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A DETERMINING FORM FOR THE 2D RAYLEIGH-BENARD
PROBLEM

YU CAO, MICHAEL S. JOLLY', AND EDRISS S. TITI

ABSTRACT. We construct a determining form for the 2D Rayleigh-Bénard (RB)
system in a strip with solid horizontal boundaries, in the cases of no-slip and
stress-free boundary conditions. The determining form is an ODE in a Banach
space of trajectories whose steady states comprise the long-time dynamics of the
RB system. In fact, solutions on the global attractor of the RB system can be
further identified through the zeros of a scalar equation to which the ODE reduces
for each initial trajectory. The twist in this work is that the trajectories are for
the velocity field only, which in turn determines the corresponding trajectories of
the temperature.

1. INTRODUCTION

It was shown in [19] that the long-time dynamics of the 2D Rayleigh-Bénard (RB)
problem is entirely contained in the global attractor <7, which is a compact finite-
dimensional subset of an infinite-dimensional Hilbert space H. An inertial manifold,
if it exists, is a finite-dimensional invariant smooth manifold that contains the global
attractor and attracts all the orbits at an exponential rate (see, e.g., [20]). The
system obtained by restriction to an inertial manifold is called an inertial form. It is
a finite-dimensional system of ODEs which reproduces the dynamics of the original
system. While the existence of the inertial manifolds has been established for a
considerable number of dissipative systems (see, e.g., [11,21,26,27] and references
therein), it has been an open problem since the 1980s for the 2D Navier-Stokes
equations (NSE), and hence for the 2D RB problem as well.

The 2D NSE and 2D RB problem do enjoy a finite number of determining pa-
rameters (see, e.g., [9,14,18,25]). For instance, in the case of determining Fourier
modes, if two complete trajectories in the global attractor coincide upon projection
P,, on a sufficiently large number m of low Fourier modes, then they must be the
same (see, e.g., [9,14,18,25]). Thus it is natural to expect the existence of a lifting
map W : P,/ — /. This property inspired the notion of a determining form, in-
troduced in [15]. A determining form is an ODE in an infinite-dimensional Banach
space of trajectories that captures the dynamics of the original system in a certain
way. Rather than being a dimension reduction, as is the case for the inertial form,
the determining form trades the infinite-dimensionality of physical space for that
of time; the elements in its phase space are trajectories. It is an ODE in that it is
represented by a globally Lipschitz vector field.
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There are currently two approaches to constructing a determining form. The key
step in either case is to extend the domain of the lifting map W to a Banach space
X of projected trajectories. The determining form constructed here is based on the
nudging approach to continuous data assimilation (see [1,2]). It is given by

(1) W e o LW @) )

where u* is some steady state of the original system, and || - ||x is a sup norm on
a Banach space of trajectories that evolve in the finite-dimensional range of some
interpolant operator I;. Note that the evolutionary variable is now s € R, not time.
The trajectories in the global attractor of the original system are precisely the steady
states (s-independent solutions) of (1.1). To show that (1.1) is an ODE in the true
sense boils down to proving that the mapping W is globally Lipschitz on a ball in
X, big enough to accomodate I;,47. In addition to the 2D NSE (see [16]), this recipe
has been carried out for the damped-driven nonlinear Schrédinger, damped-driven
Korteweg—de Vries, and surface quasigeostrophic equations (see [3,4,22-24]), each
with particular treatment and subtle twists in the analysis. This general procedure
is developed in detail in Section 3.

In this paper we construct a determining form for the Rayleigh-Bénard prob-
lem. The novelty here is that the phase space X corresponds to projections of the
velocity field alone. Still, both velocity and temperature of all trajectories in the
global attractor of the 2D RB problem are identified through steady states of the
determining form. This is the first such construction where the trajectories are in
a subset of the system state variables. This was suggested in the context of data
assimilation by [12,13] where it was proved that coarse velocity data alone is suffi-
cient to synchronize with a reference solution of the RB problem. The key difficulty
in establishing the crucial Lipschitz property of the lifting map W is in getting a
priori estimates that are independent of the nudging parameter. Doing this with
nudging only in the velocity component adds an extra challenge.

