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Abstract
Stochastic planning can be reduced to probabilistic inference in large discrete graphical models, but hardness of

inference requires approximation schemes to be used. In this paper we argue that such applications can be disentangled
along two dimensions. The first is the direction of information flow in the idealized exact optimization objective,
i.e., forward vs. backward inference. The second is the type of approximation used to compute this objective, e.g.,
Belief Propagation (BP) vs. mean field variational inference (MFVI). This new categorization allows us to unify
a large amount of isolated efforts in prior work explaining their connections and differences as well as potential
improvements. An extensive experimental evaluation over large stochastic planning problems shows the advantage
of forward BP over several algorithms based on MFVI. An analysis of practical limitations of MFVI motivates a
novel algorithm, collapsed state variational inference (CSVI), which provides a tighter approximation and achieves
comparable planning performance with forward BP.

1 Introduction
The connection between planning and probabilistic inference is well known and multiple reductions exist showing how
inference algorithms can be used to solve stochastic planning problems. Such reductions are equivalent when one can
perform exact inference but this is not typically the case for challenging planning problems that have many state vari-
ables, a.k.a. factored spaces, where approximate inference schemes are introduced. The planning and reinforcement
learning literatures include multiple such efforts where different algorithmic frameworks are combined with different
approximation schemes. For example, constructions exist through weighted model counting Domshlak and Hoffmann
[2006], several forms of variational inference (e.g., [Toussaint and Storkey, 2006, Levine, 2018]), and several forms
belief propagation (e.g., [Liu and Ihler, 2012, Cui et al., 2019]). However, it is not clear how different algorithmic
approaches are related to one another and how the choice of approach interacts with the choice of approximation
scheme.

The paper makes three contributions. First we provide a unified scheme that connects previous approaches along
two dimensions, using either forward or backward reasoning, and choosing what approximation to use, where we
address Belief Propagation (BP) and mean field variational inference (MFVI). This allows us to put prior work in
a unified framework that explains choices made by corresponding algorithms. In particular, our analysis shows that
Forward MFVI which is used in some papers can be understood to run multiple iterations of Backward MFVI and thus
provides tighter approximations. Second, through extensive experiments over large planning problems, we show that
forward reasoning with Belief Propagation provides the best performance among these algorithms, that MFVI provides
poor performance in some domains, and that modifying MFVI using exponentiated rewards helps in some cases but
not sufficiently. We also analyze the failures of MFVI experimentally pointing to sensitivity in updates. Third, based
on the analysis, we propose a novel algorithm, Collapsed State Variational Inference (CSVI), that uses mean field
with collapsed variational inference where state variables are integrated out. CSVI is motivated theoretically due
to its tighter variational approximation and we show empirically that it matches the performance of Forward Belief
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Propagation. This shows that while naive application of mean field for planning fails, other variational approximations
like CSVI can yield strong planning performance. Due to space constraints some technical details and experiment
results are omitted from the main paper and are provided in [Wu and Khardon, 2022], which we refer to below as the
the appendix.

2 Problem Formulation
We consider finite horizon MDPs as specifications of planning problems. Such specifications are often compiled
from a high level description language but this is orthogonal to the discussion in the paper. Specifically, consider
Markov Decision Processes 〈S, p(s0),A,P,R, T, γ〉, where S denotes the state space, p(s0) is a distribution over
start states, A denotes the action space, P denotes the transition probability p(st+1|st, at), R denotes the reward
function R(st, at), T denotes the horizon and γ is the discount factor. In this paper we set γ = 1, but this does not
significantly affect any of the formulations. A solution is given by a policy, π, that specifies pθt(at|st) with policy
parameters θ = {θt} allowing for non-stationary policies. The task in planning is to find a policy that maximizes the
expected cumulative reward E[

∑T−1
t=0 R(st, at)] where the expectation is taken w.r.t. trajectories generated from the

MDP with policy π, that is, s0 ∼ p(s0), at ∼ pθt(at|st), and st ∼ p(st|st−1, at−1).
In this paper we follow recent practice in stochastic planning and use the online planning framework, where in a

state s, the algorithm computes for a limited time to pick an action a, uses a to control the MDP to get to the next state,
and repeats this process. Online planning is often used with receding horizon control, where the planner uses a T step
lookahead in its search and then extracts the first action a to be applied in s.

Solving a finite horizonMDP is equivalent to solving an inference problem in the corresponding Dynamic Bayesian
Network (DBN), or more precisely in the dynamic decision network. We assume a factored form of states consisting
of binary state variables, i.e. st = (s1

t , · · · , sMt ). We also assume a factored action representation at = (a1
t , · · · , aNt ).

