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Abstract

We consider the online linear optimization
problem with movement costs, a variant of
online learning in which the learner must not
only respond to cost vectors ct with points
xt in order to maintain low regret, but is also
penalized for movement by an additional cost
‖xt − xt+1‖1+ε for some ε ≥ 0. Classically,
simple algorithms that obtain the optimal√
T regret already are very stable and do not

incur a significant movement cost. However,
recent work has shown that when the learn-
ing algorithm is provided with weak “hint”
vectors that have a positive correlation with
the costs, the regret can be significantly im-
proved to log T . In this work, we study
the stability of such algorithms, and provide
matching upper and lower bounds showing
that incorporating movement costs results in
intricate tradeoffs between log T when ε ≥ 1
and
√
T regret when ε = 0.

1 Introduction

Online linear optimization (OLO) is a classical learn-
ing formulation with a rich history and a variety of
applications [28]. In this setting, at each time step
t, an online algorithm has to respond with a vector
xt before a linear cost vector ct is revealed to it; the
algorithm incurs an additive cost 〈ct, xt〉. The perfor-
mance of the algorithm after T steps is measured in
terms of regret, i.e., the cost of the best single vector
it could have committed to in hindsight. The OLO
formulation captures many natural problems such as
recommendation systems, portfolio selection, and ma-
trix completion among others. See the excellent text-
books [4, 11, 25] for more details.
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The regret bounds for standard OLO versions are
well understood and a tight bound of Θ(

√
T ) is

known [4, 16, 28]. There have been several works
studying conditions under which it is possible to im-
prove this bound, such placing restrictions on the fam-
ily of cost functions [12], on the domain [15], or by as-
suming that the losses do not change significantly with
time [23, 7]. The work of Rakhlin and Sridharan [22]
began the study of OLO under additional information
in the form of hints about the cost function before it
is revealed to the algorithm. More recently [8, 13], it
was shown that if a hint vector that is only mildly cor-
related with the cost vector is available at each time
step, then a regret of O(log T ) can be achieved. This
result was generalized to O(

√
B log T ) regret, where B

is the number of time steps where the hints are bad,
i.e., poorly correlated with the cost vector [2]. Thus,
hints can be powerful and can yield poly-logarithmic
regret in standard OLO.

Movement costs. In this work we study the role of
hints for an important variant of OLO. In this variant,
at each time step t, in addition to the standard cost
〈ct, xt〉, the algorithm incurs a movement cost that
that depends on the distance between its previous re-
sponse xt−1 and current response xt. This formulation
(sometimes called smoothed OLO) thus penalizes the
algorithm for large changes to its responses. Previous
work1 on smoothed OLO has focused on movement
costs of the form ‖xt − xt−1‖2 [6, 9, 18, 19] as well as
of the form ‖xt − xt−1‖ [1, 5]. OLO with movement
costs has many applications in online logistic regres-
sion [10], multi-task machine learning [27], data cen-
ter power management [20], EV charging [17], smart
grids [26], and autonomous driving [24].

Movement costs add a new layer of complexity to on-
line optimization. While it is easy to see that the stan-
dard algorithms for OLO such as FTRL incur only a
total movement of O(

√
T ), this additional term is too

large if we are aiming for a better regret guarantee (as
in the settings above where we have hints). Thus it is

1Some of the work focuses on the competitive ratio in-
stead of regret.
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natural to ask, how much can hints help in the OLO
problem with movement costs? Note that even if the
hints are perfect (i.e., the algorithm knows ct before
choosing xt), the optimal algorithm with movement
costs is still not obvious. Our goal is to understand
these questions better: we consider movement costs of
the general form ‖xt − xt−1‖1+ε for ε ≥ 0 and study
the interplay between the quality/nature of the hints,
ε, and regret. In fact, we consider two hint settings:
one in which the hint only provides directional infor-
mation about the cost vector and another in which
the hint has information about both the direction and
the length of the cost vector. We will show that in-
terestingly, these two settings lead to different optimal
regret bounds.

Our results. We start with an informal summary of
our contributions.

For the case when the hint only gives information
about the direction of the cost vector (i.e., length in-
formation is unavailable in the hint), we show a re-

gret bound of Õ(
√
B + T

1
2+ε ) whenever ε > 0 (Theo-

rem 3.8). Here, B is the number of time steps where
the hint direction is poorly correlated with that of the

cost vector. We also show a matching Ω(T
1

2+ε ) lower
bound on the regret (Theorem 4.3).

For the case when information about the length of the
cost vector is available as part of the hint, we show a

regret bound of Õ(
√
B + T

1−ε

2 ) for ε ∈ [0, 1) and a re-
gret bound of Õ(

√
B log T ) when ε ≥ 1 (Theorem 3.9).

Here, B is the number of time steps where either the
hint is poorly correlated with the cost vector or the
length information is bad. We complement this result

by showing a matching lower bound of Ω(T
1−ε

2 ) on the
regret for ε ∈ [0, 1) (Theorem 4.2).

Our results thus show two intriguing aspects about
OLO with movement costs: (i) poly-logarithmic regret
is not possible without length hints, and (ii) even when
length hints are available, poly-logarithmic regret is
achievable if and only if ε ≥ 1. This phenomenon
is absent in the standard setting of OLO with hints
(where a directional hint suffices [2]).