We treat both no-slip and stress-free boundary conditions for the velocity field.
Different analysis is needed for each case. In the stress-free case, the problem is
equivalent to a periodic boundary condition problem in an extended domain with
particular symmetries, which allows us to eliminate one of the nonlinear terms in the
estimates. On the other hand, we do not in this case have the Poincaré inequality
for (the first component of “velocity”) w, which is worked around by combining
estimates of several norms. We observe that similar techniques are used in [7] to
obtain sharper bounds on the size of the global attractor <7 in the case of stress-free
boundary conditions than previously known.

This paper rests on several pioneering works of Ciprian Foias. The very notion
of a determining form was originally his idea, first realized in [15,16] and spawned
by the concepts of determining modes, he developed with Prodi [14], and inertial
forms, with Constantin, Nicolaenko, Sell and Temam in [10,11,20]. The foundation
of the analysis here is the global attractor, which he established and investigated
for the Rayleigh-Bénard system with Manley and Temam [19] (see also [10,27] and
references therein). We have benefitted immeasurably from Ciprian’s insights, not
just for this work, but for broader matters of science and life itself.
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This paper is organized as follows. In Section 2, we lay out the functional setting
for the RB problem subject to each set of boundary conditions. In Section 3, we
recall the notion of interpolant operators and define the determining map. The
main results (Theorem 3.9) are then presented at the end of the section. We give
the proofs of Proposition 3.4, 3.5 and 3.7 in Section 4, 5 and 6, respectively.

2. NOTATION AND PRELIMINARIES

Under a similar change of variables as in [19], the 2D RB problem in an infinite
strip {(x1,22) : 0 < z9 < [} with solid boundaries at o = 0 and z2 = [, can be
written as

ou

(2.1a) i vAu+ (u-V)u+ Vp = gbes,
(2.1b) g‘j — kAO+ (u- V) = = 'ZQQ,
(2.1c) V-u=0,

(2.1d) u(0;z) = up(z), 0(0;x) = y(x),

where g denotes the gravitational acceleration. Unlike [19], we retain the dimension

of the velocity u while the temperature fluctuation 6 is dimensionless. In this paper,

we consider the following two sets of boundary conditions of physical interest.
No-slip:

in the xo-variable: u,0 =0 at 9 = 0 and x9 =1,

in the xq-variable: u,0,p are of periodic L.

Stress-free:

ou
in the xo-variable: —1,u2, f=0at zo =0 and zo =1,

8562

in the xi-variable: u,6,p are of periodic L.

2.1. Function spaces. We will use the same notation indiscriminately for both
scalar and vector Lebesgue and Sobolev spaces, which should not be a source of
confusion.

We denote

(u,v) ::/u'v, lu| := (u,u)"/?, for u,v € L*(Q),
Q

((u,v)) :== / Vu- Vo, |ul = ((u,u)?, for Vu, Vv e L*(Q),
Q
for a domain 2 that will be specified for each case of boundary conditions.

2.1.1. No-slip BCs. We define function spaces corresponding to the no-slip bound-
ary conditions as in [12]. Let Q = Qg := (0, L) x (0,1) and F is the set of C*°(Q)
functions, which are finite sums of the form ) p;(x1)¢;(x2) where each p; is a
trigonometric polynomial with period L and each ¢; is compactly supported on the
interval (0,1).
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Denote the space of smooth vector-valued functions which incorporates the divergence-

free condition by

Vi={ue FxF:V-u=0},

and the closures of V and F in L?(Q2) by Ho and Hy, respectively, which are endowed

with the usual inner products and associated norms

(2.3)

