Full quantum crossed products, invariant measures, and type-I lifting

Alexandru Chirvasitu

Abstract. We show that for a closed embedding $\mathbb{H} \leq \mathbb{G}$ of locally compact quantum groups (LCQGs) with \mathbb{G}/\mathbb{H} admitting an invariant probability measure, a unitary \mathbb{G} -representation is type-I if its restriction to \mathbb{H} is. On a related note, we also prove that if an action $\mathbb{G} \circlearrowleft A$ of an LCQG on a unital C^* -algebra admits an invariant state then the full group algebra of \mathbb{G} embeds into the resulting full crossed product (and into the multiplier algebra of that crossed product if the original algebra is not unital).

We also prove a few other results on crossed products of LCQG actions, some of which seem to be folklore; among them are (a) the fact that two mutually dual quantum-group morphisms produce isomorphic full crossed products, and (b) the fact that full and reduced crossed products by dual-coamenable LCQGs are isomorphic.

Introduction

The paper fits within the framework of locally compact quantum groups (LCQGs, on occasion), in the sense of [21, 22, 20] (with additional background in, say, [41, 30, 31, 26]). The results extend, to this quantum setting, a number of statements on (classical, i.e. non-quantum) locally compact groups that blend, in various proportions, the three items mentioned in the title. Relegating the background-recollection to 1, these are

- full crossed products $C_0^u(\widehat{\mathbb{G}}) \ltimes_f A$ attached to an action $\mathbb{G} \subset A$ by an LCQG on a C^* -algebra A (with $\widehat{\mathbb{G}}$ denoting the Pontryagin dual of \mathbb{G}). The usual classical construction (e.g. [4, §II.10.3.7]) transports to the quantum setting and features prominently, say, in [38].
- invariant measures, which phrase, in the present non-commutative setting, refers to \mathbb{G} -invariant states or functionals on A acted upon by \mathbb{G} .
- type-I lifting, which refers to results of the following general shape: Given a closed embedding $\mathbb{H} \leq \mathbb{G}$ with such and such a suite of properties (varying with the source/result), a unitary \mathbb{G} representation is of type I [12, Definition 5.4.2] provided its restriction to \mathbb{H} is.

This work is partially supported by NSF grant DMS-2001128.

It is this latter strand of thought, in particular, that provided the initial motivation. Classically, such problems are posed and solved for instance in [17, 18, 14, 15]. [18, Conjecture II], for instance, states that type-I lifting in the above sense goes through if $\mathbb{H} \leq \mathbb{G}$ is *cocompact*, i.e. the homogeneous space \mathbb{G}/\mathbb{H} is compact.

Various cases of that conjecture are then proven, but one emerging pattern, of particular relevance to the present work, is that \mathbb{G} -invariant measures on \mathbb{G}/\mathbb{H} are extremely useful in delivering such lifting results. In fact, by [18, Proposition 2.2], lifting holds as soon as such a finite measure exists, even without the compactness assumption on \mathbb{G}/\mathbb{H} .

This, then, brings two of the above-mentioned ingredients into the fold; the third (crossed products) comes about naturally as part of the standard induction-restriction toolkit for studying unitary representations. As is clear from a perusal of [15] and [14, §1] (modulo different notation), it is fruitful to

- recover \mathbb{H} -representations as representations of the full crossed product $C_0^u(\widehat{\mathbb{G}}) \ltimes_f C_0(\mathbb{G}/\mathbb{H})$ by imprimitivity [25, §3.7];
- and then make use of whatever additional structure the crossed product affords.

Much of this conceptual amalgam transports over to the quantum setting. We summarize (and by necessity, abbreviate) some of the results.

The analogue of [18, Proposition 2.2] holds for quantum groups, as do some of the proof techniques (Theorem 3.2 and Corollaries 3.4 and 3.5):

Theorem 0.1. Let $\mathbb{H} \leq \mathbb{G}$ be a closed quantum subgroup of an LCQG and assume \mathbb{G}/\mathbb{H} admits a \mathbb{G} -invariant finite measure.

- (a) For a unitary \mathbb{G} -representation U, the commutant $R(\mathbb{H})'$ of the restriction $U|_{\mathbb{H}}$ carries a normal conditional expectation onto the commutant $R(\mathbb{G})'$ of U.
- (b) In particular, the latter commutant is type-I if the former is, and hence the type-I property for $U|_{\mathbb{H}}$ entails that of U.
- (c) Specializing once more, if \mathbb{H} is type-I then so is \mathbb{G} .

Classically, if \mathbb{G}/\mathbb{H} carries a finite \mathbb{G} -invariant measure and is compact, then, as a matter of presumably independent interest, the obvious map

$$C^*(\mathbb{G}) \to C^*(\mathbb{G}) \ltimes_f C(\mathbb{G}/\mathbb{H})$$

is an embedding; this is noted in the course of the proof of [15, Proposition 4.2] and gives an alternative proof for type-I lifting in this (more restrictive) case [15, Corollary 4.5]. Once more, the quantum-flavored result holds; an amalgam of Theorem 4.2 and Corollary 4.3, somewhat weakened here for brevity reads

Theorem 0.2. If a C^* -algebra A has an invariant state with respect to an action $\mathbb{G} \circlearrowleft A$, then the canonical C^* morphism

$$C_0^u(\widehat{\mathbb{G}}) \to M(C_0^u(\widehat{\mathbb{G}}) \ltimes_f A)$$

is an embedding, which factors through

$$C_0^u(\widehat{\mathbb{G}}) \to C_0^u(\widehat{\mathbb{G}}) \ltimes_f A$$

if A is in additional unital.

Along the way, we also record a few scattered results on full LCQG crossed products for which it seems difficult to locate proofs in the literature, at least in this specific setup:

• One phenomenon that seems to be familiar is the "reciprocity" of 2.9: morphisms $\mathbb{H} \to \mathbb{G}$ and their duals $\widehat{\mathbb{G}} \to \widehat{\mathbb{H}}$ induce isomorphic full crossed products.

This is what [29, Proposition 2.5] boils down to, for instance, for the identity morphism of a classical locally compact group, while for closed embeddings of LCQGs an implicit application of the principle can be read into the chain of isomorphisms following [38, Remark 6.5]. Proposition 2.10 records the common generalization:

Proposition 0.3. Consider an LCQG morphism $\mathbb{H} \to \mathbb{G}$, with its induced action $\mathbb{H} \circlearrowright C_0^u(\mathbb{G})$, and the dual morphism $\widehat{\mathbb{G}} \to \widehat{\mathbb{H}}$ with its induced action $\widehat{\mathbb{G}} \circlearrowleft C_0^u(\widehat{\mathbb{H}})$.

We then have an isomorphism

$$C_0^u(\widehat{\mathbb{H}}) \ltimes_f C_0^u(\mathbb{G}) \cong C_0^u(\mathbb{G}) \ltimes_f C_0^u(\widehat{\mathbb{H}}).$$

between the two resulting full crossed products.

• On the other hand, it is a well-established classical result that full and reduced crossed products by amenable locally compact groups are canonically isomorphic [28, Theorem 7.7.7].

References to a quantum version appear in the literature [2, Remarques A.13 (c)] and again the isomorphism chain on [38, p.340, bottom]. There is a proof in [5, Proposition 5.6] for regular multiplicative unitaries which likely extends. We give an alternative proof below that directly uses the existence of a counit on the reduced function algebra $C_0(\mathbb{G})$.

The modern linguistic conventions require that we work with dual-coamenable LCQGs rather than amenable ones (see Definition 2.13), but with that in mind, Theorem 2.14 says precisely what is expected:

Theorem 0.4. For an action $\mathbb{G} \circlearrowleft A$ of a dual-coamenable LCQG the canonical surjection

$$C_0^u(\widehat{\mathbb{G}}) \ltimes_f A \to C_0(\widehat{\mathbb{G}}) \ltimes_r A$$

is an isomorphism.

1. Preliminaries

For preparatory material on operator algebras not recalled explicitly below the reader can consult any number of good sources, such as [4, 28, 33], [12] in conjunction with [13], etc.

Throughout the paper,

• $M(\cdot)$ denotes the *multiplier algebra* construction [4, §II.7.3] and as in [2, discussion preceding Définition 0.1] we set, for a C^* -algebra A and an ideal $J \subseteq A$,

(1-1)
$$M(A; J) := \{x \in M(A) \mid xA + Ax \subseteq J\} \subseteq M(J).$$

The latter inclusion is by means of the restriction map

$$M(A) \ni x \mapsto x|_J \in M(J),$$

which, as observed in loc.cit., embeds M(A; J) into M(J).

- $K(\mathcal{H})$ and $B(\mathcal{H}) \cong M(K(\mathcal{H}))$ [40, Theorem 15.2.12] are the algebras of compact and bounded operators on a Hilbert space \mathcal{H} respectively.
- The tensor-product symbol '\otimes' denotes whatever version of that concept is appropriate, depending on the objects it is placed between:
 - the usual tensor product of Hilbert spaces [4, §I.1.4.2];
 - the minimal or spatial tensor product [4, $\S II.9.1.3$] of C^* -algebras;
 - similarly for von Neumann algebras (the spatial tensor product of [4, §III.1.5.4]).