2 Preliminaries

We consider the online linear optimization problem
with movement costs. In this setting, at each time
t ∈ [T ], an algorithm selects a point xt ∈ R

d, ‖xt‖ ≤ 1
and then an adversary reveals a cost vector ct ∈ R

d.
(Throughout, ‖ · ‖ refers to the `2 norm unless other-
wise indicated.) We assume that ‖ct‖ ≤ 1, ∀t ∈ [T ].
The algorithm incurs a cost of 〈ct, xt〉 ∈ [−1, 1] as well
as a movement cost that measures the distance be-
tween xt and xt−1. We consider movement costs of

the form γ · ‖xt − xt−1‖1+ε for some fixed constants
γ, ε ≥ 0. Then, the total cost incurred by the algo-
rithm is given by

∑

t

(

〈ct, xt〉+ γ‖xt − xt−1‖1+ε
)

. The
regret of the algorithm for some point u ∈ R

d is de-
fined as the difference between the total cost incurred
by the algorithm and the cost incurred by the fixed
point u at all time steps:

R(u,~c) =
T
∑

t=1

〈ct, xt − u〉+
T−1
∑

t=1

γ‖xt+1 − xt‖(1+ε).

The regret of the algorithm is defined as the worst-case
regret over all points in the unit ball.

R(~c) = sup
u∈R

d

‖u‖≤1

R(u,~c).

We consider the setting where an algorithm has ac-
cess to a hint regarding the cost vector ct before it
needs to respond with xt. We consider two settings.
In the first setting, the hint at time t is a unit vector
dt ∈ R

d, ‖dt‖ = 1 that provides information regarding
the direction of the cost vector ct. In the second set-
ting, along with the directional hint dt, the algorithm
also has access to λt ∈ R

+ that provides information
regarding the length of the cost vector ct. In both the
settings we allow the hints to be arbitrarily related to
the cost vector and can even be generated adversari-
ally. We aim to design algorithms that guarantee good
regret whenever the hints provide meaningful informa-
tion about the cost vectors while maintaining worst-
case regret guarantees.

3 Algorithms

Both the algorithms we present have a common struc-
ture: an outer learner that uses the hint provided at
each step along with the output (denoted xt) of an in-
ner learner to produce the prediction xt for that step.
After the cost vector is revealed, an appropriately de-
fined “surrogate” loss function `t(·) is provided to the
inner learner, which it uses to come up with the next
prediction xt+1. The inner learner turns out to be a
simple FTRL (Follow The Regularized Leader) proce-
dure, and our assumptions on the quality of the hints
will ensure that the loss functions provided to the in-
ner learner are strongly convex in most iterations. The
inner learner is presented in Algorithm 2. While this
structure is similar to some of the prior work on OLO
with hints [2, 8], the main novelty is in choosing how
far to move along a hint, captured by a hyperparam-
eter r. This is because we now incur a cost for move-
ment, thus moving may not always result in an im-
proved objective value, e.g., when the cost vector has
a small length.
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In our description of the outer learner, unlike in [2,
14], we do not maintain and update the parameter r
adaptively. Instead, we will use a meta-algorithm that
runs multiple copies of Algorithm 1, one for each choice
of r. Using a combination procedure developed in [3],
it follows that the meta-algorithm has regret that can
be upper bounded by the regret of the copy with the
best possible value of r (with a logarithmic overhead;
see Section 3.4 for a formal statement). Thus in what
follows, we assume a fixed value for the parameter r,
and show that there exists a setting of this parameter
that yields a low regret.

Recall that each hint at time t consists of a directional
vector dt, ‖dt‖ = 1 and, if available, a length hint λt ∈
[0, 1]. In the following we analyze Algorithm 1 in both
the settings. Before we proceed with the analysis, we
first establish some basic properties of the loss function
and the inner learner.

Algorithm 1 Outer learner.

1: Input: Distance parameter r ≥ 1
2: Initialize inner learner with parameter r
3: for t = 1 . . . T do

4: Receive hint: direction dt; if available, length λt
5: if λt is available then

6: ht ← λtdt
7: else

8: ht ← dt
9: end if

10: Receive xt from inner learner

11: xt ← xt +
(‖xt‖

2−1)
2r ht

12: Play xt and receive cost ct
13: if λt is available then

14: µt ← max
(

0, 〈ct,ht〉
r − 2γ31+ε

(

λt

r

)1+ε
)

15: else

16: µt ← max(0, 〈ct,ht〉
r )

17: end if

18: Define `t(x) = 〈ct, x〉+ µt

2 (‖x‖2 − 1)
19: Send function `t(x) to inner learner
20: end for

Algorithm 2 Inner learner.

1: Input: Initial regularization parameter r
2: x1 ← 0
3: ψ(x)← r

2‖x‖2
4: for t = 1 . . . T do

5: Send xt
6: Receive loss function `t(x)

7: xt+1 ← argmin‖x‖≤1

{

ψ(x) +
∑t

τ=1 `t(x)
}

8: end for

3.1 Basic properties

We first show properties that link the quality of the
hints to the true regret and the surrogate loss `t.

Lemma 3.1. The surrogate loss `t(·) and the values
xt and xt defined in Algorithm 1 satisfy the following:

1. if µt = 0, then for any ε ≥ 0: 〈ct, xt〉 +
2 · 31+εγ‖xt − xt‖1+ε ≤ `t(xt) + |〈ct,ht〉|

2r +

31+εγ ‖ht‖
1+ε

r1+ε .
2. For all u in the unit ball, `t(u) ≤ 〈ct, u〉.
3. ‖xt‖ ≤ 1, for all t.