(U7U)H0 = (U, U)7 (¢a¢)H1 = (@Z}Wb)v HU’HHO = (u7u)1/23 HwHH1 = (7/),?#)1/2 .
The closures of V and F in H'(Q) will be denoted by Vo and Vj, respectively,

endowed with the inner products and associated norms

((w, 0))v = ((w,0)), (Y, @)va = (0, 0)),  ullvy = [lull, llllvi = [0l

2.1.2. Stress-free BCs. Following [13], we consider the equivalent formulation of
the 2D RB problem (2.1) subject to the fully periodic boundary conditions on the
extended domain Q = (0, L) x (—I,1) with the following special spatial symmetries:
for (ZE1,$2) € Q,

ur(z1, v2) = w1 (21, —22),  uz(z1,T2) = —uz(T1, —T2),
p(z1,22) = p(z1, —22),  O(z1,22) = —0(21, —22) -
Observe that for (z1,z2) € Q with x9 = —[,0,[, and for smooth enough functions
one has
8u1
et 3 0 =
33727“27 07

that is, one recovers the original corresponding physical boundary conditions when
restricted to the physical domain ).

We define function spaces corresponding to the “stress-free” boundary conditions,

i.e., the periodic BCs with the above symmetries, as in [13], where

J is the set of trigonometric polynomials in (z1,x2), with period L
in the xq-variable, that are even, with period 2I, in the xs-variable,

and

F> is the set of trigonometric polynomials in (z1,x2), with period L
in the xq-variable, that are odd, with period 2[, in the zs-variable.

The symmetries of the two velocity components lead us to take in the stress-free
case

Vi={ue Fy x Fp:V-u=0}.

The space Hy will again be the closure of V in L?(Q), but Hy shall be that of 3 in
L?(2), with inner products and norms as in (2.3).
Similarly, we denote the closures of V and F» in ngr(Q) by Vb and Vi, respec-

tively, but with the inner products

1

((u, 0)vp == @(u,v) + ((w,0)), (Y, 0w = (¥, 9)),
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and associated norms
1 1/2
full = (rgglal® + 1) ol = ol

2.2. The linear operators A;.

2.2.1. No-slip BCs. Let A; : D(A;) — H; (i = 0,1) be the unbounded linear oper-
ators defined by
(AZ"U,, U)Hi = ((u,v))vi, 1=0,1, Vuvée D(AZ) ,
where D(Ag) = Vo N H?(Q) and D(A;) = Vi N H?(Q).
For each i = 0,1, the operator A; is self-adjoint and AZ-_1 is a compact, positive-

definite, self-adjoint linear operator in H;. There exists a complete orthonormal set
of eigenfunctions (Ci,j);?‘;l in H; such that A;(; j = i ;(;,; where

O<AN1< A< <Am<-,
Observe that we have the following Poincaré inequalities:
(24) o < ATMIONP, Vo eV
(2.5) lol? < ATHA, Vo € D(Ay),
where A1 := A1 = Ao 1.

Remark 2.1. We observe that in this case |Ag¢| is equivalent to ||¢|| 2 for every
¢ € D(Ap).

2.2.2. Stress-free BCs. Let A; : D(A;) — H; (i = 0,1) be the unbounded linear
operators defined by A; = —A, where D(Ag) = VoNH?(Q) and D(A;) = ViNH?().

Remark 2.2. The operator A is a nonnegative operator and possesses a sequence
of eigenvalues with

0= 201 < Aoz << Agm <

associated with an orthonormal basis {(o.m }men of Hp. The operator A; is a positive
self-adjoint operator and possesses a sequence of eigenvalues with

O<AMi <A< <A <oe

associated with an orthonormal basis {1 m }men of Hi. Observe that we have the
Poincaré inequality for temperature:

(2.6) 10)2 < ATH0)12, Vo e,
(2.7) 10]> < AT'A10%, VO € D(Ay),
where A1 = Aq 1.

Remark 2.3. In the stress-free case, we do not have the Poincaré inequality for
functions in Vj, but we have

(2.8) [ul® <190 Jlully, , Yu e Vo
by the definition of the norm |||y, .
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Remark 2.4. By the elliptic regularity of the operator Ag + I (see [13, Remark
2.3]), we have in the stress-free case the equivalency

(2.9)

. 1 1
cEQ(m,uuHLQ ; HAOUHm) < llullue < C%(MHUHB ; HAOUHLa), v u e D(Ay).