The MDP formulation above requires real-value reward nodes in the DBN. To facilitate inference one can replace
these nodes with constructions that use only binary variables, and various such constructions appear in the literature. In
the following we develop one such construction and use that in our experiments. We introduce binary reward random
variables rt to capture the reward after taking action in the previous time step t−1, the distribution of which is defined
as

p(rt = 1|st−1 = s, at−1 = a) =
R(st−1 = s, at−1 = a)

maxs,aR(s, a)
. (1)

We can then define R̃ where p(R̃ = 1) =
∑T

1 rt
T to capture the cumulative reward. We call the resulting DBN the

intermediate representation. However, R̃ has T parents which hinders efficient inference. To avoid the use of R̃,
we introduce cumulative reward binary random variables ct. To keep the consistency of the graphical structure, we
create an auxiliary node c0 ≡ 1, and for t > 0 the distribution of ct is defined recursively depending on the previous
cumulative reward ct−1 and current reward rt:

p(ct = 1|ct−1, rt) =
(t− 1)ct−1 + rt

t
. (2)

In many planning problems the reward is given as an additive function over a set of small factors. For such problems
we introduce another chain of binary reward variables within a time step using a similar construction. This yields a
DBN that only includes binary variables with a small number of parents. As the following proposition shows the three
constructions, using cumulative reward, using R̃ and using cT are equivalent. Further details and proofs are given in
the the appendix.

Proposition 1 The construction satisfies E[
∑T−1
t=0 R(st, at)] ∝ E(R̃) ∝ E(cT ) where expectations are w.r.t. trajecto-

ries as above.
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3 Planning Through Inference
In the following we restrict our discussion to open loop policies, that is, pθt(at|st) = pθt(at) where the policy is
time dependent but does not depend on the state (other than s0 if it is fixed). Thus for an action sequence A =
{a0, . . . , aT−1}, we have pθ(A) =

∏
pθt(at). This covers most of previous work on planning as inference in the

literature. The extension to standard policies is straightforward but requires more complex algorithms for optimization.

3.1 Forward Backward Framework
We now present a simple framework that captures many algorithms in the literature. For the discussion below note
that some algorithms optimize policy parameters θ and then choose the actions, whereas others optimize the action
sequence A directly.
The Backward Framework: Observe that if θ is the uniform distribution, u, then

arg max
A

p(cT = 1|A) = arg max
A

pu(A|cT = 1)pu(cT = 1)

pu(A)
= arg max

A
pu(A|cT = 1) (3)

where the second equality is true because pu(A) is a fixed constant for all A and pu(cT = 1) does not depend on A.
This suggests that we can optimize p(cT = 1|A) by optimizing pu(A|cT = 1). Since calculating pu(A|cT = 1) is
hard, the backward framework optimizes an approximation of pu(A|cT = 1). The choice of different approximations
qφ(A) will give us different concrete algorithms. This is captured in Algorithm 1

Algorithm 1 Backward Inference
1. Calculate qφ(A) ≈ pu(A|cT = 1)
2. Pick A = arg max qφ(A)

The Forward Framework: in contrast, the forward approach aims to directly optimize pθ(cT = 1) w.r.t the policy
parameters (or alternatively, p(cT = 1|A) but we focus on the more general case). Approximating pθ(cT = 1) with a
score function sc(θ) defined on policy parameters yields the forward framework. In the ideal case, maximizing sc(θ)
will give us a delta function, directly selecting a concrete A sequence. If not, we can use arg max or sample from the
corresponding distribution. This is captured in Algorithm 2

Algorithm 2 Forward Inference

1. Define a score function sc(θ) , sc(cT = 1|θ) ≈ pθ(cT = 1)
2. Optimize θ to maximize the score function.
3. Pick A using pθ(A)

3.2 Forward and Backward Loopy Belief Propagation
The forward and backward algorithms can be combined with any approximation scheme. We start by considering
loopy BP (LBP) algorithms [Pearl, 1988, Kschischang et al., 2001]. For this construction we translate the DBN into
a factor graph using standard constructions. For backward LBP, we instantiate cT = 1 as evidence, fix the factors
corresponding to θ to be the uniform distribution, and run LBP to calculate the marginal probabilities on action
variables. That is, qφ(A) is given by the output of LBP. Note that this is algorithmically simple because we do not
need a separate optimization step aside from Belief Propagation. However, LBP may need many iterations to converge
or may not converge at all.

For the forward algorithm, we define sc(θ) to be the approximate marginal of pθ(cT ) computed by LBP. However,
LBP does not optimize θ. As discussed below, multiple techniques for optimizing θ for LBP exist in the literature. In
the experiments we use the SOGBOFA system [Cui et al., 2019] that combines LBP with gradient based search.
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3.3 Forward and Backward Mean Field Variational Inference
The idea in variational inference is to minimize the KL divergence between the approximate posterior and the true
posterior over latent variables, i.e., in our case

dKL(qφ(S,A,R,C\T )||pθ(S,A,R,C\T |cT = 1))

where the latent variables are S, A, R, C, that is, the sequences of state, action, reward, and cumulative reward
variables, where C\T excludes cT . This is equivalent to maximizing the evidence lower bound (ELBO). In our case
the ELBO is given in the next equation, where in the mean field approximation qφ is a product of independent factors

log pθ(cT = 1) ≥ Eqφ [log
pθ(S,A,R,C\T , cT = 1)

qφ(S,A,R,C\T )
] =: ELBOθ,φ. (4)

For backwardMFVI, note that pu(A|cT = 1) is the marginal distribution of the true posterior pu(S,A,R,C\T |cT =
1). Therefore we first maximize ELBOφ,θ=u to obtain qφ(S,A,R,C\T ) and then set qφ(A) to be the corresponding
marginal. Detailed update equations for MFVI are given in the the appendix.