Proof. 1. By definition of xt, we have

〈ct, xt〉 = 〈ct, xt〉+ 〈ct, ht〉 ·
(‖xt‖2 − 1)

2r

= `t(xt) + 〈ct, ht〉 ·
(‖xt‖2 − 1)

2r

≤ `t(xt) +
|〈ct, ht〉|

2r
,

where the first equality follows since `t(xt) =
〈ct, xt〉 if µt = 0. Also,

‖xt − xt‖ =
‖ht‖(1− ‖xt‖2)

2r
≤ ‖ht‖

2r
.

2. This is immediate from the definition.
3. Since r ≥ 1, we have

‖xt‖ ≤ ‖xt‖+
1

2
(1− ‖xt‖2)

≤ sup
z∈[0,1]

{

z +
1− z2

2

}

≤ 1.

Next we show a simple fact that will be useful later.
We defer the proof to the Appendix.

Lemma 3.2. Let b, c > 0, and a1, . . . , aT be arbitrary
non-negative numbers. Then,

T
∑

t=1

at

b+ c
∑t

τ=1 aτ
≤ 1

c
log

(

1 +
c
∑T

t=1 at
b

)

.

Finally, we argue that the inner learner, Algorithm 2,
inherently incurs both a small value of

∑T
t=1 `t(xt) −

`t(u) as well as a small movement cost, so long as µt

is not small.

Lemma 3.3. Let xt and `t be as defined in Algo-
rithm 1, and let ε ≥ 0 and r ≥ 1 be parameters. For
any α ∈ (0, 1], define

S := Sα =

{

t | µt ≤
α‖ct‖2
2r

}

.
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Then for any ‖u‖ ≤ 1, Algorithm 2 satisfies:

T
∑

t=1

`t(xt)− `t(u)

≤ r

2
+

2
∑

t∈S ‖ct‖2
r

+
4r

α
log

(

1 +
αT

2r2

)

.

Further, the movement cost can be bounded as

T−1
∑

t=1

‖xt+1 − xt‖1+ε ≤ 21+ε

∑

t∈S ‖ct‖1+ε

r1+ε

+ 21+ε

(

2

α
log

(

1 +
αT

2r2

))

1+[ε]1
2

T
1−[ε]1

2 ,

where [ε]1 = min(1, ε).

Proof. First, observe that Algorithm 2 is performing
the classic FTRL step with the fixed regularizer r

2‖x‖2.
Further, each loss `t is clearly µt-strongly convex.
Therefore, by [21, Theorem 1], (using time-varying
norms ‖x‖2t = µt

2 ‖x‖2) we have:

T
∑

t=1

`t(xt)− `t(u) ≤
r

2
‖u‖2 +

T
∑

t=1

‖∇`t(xt)‖2
2r + 2

∑t
τ=1 µτ

.

Now, observe that ∇`t(xt) = ct + µtxt. Further, since
r ≥ 1 and ‖ht‖ ≤ 1, by definition of µt we must have
µt ≤ ‖ct‖. Thus since ‖xt‖ ≤ 1, we have ‖∇`t(xt)‖ ≤
2‖ct‖. Plugging in this bound yields

T
∑

t=1

`t(xt)− `t(u) ≤
r

2
‖u‖2 +

T
∑

t=1

2‖ct‖2
r +

∑t
τ=1 µτ

≤ r

2
+
∑

t∈S

2‖ct‖2
r

+
∑

t/∈S

2‖ct‖2
r +

∑

τ /∈S,τ≤t µτ

≤ r

2
+

2
∑

t∈S ‖ct‖2
r

+
∑

t/∈S

2‖ct‖2

r +
∑

τ /∈S,τ≤t
α‖cτ‖2

2r

using Lemma 3.2,

≤ r

2
+

2
∑

t∈S ‖ct‖2
r

+
4r

α
log

(

1 +
αT

2r2

)

.

To bound the movement, we appeal to [21, Lemma 7
and Theorem 1], which imply that if xt is defined as

xt = argmin r
2‖x‖2 +

∑t−1
τ=1 `τ (x) for all t, then

‖xt+1 − xt‖ ≤
‖∇`t(xt)‖
r +

∑t
τ=1 µτ

≤ 2‖ct‖
r +

∑t
τ=1 µτ

.

Thus,

T−1
∑

t=1

‖xt+1 − xt‖1+ε ≤ 21+ε
T−1
∑

t=1

‖ct‖1+ε

(

r +
∑t

τ=1 µτ

)1+ε

≤ 21+ε
∑

t∈S

‖ct‖1+ε

r1+ε
+ 21+ε

∑

t/∈S

‖ct‖1+ε

(

r +
∑

τ /∈S,τ≤t µτ

)1+ε

≤ 21+ε

∑

t∈S ‖ct‖1+ε

r1+ε

+ 21+ε
∑

t/∈S

‖ct‖1+ε

(

r + α
2r

∑

τ /∈S,τ≤t ‖ct‖2
)1+ε .

