivated the present quantum version thereof.
To make sense of the statement of Theorem 4.2, recall (e.g. [9, Definition
3.3 and Proposition 3.4] or [11, Lemma 3.1}):

Definition 4.1. For a unitary representation U € M (Cy(G) ® K(H)) of an
LCQG a vector £ € K is U- or G-invariant (or just plain invariant, all else
being clear) if either of the following equivalent conditions holds

e Un®é) =n®E for all np € L3(G).

e For all z € C§(G) we have

Ty (2)§ = e(x)E,

where 7y is as in Definition 2.1 and e : C’é‘(@) — C is the counit of
[20, Proposition 6.3].

The above discussion on the injectivity of (4-1) extends to actions on non-
unital C*-algebras, much as in [14, Lemma 4.1]. First, as usual [4, Definition
11.6.2.1], a state 6 on a (possibly non-unital) C*-algebra A is a positive linear
functional of norm 1. The strictly-continuous extension of 8 to M(A) is then
a state in the usual sense, i.e. unital [4, Proposition 11.6.2.5].

For an action p: A — M(Cy(G) ® A), a functional § € A* is invariant if

(id®0)p=0()1: A= M(Cy(G)).
Theorem 4.2. Let p: A — M(Co(G) ® A) be an action of an LCQG on a

C*-algebra A, and consider the following conditions.

(a) There is a p-invariant state ¢ € A*.
(b) Thereis a p-equivariant representation (U, ) having a non-zero G-invariant
vector.
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(¢) The canonical non-degenerate morphism
(4-2) Co(G) = M(Cy(G) x5 A)
of (2-5) is one-to-one.
We have

(¢) = (b) = (c).

Proof. We prove the three claimed implications separately.

(a) = (b). Here, it will be convenient to assume that A is unital. This is
always achievable:

An action p extends to a unital map

A — M(Cy(G)® A),

which in fact can be regarded as taking values in M(Cy(G) ® A) (because p
did: Definition 2.2 (b)). Naturally, the resulting morphism

§:A— M(Coy(G)® A)

is non-degenerate (being unital), and its coassociativity is a simple check. It
follows, then, that an action p on A induces another, p, on the unitization A.
Invariant states or equivariant representations with invariant vectors therein
also transport over from A to A in the obvious fashion, so that the items in
(a) or (b) for p are in bijection, respectively, with the same items for p.

Throughout the proof of the current implication we will thus assume that
A is unital. Let (Ky, ms, Ag) be the GNS representation [4, §6.4] associated
to an invariant state ¢, so that

7T¢ZA—)B(’C¢), Aqg:A—)Ing
are, respectively, a representation and a map satisfying

d(a) = (& | ady)

for the unit vector £, = Ay(1) (recall that A is unital). This will be the
A-half of the desired equivariant representation. The other component, U €
M(Co(G) ® K(Ky)), is defined by

(4-3) U™ (Ap(2) @ Ag(a)) = (A @ Ag)(p(a)(z @ 1));

here, a ranges over A, (L?(G),m,,A,) is the GNS representation of the left
Haar weight ¢, and

zen,:={y e L=(G) | p(y*y) < oo},

i.e. x is square-integrable with respect to that weight.

This is a variant of the usual construction, employed in [21, Proposition 3.17]
to define the multiplicative unitary of G. Setting § = 1, this also coincides with
the construction in [37, Proposition 2.4] (where our U* is Vp).

The latter result implies that this is indeed a unitary G-representation and
that in fact (U, my) is covariant ([37, second of the four displayed equations
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in the conclusion of Proposition 2.4], where Vp is our U*). As for invariant
vectors, setting a =1 in (4-3) (so that Ag(1) = &) yields

U'(Ap(z) ® &y) = Ap(z) ® &y, Vo €.

Since A, (n,) € L*(G) is dense, this means precisely that &4 is U-invariant.
(a) <= (b). Consider an equivariant representation

UeM(C)(G)® K(K)) and 7:A— B(K)

as in the statement, with a U-invariant unit vector £ € K. The claim is that
the state

(4-4) ¢(a) == (| m(a)§), a€ A
is p-invariant. Indeed, for n, ¢ € L?(G) we have
P((wy,c ®id)p(a)) = (€ | (wnc @7)p(a)§) by (4-4)

= Mm@ ([dam)p(a) (@)
=& U(1en)U®E)) by equivariance
=({Um®§) | (1er()U( L))
= (1en(a)((®E) by the U-invariance of ¢
= (n¢) é(a).

This is what ¢ being p-invariant means, so we are done.

(b) = (c). We have to argue that under the hypothesis (b) some p-
equivariant representation (U,r) is faithful on C’g(@) when restricted along
(4-2).