2.3. The bilinear maps B;. Denote the dual space of V; by V/ (i = 0,1). Define
the bilinear map By : Vo x Vo — Vj (and the trilinear map by : Vo x Vp x Vj — R)
by the continuous extension of

bo(u, v, w) == (Bo(u,v), w)yy = ((u- V)v,w), u,v,weV.
2.3.1. No-slip BCs. Define the scalar analogue By : Vo x Vi — V{ (and the trilinear
map by : Vy x Vi x V{ = R) by the continuous extension of
b1(u,0,0) == (Bi(u,0),)y; = (u-V)0,0), uweV, 0,¢cF.

The bilinear maps B; (and the trilinear maps b;), ¢ = 0, 1, have the orthogonality
property:
(2.10) bo(u,v,v) =0, bi(u,6,0)=0, wu,velpy, 6cV.
2.3.2. Stress-free BCs. Define the scalar analogue By : Vj x V3 — V/ (and the
trilinear map by : Vo x Vi x V{ — R) by the continuous extension of

bl(u797¢) = <Bl(u7 0)7¢>V1’ = ((’U, ’ V)0,¢), uwey, 974) € Fa.

The bilinear maps B; (and the trilinear maps b;), ¢ = 0,1, have the same or-

thogonality property (2.10) as in the no-slip case. Furthermore, we have for each
u e D(A()),

(2.11) bo(u,u, Agu) =0,

which is not true in general in the no-slip case.

2.4. Functional setting and bounds for the global attractor. Following [19],
we have the functional form of the RB problem (2.1):

(2.12a) (c% + vApu + Bo(u,u) = Py (gbes),
(2.12b) %f 4 kA0 + By(u,0) = 2 '162,
(2.12¢) u(0;x) = up(z), 6(0;x) = 0Og(z),

where P, denotes the Helmholtz-Leray projector from L?(Q) onto Hy.
2.4.1. No-slip BCs. It is shown in [19] that the RB system (2.1) with no-slip bound-
ary conditions has a global attractor

(2.13)
o = {(ug, bp) € Hy x Hy : Ja unique solution (u,0)(t; ug, ) of (2.1) for all t € R

and sup([[u(t)llv, +110(t)li) < o0} .
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Alternatively, <7 is the maximal bounded invariant subset of Vj x Vi under the
dynamics of (2.12). Moreover, there exists some (dimensional) constants J; > 0,
i = 1,2, such that

(2.14) sup [[u(t)|ly, < J1, supllu(t)||gz < J2,  V(u,0) € .
teR teR

Henceforth, lowercase letters ¢y, ca,¢;, - - - will denote universal dimensionless pos-
itive constants; uppercase letters C, J;, K, K;,--- will denote positive dimensional
constants that depend on the physical parameters.

2.4.2. Stress-free BCs. The case of stress-free boundary conditions is studied further
in [7]. With the stress-free boundary conditions, the RB system has steady states
with arbitrarily large L?-norms:

u(z) = (¢,0), O(x)=0, ceR,

which means that the system is not dissipative. However, since (see also [7])

7 Qu(az,t) dx =0,

we may assume in the stress-free case that the velocity field has a fixed average:
(2.15) / u(z,t) de =a, VteR,
Q

where a € R is fixed. Observe that the spatial average is conserved and the system
is dissipative within each invariant affine space of fixed average a. It is shown in [7]
that the RB system has a global attractor @/ = 7,, in each affine subspace of
Vo x Vi where the spatial average (2.15) of velocity is fixed. Moreover, there exist
some (dimensional) constants J; = J;(a) > 0, i = 1,2, such that (2.14) holds. In
this case of stress-free boundary conditions, the dependence of J;, i = 1,2, is shown
in [7] to be algebraic in the physical parameters v, k, [ and L.