Let us bound this second sum. First, observe that each
term in the sum is at most 1. Therefore if we replace
the exponents 1 + ε with 1 + [ε]1 we can only increase
the sum (recall [ε]1 = min(1, ε)). Next, apply Hölder’s
inequality with p = 2

1+[ε]1
and q = 2

1−[ε]1
. This yields

∑

t 6∈S

‖ct‖1+[ε]1

(

r + α
2r

∑

τ 6∈S,τ≤t ‖cτ‖
2
)1+[ε]1

≤





∑

t 6∈S

‖ct‖2

r + α
2r

∑

τ 6∈S,τ≤t ‖cτ‖
2





1+[ε]1
2

×









∑

t 6∈S

1
(

r + α
2r

∑

τ 6∈S,τ≤t ‖cτ‖
1+1
)

1+[ε]1
1−[ε]1









1−[ε]1
2

≤





∑

t 6∈S

‖ct‖2

r + α
2r

∑

τ 6∈S,τ≤t ‖cτ‖
2





1+[ε]1
2

T
1−[ε]1

2

r
1+[ε]1

2

using Lemma 3.2,

≤
(

2r

α
log

(

1 +
αT

2r2

))

1+[ε]1
2 T

1−[ε]1
2

r
1+[ε]1

2

.

3.2 Length hints are unavailable

Using these basic properties, we are in a position to
begin analyzing the regret of Algorithm 1. We first
consider the case when the length hints are not avail-
able to the outer learner. To start, we describe some
simple consequences from the definition of µt.

Lemma 3.4. When length hints are unavailable in
Algorithm 1, we have

1. If µt > 0, then 〈ct, xt〉 + 2γ31+ε‖xt − xt‖1+ε ≤
`t(xt) + 31+ε γ

r1+ε .
2. If 〈ct, dt〉 ≥ α‖ct‖2, then we have µt ≥ α

2r‖ct‖2.

Proof. 1. Using the definition of `t and xt and using
the fact µt > 0, we have:

〈ct, xt〉 = `t(xt)

〈ct, xt〉+ 2γ(3‖xt − xt‖)1+ε ≤ `t(xt) + 2γ
(3‖ht‖)1+ε

(2r)1+ε
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≤ `t(xt) + 31+ε γ

r1+ε
.

2. By definition of µt and using 〈ct, dt〉 ≥ α ‖ct‖2, we
have µt ≥ α‖ct‖

2

r ≥ α‖ct‖
2

2r .

We now proceed to prove our first bound on the fi-
nal regret of Algorithm 1. Specifically, we show that
when length hints are not available, the regret scales as

roughly Õ
(√

B + T
1

2+ε

)

. In particular, when B = 0,

the regret grows asymptotically slower than the
√
T

bound we would expect without any hints.

Theorem 3.5. Suppose length hints are unavailable
in Algorithm 1, ε ≥ 0, and that all but B in-
dices t satisfy 〈ct, dt〉 ≥ α‖ct‖2. Then with r =

1 + max

(

(

γ61+εαT
log(1+T )

)
1

2+ε

,
√

αB/ log(1 + T )

)

for all

‖u‖ ≤ 1,

R(u,~c) ≤ O

(

(61+ε
γT )

1
2+ε

(

log T

α

)
1+ε

2+ε

+ (1 + 61+ε
γ)

√

B log T

α
+ 61+ε

γ

(

log T

α

)

1+[ε]1
2

T
1−[ε]1

2



 .

Proof. Let S be the set of indices for which µt <
α‖ct‖

2

2r
as in Lemma 3.3. Notice that by Lemma 3.4(2) and
the definition of B, we have |S| ≤ B.

R(u,~c) =
T
∑

t=1

〈ct, xt − u〉+
T−1
∑

t=1

γ‖xt+1 − xt‖1+ε

≤
T
∑

t=1

〈ct, xt − u〉+ γ31+ε

(

T−1
∑

t=1

‖xt+1 − xt‖1+ε

+

T−1
∑

t=1

‖xt − xt‖1+ε +

T−1
∑

t=1

‖xt+1 − xt+1‖1+ε

)

≤
T
∑

t=1

〈ct, xt − u〉+ γ31+ε
T−1
∑

t=1

‖xt+1 − xt‖1+ε

+ 2γ31+ε
T−1
∑

t=1

‖xt − xt‖1+ε

applying Lemma 3.1(1, 2) and Lemma 3.4(1),

≤
T
∑

t=1

(`t(xt)− `t(u) +
γ31+ε

r1+ε
) +

∑

t∈S

|〈ct, ht〉|
2r

+ γ31+ε
T−1
∑

t=1

‖xt+1 − xt‖1+ε

applying Lemma 3.3,

≤ r

2
+

2
∑

t∈S ‖ct‖2
r

+
4r

α
log

(

1 +
αT

2r2

)

+
γ31+εT

r1+ε
+
∑

t∈S

( |〈ct, ht〉|
2r

+ 61+εγ
‖ct‖1+ε

r1+ε

)

+ 61+εγ

(

2

α
log

(

1 +
αT

2r2

))

1+[ε]1
2

T
1−[ε]1

2

since |S| ≤ B,

≤ r

2
+

2B

r
+

4r

α
log

(

1 +
αT

2r2

)

+
γ31+εT

r1+ε
+
B

2r
+ 61+εγ

B

r1+ε

+ 61+εγ

(

2

α
log

(

1 +
αT

2r2

))

1+[ε]1
2

T
1−[ε]1

2 .