We already have a covariant representation (U,n) on say, a Hilbert space
K, as in (b). Next, fix a unitary representation

Ve M(Cy(G)® K(H))
so that the morphism 7y : Cé‘(@) — B(H) via [20, Proposition 5.2] is faithful.

The target covariant representation (U’, 7') will now have carrier space K @ H,
and its components are defined as follows.

e The G-representation-component U’ is the tensor product of U and V'
(as G-representations), denoted by ‘@’ in [6, §1]:

(4-5) U :=UQ@V :=Vi3U12 € M(Cy(G) @ K(K) ® K(H)).
e As for the A-representation half 7/, simply set
(4-6) Asa™ n(a)®1 e B(K)® B(H) C B(K®H).
The equivariance condition is immediate: for a € A we have
(id@n’)p(z) = ([dem)p(z) ®1 by (4-6)

=U"1®@7(a))U®1 the equivariance of (U, )
= U Vis(1®m(a) ® 1)Vi3Us2
=U"(1®7'(a))U (4-5) and (4-6)
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as elements of L>°(G) ® B(K @ H).

Nothing, so far, uses the existence of a U-invariant vector; the constructions,
up to this stage, go through in general: we can always tensor an arbitrary uni-
tary G-representation V' with an equivariant representation (U, 7) and obtain
another such.

Given, furthermore, a U-invariant unit vector £, we will argue that the
morphism

T CYG) = B(K®H)
attached to U’ (by [20, Proposition 5.2] again) is an embedding. The plan is
as follows:
(i) Observe that the diagram
(4-7)
Ty Qmy

A~

o) o ME@)eGG) T BK)®BM) —— 5
0
- =

Ty’

B(K®H)

commutes, i.e.

~

(4-8) = (mu @ mv)Ag : Cp(G) — B(K) ® B(H) € B(K®H).
(ii) Since £ € K is U-invariant (Definition 4.1), we have
(4-9) ()€ = e(2)€, Yz € CY(G).

~

(iii) Whence it follows that for all z € C{(G) and vectors n € H we have
T (%) (§ ©n) = (To @ 7v)Ag(@)(E@n)  (4-8)
=¢@my((e®id)Ag(z))n  (4-9)
=¢@my(z)n [20, Proposition 6.3].
Since my is assumed faithful this computation implies the faithfulness of -/,
finishing the proof modulo the commutativity of (4-7).

For the latter, recall that the correspondence U < my is given by (2-1).
The definition (4-5) of U’ then recovers that unitary as

U = (id@my @ 7y ) W13 W 19
= (i[d®@my @ my)(id ®Ag )W [20, line preceding (6.1)],
showing that indeed (4-7) commutes. O

To return to the compact (i.e. unital) case that provided the initial moti-
vation as explained at the start of this section:

Corollary 4.3. Let p : A — M(Co(G) ® A) be an action of an LCQG on
a unital C*-algebra A. If A has a p-invariant state then (4-2) is in fact an
embedding

C(G) C C¥(@G) x5 A.
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~

Proof. The functoriality [39, Proposition 4.7] of the C§(G) x y — construction
attaches (4-2) to the equivariant non-degenerate morphism C — M(A), and
the same result shows that when A is unital, so that C — M (A) in fact takes
values in A, (4-2) similarly factors through

~ ~ ~

Cu(©) = (@) s € — CY(B) s A,
Theorem 4.2 delivers the conclusion. |

Remark 4.4. We saw in the course of the proof of Theorem 4.2 that we can
always extend an action G O A to the smallest unitization A. By contrast, as
[39, §3.1] notes, actions will not extend, in general, to multiplier algebras.
This is already clear classically: in that case the multiplier algebra M (Cy (X))
is the function algebra C(8X) on the Stone-Cech compactification fX of X
[40, exercise 2.C]. Now, if G is a (classical) locally compact group, the exten-
sion of the standard translation action G O G to G O B8G is continuous exactly
when G is either discrete or compact [8, paragraph preceding Theorem 4.2].

5. FURTHER EXAMPLES FOR THE USE OF OUR STYLE FILES
Here is a short sample of mathematical text.

Lemma 5.1. Let f : M — N be a smooth map between closed connected n-
manifolds and let p € M be a point with {p} = f~1(f(p)). If the derivative f.
has rank n at p, then f is surjective.

Proof. The map H,(M,M — {p};Z/2) — H,(N,N —{f(p)};Z/2) is an iso-
morphism (by excision). From the map between the corresponding long exact
sequences we see that the fundamental class of M maps onto the fundamental
class of N. |
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