3. DETERMINING FORM AND MAIN RESULTS

In order to define the determining form, we need the notion of interpolant oper-
ators.

3.1. Interpolant operators. We recall a general class of interpolant operators in-
troduced in [1,2] for dealing with various determining parameters such as modes,
nodes, volume elements, etc. These operators are finite-rank operators (bounded,
linear and with finite-dimensional range) and are required to satisfy an approxima-
tion of identity type condition.

A finite-rank operator I, : H'(Q) — H'(Q) is a Type I interpolant operator if it
satisfies

(3.1) lo — In(p)| < cobll@llr, Vo€ H';
(3.2) I — In() g < Gllellg, Vo€ H.
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A finite-rank operator I, : H2(Q) — HY(Q) is a Type II interpolant operator if it
satisfies

(3.3) o — In()l < cihllellm + c2h®|lpllyz, Vo € H?
(3.4) lo = (@)l < éllellm + Ghllelz, Vo e H.

In this paper, we construct a determining form for the RB system using Type
IT interpolants. The same can be done under slightly weaker assumptions on A for
Type I interpolants (see [6]).

Remark 3.1. The orthogonal projection onto low Fourier modes, those with wave
numbers k such that |k| < 1/h, is one example of a Type I interpolant. Another
is finite volume elements. In addition, an example of a Type II interpolant is an
interpolant operator that is based on nodal values satisfying (3.3) and (3.4). See,
e.g., [1] for more details.

Remark 3.2. In the stress-free case, by definition, we have [|¢|[z1 = |¢lly,, for
¢ € V. Moreover, by (2.9) in Remark 2.4, replacing the absolute constants when
necessary, we can replace ||¢||z2 by |Aoy| in (3.3) and (3.4), for ¢ € D(Ap).

We need to modify the interpolant operator I, so that its has a range of functions
that are divergence-free and satisfy the boundary conditions. Motivated by [8,
Proposition 2.1], we define the modified Type II interpolant operator I, : H? — Vj
as

. 1
(3.5) Iy:= Py, Pep=> (6,0i)C0i b
i=1

~ 9y
)\O,r

where we recall that {(p;} are the eigenfunctions of the operator Ay in Section 2.2.
The phase space (X, ||-]|x) of our determining form is then defined as

supyer [[v()ly,
y/\}/2

(3.6) X = Cy(R; InH?), |jv]|x =

Remark 3.3. Based on the proof in [8, Proposition 2.1], we observe that I?L satisfies
conditions (3.3) and (3.4) with modified constants ¢;, ¢, i@ = 1,2. Furthermore,
in the no-slip case, by the Poincaré inequality, modifying the constants ¢; when
necessary, we have

(3.7) ¢ = In(p) < crhliglly, +e2h® [Aogl, Vo € D(Ay).
We also have (3.7) for the stress-free case by Remark 3.2.

3.2. Auxiliary system and determining map. Consider the following auxiliary
System:

d ~
(3.8a) d—zf + vAow + Bo(w,w) = Py(gnes) — pvAi (Ipw — v),
d .
(3.8b) d—z + kA1 + By(w,n) = v le2,

where v € Bx (0,p) := {€ € X : ||| x < p} with p > 0 and I, is a (modified) Type
IT interpolant operator. Note that the nudging term in (3.8) appears only in the
momentum equation.
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Proposition 3.4 (Solutions to the auxiliary system). Let p be a positive real num-
ber. Let p > 0 be sufficiently large and h > 0 sufficiently small (see conditions in
Section 4). Then for each v € Bx (0, p), system (3.8) has a unique bounded solution
(w(t),n(t)) that exists for all t € R such that

(3.9)

dw d
(w,n) € Cy(R, Vo x V1) N LE (R, D(Ag) x D(A})), (dt, C;Z) e L} (R,Hy x Hy).

The proof of Proposition 3.4 is given in Section 4. Note that this proposition
provides a map, called the determining map,

W : Bx(0,p) = Cy(R; Vo x Vi) N LE(R; D(Ag) x D(A1)), W (v) := (w,n).