For forward MFVI, we can pick sc(θ) = ELBOφ,θ ≈ log pθ(cT = 1) where we need to optimize both φ and
θ. For this, the standard approach is the Variational Expectation Maximization algorithm which optimizes φ in the E
step and θ in theM step. To elaborate the algorithm, note that the ELBO can be reformulated as follows:

ELBOθ,φ = Eqφ [log
p(S,R,C\T , cT = 1|A)

qφ(S,R,C\T |A)
]− dKL(qφ(A)||pθ(A)) (5)

where the first term does not depend on θ. Therefore:

• In the E step, we maximize ELBOθ,φ w.r.t. φ. Note that this is exactly as in the Backward Algorithm but under
a general θ.

• In the M-step, we keep qφ fixed and optimize theELBOθ,φ w.r.t. θ. From Eq (5) we see that this is equivalent to
minimizing dKL(qφ(A)||pθ(A)). If qφ(A) and pθ(A) are from the same class of distributions, this step assigns
θ ← φ.

From the procedure, we have the following observation.

Remark 2 For the mean field approximation, the forward algorithm is an iterative process that alternates the back-
ward algorithm with policy updates.

This connection was not observed in prior work where the forward and backward algorithms are not clearly distin-
guished. Finally, as pointed by Toussaint and Storkey [2006] the E step is analogous to policy evaluation (except that
we calculate marginals for many variables besides the reward) and the M step is analogous to policy improvement, so
forward MFVI can be seen as an approximate version of Policy Iteration.

4 Related Work
The idea of using inference for stochastic planning has a long history and has attracted many different approaches.
For example, Cooper [1988] showed how inference can be used for decision making in influence diagrams, Domshlak
and Hoffmann [2006] use an approach based on weighted model counting, Nitti et al. [2015] use a probabilistic
programming formulation, and Lee et al. [2021] use anytime marginal MAP solvers for planning problems.

Several groups have developed approaches that follow the forward variational framework, going back to Dayan
and Hinton [1997]. This idea is often developed by defining a reward weighted path distribution which is similar to
conditioning on cT = 1 in our framework, and developing algorithms from this formulation [Furmston and Barber,
2010, 2011, Toussaint and Storkey, 2006, Kumar et al., 2015]. We note, however, that these works did not explicitly
address factoring over state and action variables.
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On the other hand, some papers in robotics and reinforcement learning (RL) [Toussaint, 2009, Kappen et al., 2012,
Levine, 2018] follow the backward variational framework. In contrast with the discussion above they use a formulation
where the reward over trajectories is exponentiated. As shown by Levine [2018] this modifies the original optimization
objective by adding a term with the expected entropy of the policy, and hence solves a slightly different problem, but
the entropy term may be beneficial for exploration in RL. In addition, the work of Neumann [2011] uses the forward
variational algorithm, but with an exponentiated reward, and additional sampling-based approximations. We can see
that the forward and backward variational approaches have been widely used but have not been differentiated before.
Our analysis above clarifies the relationship between these approaches.

For the case of BP approximation, Murphy and Weiss [2001] proposed the Factored Frontier Algorithm which is a
forward BP method for marginal inference, and Boyen and Koller [1998] developed approximation bounds for forward
inference. The work of Liu and Ihler [2012], Kiselev and Poupart [2014] follows the forward BP framework, but
develops a generalized belief propagation algorithm that solves both optimization and expectation steps using message
passing. The work of Cui et al. [2019] also follows the forward BP framework but decouples the expectation which is
done through BP from the optimization that uses an approximation based on gradient search.

Several works have made additional assumptions on the structure of the DBN in their discussion of graph-based
MDPs. Cheng et al. [2013] extend the algorithm of Liu and Ihler [2012] to this case. Peyrard and Sabbadin [2006]
and Sabbadin et al. [2012] use the Mean Field approximation method but only use it to approximate the distribution
over state variables. They then use the approximate distribution to approximate steps of the Policy Iteration algorithm.
Hence their algorithm is different fromMFVI in that reward variables are not included in the variational approximation.
Finally, our work can be seen to extend the comparison of Mean Field and Loopy BP for general inference tasks [Weiss,
2001]. As in this early work, our experiments show that optimization of variational objectives can lead to local optima
and that BP can provide some advantage.

5 Experiments and Analysis of MFVI & Belief Propagation Algorithms
This section presents an experimental evaluation of the algorithms. The code for regenerating all the results is available
on Github1. Our goal in this paper is to understand the quality of decisions provided by different approximate inference
schemes, ignoring implementation details. Therefore, during the experiments we do not limit run time but instead
allow the algorithms to converge, within bounds given below, before proposing a decision. We chose 6 problem
domains from the ICAPS 2011 International Probabilistic Planning Competition to conduct our experiments. Each
domain has 10 instances with factorized structure, horizon of 40 and discount factor of 1, and instances differ by
the number of state and action variables. For our experiments we use the SPUDD [Hoey et al., 1999] translation
of the original RDDL [Sanner et al., 2010] specification, which compiles away action factoring. This simplifies the
implementation because it removes the need to reconcile action constraints with factoring. To control our overall
experimental time we use online planning with receding horizon control, where we set the search horizon to be the
minimum value between 9 and the remaining time steps.

Algorithmic parameters for MFVI: we perform at most 100 Variational updates and stop early if the infinity norm
of the difference between consecutive approximation distributions is less than 0.1. We perform 3 outer iterations, i.e.,
policy updates for the forward version.