Now in the above bound we set r = 1 +

max

(

(

γ61+εαT
log(1+T )

)
1

2+ε

,
√

αB/ log(1 + T )

)

to obtain

the final regret bound.

3.3 Length hints are available

Next, we turn to the setting in which length hints λt
are available to the outer learner. Our first task is to
prove an analogue of Lemma 3.4 that characterizes the
relationship between the modified definition of µt and
the quality of the hints.

Lemma 3.6. When length hints are available in Al-
gorithm 1, we have

1. If µt > 0, then 〈ct, xt〉 + 2γ31+ε‖xt − xt‖1+ε ≤
`t(xt).

2. If 〈ct, λtdt〉 ≥ α‖ct‖2, λ2t ≤ β‖ct‖2, and r ≥ 1,

then so long as r[ε]1 ≥ 4γ31+εβ
1+[ε]1

2

α‖ct‖1−[ε]1
, we have µt ≥

α
2r‖ct‖2.

Proof. (1) Using the definition of xt and `t, we have:

〈ct, xt〉 = 〈ct, xt〉+ 〈ct, ht〉 ·
(‖xt‖2 − 1)

2r

≤ `t(xt) + (
〈ct, ht〉
r

− µt)
(‖xt‖2 − 1)

2

= `t(xt) + 2γ31+ε ‖ht‖1+ε

2r1+ε
(‖xt‖2 − 1)

≤ `t(xt)− 31+εγ
(‖ht‖(1− ‖xt‖2))1+ε

r1+ε
.

Since ‖xt‖ ≤ 1 and xt − xt = (‖xt‖
2−1)ht

2r , we have

‖xt−xt‖1+ε ≤ (‖ht‖(1−‖xt‖
2))1+ε

2r1+ε and so the conclusion
follows.
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(2) Using the conditions on ht = λtdt and r, we have:

〈ct, ht〉
r

− 2γ31+ε ‖ht‖1+ε

r1+ε
≥ α‖ct‖2

r
− 2γ31+ε ‖ht‖1+ε

r1+ε

using r ≥ 1 and ‖ht‖ ≤ 1,

≥ α‖ct‖2
r

− 2γ31+ε ‖ht‖1+[ε]1

r1+[ε]1

≥ α‖ct‖2
r

− 2γ
31+εβ

1+[ε]1
2 ‖ct‖1+[ε]1

r1+[ε]1
≥ α

2r
‖ct‖2.

Now, we have all the tools needed to bound our fi-
nal regret bound when using length hints. This result
will show that when both directional and length hints

are available, we can obtain regret Õ
(√

B + T
1−[ε]1

2

)

,

where [ε]1 = min(1, ε). Notice that there is an “elbow”
effect at ε = 1 at which the regret becomes logarithmic
and stops improving.

Theorem 3.7. Suppose length hints are available
in Algorithm 1 and all but B indices t satisfy both
〈ct, λtdt〉 ≥ α‖ct‖2 and λ2t ≤ β‖ct‖2. Then there exists
a setting of the parameter r > 1 + 4γβ

α such that for
all ‖u‖ ≤ 1,

R(u,~c) ≤ O





γ(β
(1+[ε]1)2

4 + β
3+[ε]1

4 )(log(T ))
1+[ε]1

2 T
1−[ε]1

2

α
3+[ε]1

2

+(1 + 61+ε
γ)

√

B log(T )√
α

+

(

31+εγβ

α
+

1

α

)

log (T )

)

.

Proof. Let S be the set of indices for which µt <
α‖ct‖

2

2r
as in Lemma 3.3. By Lemma 3.6, for any r we can
decompose S into disjoint sets SB and Sr, where ev-
ery index in SB satisfies either 〈ct, λtdt〉 < α‖ct‖2 or
λ2t > β‖ct‖2, and every index in Sr satisfies both
〈ct, λtdt〉 ≥ α‖ct‖2 and λ2t ≤ β‖ct‖2, and also sat-

isfies r[ε]1 < 4·31+εγβ
1+[ε]1

2

α‖ct‖1−[ε]1
. By assumption, we have

|SB | ≤ B. Note that since r > 4γβ
α , Sr is empty when-

ever ε ≥ 1.

Following exactly the same argument as the proof of
Theorem 3.5, we have,

R(u,~c) ≤
T
∑

t=1

〈ct, xt − u〉+ 31+εγ

T−1
∑

t=1

‖xt+1 − xt‖1+ε

+ 2 · 31+εγ

T−1
∑

t=1

‖xt − xt‖1+ε

using Lemma 3.1 and Lemma 3.6,

≤
T
∑

t=1

(`t(xt)− `t(u)) +
T−1
∑

t=1

31+εγ‖xt+1 − xt‖1+ε

+
∑

t∈S

( |〈ct, ht〉|
2r

+
31+εγ‖ht‖1+ε

r1+ε

)

using Lemma 3.3,

≤ r

2
+

2
∑

t∈S ‖ct‖2
r

+
4r

α
log

(

1 +
αT

2r2

)

+
∑

t∈S

( |〈ct, ht〉|
2r

+
31+εγ‖ht‖1+ε

r1+ε
+ 61+εγ

‖ct‖1+ε

r1+ε

)

+ 61+εγ

(

2

α
log

(

1 +
αT

2r2

))

1+[ε]1
2

T
1−[ε]1

2 .