The projection of W to the first component w induces a map W : Bx(0,p) = Y
with

Y := Cy(R; Vo) N LE (R; D(Ag)), W(v) =w,

1 1/2
supyeg [[w(t)|ly, 1 /t+ 2% 2

w|ly = + [ —su Aow(7)|* dr .
Jwlly oY s [ Agu(e)

R

The induced map W will be used in the definition of the determining form. We
denote Z := Cy(R; V1) N L2 (R; D(A1)) and

loc

o5 1/2

VAL

17|z := supln(t)llv; + (VSUP/ |A177(T)|2d7> :
teR teR Ji

Proposition 3.5. The maps W : (Bx(0,p),|llx) = ¥ x Z,|-lly + I'llz) and

W (Bx (0, ), [-lx) = (Y, lly) are Lipschitz.

The proof of Proposition 3.5 is given in Section 5.

Remark 3.6. It is proved in [4] that the determining map W is in fact Frechét
differentiable in the case of the 2D NSE.

3.3. Determining form and long-time dynamics of the RB system. Let
(u*,0%) be a steady state of the RB problem (2.12); for instance, we may take
(u*,0%) = (0,0), or in the case of stress-free boundary conditions, (u*, %) = (c,0),
where ¢ is consistent with the fixed spatial average. Under the assumptions of
Proposition 3.4, we will prove (in Theorem 3.9 (i)) that the differential equation

(310) %= F)i= v~ LW~ Tut), 0(0) = w0 € Bx(0,p),

is an ODE in the sense that the vector field F' is globally Lipschitz in the ball
Bx (0, p), where p > 0 is to be determined. The ODE (3.10) is called a determining
form of the RB problem.

The connection between the long-time dynamics, i.e. the global attractor, of the
RB problem (2.12) and the determining form will be made through the following
result:
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Proposition 3.7. Let (u(t),6(t)), t € R, be a solution of the RB problem (2.12) that
lies in the global attractor of . Suppose ., h satisfy the assumptions in Proposition
3.4. Suppose (w,n) is a solution to the system

d - -
(3.11a) dif + vAow + Bo(w,w) = Py(gnes) — pv i (Ipw — Ihu),
d .
(3.11b) d—7t7+/<cA1n+Bl(w,n) - “’le2,

and satifies
(w,n) € Cy(R, Vo x V1) N LE (R, D(Ag) x D(A})), (Osf, fg) € L} (R,Hy x Hy).
Then (w(t),n(t)) = (u(t),0(t)) for all t € R.

The proof of Proposition 3.7 is given in Section 6.

3.4. Main theorem. In order to state the main theorem, we first prove the fol-
lowing result:

Proposition 3.8. Let I, be a (modified) Type II interpolant operator as in (3.5),
with h < L. For every (u,0) € &/, we have

(3.12) 1hullx < R = ((é + 1)1 + GLJ)/(vA?).
Proof. Let (u,0) € <. By (3.4), Remark 3.3, and the bound (2.14), we have

[hullvy < 2w = ullve + [lully,
< allullgr + Ghllullgz + llully, < (@ +1)J1 + &Lz,
which completes the proof by (3.6), the definition of the norm ||-||x. O

The main results regarding the determining form are summarized in the following
theorem:

Theorem 3.9. Suppose the assumptions in Proposition 8.4 hold for p = 4R, where
R > 0 satisfies (3.12). Suppose also that h < L as in Proposition 3.8. Then the
following hold.

(i) The vector field F' : Bx(0,p) — X in the determining form (3.10) is Lip-
schitz. Hence the determining form (3.10) is an ODE in X which has
short-time existence and uniqueness of solutions for every initial data vy €
Bx (07 p) : -

(i1) The ball Bx(Inu*,3R) C Bx(0,p) is forward invariant in the evolution
variable s under the dynamics of the determining form, which implies that
(3.10) has a unique global solution for every initial data vy € Bx (Ipu*,3R).