Algorithmic parameters for BP variants: We use SOGBOFA [Cui et al., 2019]2 as forward Loopy BP, fixing search
depth to 9, and limiting the number of gradient updates to 500. We note that SOGBOFA has outperformed other
planners, including search based planners, in IPPC 2018 problems and is a state of the art baseline for the evaluation.
For the backward algorithm, our implementation is based on Zhou et al. [2022] with parallel message update and a
bound of 100 iterations with no damping (β = 0).

Normalized mean ± one standard deviation of the cumulative reward over 12 simulations are shown in all the
plots. Denote the mean value and standard deviation of the cumulative reward of algorithm a on instance i to be r̄i(a),
σi(a), respectively. To facilitate comparisons across domains we report scores normalized relative to the random
policy. Specifically, for algorithm a on instance i, score-meani(a) = |r̄i(a)−r̄i(RANDOM)|

|r̄i(RANDOM)| and score-stdi(a) =

1https://github.com/Zhennan-Wu/AISPFS
2https://github.com/hcui01/SOGBOFA
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σi(a)
|r̄i(RANDOM)| where the random algorithm has score 0 and higher scores indicates better performance. For reference,
the raw results are given in the the appendix.

Comparison of Algorithms Results are shown in the left column of Figure 1. The top plot shows that search
direction is important for BP: the forward algorithm (SOGBOFA) outperforms the backward algorithm.3 In contrast,
the second plot shows that for MFVI, there is no significant difference between the forward and backward variants.
This is an interesting result because, as shown above, the forward algorithms mimic Policy Iteration and they provide
a tighter approximation. The third plot compares MFVI to BP showing that MFVI has poor performance in some
problems and forward BP dominates in all problems. Finally, we can show (see the appendix) that the exponentiated
variant of MFVI can be captured in our framework by conditioning on all reward and cumulative reward variables.
The bottom plot compares this variant to standard MFVI. We see that the performance improves in two domains but
the exponentiated variant is still dominated by forward BP.

Exploring the performance of MFVI We believe that the main reason for the failure of MFVI is due to interaction
between the flexibility that the mean field approximation allows with many state variables, and the sensitivity to
ordering of updates due to local optima. To explore this we performed several additional experiments. In the first we
introduce a new variant algorithm, MFVI-NoS, which does not update the marginal distribution over state variables,
i.e. keeps them at the initialized value of 0.5. Results for two domains are shown in the top half of the third column
of Figure 1. We see that while the NoS variant restricts the algorithm it improves the performance in these domains
(this does not happen in all domains). Another view of this phenomenon is given by the relative contribution of each
group of variables to the increase in the ELBO during updates of variational parameters. The bottom half of the third
column of Figure 1 visualizes this for the MFVI and MFVI-NoS variants in one problem. We see that for MFVI the
largest increase in ELBO is contributed by adjusting state variables and the NoS variant increases the share of other
variables. We further explore this in the full paper using an artificial problem, showing that in this case limiting the
flexibility of MFVI can lead to better posterior, that MFVI is sensitive to a choice of which subset of state variables is
updated, and in addition to the order of updates.

6 CSVI
Motivated by the analysis above, we propose a new algorithm for variational inference in planning. Instead of treating
all the latent nodes in the DBN in the same manner and computing approximate distributions over all these variables,
the algorithm focuses on the action variables and effectively marginalize out other terms to achieve a tighter ELBO.
This type of approach is known as collapsed variational inference, which has been shown to be effective in models
where the marginalization can be done analytically (e.g., Teh et al. [2006]) but for planning one has to resolve additional
computational challenges as we show below. Specifically we propose to use the following provably tighter ELBO

log pθ(cT = 1) = logEpθ(A)
[p(cT = 1, A)] ≥ Eqφ [log

pθ(cT = 1, A)

qφ(A)
]. (6)

Here we have the same factorized transitions and policy distribution. However, we do not compute approximation
distributions over state, reward, and cumulative reward variables. With mean field, the standard solution [Bishop,
2006] yields the update equation

log qφ(alt) ∝ Eqφ\alt(A) log pθ(cT = 1, A) = Eqφ\alt(A) log gθ(A) (7)

where

gθ(A) = ES,R,C\T [pθ(A,S,R,C, cT = 1)]. (8)

3While our focus is on the quality of approximation it is worth noting that Cui et al. [2018] have shown that with a directed model (equivalent to
the Forward Framework with no downstream evidence as in our case), LBP converges in one iteration. Thus the forward algorithm is also faster.
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The tighter approximation appears to yield an infeasible update, because A is entangled in g() and we must perform
an explicit marginalization in g() for each update.

We next show how the update equation can be approximated via sampling. The key is to first extract pθ(A) from
the expectation. We therefore have:

log gθ(A) = log pθ(A) + logES,R,C\T [pθ(S,R,C, cT = 1|A)]. (9)

Recall that pθ(A) is a product of independent terms. This implies that the first part can be substituted with log pθ(a
l
h)

since all other terms are constants w.r.t the variable of interest in (7) and they will vanish in the normalized update of
qφ(alt). The second part is conditioned onA and does not include p(A) terms. Its expectation can be estimated through
sampling. In particular, sampling can be intuitively done as follows: keeping alt fixed, sample the action sequence from
approximate distribution qφ\alt(A). Then complement this by sampling values for st, rt, ct nodes, including cT . The
resulting values for cT are generated from the correct distribution and the average over cT gives an estimate of the
expectation. Since we are using sampling and averaging inside the logarithm this yields biased estimates for updates,
but this type of biased estimates has been shown to work in other cases in machine learning (e.g., [Wei et al., 2021])
and it can be mitigated by taking sufficient samples. It is interesting to note from the above update that the policy
distribution serves as a weight bias in the action update procedure. Algorithm 3 summarizes the update procedure.