For C^* -algebras A and B the *strict* maps $A \to M(B)$ are of particular interest, and pervasive in the literature on locally compact quantum groups. Recall (e.g. [40, Definition 2.3.1]) that the *strict topology* on M(A) is that induced by the seminorms

$$x \mapsto ||ax||, x \mapsto ||xa||, a \in A$$

and ([4, §§II.7.3.13 and II.7.5.1] or [21, Notations and conventions]) that linear maps $A \to M(B)$ are strict if they are norm-bounded and continuous on the unit ball with respect to the strict topologies of $A \subset M(A)$ and M(B).

Remark 1.1. In the broader context of *Hilbert modules* the term 'strict topology' can be ambiguous [4, §II.7.2.9], but the ambiguities vanish for M(A) [4, II.7.3.1]. The upshot is that as far as M(A) goes, all of the various notions of strictness coincide: [23, discussion preceding Proposition 1.3], [4, §II.7.3.11], etc.

For C^* -morphisms $f: A \to M(B)$, in addition to strictness, non-degeneracy is another property of interest ([4, §II.7.3.8] or [23, discussion preceding Proposition 2.1]): the requirement that

$$f(A)B := \operatorname{span}\{f(a)b \mid a \in A, b \in B\}$$

be (norm-)dense in B. Non-degeneracy implies strictness [23, discussion preceding Proposition 5.5]. In fact, the two properties can be characterized in terms of maps between the two multiplier algebras:

$FULL\ QUANTUM\ CROSSED\ PRODUCTS,\ INVARIANT\ MEASURES,\\ ALEXANDRU\ CHIRVASITU \qquad \qquad AND\ TYPE-I\ LIFTING$

- strictness is equivalent to the extensibility of f to a C^* morphism $\overline{f}: M(A) \to M(B)$ strictly continuous on bounded sets;
- while non-degeneracy is equivalent to said extensibility, plus the condition that the extension \overline{f} be unital [23, Proposition 2.5].

Remark 1.2. To gain a fuller picture of the issue of the (unique) extensibility of maps $f: A \to M(B)$ to M(A), recall further that

- all strict linear maps in the sense above have such an extension \overline{f} : $M(A) \to M(B)$, strictly continuous on bounded sets [19, Proposition 7.2];
- and that furthermore there is no distinction between bounded-set strict continuity and just plain strict continuity [35, Corollary 2.7], so the qualification need not be observed.

Convention 1.3. So pervasive (e.g. Definition 2.3) is the assumption of non-degeneracy for a C^* -algebra representation

$$A \to B(\mathcal{H}) \cong M(K(\mathcal{H}))$$

(in the multiplier-algebra sense, or, equivalently, meaning [4, §II.6.1.5] that A does not annihilate any non-zero vectors in \mathcal{H}), that it will be profitable to simply assume non-degeneracy whenever representations are mentioned, unless specified otherwise.

1.4. Locally compact quantum groups. Much background on locally compact quantum groups is assumed implicitly, with [21, 22, 20] serving as the main references and a few others mentioned explicitly below. For our purposes, the fastest entry point to locally compact quantum groups is probably [22, Definition 1.1].

Definition 1.5. A locally compact quantum group (abbreviated LCQG) \mathbb{G} consists of

• a von Neumann algebra M, denoted by $L^{\infty}(\mathbb{G})$, equipped with a normal, unital *-algebra morphism

$$\Delta = \Delta_{\mathbb{G}} : M \to M \otimes M$$

coassociative in the sense that $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$.

• a normal, semifinite, faithful (nsf, for short) weight [34, Definition VII.1.1] φ on M (the left Haar weight of \mathbb{G}), that is left-invariant in the sense that

$$\varphi((\omega \otimes \mathrm{id})\Delta(x)) = \omega(1)\varphi(x)$$

for all $\omega \in M_*^+$ and all

$$x \in \mathfrak{m}_{\varphi}^+ := \{ x \in M^+ \mid \varphi(x) < \infty \}.$$

• similarly, an nsf weight ψ (the right Haar weight of \mathbb{G}), right-invariant in the sense that

$$\psi((\mathrm{id}\otimes\omega)\Delta(x)) = \omega(1)\psi(x)$$

for all $\omega \in M_*^+$ and $x \in \mathfrak{m}_{\psi}$.

Apart from Definition 1.5, a few common items attached to an LCQG $\mathbb G$ that will appear frequently are

- $C_0(\mathbb{G})$, the reduced function C^* -algebra of \mathbb{G} : this is the object introduced in [21, Definition 4.1], and is the focus of [21].
- the universal version $C_0^u(\mathbb{G})$ of the previous object: the A_u of [20, §5] (where $A = C_0(\mathbb{G})$); it comes equipped with a surjection $C_0^u(\mathbb{G}) \to C_0(\mathbb{G})$.
- the GNS construction[32, §I.2]

$$(L^2(\mathbb{G}), \ \pi_{\varphi}, \ \Lambda_{\varphi}) = (\mathcal{H}_{\varphi}, \ \pi_{\varphi}, \ \Lambda_{\varphi})$$

attached to the left Haar weight of G.

- the (Pontryagin-)dual LCQG $\widehat{\mathbb{G}}$ constructed in [21, §8]; $L^{\infty}(\widehat{\mathbb{G}})$ is also naturally realized as a von Neumann subalgebra of $B(L^2(\mathbb{G}))$, so this single Hilbert space carries the entire structure.
- the multiplicative unitary

$$W = W^{\mathbb{G}} \in M(C_0(\mathbb{G}) \otimes C_0(\widehat{\mathbb{G}})) \subset B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G}))$$

of [21, p.873] (see also [21, p.913, top] for the multiplier-algebra-membership claim).

For a morphism $\rho : \mathbb{H} \to \mathbb{G}$ of LCQGs (a notion studied extensively in its many guises in [27]) we write

$$\rho^u: C_0^u(\mathbb{G}) \to M(C_0^u(\mathbb{H}))$$

for the corresponding morphism of universal function C^* -algebras [27, Theorem 4.8];

$$\rho_l: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{H}) \otimes L^{\infty}(\mathbb{G})$$

for the incarnation of ρ as a left \mathbb{H} -action on \mathbb{G} (using the same symbol for the other versions of this map, such as universal or reduced C^* rather than W^* -algebras) [27, Theorem 5.5];

• similarly,

$$\rho_r: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{H})$$

for the right-handed version [27, Theorem 5.3].

$$U^u_{\rho} \in M(C^u_0(\mathbb{H}) \otimes C^u_0(\widehat{\mathbb{G}}))$$

for the universal *bicharacter* associated to ρ [27, §3] (noting the difference in handedness conventions).

• $\widehat{\rho}: \widehat{\mathbb{G}} \to \widehat{\mathbb{H}}$ for its dual [27, Corollary 4.3].

A closed embedding $\iota : \mathbb{H} \leq \mathbb{G}$ (realizing \mathbb{H} as a closed quantum subgroup of \mathbb{G}) is a morphism whose dual $\hat{\iota}$ is given by an embedding

$$L^{\infty}(\widehat{\mathbb{H}}) \subseteq L^{\infty}(\widehat{\mathbb{G}})$$

intertwining the comultiplications $\Delta_{\widehat{\mathbb{H}}}$ and $\Delta_{\widehat{\mathbb{G}}}$. These are ([10, Theorem 3.3]), in other words, the closed quantum subgroups of [38, Definition 2.5] and the closed quantum subgroups in the sense of Vaes of [10, Definition 3.1].

An LCQG is \mathbb{G} classical if $C_0(\mathbb{G})$ is commutative, and hence the algebra of continuous functions vanishing at infinity on an ordinary locally compact group, and dual-classical if $\widehat{\mathbb{G}}$ is classical. Other LCQG-specific notions (unitary representations, actions, crossed products, etc.) will be recalled below, as needed.

2. Remarks on full crossed products

Crossed products by quantum-group actions are studied extensively in [2] (see also [38, §2.3] for a brief refresher). We recall some of the concepts. First, following [2, Définition 0.3], [38, Definition 2.3], [11, Definition 2.1], etc.:

Definition 2.1. A unitary representation of an LCQG \mathbb{G} on a Hilbert space \mathcal{K} is a unitary $U \in M(C_0(\mathbb{G}) \otimes K(\mathcal{K}))$ such that $(\Delta \otimes \mathrm{id})U = U_{13}U_{23}$.

Equivalently, it is enough to require that $U \in L^{\infty}(\mathbb{G}) \otimes B(\mathcal{K})$; see [11, discussion following Definition 2.1], which in turn cites [7, Theorem 4.12].