Now, we break the sums over S up into sums over SB

and Sr. First, let us consider the sum over indices in
SB . Using |SB | ≤ B, we have:

∑

t∈SB

2‖ct‖2
r

+
|〈ct, ht〉|

2r
+
γ(3‖ht‖)1+ε

r1+ε
+
γ(6‖ct‖)1+ε

r1+ε

≤ 5B

2r
+

2 · 61+εγB

r1+ε

Now, let us consider the case that ε ≥ 1. In this sce-
nario, we must have Sr is empty, so that S = SB .
Therefore the overall regret is bounded as:

R(u,~c) ≤ r

2
+

4r

α
log

(

1 +
αT

2r2

)

+
5B

2r
+

2 · 61+εγB

r1+ε

+ 61+εγ

(

2

α
log

(

1 +
αT

2r2

))

1+[ε]1
2

T
1−[ε]1

2 .

And substituting the setting r = 1 + 4·31+εγβ
α +

√

αB/ log(1 + T ) completes the proof.

Thus, for the rest of the proof we consider ε < 1, so
that [ε]1 = ε. In this case, we must take into account
the sum over Sr. Notice that the indices in Sr satisfy

‖ct‖ ≤ 3
1+ε

1−ε (4γ)
1

1−ε β
1+ε

2−2ε

α
1

1−ε r
ε

1−ε

. Also, we have |〈ct, ht〉| ≤
‖ct‖‖ht‖ ≤

√
β‖ct‖2, and ‖ht‖1+ε ≤ β

1+ε

2 ‖ct‖1+ε.
Thus (coarsely bounding |Sr| ≤ T ):

∑

t∈Sr

2‖ct‖2
r

≤ 2 · 3 2+2ε
1−ε T (4γ)

2
1−ε β

1+ε

1−ε

α
2

1−ε r
1+ε

1−ε

.

∑

t∈Sr

|〈ct, ht〉|
r

≤ 3
2+2ε
1−ε

√
βT (4γ)

2
1−ε β

1+ε

1−ε

α
2

1−ε r
1+ε

1−ε

.
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∑

t∈Sr

γ‖ht‖1+ε

r1+ε
≤
∑

t∈Sr

γβ
1+ε

2 ‖ct‖1+ε

r1+ε

≤ 3
(1+ε)2

1−ε γβ
1+ε

1−εT (4γ)
1+ε

1−ε

α
1+ε

1−ε r
1+ε

1−ε

≤ 3
(1+ε)2

1−ε β
1+ε

1−εT (4γ)
2

1−ε

α
1+ε

1−ε r
1+ε

1−ε

.

∑

t∈Sr

γ‖ct‖1+ε

r1+ε
≤ 3

(1+ε)2

1−ε β
(1+ε)2

2−2ε T (4γ)
2

1−ε

α
1+ε

1−ε r
1+ε

1−ε

.

Putting all this together, we have:

R(u,~c) ≤ 4 · 6 3
1−ε (4γ)

2
1−ε (β

(1+ε)2

2−2ε + β
3+ε

2−2ε )T

α
2

1−ε r
1+ε

1−ε

+
r

2
+

2B

r
+

4r

α
log

(

1 +
αT

2r2

)

+
B

2r
+

31+εγB

r1+ε
+ 61+εγ

B

r1+ε

+ 61+εγ

(

2

α
log

(

1 +
αT

2r2

))

1+[ε]1
2

T
1−[ε]1

2 .

Now, the proof is complete by setting r = 1+ 4·31+εγβ
α +

√

αB
log(1+T ) + 6

3
4

(

Tγ
2

1−ε (β
(1+ε)2

2 +β
3+ε

2−2ε )

α
1+ε

1−ε log(1+T )

)
1−ε

2

.

3.4 A meta-algorithm for selecting r

So far we have provided an algorithm that can takes
advantage of hints through a user-supplied parameter
r. Intuitively, r measures how much we “trust” each
hint. With the correct value for r, we showed that
these algorithms can achieve regret bounds matching
the lower bounds we will show in Section 4. However,
this correct tuning is not available a priori. To address
this, we invoke a combination procedure developed in a
recent work of [3, Algorithm 4]. This combiner proce-
dure is a meta-algorithm that takes as input K online
learning algorithms and produces a single (random-
ized) online algorithm with an expected regret bound
only a factor of logK worse than the best of the K
individual regret bounds in hindsight.

From Theorems 3.5 and 3.7, the optimal choice of r
is always ≤ T . The idea is to instantiate O(log T )
copies of Algorithm 1 one for each value of r ∈
{1, 2, 22, . . . , T}.2 Now using the combiner algorithm,
we can obtain the results of Theorems 3.5 and 3.7 with

2As stated, this assumes that the algorithm knows T
beforehand. However, this can be overcome as follows: the
combiner does not require all the algorithms to begin at
t = 0. By having the algorithm with r = 2i start at t = 2i,
we can obtain the same regret bound without knowing T .

an additional log log T multiplicative factor in the re-
gret, without needing to tune r based on α, β, or B.

An issue with the argument above is that the combiner
of [3] does not account for movement costs. However,
we show that their algorithm applies with a mild mod-
ification, and an extra additive O(γ log T logK) in the
regret. We outline the main differences below.