Algorithm 3 Collapsed State Variational Inference
1: for t = 1, 2, . . . , T do
2: for l = 1, 2, . . . , N do
3: for value of action variable l at time t fixed to be 0, 1 do
4: for action sequence sample index i = 1, . . . ,M1 do
5: Sample action sequence A = a1, . . . , aT from qφ
6: for trajectory sample = 1, . . . ,M2 do
7: Sample and record cumulative reward variable cT from gθ(A)
8: end for
9: Estimate p̂i = #(cT = 1)/M2

10: end for
11: Calculate log qφ(alt) ∝ log pθ(a

l
t) +

∑
i(log p̂i)/M1

12: end for
13: Update qφ(alt) by calculating the normalizing factor
14: end for
15: end for

Performance of CSVI For CSVI our implementation uses the same parameters as in MFVI except that we make at
most 10 variational updates. The sample sizes are set to M1 = 20 and M2 = 50. Results are shown in the middle
column of Figure 1. Considering the plots from top to bottom we observe that there is no significant difference between
forward and backward variants of CSVI and that CSVI is significantly better than MFVI. The third plot shows that
the exponentiated reward variant does not improve the performance of CSVI. This suggests that the improvement over
exponential variant for MFVI is due to stabilizing the optimization rather than presenting a better objective. The fourth
plots shows that the performance of CSVI is competitive with forward BP and therefore CSVI provides state of the art
performance in stochastic planning.

7 Conclusion
In this paper we provide a unified scheme that categorizes many previous approaches along two dimensions, using
either forward or backward reasoning and choosing an approximation scheme. Specifically, we focus on belief propa-
gation and mean field variational inference as the approximation choices. In this context, we illustrate the advantage
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of Forward Loopy BP as providing the best performance. Algorithms based on MFVI perform poorly in some do-
mains. They are improved by exponential reward weighting but not sufficiently so. An experimental analysis points
to sensitivity of the optimization as a source for this failure. Motivated by this analysis we propose a novel algorithm,
Collapsed State Variational Inference, which provides a tighter variational approximation, and while being computa-
tionally demanding it performs competitively with Forward Loopy BP. The results highlight that while BP has been less
in focus in recent years, it provides a strong baseline for stochastic planning. It also shows the importance of focusing
variational approximations on variables of interest as done in CSVI and the potential for developing strong variational
algorithms for planning. These observations suggest interesting directions for future work including developing ef-
ficient variants of CSVI, using amortized variational inference in planning to improve CSVI, alternative schemes to
capture the posterior distributions in VI, and developing tighter approximations and optimization algorithms through
BP methods.
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Figure 1: First and second columns: algorithm comparisons on 60 problem instances, averaged over 12 simulations

on each instance. Third column: comparing MFVI variants with and without state updates and the contributions of

variable groups to the increase in the ELBO (in Skill teaching, instance 1, step 2 of execution).
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A Equivalence of Different Reward Formulations
In the MDP framework, we are trying to maximize the cumulative reward. We first show that this is captured by the
sum of binary reward variables.

U(πθ) =
∑
a0
st∈S
at∈A

t∈1,··· ,T

[ T∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)
]( T∑

h=1

R(sh, ah)
)

=
T∑
h=1

∑
a0
st∈S
at∈A

t∈1,··· ,h

h∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)R(sh, ah)

=
T∑
h=1

Eθ(R(sh, ah)) (10)

∝
T∑
h=1

Eθ(rh). (11)

A.1 Cumulative Binary Reward Over time
Under the intermediate DBN setting, we need to calculate the expectation of the total reward R̃. We have:

Eθ(R̃) = pθ(R̃ = 1)

=
∑
a0
st∈S
at∈A

rt∈{0,1}
t=1,···T

[[ T∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)
]
p(R̃ = 1|r1, · · · , rT )

]

∝
∑
a0
st∈S
at∈A

rt∈{0,1}
t=1,···T

[[ T∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)
]∑T

j=1 rj

T

]

=
T∑
j=1

∑
a0
st∈S
at∈A

rt∈{0,1}
t=1,···T

[[ T∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)
]rj
T

]
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=
1

T

∑
a0
st∈S
at∈A

rt∈{0,1}
t=1,···T

[[ T∏
t=1
t6=j

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)
]

p(sj |sj−1, aj−1)pθ(aj−1|sj−1)p(rj = 1|sj−1, aj−1)
]

(12)

Marginalize out all terms with index i > j

=
1

T

T∑
j=1

∑
a0
st∈S
at∈A

rt∈{0,1}
t=1,···T

[[ j−1∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)
]

p(sj |sj−1, aj−1)pθ(aj−1|sj−1)p(rj = 1|sj−1, aj−1)
]

(13)