A unitary representation U as above can also be recast as a non-degenerate C^* morphism $\pi_U : C_0^u(\widehat{\mathbb{G}}) \to B(\mathcal{K}); U$ and π_U determine each other uniquely [20, Proposition 5.2]: the bijective correspondence $U \leftrightarrow \pi_U$ is given by

$$(2-1) U = (\mathrm{id} \otimes \pi_U) W,$$

where $\mathbb{W} \in M(C_0(\mathbb{G}) \otimes C_0^u(\widehat{\mathbb{G}}))$ is the right-half-universal multiplicative unitary denoted by $\widehat{\mathcal{V}}$ in [20, Proposition 4.2].

Actions of an LCQG on a C^* -algebra A, with a caveat (cf. [2, Définition 0.2] and Remark 2.8), are the continuous coactions of [38, Definition 2.6].

Definition 2.2. Let \mathbb{G} be an LCQG, A a C^* -algebra, and \widetilde{A} its unitization [4, §II.1.2].

An action of \mathbb{G} on A is a non-degenerate C^* morphism

(2-2)
$$\rho: A \to M(C_0(\mathbb{G}) \otimes A)$$

such that

- (a) $(id \otimes \rho)\rho = (\Delta_{\mathbb{G}} \otimes id)\rho$;
- (b) ρ takes values in the subalgebra

$$M\left(C_0(\mathbb{G})\otimes \widetilde{A};\ C_0(\mathbb{G})\otimes A\right)\subseteq M(C_0(\mathbb{G})\otimes A)$$

defined as in (1-1), so that

$$\rho(A)(C_0(\mathbb{G})\otimes 1)\subseteq C_0(\mathbb{G})\otimes A;$$

(c) and $\rho(A)(C_0(\mathbb{G}) \otimes 1)$ is dense in $C_0(\mathbb{G}) \otimes A$.

We occasionally depict actions as circular arrows, as in the Introduction: $\mathbb{G} \circlearrowleft A$ or $\rho : \mathbb{G} \circlearrowleft A$.

The caveat alluded to before is condition (b); this is presumably intended in [38, Definition 2.6] (though not mentioned explicitly), since otherwise there is no reason, a priori, why $\alpha(B)(A \otimes 1)$ would be contained in $A \otimes B$.

As for unitary \mathbb{G} -representations compatible with \mathbb{G} -actions on C^* -algebras (see [2, 1.2. Exemples. (5)] or [38, p.325], where such representations are termed 'covariant'):

Definition 2.3. For an action $\rho: A \to M(C_0(\mathbb{G}) \otimes A)$ of an LCQG \mathbb{G} on a C^* -algebra A a ρ -equivariant (or \mathbb{G} -equivariant) representation on a Hilbert space \mathcal{K} is a pair (U, π) where

- $U \in M(C_0(\mathbb{G}) \otimes K(\mathcal{K}))$ is a unitary \mathbb{G} -representation;
- $\pi: A \to B(\mathcal{K})$ is a non-degenerate representation of the C^* -algebra on the same Hilbert space;
- and the equivariance condition

$$(2-3) \qquad (\mathrm{id} \otimes \pi) \rho(a) = U^*(1 \otimes \pi(a))U, \ \forall a \in A.$$

We regard 'covariant' and 'equivariant' (and similarly, 'covariance' and 'equivariance') as synonymous, in order to preserve agreement with the cited sources.

We will also occasionally package the Hilbert space into the mix, in order to display the symbol denoting it; thus, an equivariant representation (U, π) on \mathcal{K} might be depicted as (U, π, \mathcal{K}) .

One can now mimic the classical procedure (e.g. [4, §§II.10.3.7, II.10.3.14]) of defining both full and reduced crossed products: see for instance

- [38, §2.3] (where the full version of the crossed product is defined implicitly, via its universality property);
- [2, Définition 7.1] for reduced crossed products and [2, Remarques A.13 (b)] for a mention that covariant representations can be used to define full crossed products;
- [5, Définition 5.3] in the context of regular multiplicative unitaries;
- which is then extended in [39, Définition 4.2] in sufficient generality (the *weak Kac systems* of [39, p.39]).

Definition 2.4 below retraces [29, Definition 2.3].

Definition 2.4. Let $\rho: A \to M(C_0(\mathbb{G}) \otimes A)$ be an action of an LCQG on a C^* -algebra.

(a) For a ρ -equivariant representation (U,π) on $\mathcal K$ we define the C^* -algebra

(2-4)
$$C^*(U,\pi) := \left(C^*\text{-algebra generated by } \pi(A) \cdot \pi_U(C_0^u(\widehat{\mathbb{G}}))\right)$$

= $\left(C^*\text{-algebra generated by } \pi_U(C_0^u(\widehat{\mathbb{G}})) \cdot \pi(A)\right) \subseteq B(\mathcal{K}),$

where $\pi_U: C_0^u(\widehat{\mathbb{G}}) \to B(\mathcal{K})$ is as in Definition 2.1.

(b) An equivariant representation (U, π) weakly contains another, (U', π', \mathcal{K}') , if there is a representation

$$\psi: C^*(U,\pi) \to B(\mathcal{K}')$$
 with $\psi \circ \pi_U = \pi_{U'}$ and $\psi \circ \pi = \pi'$.

- (c) A ρ -equivariant representation is weakly universal if it weakly contains every other equivariant representation.
- (d) We define the full crossed product

$$C_0^u(\widehat{\mathbb{G}}) \ltimes_f A := C^*(U,\pi)$$

for a weakly universal covariant representation (U, π) .

For reduced crossed products, one can adopt either of two approaches.

Definition 2.5. Let $\rho: A \to M(C_0(\mathbb{G}) \otimes A)$ be an action of an LCQG on a C^* -algebra.

• First, per [2, Définition 7.1] or [38, p.324]: the reduced crossed product attached to ρ is

$$C_0(\widehat{\mathbb{G}}) \ltimes_r A := \left(C^*\text{-algebra generated by } \rho(A) \cdot (C_0(\widehat{\mathbb{G}}) \otimes \mathbb{C})\right) \subseteq M(K(L^2(\mathbb{G})) \otimes A).$$

- Equivalently, by analogy to the classical (or dual-classical) constructions in, say, [4, §§II.10.3.14, II.3.10.14] or [29, Definition 2.7]:
 - (a) For any representation $\sigma:A\to B(\mathcal{K})$ consider the ρ -equivariant representation

$$(U_{\sigma}, \ \widetilde{\sigma}) := (W \otimes 1, \ (\pi_{\mathbb{G}} \otimes \sigma)\rho)$$

on $L^2(\mathbb{G}) \otimes \mathcal{K}$, where $W \in M(C_0(\mathbb{G}) \otimes C_0(\widehat{\mathbb{G}}))$ is the multiplicative unitary of \mathbb{G} and $\pi_{\mathbb{G}} : C_0(\mathbb{G}) \to B(L^2(\mathbb{G}))$ is the GNS representation of the left Haar weight of \mathbb{G} .

(b) The reduced crossed product attached to ρ is

$$C_0(\widehat{\mathbb{G}}) \ltimes_r A := C^*(U_\sigma, \ \widetilde{\sigma})$$

as in Definition 2.4 (a) for a faithful representation $\sigma: A \to B(\mathcal{K})$.

It is not difficult to see that in the second definition the resulting C^* -algebra does not depend on σ (so long as the latter is faithful) and that the two definitions are indeed equivalent.

Given an action (2-2) and an equivariant representation (U, π, \mathcal{K}) one expects the corresponding algebra $C^*(U, \pi)$ of (2-4) to come equipped with non-degenerate morphisms

(2-5)
$$C_0^u(\mathbb{G}) \to M(C^*(U,\pi))$$
 and $A \to M(C^*(U,\pi))$.

This is indeed the case according to [39, Lemme 4.1], whose first two items we paraphrase as follows.

Proposition 2.6. Let (U, π, \mathcal{K}) be a ρ -equivariant representation for an action $\rho : \mathbb{G} \circlearrowleft A$.

(1) The C^* -algebra $C^*(U,\pi)$ of (2-4) can be recovered as

$$C^*(U,\pi) = \frac{\pi_U(C_0^u(\widehat{\mathbb{G}})) \cdot \pi(A)}{\pi(A) \cdot \pi_U(C_0^u(\widehat{\mathbb{G}}))} \|\cdot\|,$$

i.e. these linear spans are already closed under multiplication and '*'.

(2) The non-degenerate morphisms

$$\pi_U: C_0^u(\mathbb{G}) \to B(\mathcal{K}) \quad and \quad \pi: A \to B(\mathcal{K})$$

factor through non-degenerate morphisms (2-5).

Remark 2.7. As noted in [39, §2.3], that paper's weak-Kac-system formalism applies to locally compact quantum groups formalized as in [21]; we will thus apply results in [39] freely, as needed.