(i) Buvery solution of (3.10) with initial data vy € Bx (Iyu*,3R) converges to a
steady state of (3.10) as s — cc.

(iv) All the steady states of the determining form (3.10) that are contained in
Bx (0, p) have the form v(t) = Iyu(t) for all t € R, where (u(-),0()) is a
trajectory in the global attractor <7 of the RB problem (2.12) for a uniquely
determined termperature 6(-).
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We should emphasize that (3.10) governs an evolution of “trajectories” that are
with range in a finite-dimensional space which correspond to velocity only. Yet
it determines full trajectories of both the velocity and temperature on the global
attractor of the RB system through the determining map W.

Remark 3.10. It is easy to see, as in [17], that the solution to (3.10) is always a
convex combination of the initial condition and the chosen steady state. Indeed,
since u* is independent of s, we have

d Tk T Toox
—(v = Iyu*) = —[lv = I,W (v) |5 (v — Tu*) .

ds
and hence
(3.13) o(s:t) = B(s)uo(t) + (1 — B()au* 530, teR,
where
(3.14) B(s) = exp (— /OS lo(r) = I,W (v(7) 1% dT) :

So in fact [ satisfies a scalar ODE, which for the RB problem written in the form
(2.12) with (u*,0*) = (0,0), amounts to

(315  v=Pu, D= BlBe— LW, AO)=1

The dynamics of (3.15) are completely understood (see [17]). As s — oo, along
the straight line through vy and 0 in X, either v(s) — 0, or v(s) — Ipu, where
(u,0) is the first trajectory in o7, with Inu between vy and 0. Thus the solutions

in the global attractor can be identified as the zeros of the scalar function on the
right-hand side of equation (3.15).

Proof of Theorem 3.9. Part (i). Define ¢ : Bx(0,p) — R with ¢(v) := |jv —
I,W(v)||x. Let vi,v2 € Bx(0,p). By the triangle inequality and the definition
of the vector field F,

IF(v1) — Fva)llx = Il[g*(v1) — ¢*(v2)](v1 — Inu*) + ¢ (v2) (v1 — v2)|x
< (1) = P (w2)] - lvr — Inw*|lx + | (v2)] - lor — vallx.

Hence, to show that F' is Lipschitz (in the ball Bx (0, p)), it suffices to show that
the map ¢ is Lipschitz. Note that

lq(v1) = q(v2)] = |[lor = IW (v1)||x — [Jvz — T, W (v2) ] x|
< oy = LW (v1) = [o2 — W (v2)]|x
< lor = vallx + 1TaW (1) = T W (va)]| .
It suffices to show that
(3.16) [T, W (v1) = T W (v2) [ x < ellvr — v x.

Observe the following diagram:

Bx(0,p) C (X, [1x) 25 (¥, [ lv) 2 (X, [|-]1x)-
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To prove (3.16), it suffices to show that
(3.17) w1 — wally < cflvr — 2 x,
(3.18) [ Thwy — Tnwsl|x <

where w; := W (v;) with i =1, 2.

Proposition 3.5 implies that W is Lipschitz and hence we have (3.17). Inequality
(3.18) follows from Remark 3.3 for the linear operator I, and the definitions of the
norms ||-||x and ||-||y. The proof of (i) is done.

By Proposition 3.8 and the triangle inequality®,

Bx (In(u*),3R) C Bx(0,p),

which implies short-time existence of a solution of the determining form (3.10).
Thus, (ii) follows from the observation that

lo(s: ) = In(u)llx = B(s)llvo(-) = In(u)lx, s> 0,

where $3 is as in (3.14). Alternatively, (ii) follows from the dissipativity property of
(3.10): for every fixed t € R,

cljwy — wally,

d T [k T Tk
Zellv(sit) = In(u My = —=2llv = LW (0)[[5 - [[o(s;8) — In(w®)|[5,-

This property implies that the ball By (I,(u*), 3R) is forward invariant for all s > 0,
which proves both (ii) and (iii).