Marginalize out all the reward terms with index i 6= j

=
1

T

T∑
j=1

∑
a0
st∈S
at∈A
t=1,···j

[[ j∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)
]
p(rj = 1|sj−1, aj−1)

]

=
1

T

T∑
j=1

Eθ(rj) (14)

∝
T∑
h=1

Eθ(rh). (15)

Therefore the intermediate DBN with R̃ is also captured by the sum of binary reward variables.
For our final proposed DBN, we have the expectation:

Eθ(cT = 1) = pθ(cT = 1)

=
∑
a0
st∈S
at∈A

rt,ct∈{0,1}
t=1,···T−1

[ T−1∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)p(ct|ct−1, rt)

p(sT |sT−1, aT−1)pθ(aT−1|sT−1)p(rT |sT−1, aT−1)p(cT = 1|cT−1, rT )
]

13



=
∑
a0
st∈S
at∈A

rt,ct∈{0,1}
t=1,···T−1

[ T−1∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)p(ct|ct−1, rt)

p(sT |sT−1, aT−1)pθ(aT−1|sT−1)p(rT |sT−1, aT−1)
(T − 1)cT−1 + rT

T

]
=

∑
a0
st∈S
at∈A

rt,ct∈{0,1}
t=1,···T−1

[ T−1∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)p(ct|ct−1, rt)

p(sT |sT−1, aT−1)pθ(aT−1|sT−1)p(rT |sT−1, aT−1)
T − 1

T
cT−1

]
+

∑
a0
st∈S
at∈A

rt,ct∈{0,1}
t=1,···T−1

[ T−1∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)p(ct|ct−1, rt)

p(sT |sT−1, aT−1)pθ(aT−1|sT−1)p(rT |sT−1, aT−1)
rT
T

]
(16)

Marginalizing out sT , aT−1 and rT in the first part of the equation

,
T − 1

T
AT−1 +

1

T
BT (17)

where

AT−1 =
∑
a0
st∈S
at∈A

rt,ct∈{0,1}
t=1,···T−2

[ T−2∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)p(ct|ct−1, rt)

p(sT−1|sT−2, aT−2)p(rT−1|sT−2, aT−2)p(cT−1 = 1|cT−2, rT−1)
]

(18)

BT =
∑
a0
st∈S
at∈A

rt,ct∈{0,1}
t=1,···T−1

[ T−1∏
t=1

p(st|st−1, at−1)pθ(at−1|st−1)p(rt|st−1, at−1)p(ct|ct−1, rt)

p(sT |sT−1, aT−1)p(aT−1|sT−1)p(rT |sT−1, aT−1)rT

]
. (19)

Notice that
pθ(cT = 1) = AT . (20)
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For part BT , since rT is binary

BT =
1

T

∑
a0
st∈S
at∈A

rt,ct∈{0,1}
t=1,···T−1

[ T−1∏
t=1

p(st|st−1, at−1)pθ(at|st)p(rt|st−1, at−1)p(ct|ct−1, rt)

p(sT |sT−1, aT−1)p(aT−1|sT−1)p(rT = 1|sT−1, aT−1)
]

(21)

Marginalize out ct, rt for t = 1, · · · , T − 1

=
1

T

∑
a0
st∈S
at∈A

rt,ct∈{0,1}
t=1,···T−1

[ T∏
t=1

p(st|st−1, at−1)p(aT−1|sT−1)p(rT = 1|sT−1, aT−1)
]

=
1

T
Eθ(rT ). (22)

Given these observations we have the recursive equation

AT =
T − 1

T
AT−1 +

1

T
BT

=
T − 1

T
AT−1 +

1

T
Eθ(rT )

=
T − 1

T
(
T − 2

T − 1
AT−2 +

1

T − 1
Eθ(rT−1)) +

1

T
Eθ(rT )

=
T − 2

T
AT−2 +

1

T
(Eθ(rT ) + Eθ(rT−1))

= · · ·

=
2

T
A2 +

1

T

T∑
t=3

Eθ(rt)

∝
T∑
h=1

Eθ(rh). (23)

i.e., the expectation of R̃ and cT are equivalent in two DBNs and they are both proportional to the expected cumulative
reward of the original MDP problem.

B Accumulating reward from multiple nodes in the same time step
In large factored state and action spaces, the rewards are typically specified as an addition function over small factors
that only depend on a small number of state and action variables given by some decision rules. The sum variable might
have many parents and therefore we require an addition construction for the DBN. Since this construction is done for
each time step separately, in this section we simplify the notation and omit the subscript of time step t.

The construction is similar to the accumulation of reward over time. Assume there are K decision rules to deter-
mine the reward at a particular time step with some state and action. Given some order over the decision rules, we
expand the DBN so that each decision rule corresponds to a binary partial reward node pri, (i = 1, · · ·K), with edge
between the partial reward node and the dependent state and action nodes according to the decision rule. Then for
each partial reward node pri, we create a binary collecting reward node cri that connects to the partial reward node
pri and the collecting reward node cri−1 of the previous partial reward node. We also create an additional collecting
reward node cr0 which is set to 1.
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We then define the conditional distribution of cri given cri−1, pri to be

p(cri = 1|cri−1, pri) =
(i− 1)cri−1 + pri

i
(24)

and the partial reward distribution pri to be

p(pri|s, a) ∝ ith reward decision rule. (25)

We want to show that p(crK = 1|s, a) ∝ r(s, a) for every time step.