Other, earlier versions of the result appear as [24, Lemma 2.5], [2, Lemme 7.2 and following discussion] and [5, Proposition 5.2]; the proofs all ultimately revolve around the same idea of factoring an arbitrary functional $\omega \in B(L^2(\mathbb{G}))$ as $\omega' x$ for some

$$\omega' \in B(L^2(\mathbb{G}))_*$$
 and $x \in C_0(\mathbb{G});$

this is a consequence, say, of the *Cohen factorization theorem* [24, p.750, Theorem] or [16, Theorem 32.22].

Remark 2.8. In particular, applying Proposition 2.6 to a weakly universal equivariant representation in the sense of Definition 2.4 (c) we obtain the universal unitary

$$U_u \in M(C_0(\mathbb{G}) \otimes C_0^u(\widehat{\mathbb{G}}) \ltimes_f A)$$

and non-degenerate representation

$$\pi_u: A \to M(C_0^u(\widehat{\mathbb{G}}) \ltimes_f A)$$

of [38, p.325] (where U_u is denoted by X_u).

Note, though, that the proofs implying the existence of these two objects rely crucially on actions (2-2) actually taking values in $M\left(C_0(\mathbb{G})\otimes \widetilde{A};\ C_0(\mathbb{G})\otimes A\right)$. The same constraint is imposed in [29, Definition 2.1] and [24, Definition 2.1] in the context of dual-classical LCQGs, both sources using the notation

$$\widetilde{M}(A \otimes B) := M(\widetilde{A} \otimes B; \ A \otimes B),$$

with the latter identified with a C^* -subalgebra of $M(A \otimes B)$. [24, §1], in particular, contains an illuminating discussion of the advantages of \widetilde{M} over M.

2.9. Full-crossed-product reciprocity. The following remark, for closed embeddings, is implicit in the computation on [38, p.340, bottom].

Proposition 2.10. Let $\rho: \mathbb{H} \to \mathbb{G}$ be an LCQG morphism. We have the following isomorphism between the universal crossed products built out of the left actions induced by ρ and its dual $\widehat{\rho}: \widehat{\mathbb{G}} \to \widehat{\mathbb{H}}$:

$$C_0^u(\widehat{\mathbb{H}}) \ltimes_f C_0^u(\mathbb{G}) \cong C_0^u(\mathbb{G}) \ltimes_f C_0^u(\widehat{\mathbb{H}}).$$

Proof. Denote by B^u and A^u the universal C^* -algebras attached to \mathbb{H} and \mathbb{G} respectively, and similarly for duals (with $\widehat{\bullet}$ indicating duality); the target isomorphism then becomes

$$\widehat{B}^u \ltimes_f A^u \cong A^u \ltimes_f \widehat{B}^u.$$

According to Definition 2.4, a $\widehat{B}^u \ltimes_f A^u$ -representation on a Hilbert space \mathcal{H} consists of

- A representation $\pi: A^u \to B(\mathcal{H})$ of the C^* -algebra A^u on \mathcal{H} ;
- and a unitary representation

$$(2-6) X \in M(B^u \otimes K(\mathcal{H}))$$

of the quantum group H;

• such that

$$(2-7) \qquad (\mathrm{id} \otimes \pi) \rho_l(x) = X^* (1 \otimes \pi(x)) X, \ \forall x \in A^u.$$

We write X_l for X, to highlight the left-hand placement of the B-leg in (2-6) (there will be an X_r shortly).

Now, the universality property of A^u provides [20, Proposition 5.3 and/or dual to Proposition 6.5] a bijection between $\pi:A^u\to B(\mathcal{H})$ as above and unitaries

$$X_r \in M(K(\mathcal{H}) \otimes \widehat{A}^u)$$

(satisfying appropriate conditions).

Consider the universal unitary $U^u = U^u_A \in M(A^u \otimes \widehat{A}^u)$ of [20, Proposition 6.4]. Applying the two sides of (2-7) to its left leg and using the identity

$$(\Delta \otimes \mathrm{id})U = U_{13}U_{23},$$

(2-7) translates to

$$(2-8) U_{\rho 13} X_{r23} = X_{l12}^* X_{r23} X_{l12},$$

where

$$U^u_{\rho} = (\rho^u \otimes \mathrm{id}) U^u_A \in M(B^u \otimes \widehat{A}^u)$$

is the bicharacter associated to ρ . Moving two factors around, this is equivalent to

$$(2-9) X_{l12}U_{\rho 13}^u = X_{r23}X_{l12}X_{r23}^*.$$

Now.

- applying the * operation to (2-9);
- and also reversing the tensorands

transforms that equation into

(2-10)
$$\widehat{U}^{u}_{\rho_{13}}\widehat{X}_{r23} = X^*_{l12}\widehat{X}_{r23}\widehat{X}_{l12},$$

where

 $\widehat{U}^u_{\rho} := \text{flip}(U^{u*}_{\rho}) = U^u_{\widehat{\rho}} \in M(\widehat{A}^u \otimes B^u)$

is the universal bicharacter attached to the dual quantum-group morphism $\widehat{\rho}: \widehat{\mathbb{G}} \to \widehat{\mathbb{H}}$ [27, Proposition 3.9];

• and similarly,

$$\widehat{X}_l := \text{flip}(X_r^*) \in M(\widehat{A}^u \otimes K(\mathcal{H}));$$

• and

$$\widehat{X}_r := \text{flip}(X_l^*) \in M(K(\mathcal{H}) \otimes A^u).$$

Note, though, that (2-10) is precisely (2-8) decorated with hats; in other words, specifying a pair (X_l, X_r) is the same as specifying a pair $(\widehat{X}_l, \widehat{X}_r)$, playing the same role for the dual group morphism $\widehat{\rho}$. This means that the representations of $\widehat{B}^u \ltimes_f A^u$ and $A^u \ltimes_f \widehat{B}^u$ are classified by the same data, and we are done. \square

Remark 2.11. [29, Proposition 2.5] is, essentially, Proposition 2.10 applied to the identity morphism on a classical locally compact group.

2.12. Coamenability and full crossed products. Theorem 2.14 below is, presumably, well known:

- it is a straightforward quantum generalization of the fact that full and reduced crossed products by amenable locally compact groups coincide [28, Theorem 7.7.7];
- it is invoked implicitly in [38, paragraph following Remark 6.5];
- claimed explicitly in [2, Remarques A.13 (c)] in the setting of regular LCQGs;
- proven in [5, Proposition 5.6] for *regular* multiplicative unitaries (and hence locally compact quantum groups);
- and presumably the proof extends generally, as the statement [39, Définition] seems to imply.

The earlier sources refer to *amenable* locally compact quantum groups ('moyennable' in [2, Remarques A.13 (c)]). To preserve agreement with the language of [3] (now in wide use), the term adopted below would is 'dual-coamenable', i.e. an LCQG \mathbb{G} whose dual $\widehat{\mathbb{G}}$ is coamenable in the following sense ([3, Definition 3.1, Theorem 3.1]).

Definition 2.13. An LCQG \mathbb{G} is *coamenable* if either of the two following equivalent conditions holds

- The surjection $C_0^u(\mathbb{G}) \to C_0(\mathbb{G})$ is an isomorphism.
- The reduced function algebra $C_0(\mathbb{G})$ has a *counit*: a C^* -morphism $\varepsilon: C_0(\mathbb{G}) \to \mathbb{C}$ such that $(\mathrm{id} \otimes \varepsilon) \Delta_{\mathbb{G}} = \mathrm{id}$.

 \mathbb{G} is dual-coamenable if $\widehat{\mathbb{G}}$ is coamenable.

The proof of Theorem 2.14 below proceeds along the same lines as that of the dual-classical [24, Theorem 3.7], directly using the counit (rather than alternative characterizations of coamenability, as in [5, Proposition 5.6]).

Theorem 2.14. For an action $\rho: A \to M(C_0(\mathbb{G}) \otimes A)$ of a dual-coamenable locally compact quantum group the canonical morphism

$$C_0^u(\widehat{\mathbb{G}}) \ltimes_f A \to C_0(\widehat{\mathbb{G}}) \ltimes_r A$$

is an isomorphism.

Proof. We have to show that every pair consisting of

• a representation

$$(2-11) \pi: A \to B(\mathcal{H});$$

• and a G-representation

$$(2-12) X \in M(C_0(\mathbb{G}) \otimes K(\mathcal{H}));$$

• satisfying the equivariance condition

$$(2-13) \qquad (\mathrm{id} \otimes \pi)\rho(a) = X^*(1 \otimes \pi(a))X \in \forall a \in A$$

arises from a representation of the *reduced* crossed product $C_0(\widehat{\mathbb{G}}) \ltimes_r A$ on the same Hilbert space \mathcal{H} .