Suppose A1, . . . ,AK are the algorithms being com-
bined. The combiner of [3] runs all the algorithms
in parallel (internally); additionally, it maintains a pa-
rameter ζ and an index it. At time t, the combiner
plays the output of algorithm Ait . Initially, i0 is cho-
sen uniformly at random from [K] and ζ = 1; here, ζ
is a guess for the minimum regret (without movement
cost) of the algorithms (in hindsight). Subsequently,
the combiner runs Ai’s in parallel, tracking their re-
gret. It maintains an active set of algorithms whose
regret has not exceeded ζ. As long as the “current
choice” it is in the active set, the combiner’s response
is identical to that of Ait . But if the regret of Ait

exceeds ζ, the combiner sets it to a uniformly random
algorithm in the active set. If the active set becomes
empty, then ζ is doubled, and all the algorithms are
restarted. The analysis proceeds by showing that if the
minimum regret in hindsight (over the Ai’s, without
the movement cost term) is R, then ζ can only double
O(logR) ≤ O(log T ) times. Further, for any ζ ≤ R,
only O(logK) “switches” are needed in expectation
before the active set becomes empty and ζ doubles.

Now, to incorporate movement costs, we pursue an
identical algorithm, except that we track the re-
gret (with movement cost) for each algorithm, again
switching algorithms when this quantity exceeds the
guess ζ. The only change to the analysis is that now
additional movement cost is incurred when switch-
ing algorithms, which is not captured earlier. For-
tunately, since ζ doubles at most O(log T ) times and
on average only O(logK) switches occur each time ζ
doubles, this additional movement cost is bounded by
O(γ logK log T ). Applying this to our setting, we get:

Theorem 3.8. There exists a (randomized) algorithm
for OLO with hints that, having access to only direc-
tion hints, achieves the following expected regret bound
for every α ∈ (0, 1):

E [R(u,~c)] ≤ O(log log T ) ·

(

(γT )
1

2+ε

(

log T

α

)
1+ε

2+ε

+ (1 + γ)

√

B log T

α

+ γ

(

log T

α

)

1+[ε]1
2

T
1−[ε]1

2 + γ log T



 ,
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where B = |{t | 〈dt, ct〉 < α‖ct‖2}|.
Theorem 3.9. There exists a randomized algorithm
for OLO with hints that, with access to both direction
and length hints, achieves the following expected regret
bound for any α, β ∈ (0, 1):

E [R(u,~c)] ≤ O(log log T ) ·
(

(1 + γ)

√
B log T√

α

+

(

γβ

α
+

1

α

)

log T

+γ

(

log T

α

)

1+[ε]1
2

T
1−[ε]1

2 + γ log T



 ,

where B = {t | 〈dt, ct〉 < α‖ct‖2 or λ2t > β‖ct‖2}|.

Remark. Using the weaker combination algorithm
from [3] along with the same reasoning as above, we
note that we can obtain deterministic algorithm, but
the regret bounds in Theorems 3.8 and 3.9 incur a mul-
tiplicative factor of O(log T ) instead of O(log log T ).

4 Lower bounds

In this section we show that the algorithms we ob-
tained are essentially optimal. Our lower bound con-
structions use the following technical lemma that is a
simple consequence of the concavity of the logarithm.

Lemma 4.1. Let δ, ε, α > 0, and let T ≥ 1 be some
parameter. We have

δ1+ε − δT−α ≥ − ε · T−
α(1+ε)

ε

(1 + ε)(1 + ε)1/ε
.

Proof. Using the concavity of the logarithm, we have
that for any parameter Z > 0,

log

(

1

1 + ε
· δ1+ε +

ε

1 + ε
· Z 1+ε

ε

)

≥ 1

1 + ε
log(δ1+ε) +

ε

1 + ε
log(Z

1+ε

ε ).

Or equivalently,

δ1+ε + εZ
1+ε

ε

1 + ε
≥ δZ.

Setting Z such that (1 + ε)Z = T−α, we get

δ1+ε − δT−α ≥ −ε
(

T−α

1 + ε

)(1+ε)/ε

.

Our first lower bound shows that even if we have a per-
fect hint at every time t, one cannot achieve polyloga-
rithmic regret if the movement costs are large. Specif-
ically, as long as the exponent of the movement cost

function ε ∈ [0, 1), Ω(T
1−ε

2 ) regret is inevitable.

Theorem 4.2. Let ε ∈ [0, 1), γ > 0 be the movement
cost parameters. Then for any (possibly randomized)
online algorithm A, there exists a sequence {ct} of cost
vectors such that even with a perfect hint at every step,

the algorithm incurs a regret Ω(γT
1−ε

2 ).

Proof. By Yao’s minimax principle, it suffices to ex-
hibit a distribution over cost vectors {ct}Tt=1 for which
any deterministic algorithm A incurs the desired re-
gret in expectation.

We consider the simple one-dimensional case with

ct = ±γ · T−ε/2 · e1,

where the signs are chosen independently and uni-
formly at random at every time step, and e1 is a fixed
unit vector. Suppose that the hints are perfect, i.e.,
dt = ct/‖ct‖ and λt = ‖ct‖. Let ht = λtdt. Now, con-
sider any deterministic algorithm A. At each step, the
algorithm makes the choice of xt knowing c1, c2, . . . , ct.
Denote δt = xt − xt−1.