p(crK = 1|s, a) =
∑

cri,pri,prK
i=1,··· ,K−1

p(crK = 1|crK−1, prK)p(prK |s, a)
K−1∏
i=1

p(cri|cri−1, pri)p(pri|s, a)

=
∑

cri,pri,prK
i=1,··· ,K−1

(K − 1)crK−1 + prK
K

p(prK |s, a)
K−1∏
i=1

p(cri|cri−1, pri)p(pri|s, a)

Separate the formula above w.r.t. crK−1 and prK

=
K − 1

K
part1 +

1

K
part2 (26)

where

part1 =
∑

cri,pri,prK−1

i=1,··· ,K−2

[
p(crK−1 = 1|crK−2, prK−1)

K−2∏
i=1

p(cri|cri−1, pri)p(pri|s, a) = p(crk−1 = 1|s, a)
]

(27)

because the whole equation vanishes when crK−1 = 0, and prK got marginalized out. In addition,

part2 = p(prK = 1|s, a) (28)

because all other variables are marginalized out.
Thus we have

p(crK = 1|s, a) =
K − 1

K
p(crK−1 = 1|s, a) +

1

K
p(prK = 1|s, a)

= · · ·

=
1

K

K∑
i=1

p(pri = 1|s, a)

∝
∑
i

ith reward decision rule

∝ r(s, a). (29)

C Exponentially Weighted Reward
As discussed in the main paper, some prior work uses backward variational inference but does so with an exponential
reward weighting. Here we show how this setting can be captured within our framework. Recall that Levine [2018]
formulates the objective function as

DKL(p̂(τ)||p(τ |O1···T )) (30)

16



where

p(τ |O1···T+1) =
[ T∏
t=1

p(st|st−1, at−1)
]

exp
( T∑
t=0

r(st, at)
)

(31)

p̂(τ) =
T∏
t=1

p(st|st−1, at−1)π(at−1|st−1). (32)

Here O(1, · · ·T + 1) are indicator random variables denoting “optimality” in time t = 1, · · ·T + 1 and the trajectory
distribution is with an implicit uninformative policy.

In our formulation, ct represents the cumulative reward up to time t, and we have established that E(cT ) ∝ E(R).
Recall in our graphical model, a complete trajectory distribution is

p(τ) =
T∏
t=1

p(st|st−1, at−1)u(at−1)p(rt|st−1, at−1)p(ct|ct−1, rt)

u(aT )p(rT+1|sT , aT )p(cT+1|cT , rT+1). (33)

To recover the joint probability of the formulation from Levine [2018], we need the following steps:

1. Change reward distribution to p(rt|st−1, at−1) ∝ exp(R(st−1, at−1)).

2. The trajectory distribution need to conditioned on r1···T+1 = 1, c1···T+1 = 1.

Then in our formulation we have

p∗(τ |r1···T+1 = 1, c1···T+1 = 1) ∝
[ T∏
t=1

p(st|st−1, at−1)
]

exp
( T∑
t=0

r(st, at)
)

(34)

which is the same as the optimal trajectory distribution above. Then the objective of Levine [2018] can be seen to
minimize

dKL(qφ(τ)|p∗(τ |r1···T+1 = 1, c1···T+1 = 1)) (35)

which is captured in our framework with the backward VI by using additional observation variables. Using the same
methodology as above, in our framework both forward and backward variants of this MFVI variant can be imple-
mented.
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D Full closed form update formula for MFVI
For completeness we list the full update formulas of MFVI:

log qφ(sjh) ∝ E\s
j
h

qφ

[
log pθ(S,A,R,C\T , cT = 1)

]
= E\s

j
h

qφ

[ M∑
m=1

log p(smh+1|sh, ah, s
Gm
h+1) + log p(sjh|sh−1, ah−1, s

Gj
h )

+
∑
i:j∈Gi

log p(sih|sh−1, ah−1, s
Gi
h ) + log p(rh+1|sh, ah)

]
(36)

log qφ(alh) ∝ E\a
l
h

qφ

[
log pθ(S,A,R,C\T , cT = 1)

]
= E\a

l
h

qφ

[
log pθ(a

l
h) + log p(rh+1|sh, ah) +

M∑
m=1

log p(smh+1|sh, ah, s
Gm
h+1)

]
(37)

log qφ(rh) ∝ E\rhqφ

[
log pθ(S,A,R,C\T , cT = 1)

]
= E\rhqφ

[
log p(rh|sh−1, ah−1) + log p(ch|ch−1, rh)

]
(38)

log qφ(ch) ∝ E\chqφ
[

log pθ(S,A,R,C\T , cT = 1)
]

= E\chqφ
[

log p(ch|ch−1, rh) + log p(ch+1|ch, rh+1)
]
. (39)

E Analysis of MFVI on a Demo Problem
In this section we further investigate the sensitivity of MFVI to updates of state variables. To achieve this, we design a
new “cooking” domain, partly inspired by the structure of the Skill Teaching Domain, in the spirit of making inference
intuitively clear. We have 2 dishes and three actions, “cook dish1”, “cook dish2”, “do nothing”. By applying the
“cook” action repeatedly each dish goes (with some probability) through 5 potential stages stating at “not cooked”,
and moving to “not cooked and cooking”, “cookMed”, “cookMed and cooking”, “cookWell”, “Burned”. These stages
are encoded by binary variables “cookMed”, “cookWell”, “cooking”. An additional state variable “watching” per dish,
which is equal to “cooking” adds flexibility while not affecting the dynamics. The reward is given when “cookMed”
and “cookWell” are true but not when “burned”. Hence when conditioned on high cumulative reward we should expect
to see "cookMed" initially set to true.