Consider the representation

$$M(K(L^2(\mathbb{G})) \otimes A) \ni x \otimes a \stackrel{\theta}{\longmapsto} X(x \otimes \pi(a))X^* \in B(L^2(\mathbb{G}) \otimes \mathcal{H}),$$

and restrict it to the reduced crossed product ([38, $\S 2.3$]) (2-14)

$$C_0(\widehat{\mathbb{G}}) \ltimes_r A = \overline{\operatorname{span}} \{ \rho(a)(x \otimes 1) \mid x \in C_0(\widehat{\mathbb{G}}), \ a \in A \} \subset M(K(L^2(\mathbb{G})) \otimes A).$$

Next, apply θ to the typical element $\rho(a)(x \otimes 1)$ displayed in (2-14), obtaining

(2-15)
$$X(\operatorname{id} \otimes \pi)\rho(a)X^*X(x\otimes 1)X^* = (1\otimes \pi(a))X(x\otimes 1)X^* \in B(L^2(\mathbb{G})\otimes \mathcal{H}),$$
 via the equivariance condition (2-13).

Denote by $\pi_X : C_0^u(\widehat{\mathbb{G}}) \to B(\mathcal{H})$ attached to X and recall the half-universal multiplicative unitary \mathbb{W} of (2-1) (which in the dual-coamenable case also coincides with the plain multiplicative unitary we have been denoting by W). Then:

• we have

$$X = (\mathrm{id} \otimes \pi_X) W$$

by [20, Proposition 5.2];

• and in general, even without the coamenability assumption,

$$C_0(\widehat{\mathbb{G}}) \ni x \mapsto \mathbb{W}(x \otimes 1)\mathbb{W}^* \in M(C_0(\widehat{\mathbb{G}}) \otimes C_0^u(\widehat{\mathbb{G}}))$$

is the flipped coaction of $C_0^u(\widehat{\mathbb{G}})$ on its reduced version by comultiplication (as follows from the formula for $\Delta_{\widehat{\mathbb{G}}}$ on [20, p.294]).

It follows, then, that the rightmost element of (2-15) satisfies

$$(2-16) (1 \otimes \pi(a))X(x \otimes 1)X^* \in M(C_0(\widehat{\mathbb{G}}) \otimes K(\mathcal{H})).$$

Now, since we are assuming $\widehat{\mathbb{G}}$ is coamenable, $C_0(\widehat{\mathbb{G}}) \cong C_0^u(\widehat{\mathbb{G}})$ is equipped with a counit $\varepsilon: C_0(\widehat{\mathbb{G}}) \to \mathbb{C}$ [3, Theorem 3.1]. It follows that we can apply that counit to the left leg of (2-16) obtaining, in the end, a representation

$$\theta' := (\varepsilon \otimes \mathrm{id})\theta : C_0(\widehat{\mathbb{G}}) \ltimes_r A \to B(\mathcal{H}).$$

That that representation gives back the original (2-11) and (2-12) by

$$\pi = \theta' \circ \rho$$
 and $X = (id \otimes \theta')(W \otimes 1)$

for the multiplicative unitary

$$W \in M(C_0(\mathbb{G}) \otimes C_0(\widehat{\mathbb{G}}))$$

is now a simply matter of unwinding the construction, which we omit. \Box

Remark 2.15. The proof of Theorem 2.14 given above follows the same general plan as that of [24, Theorem 3.7]: the latter covers the case when $\widehat{\mathbb{G}}$ is classical, so that indeed \mathbb{G} is dual-coamenable (because classical locally compact groups are coamenable).

3. Restricting representations to finite-covolume subgroups

The aim of the section is to produce a quantum version of [18, Proposition 2.2]: if \mathbb{G}/\mathbb{H} has a finite \mathbb{G} -invariant measure then unitary \mathbb{G} -representations whose restriction to \mathbb{H} is type-I are themselves type-I. Recall (e.g. [12, Definition 5.4.2 and §§5.5.1 and 13.9.4]):

Definition 3.1. A representation $\pi: A \to B(\mathcal{H})$ of a C^* -algebra is type-I (or of type I) if the commutant $\pi(A)'$ is type-I as a von Neumann algebra [12, A 35].

For an LCQG \mathbb{G} , a unitary representation $U \in M(C_0(\mathbb{G}) \otimes K(\mathcal{H}))$ is type-I if the associated C^* -algebra representation $\pi_U : C_0^u(\widehat{\mathbb{G}}) \to B(\mathcal{H})$ of Definition 2.1 is type-I in the previous sense.

 \mathbb{G} itself is *type-I* if all of its unitary representations are.

Theorem 3.2. Fix

- a closed embedding $\iota : \mathbb{H} \to \mathbb{G}$ of LCQGs;
- $a \ \mathbb{G}$ -invariant normal state $\theta \in L^{\infty}(\mathbb{G}/\mathbb{H})_*$;
- and a unitary \mathbb{G} -representation $U \in M(C_0(\mathbb{G}) \otimes K(\mathcal{H}))$.

There is a normal conditional expectation $E: R(\mathbb{H})' \to R(\mathbb{G})'$.

Although crossed products do not feature directly here, we work our way back into the topic later, as part of the same circle of ideas. The proof strategy is very much parallel to that of [18, Proposition 2.2]. Let $\iota : \mathbb{H} \leq \mathbb{G}$ be a closed quantum subgroup of a locally compact quantum group. For a unitary \mathbb{G} -representation $U \in M(C_0(\mathbb{G}) \otimes K(\mathcal{H}))$ we write

$$U|_{\mathbb{H}} \text{ or } U_r \in M(C_0(\mathbb{H}) \otimes K(\mathcal{H}))$$

for its restriction to \mathbb{H} : see [27, Proposition 6.5] and [6, §2.2]. We also write, given such a representation, $R(\mathbb{G})$ and $R(\mathbb{H})$ for the von Neumann subalgebras of $B(\mathcal{H})$ generated by \mathbb{G} and \mathbb{H} respectively, i.e. the weak* closures of

$$\{(\omega \otimes \mathrm{id})U \mid \omega \in L^{\infty}(\mathbb{G})_*\} \text{ and } \{(\omega \otimes \mathrm{id})U|_{\mathbb{H}} \mid \omega \in L^{\infty}(\mathbb{H})_*\}$$

respectively. We naturally have

$$R(\mathbb{H}) \subseteq R(\mathbb{G}) \Longrightarrow R(\mathbb{G})' \subseteq R(\mathbb{H})'.$$

To check the first inclusion (whence the second follows), note that $R(\mathbb{G})$ is the W*-algebra generated by he image of the representation $\pi_U: C_0^u(\widehat{\mathbb{G}}) \to$

 $B(\mathcal{H})$ attached to U, similarly for \mathbb{H} and $U_r = U|_{\mathbb{H}}$, and ([6, §2.2]) there is a factorization

$$C_0^u(\widehat{\mathbb{G}}) \xrightarrow{\widehat{\iota}^u \to C_0^u(\widehat{\mathbb{H}}) \xrightarrow{\pi_{U_r}} B(\mathcal{H})}$$

through the morphism $\hat{\iota}^u$ associated to $\iota : \mathbb{H} \to \mathbb{G}$.

Note also, for future reference:

$$(3-1) R(\mathbb{G})' = \{ T \in B(\mathcal{H}) \mid U^*(1 \otimes T)U = 1 \otimes T \}$$

$$(3-2) R(\mathbb{H})' = \{ T \in B(\mathcal{H}) \mid U_r^*(1 \otimes T)U_r = 1 \otimes T \}.$$

Recall (e.g. [33, Definition III.3.3] and [34, Definition IX.4.1]):

Definition 3.3. For an inclusion $A \subseteq B$ of C^* -algebras a norm-1 projection or conditional expectation $E: B \to A$ is an idempotent, norm-1 map onto B.

When the inclusion is one of W^* -algebras we typically require that conditional expectations be *normal*, i.e. weak*-continuous.

Proof of Theorem 3.2. The construction is very much as in the proof of [17, Theorem 1], adapted to the present quantum setting.

Write

$$V := \text{flip}(U) \in B(\mathcal{H}) \otimes L^{\infty}(\mathbb{G}) \text{ and } V_r := \text{flip}(U_r) \in B(\mathcal{H}) \otimes L^{\infty}(\mathbb{H})$$

for the unitaries obtained from U and $U_r = U|_{\mathbb{H}}$ by interchanging tensorands, so that

$$(3-3) \qquad (\mathrm{id} \otimes \Delta_{\mathbb{G}})V = V_{12}V_{13}$$

(3-4)
$$(id \otimes \iota_r)V = V_{12}V_{r13}$$
 [6, Lemma 2.9, equation (2.2)]

The map

(3-5)
$$B(\mathcal{H}) \ni T \longmapsto V(T \otimes 1)V^* \in B(\mathcal{H}) \otimes L^{\infty}(\mathbb{G})$$

is the (right) conjugation action of \mathbb{G} on $B(\mathcal{H})$ attached to U, and the expectation E will be

$$R(\mathbb{H})' \ni T \stackrel{E}{\longmapsto} (\mathrm{id} \otimes \theta) V(T \otimes 1) V^* \in R(\mathbb{G})'.$$

We have to argue that

(a) the definition indeed makes sense, i.e.

$$(3-6) T \in R(\mathbb{H})' \Rightarrow V(T \otimes 1)V^* \in B(\mathcal{H}) \otimes L^{\infty}(\mathbb{G}/\mathbb{H}),$$

so that $(id \otimes \theta)$ is then applicable;

- (b) E is a normal and has norm 1;
- (c) E is the identity on $R(\mathbb{G})' \subseteq R(\mathbb{H})'$;
- (d) and its range is contained in $R(\mathbb{G})'$.