The expected cost incurred by A at step t is

E[〈xt, ct〉+ γ ‖xt − xt−1‖1+ε
]

= E[〈xt−1, ct〉+ 〈δt, ct〉+ γ ‖δt‖1+ε
].

But since ct has a random sign that is unknown
to the algorithm when xt−1 is played, we have
E[〈xt−1, ct〉] = 0. By Cauchy–Schwarz, we have
〈δt, ct〉 ≥ −‖ct‖‖δt‖ ≥ −γT−ε/2‖δt‖. Substituting
these terms, the expected cost incurred by A at step t
is at least

E[〈xt, ct〉+ γ ‖δt‖1+ε
] ≥ E[−γT−ε/2 ‖δt‖+ γ ‖δt‖1+ε

].

If ε = 0, the RHS is zero. If ε > 0, we apply Lemma 4.1
with α = ε/2 and δ = ‖δt‖ to obtain

E[〈xt, ct〉+ γ ‖δt‖1+ε
] ≥ − γε · T−

(1+ε)
2

(1 + ε)(1 + ε)1/ε

≥ −γε · T
−

(1+ε)
2

2(1 + ε)
,

where the second inequality holds since (1 + ε)1/ε ≥ 2
for ε ∈ (0, 1). Since the above inequality holds at each
time step t ≤ T , the total expected cost incurred by
the algorithm is at least

− γε

2(1 + ε)
· T 1−ε

2 .

On the other hand, the optimum point in hindsight
(which is a unit vector along the direction −∑t ct),
incurs an expected loss of

−E
[∥

∥

∥

∥

∥

∑

t

ct

∥

∥

∥

∥

∥

]

= −
√

2

π
γT

1−ε

2 .
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(The constant comes from the expected value of the
magnitude of a Gaussian.3) This implies the desired
expected regret bound for any ε ∈ [0, 1).

Our next lower bound shows that in the case of ε > 0,
having a length hint is important for obtaining poly-
logarithmic regret, providing a significant qualitative
separation between what is possible with and without
informative length hints.

Theorem 4.3. Let ε > 0, and let γ = 1. Then for
any online algorithm A, there is a sequence {ct} of
cost vectors such that having a perfect directional hint

at every step still incurs a regret Ω
(

T
1

2+ε

)

.

Proof. The proof once again proceeds using Yao’s prin-
ciple. We consider the following distribution over cost
vectors: let ct = ztut, where ut = ±e1 (signs chosen
independently and uniformly at random at each time
step), and zt is a Bernoulli random variable that is 1
with probability (1/2) · T− ε

2+ε , and 0 otherwise.

At every step, suppose that the algorithm gets the
directional hint dt = ut before playing xt, but the
length (i.e., zt) is revealed only after the algorithm
plays xt. Once again, let us denote δt = xt − xt−1.
Then the expected cost at step t is

E[〈xt, ct〉+‖δt‖1+ε
] = E[〈xt−1, ct〉+〈δt, ztut〉+‖δt‖1+ε

].

Since xt−1 is played before the random sign in ut
is chosen, we have E[〈xt−1, ct〉] = 0. Also, we have
E[〈δt, ztut〉] = E[zt] · E[〈δt, ut〉] ≥ −(1/2)T− ε

2+ε ‖δt‖.
Thus we have the expected cost incurred by the algo-
rithm A at step t is

E[〈xt, ct〉+ ‖δt‖1+ε
] ≥ E

[

−T
− ε

2+ε

2
‖δt‖+ ‖δt‖1+ε

]

.

Applying Lemma 4.1 with T−α replaced by T
ε

2+ε

2 ,

E[〈xt, ct〉+ ‖δt‖1+ε
] ≥ −ε

((1 + ε)2)1+
1
ε

· T− 1+ε

2+ε .

Using (1 + ε)1/ε > 1, ∀ε > 0, the RHS above is

≥ − ε
2(1+ε)T

− 1+ε

2+ε Thus, the total cost incurred by the

algorithm over all time steps is

≥ −ε
2(1 + ε)

· T 1− 1+ε

2+ε =
−ε

2(1 + ε)
· T 1

2+ε .

3We are using the fact that the sum converges to a Gaus-
sian distribution, which is true in the limit. But due to the
slack in the constants, the desired bound holds for T being
a large enough constant.

On the other hand, for the optimum solution, the ex-
pected cost is

−E
[∥

∥

∥

∥

∥

∑

t

ct

∥

∥

∥

∥

∥

]

= −
√

2

π

√

(1/2)T 1− ε

2+ε = −T
1

2+ε

√
π
.

Thus for any ε > 0, the desired claim follows.

5 Conclusions

We have presented algorithms and lower bounds for
online learning with movement costs and hints. We
consider algorithms with directional and possibly also
length hints and prove that while length hints offer
more power, in both cases there is a continuum of
bounds depending on the movement cost parameter
ε. Our results highlight the intriguing consequences of
different kinds side information in online learning.
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A Proof of Lemma 3.2

Proof. By concavity of the logarithm,

log

(

b

c
+

t−1
∑

τ=1

aτ +
cat

b+ c
∑t

τ=1 aτ

)

≤ log

(

b

c
+

t
∑

τ=1

aτ

)

.

Telescoping this sum yields:

T
∑

t=1

cat

b+ c
∑t

τ=1 aτ
≤ log

(

1 +
c
∑T

t=1 at
b

)

.