We next explore algorithmic variants. The NoS variant does not update state variables at all, as in the main paper.
Since “cookMed” is important we create additional update schemes around it. “MFVI-Med” fixes the distribution of
other state variables to be uniformly random and only updates “cookMed” state variables together with action, reward,
cumulative reward variables. “MFVI-Med-All” performs an asynchronous update stating by running ‘MFVI-Med” to
convergence and then following by running MFVI until it converges again.

Results are shown in Fig 2. Consider first the plots that show increase in ELBO as a function of updates. We
see that for MFVI the relative effect of state variables on the increase in ELBO is larger than all other variables.
Comparing this to the NoS variant we see that in that case reward and cumulative variables are more important and
the improvement it provides is potentially due to removing the large changes in ELBO due to state variables. On the
other hand, as shown in the performance plot on the left, the two new variants based on the “cookMed” variable, still
improve the performance but also have a large gap in the effect on ELBO, so this does not provide a full explanation.
The success of “MFVI-Med-All” shows that the flexibility is not the whole story, but that the algorithm is sensitive to
the order of updates.
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Figure 2: Left: Performance of MFVI variants on the Cooking Problem. Other Plots: The increase in the value of the

ELBO after updates of variables, shown for each group of variables separately.

Table 1: Approximate posterior distribution of different MFVI variants at the initial state on the cooking problem.

Variables VI-noS VI-Med VI-Med-All MFVI
t1-CookMed [d1, d2] [0.5, 0.5] [1.48e-3, 4.09e-6] [3.37e-7, 5.47e-5] [3.59e-5, 5.38e-5]

t1-Cooking [d1, d2] [4.95e-1, 4.95e-1] [4.95e-1, 4.95e-1] [0.99, 1.00e-12] [5.00e-5, 5.00e-5]

t2-CookMed [d1, d2] [0.5, 0.5] [0.99, 8.49e-4] [0.94, 5.86e-5] [7.57e-5, 5.90e-5]

t2-Cooking [d1, d2] [4.85e-1, 4.85e-1] [4.67e-1, 4.67e-1] [2.49e-1, 2.51e-1] [5.00e-5, 5.00e-5]

As a final diagnostic, we print out the approximate posterior distribution of “cookMed”, and “cooking” variables

of different schemes starting from the state where all the variables are set to be 0. Ideally, these four variables should

be all biased towards 1. We see that for VI-Med and VI-Med-All, their approximate posterior, though not fully

accurate, provides useful information for action distribution update while MFVI provides approximate state posterior

in the wrong direction. This shows that MFVI can converge to uninformative local optima, which causes its poor

performance. Overall we believe that the large number of state variables, their relative effect on the ELBO, and the

sensitivity of the variational algorithm to order of updates are the cause of failure in some domains.

F Details Experimental Results in All Domains
In this section we show the raw, un-normalized results separately for all domains (represented by the first five letters

of the domain names in the main paper). We include results for a second implementation of forward Loopy BP which

is discussed in the following subsection.

F.1 Different Optimization Strategies for Forward Loopy BP
Recall that in the forward Loopy BP algorithm, we define sc(θ) to be the approximate marginal distribution of pθ(cT )
computed by LBP. For the same construction, but using BP with a directed model, Cui et al. [2018] showed that LBP

does converge and that it does so in one iteration. This holds because factors are conditional probability tables and we

do not have downstream evidence. The same holds in our case, for the corresponding message order. However, this

does not solve the optimization problem, i.e. selecting θ or A.
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Figure 3: Algorithm Performance Details

In this context we experimented with two methods. The first one is discussed in the main paper. Namely, the SOG-

BOFA algorithm [Cui et al., 2019] that fully optimizes θ by combining the one pass inference of the marginal problem,
which is done symbolically, with a gradient search. The second one (labeled "LoopyBP-Fwd" in the plot) is a com-

putationally cheap compromise, introduced by Cui et al. [2015], which uses a uniform distribution for a1, . . . , aT−1,

and performs the optimization by enumerating values for a0. That is, the second variant only optimizes the current
action and uses a random rollout for subsequent actions. To make this as close as possible to SOGBOFA we used

an implementation of BP with sequential updates where we can perform just one pass of forward messages (due to

convergence).4

From the domain-by-domain experimental results we see that in all domains except Elevators the two algorithms

have comparable and consistent performance. The need for optimizing the rollout policy for Elevators was discussed

in Cui et al. [2015] Cui et al. [2019]. Briefly, a combination of positive and negative rewards in this domain means

that random rollouts are not informative and, due to the large penalty, all actions look risky and the simpler planning

algorithm chooses to do nothing. More importantly, for our experiments, the consistency in performance shows that

the experimental advantage of SOGBOFA across all domains is not due to differences in implementation details but

rather due to the inference strategy.

4We have also experimented with the fast implementation using parallel updates as used by the backward algorithm which gives comparable

results with 100 iterations of message propagation.
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