We tackle these in turn.

(a) To verify (3-6), fix $T \in R(\mathbb{H})'$; then:

$$(\mathrm{id} \otimes \iota_r)V(T \otimes 1)V^* = V_{12}V_{r13}(T \otimes 1 \otimes 1)V_{r13}^*V_{12}^* \quad (3\text{-}4)$$
$$= V_{12}(T \otimes 1 \otimes 1)V_{12}^* \quad \text{because } T \in R(\mathbb{H})'$$
$$= V(T \otimes 1)V^* \otimes 1,$$

which indeed means that

$$V(T \otimes 1)V^* \in B(\mathcal{H}) \otimes L^{\infty}(\mathbb{G}/\mathbb{H}) \subset B(\mathcal{H}) \otimes L^{\infty}(\mathbb{G});$$

this ensures that E is indeed well defined, taking care of (a).

- (b) E is a composition of a von-Neumann-algebra morphism (3-5) and a normal, (completely) positive map id $\otimes \theta$ [33, Theorem IV.5.13], so it too must be normal and completely positive. Since it is moreover clearly unital, its norm is ||E(1)|| = 1 (as in [1, Proposition 1.6.2], for instance).
 - (c) It follows from (3-1) that

$$T \in R(\mathbb{G})' \Rightarrow V(T \otimes 1)V^* = T \otimes 1,$$

and a further application of the unital $1 \otimes \theta$ will produce T.

(d) We have to show that V commutes with operators of the form $E(T) \otimes 1$. For a fixed $T \in R(\mathbb{H}')$, that computation is as follows.

$$\begin{split} V(E(T)\otimes 1)V^* &= V((\operatorname{id}\otimes\theta)V(T\otimes 1)V^*\otimes 1)V^* \quad \text{by definition} \\ &= (\operatorname{id}\otimes\operatorname{id}\otimes\theta)V_{12}V_{13}(T\otimes 1\otimes 1)V_{13}^*V_{12}^* \\ &= (\operatorname{id}\otimes\operatorname{id}\otimes\theta)(\operatorname{id}\otimes\Delta_{\mathbb{G}})V(T\otimes 1)V^* \quad \text{(3-3)} \\ &= (\operatorname{id}\otimes\theta)V(T\otimes 1)V^*\otimes 1 \quad \mathbb{G}\text{-invariance of }\theta \\ &= E(T)\otimes 1. \end{split}$$

This concludes the proof.

Consequently:

Corollary 3.4. With the same hypothesis as in Theorem 3.2, if $R(\mathbb{H})'$ is semifinite or of type I then so is $R(\mathbb{G})'$.

Proof. Indeed, by [36, Theorems 3 and 4] semifinite (type-I) von Neumann algebras only admit normal expectations onto semifinite (respectively type-I) von Neumann subalgebras. \Box

The type-I branch of the statement says that \mathbb{G} -representations are type-I provided their restrictions to \mathbb{H} are: this, classically, is [18, Proposition 2.2]. Specializing again to *all* unitary representations ([17, Theorem 1] being the classical analogue):

Corollary 3.5. Let $\mathbb{H} \leq \mathbb{G}$ be a closed embedding of LCQGs such that $L^{\infty}(\mathbb{G}/\mathbb{H})$ has an invariant normal state.

If \mathbb{H} is of type I then so is \mathbb{G} .

4. Invariant measures on (compact) quantum spaces

The "compact quantum spaces" in question are simply unital C^* -algebras. The section connects back to the preceding material as follows.

The authors of [15] address type-I-lifting (classical) results analogous to [17, Theorem 1] and [18, Proposition 2.2] by

• noting that for a cocompact embedding $\mathbb{H} \leq \mathbb{G}$ of locally compact groups such that \mathbb{G}/\mathbb{H} has a finite \mathbb{G} -invariant measure the canonical map

$$(4-1) C_0^u(\widehat{\mathbb{G}}) \to C_0^u(\widehat{\mathbb{G}}) \ltimes_f C(\mathbb{G}/\mathbb{H})$$

is an embedding [15, proof of Proposition 4.2];

• and then leveraging imprimitivity [25, §3.7] to recast \mathbb{H} -representations as $C_0^u(\widehat{\mathbb{G}}) \ltimes_f C(\mathbb{G}/\mathbb{H})$ -representations (see [15, p.275] as well as [14, Introduction], where this is further elaborated upon).

Some of the results (e.g. [15, Corollary 4.5]) turn out to be weaker than [17, Theorem 1] or [18, Proposition 2.2] because the latter only assumes a finite invariant measure (and no compactness), but the injectivity of (4-1) seems of interest on its own, and is what motivated the present quantum version thereof.

To make sense of the statement of Theorem 4.2, recall (e.g. [9, Definition 3.3 and Proposition 3.4] or [11, Lemma 3.1]):

Definition 4.1. For a unitary representation $U \in M(C_0(\mathbb{G}) \otimes K(\mathcal{H}))$ of an LCQG a vector $\xi \in \mathcal{K}$ is U- or \mathbb{G} -invariant (or just plain invariant, all else being clear) if either of the following equivalent conditions holds

- $U(\eta \otimes \xi) = \eta \otimes \xi$ for all $\eta \in L^2(\mathbb{G})$.
- For all $x \in C_0^u(\widehat{\mathbb{G}})$ we have

$$\pi_U(x)\xi = \varepsilon(x)\xi,$$

where π_U is as in Definition 2.1 and $\varepsilon: C_0^u(\widehat{\mathbb{G}}) \to \mathbb{C}$ is the *counit* of [20, Proposition 6.3].

The above discussion on the injectivity of (4-1) extends to actions on non-unital C^* -algebras, much as in [14, Lemma 4.1]. First, as usual [4, Definition II.6.2.1], a state θ on a (possibly non-unital) C^* -algebra A is a positive linear functional of norm 1. The strictly-continuous extension of θ to M(A) is then a state in the usual sense, i.e. unital [4, Proposition II.6.2.5].

For an action $\rho: A \to M(C_0(\mathbb{G}) \otimes A)$, a functional $\theta \in A^*$ is invariant if

$$(\mathrm{id} \otimes \theta)\rho = \theta(\cdot)1 : A \to M(C_0(\mathbb{G})).$$

Theorem 4.2. Let $\rho: A \to M(C_0(\mathbb{G}) \otimes A)$ be an action of an LCQG on a C^* -algebra A, and consider the following conditions.

- (a) There is a ρ -invariant state $\phi \in A^*$.
- (b) There is a ρ -equivariant representation (U, π) having a non-zero \mathbb{G} -invariant vector.

(c) The canonical non-degenerate morphism

$$(4-2) C_0^u(\widehat{\mathbb{G}}) \to M(C_0^u(\widehat{\mathbb{G}}) \ltimes_f A)$$

of (2-5) is one-to-one.

We have

$$(a) \iff (b) \Longrightarrow (c).$$

Proof. We prove the three claimed implications separately.

(a) \Longrightarrow (b). Here, it will be convenient to assume that A is unital. This is always achievable:

An action ρ extends to a unital map

$$\widetilde{A} \to M(C_0(\mathbb{G}) \otimes A),$$

which in fact can be regarded as taking values in $M(C_0(\mathbb{G}) \otimes \widetilde{A})$ (because ρ did: Definition 2.2 (b)). Naturally, the resulting morphism

$$\widetilde{\rho}: \widetilde{A} \to M(C_0(\mathbb{G}) \otimes \widetilde{A})$$

is non-degenerate (being unital), and its coassociativity is a simple check. It follows, then, that an action ρ on A induces another, $\widetilde{\rho}$, on the unitization \widetilde{A} . Invariant states or equivariant representations with invariant vectors therein also transport over from A to \widetilde{A} in the obvious fashion, so that the items in (a) or (b) for ρ are in bijection, respectively, with the same items for $\widetilde{\rho}$.

Throughout the proof of the current implication we will thus assume that A is unital. Let $(\mathcal{K}_{\phi}, \pi_{\phi}, \Lambda_{\phi})$ be the GNS representation [4, §6.4] associated to an invariant state ϕ , so that

$$\pi_{\phi}: A \to B(\mathcal{K}_{\phi}), \quad \Lambda_{\phi}: A \to \mathcal{K}_{\phi}$$

are, respectively, a representation and a map satisfying

$$\phi(a) = \langle \xi_{\phi} \mid a\xi_{\phi} \rangle$$

for the unit vector $\xi_{\phi} := \Lambda_{\phi}(1)$ (recall that A is unital). This will be the A-half of the desired equivariant representation. The other component, $U \in M(C_0(\mathbb{G}) \otimes K(\mathcal{K}_{\phi}))$, is defined by

$$(4-3) U^*(\Lambda_{\varphi}(x) \otimes \Lambda_{\phi}(a)) := (\Lambda_{\varphi} \otimes \Lambda_{\phi})(\rho(a)(x \otimes 1));$$

here, a ranges over A, $(L^2(\mathbb{G}), \pi_{\varphi}, \Lambda_{\varphi})$ is the GNS representation of the left Haar weight φ , and

$$x \in \mathfrak{n}_{\varphi} := \{ y \in L^{\infty}(\mathbb{G}) \mid \varphi(y^*y) < \infty \},$$

i.e. x is square-integrable with respect to that weight.

This is a variant of the usual construction, employed in [21, Proposition 3.17] to define the multiplicative unitary of \mathbb{G} . Setting $\delta = 1$, this also coincides with the construction in [37, Proposition 2.4] (where our U^* is V_{θ}).

The latter result implies that this is indeed a unitary \mathbb{G} -representation and that in fact (U, π_{ϕ}) is covariant ([37, second of the four displayed equations

in the conclusion of Proposition 2.4], where V_{θ} is our U^*). As for invariant vectors, setting a = 1 in (4-3) (so that $\Lambda_{\phi}(1) = \xi_{\phi}$) yields

$$U^*(\Lambda_{\varphi}(x) \otimes \xi_{\phi}) = \Lambda_{\varphi}(x) \otimes \xi_{\phi}, \ \forall x \in \mathfrak{n}_{\varphi}.$$

Since $\Lambda_{\varphi}(\mathfrak{n}_{\varphi}) \subseteq L^2(\mathbb{G})$ is dense, this means precisely that ξ_{ϕ} is *U*-invariant.

(a) \Leftarrow (b). Consider an equivariant representation

$$U \in M(C_0(\mathbb{G}) \otimes K(\mathcal{K}))$$
 and $\pi: A \to B(\mathcal{K})$

as in the statement, with a *U*-invariant unit vector $\xi \in \mathcal{K}$. The claim is that the state

$$\phi(a) := \langle \xi \mid \pi(a)\xi \rangle, \ a \in A$$

is ρ -invariant. Indeed, for η , $\zeta \in L^2(\mathbb{G})$ we have

$$\phi((\omega_{\eta,\zeta} \otimes \mathrm{id})\rho(a)) = \langle \xi \mid (\omega_{\eta,\zeta} \otimes \pi)\rho(a)\xi \rangle \quad \text{by (4-4)}$$

$$= \langle \eta \otimes \xi \mid (\mathrm{id} \otimes \pi)\rho(a)(\zeta \otimes \xi) \rangle$$

$$= \langle \eta \otimes \xi \mid U^*(1 \otimes \pi(a))U(\zeta \otimes \xi) \rangle \quad \text{by equivariance}$$

$$= \langle U(\eta \otimes \xi) \mid (1 \otimes \pi(a))U(\zeta \otimes \xi) \rangle$$

$$= \langle \eta \otimes \xi \mid (1 \otimes \pi(a))(\zeta \otimes \xi) \rangle \quad \text{by the U-invariance of ξ}$$

$$= \langle \eta \mid \zeta \rangle \phi(a).$$

This is what ϕ being ρ -invariant means, so we are done.

(b) \Longrightarrow (c). We have to argue that under the hypothesis (b) some ρ -equivariant representation (U,π) is faithful on $C_0^u(\widehat{\mathbb{G}})$ when restricted along (4-2).

We already have a covariant representation (U, π) on say, a Hilbert space \mathcal{K} , as in (b). Next, fix a unitary representation

$$V \in M(C_0(\mathbb{G}) \otimes K(\mathcal{H}))$$

so that the morphism $\pi_V: C_0^u(\widehat{\mathbb{G}}) \to B(\mathcal{H})$ via [20, Proposition 5.2] is faithful. The target covariant representation (U', π') will now have carrier space $\mathcal{K} \otimes \mathcal{H}$, and its components are defined as follows.

• The \mathbb{G} -representation-component U' is the tensor product of U and V (as \mathbb{G} -representations), denoted by ' \mathbb{Q} ' in [6, §1]:

$$(4-5) U' := U \oplus V := V_{13}U_{12} \in M(C_0(\mathbb{G}) \otimes K(\mathcal{K}) \otimes K(\mathcal{H})).$$

• As for the A-representation half π' , simply set

$$(4-6) A \ni a \stackrel{\pi'}{\longmapsto} \pi(a) \otimes 1 \in B(\mathcal{K}) \otimes B(\mathcal{H}) \subseteq B(\mathcal{K} \otimes \mathcal{H}).$$

The equivariance condition is immediate: for $a \in A$ we have

$$(\operatorname{id} \otimes \pi')\rho(x) = (\operatorname{id} \otimes \pi)\rho(x) \otimes 1 \quad \text{by (4-6)}$$

$$= U^*(1 \otimes \pi(a))U \otimes 1 \quad \text{the equivariance of } (U, \pi)$$

$$= U_{12}^* V_{13}^*(1 \otimes \pi(a) \otimes 1) V_{13} U_{12}$$

$$= U'^*(1 \otimes \pi'(a))U \quad \text{(4-5) and (4-6)}$$

as elements of $L^{\infty}(\mathbb{G}) \otimes B(\mathcal{K} \otimes \mathcal{H})$.

Nothing, so far, uses the existence of a U-invariant vector; the constructions, up to this stage, go through in general: we can always tensor an arbitrary unitary \mathbb{G} -representation V with an equivariant representation (U,π) and obtain another such.

Given, furthermore, a U-invariant unit vector ξ , we will argue that the morphism

$$\pi_{U'}: C_0^u(\widehat{\mathbb{G}}) \to B(\mathcal{K} \otimes \mathcal{H})$$

attached to U' (by [20, Proposition 5.2] again) is an embedding. The plan is as follows:

(i) Observe that the diagram (4-7)

$$C_0^u(\widehat{\mathbb{G}}) \xrightarrow{\Delta_{\widehat{\mathbb{G}}}} M(C_0^u(\widehat{\mathbb{G}}) \otimes C_0^u(\widehat{\mathbb{G}})) \xrightarrow{\pi_U \otimes \pi_V} B(\mathcal{K}) \otimes B(\mathcal{H}) \xrightarrow{\subseteq} B(\mathcal{K} \otimes \mathcal{H})$$

commutes, i.e.

$$(4-8) \pi_{U'} = (\pi_U \otimes \pi_V) \Delta_{\widehat{\mathbb{G}}} : C_0^u(\widehat{\mathbb{G}}) \to B(\mathcal{K}) \otimes B(\mathcal{H}) \subseteq B(\mathcal{K} \otimes \mathcal{H}).$$

(ii) Since $\xi \in \mathcal{K}$ is *U*-invariant (Definition 4.1), we have

(4-9)
$$\pi_U(x)\xi = \varepsilon(x)\xi, \ \forall x \in C_0^u(\widehat{\mathbb{G}}).$$

(iii) Whence it follows that for all $x \in C_0^u(\widehat{\mathbb{G}})$ and vectors $\eta \in \mathcal{H}$ we have

$$\pi_{U'}(x)(\xi \otimes \eta) = (\pi_U \otimes \pi_V) \Delta_{\widehat{\mathbb{G}}}(x)(\xi \otimes \eta) \quad (4-8)$$

$$= \xi \otimes \pi_V((\varepsilon \otimes \operatorname{id}) \Delta_{\widehat{\mathbb{G}}}(x)) \eta \quad (4-9)$$

$$= \xi \otimes \pi_V(x) \eta \quad [20, \operatorname{Proposition } 6.3].$$

Since π_V is assumed faithful this computation implies the faithfulness of $\pi_{U'}$, finishing the proof modulo the commutativity of (4-7).

For the latter, recall that the correspondence $U \leftrightarrow \pi_U$ is given by (2-1). The definition (4-5) of U' then recovers that unitary as

$$U' = (\operatorname{id} \otimes \pi_U \otimes \pi_V) \mathbb{W}_{13} \mathbb{W}_{12}$$

= $(\operatorname{id} \otimes \pi_U \otimes \pi_V) (\operatorname{id} \otimes \Delta_{\widehat{\Omega}}) \mathbb{W}$ [20, line preceding (6.1)],

showing that indeed (4-7) commutes.

To return to the compact (i.e. unital) case that provided the initial motivation as explained at the start of this section:

Corollary 4.3. Let $\rho: A \to M(C_0(\mathbb{G}) \otimes A)$ be an action of an LCQG on a unital C^* -algebra A. If A has a ρ -invariant state then (4-2) is in fact an embedding

$$C_0^u(\widehat{\mathbb{G}}) \subseteq C_0^u(\widehat{\mathbb{G}}) \ltimes_f A.$$

Proof. The functoriality [39, Proposition 4.7] of the $C_0^u(\widehat{\mathbb{G}}) \ltimes_f$ — construction attaches (4-2) to the equivariant non-degenerate morphism $\mathbb{C} \to M(A)$, and the same result shows that when A is unital, so that $\mathbb{C} \to M(A)$ in fact takes values in A, (4-2) similarly factors through

$$C^u_0(\widehat{\mathbb{G}}) \cong C^u_0(\widehat{\mathbb{G}}) \ltimes_f \mathbb{C} \to C^u_0(\widehat{\mathbb{G}}) \ltimes_f A.$$

П

Theorem 4.2 delivers the conclusion.

Remark 4.4. We saw in the course of the proof of Theorem 4.2 that we can always extend an action $\mathbb{G} \circlearrowleft A$ to the smallest unitization \widetilde{A} . By contrast, as [39, §3.1] notes, actions will not extend, in general, to *multiplier* algebras.

This is already clear classically: in that case the multiplier algebra $M(C_0(X))$ is the function algebra $C(\beta X)$ on the *Stone-Čech compactification* βX of X [40, exercise 2.C]. Now, if \mathbb{G} is a (classical) locally compact group, the extension of the standard translation action $\mathbb{G} \circlearrowleft \mathbb{G}$ to $\mathbb{G} \circlearrowleft \beta \mathbb{G}$ is continuous exactly when \mathbb{G} is either discrete or compact [8, paragraph preceding Theorem 4.2].

5. Further examples for the use of our style files

Here is a short sample of mathematical text.

Lemma 5.1. Let $f: M \to N$ be a smooth map between closed connected n-manifolds and let $p \in M$ be a point with $\{p\} = f^{-1}(f(p))$. If the derivative f_* has rank n at p, then f is surjective.

Proof. The map $H_n(M, M - \{p\}; \mathbb{Z}/2) \to H_n(N, N - \{f(p)\}; \mathbb{Z}/2)$ is an isomorphism (by excision). From the map between the corresponding long exact sequences we see that the fundamental class of M maps onto the fundamental class of N.

Acknowledgement. I am grateful for numerous enlightening conversations with J. Crann, M. Kalantar, P. Kasprzak, A. Skalski, P. Sołtan, S. Vaes and A. Viselter on much of the material below and related matters. The paper has also benefited from an anonymous referee's insightful remarks.

References

- William Arveson. An invitation to C*-algebras. Graduate Texts in Mathematics, No. 39. Springer-Verlag, New York-Heidelberg, 1976.
- [2] Saad Baaj and Georges Skandalis. Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann. Sci. École Norm. Sup. (4), 26(4):425–488, 1993.
- [3] E. Bédos and L. Tuset. Amenability and co-amenability for locally compact quantum groups. Internat. J. Math., 14(8):865–884, 2003.
- [4] B. Blackadar. Operator algebras, volume 122 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2006. Theory of C*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.
- [5] Étienne Blanchard. Déformations de C*-algèbres de Hopf. Bull. Soc. Math. France, 124(1):141–215, 1996.
- [6] Michael Brannan, Alexandru Chirvasitu, and Ami Viselter. Actions, quotients and lattices of locally compact quantum groups. Doc. Math., 25:2553–2582, 2020.

- [7] Michael Brannan, Matthew Daws, and Ebrahim Samei. Completely bounded representations of convolution algebras of locally compact quantum groups. Münster J. Math., 6(2):445–482, 2013.
- [8] Robert B. Brook. A construction of the greatest ambit. Math. Systems Theory, 4:243–248, 1970.
- [9] Matthew Daws, Pierre Fima, Adam Skalski, and Stuart White. The Haagerup property for locally compact quantum groups. J. Reine Angew. Math., 711:189-229, 2016.
- [10] Matthew Daws, Paweł Kasprzak, Adam Skalski, and Piotr M. Sołtan. Closed quantum subgroups of locally compact quantum groups. Adv. Math., 231(6):3473–3501, 2012.
- [11] Matthew Daws, Adam Skalski, and Ami Viselter. Around property (T) for quantum groups. Comm. Math. Phys., 353(1):69–118, 2017.
- [12] Jacques Dixmier. C*-algebras. North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett.
- [13] Jacques Dixmier. von Neumann algebras, volume 27 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York, 1981. With a preface by E. C. Lance, Translated from the second French edition by F. Jellett.
- [14] Elliot C. Gootman. Induced representations and finite volume homogeneous spaces. J. Functional Analysis, 24(3):223–240, 1977.
- [15] Elliot C. Gootman and Robert R. Kallman. The left regular representation of a p-adic algebraic group is type I. In Studies in algebra and number theory, volume 6 of Adv. in Math. Suppl. Stud., pages 273–284. Academic Press, New York-London, 1979.
- [16] Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathematischen Wissenschaften, Band 152. Springer-Verlag, New York-Berlin, 1970.
- [17] Robert R. Kallman. Certain topological groups are type I. Bull. Amer. Math. Soc., 76:404–406, 1970.
- [18] Robert R. Kallman. Certain topological groups are type I. II. Advances in Math., 10:221–255, 1973.
- [19] Johan Kustermans. One-parameter representations on C*-algebras, 1997. http://arxiv.org/abs/funct-an/9707009v1.
- [20] Johan Kustermans. Locally compact quantum groups in the universal setting. *Internat. J. Math.*, 12(3):289–338, 2001.
- [21] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4), 33(6):837–934, 2000.
- [22] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand., 92(1):68–92, 2003.
- [23] E. C. Lance. Hilbert C*-modules, volume 210 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists.
- [24] M. B. Landstad, J. Phillips, I. Raeburn, and C. E. Sutherland. Representations of crossed products by coactions and principal bundles. *Trans. Amer. Math. Soc.*, 299(2):747–784, 1987.
- [25] George W. Mackey. The theory of unitary group representations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, Ill.-London, 1976. Based on notes by James M. G. Fell and David B. Lowdenslager of lectures given at the University of Chicago, Chicago, Ill., 1955.
- [26] T. Masuda, Y. Nakagami, and S. L. Woronowicz. A C*-algebraic framework for quantum groups. Internat. J. Math., 14(9):903-1001, 2003.
- [27] Ralf Meyer, Sutanu Roy, and Stanisław Lech Woronowicz. Homomorphisms of quantum groups. Münster J. Math., 5:1–24, 2012.

- [28] Gert K. Pedersen. C*-algebras and their automorphism groups. Pure and Applied Mathematics (Amsterdam). Academic Press, London, 2018. Second edition of [MR0548006], Edited and with a preface by Søren Eilers and Dorte Olesen.
- [29] John C. Quigg. Full C*-crossed product duality. J. Austral. Math. Soc. Ser. A, 50(1):34–52, 1991.
- [30] P. M. Soltan and S. L. Woronowicz. A remark on manageable multiplicative unitaries. Lett. Math. Phys., 57(3):239–252, 2001.
- [31] Piotr M. Soltan and Stanisław L. Woronowicz. From multiplicative unitaries to quantum groups. II. J. Funct. Anal., 252(1):42-67, 2007.
- [32] Şerban Strătilă. Modular theory in operator algebras. Editura Academiei Republicii Socialiste România, Bucharest; Abacus Press, Tunbridge Wells, 1981. Translated from the Romanian by the author.
- [33] M. Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5.
- [34] M. Takesaki. Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6.
- [35] Donald Curtis Taylor. The strict topology for double centralizer algebras. Trans. Amer. Math. Soc., 150:633–643, 1970.
- [36] Jun Tomiyama. On the projection of norm one in W*-algebras. III. Tohoku Math. J. (2), 11:125–129, 1959.
- [37] Stefaan Vaes. The unitary implementation of a locally compact quantum group action. J. Funct. Anal., 180(2):426–480, 2001.
- [38] Stefaan Vaes. A new approach to induction and imprimitivity results. J. Funct. Anal., 229(2):317–374, 2005.
- [39] Roland Vergnioux. KK-théorie équivariante et opérateur de Julg-Valette pour les groupes quantiques. PhD thesis, Université Paris-Diderot - Paris VII, 2002. available at https://tel.archives-ouvertes.fr/tel-00001809 (accessed 2022-02-27).
- [40] N. E. Wegge-Olsen. K-theory and C*-algebras. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. A friendly approach.
- [41] S. L. Woronowicz. From multiplicative unitaries to quantum groups. *Internat. J. Math.*, 7(1):127–149, 1996.
- [42] J. Milnor, Topological manifolds and smooth manifolds, in Proc. Internat. Congr. Mathematicians (Stockholm, 1962), 132–138, Inst. Mittag-Leffler, Djursholm. MR0161345
- [43] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math/0303109v1 [math.DG] (2003).
- [44] J.-P. Serre, Quelques calculs de groupes d'homotopie, C. R. Acad. Sci. Paris 236 (1953), 2475–2477. MR0055684
- [45] M. Spivak, A comprehensive introduction to differential geometry. Vol. I, second edition, Publish or Perish, Inc., Wilmington, DE, 1979. MR0532833

Alexandru Chirvasitu Department of Mathematics, University at Buffalo Buffalo, NY 14260-2900, USA

E-mail: achirvas@buffalo.edu