To prove (iv) we observe that the steady states of equation (3.10) in the ball
Bx (0, p) are either v = Iy (u*) or v € Bx(0,p) such that [[v — I,W(v)||x = 0. In
the first case (u*,6%) € o/ since (u*,6%) is a steady state of the RB system (2.12).
In the second case we have v(t) = I,W (v)(t) for all t € R. Let (w,n) = W(v) It
then follows from (3.8) that (w,n) is a bounded solution (thus a trajectory in the
global attractor &7 by (2.13)) to the RB system (2.12).

Conversely, since p = 4R, it follows from Proposition 3.8 that

In(«) € Bx(Iyu*,3R) C Bx(0,p).

Thus, for every trajectory (u(-),0(-)) C & it follows from the auxiliary system
(3.8) and Proposition 3.7 that u(t) = W(Iyu)(t) for all ¢ € R. In particular,
Inu = I,W(Ipu), which implies that I,u is a steady state of equation (3.10) in
BX (0, p) Il

4. PROOF OF PROPOSITION 3.4

Let p,h > 0 and assume that ||v||x < p. For the case of no-slip boundary
conditions, we assume that the following hold:

1 1 —
(4.1) u)\}ﬂclh < 1 pA32¢3ht < 3 prAi(crhAq 12 coh?) < % ,
592K
2,2
(42) je4 )\101 > Tp2’

INote that ||v|lx < ||v — Inu*||x + ||[Inu*]|x < 3R+ R = 4R.
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1
(4.3) T 16K,C3p* > 0,
1 g2 AV 26%1/2 9 202 KA1
4.4 — v — ——— — —(Kqlog K9) — -,
(4.4) QMV ! K(VA1)? 4 (K2 log K5) K P 12Kk 2

where the constants K, C1, K, Ky are defined in (4.16), (4.23), (4.21) and (5.14);
they are all independent of p and h.

For the case of stress-free boundary conditions, we assume that the following
hold:

1 29° 29°  Kie KA1

4.5 U\ — | ————— + > 7
(4.5) g <|Q|/<;62)\1 + K€ K2 2

1 Q"
4.6 Zu — >0,
(4.6) 8“ 1 A

1 H)\l
4, S — Kig > M
(4.7) 4MV 1 16 1

“1p 1 2,4 1

(4.8) c1h|€] <y 2c5h uA [ < ot
(4.9) v (2h? 4 coh?) < %7

where the constants €2, K1, K16, being independent of p and h, are defined in (4.40),
(4.46) and (5.41).

The uniqueness of bounded solutions follows from Proposition 3.5. In this section,
we prove the existence of strong solutions.

Remark 4.1. Assumptions (4.4) and (4.7) are not needed for the proof of existence;
they are used to prove the uniqueness of bounded solution.

Step 1. Let k be a fixed positive integer. For n > r, where r € N is fixed in
(3.5), we consider a Galerkin approximation for system (3.8):

dw ~
(410) dtn + VAown + PO,nBO(wn7 wn) = PO,nPU(gnneQ) - NV)\l-PO,n(]hwn - U) s
d Wy, - €
% + ’iAlnn + Pl,nBl(wnvnn) = Pl,n ( nl 2) s
with initial data
(4.11) wn(fk(y)\l)_l) =0, nn(fk:(u)\l)_l) =0,
where P, ,, is the orthogonal projection onto H;, = span{(;1,---,(in}. This is a

finite system of ODEs with a quadratic polynomial nonlinearity. Hence, there exists
T, > —k(rvA1)~L, so that there exists a solution (wy,,7,) to the initial value problem
on the interval [—k(vA1)™1, T5,).

Thanks to the initial conditions (4.11), following the approach used to prove the
existence and uniqueness of strong solutions for the Navier-Stokes equations and
the RB system (see, e.g., [10,27]), one can show by energy estimates that there
exists T, > —k(vA1)~!, independent of n, such that solutions of (4.10) exist on
[—k(rA1)~1, Ty] and satisfy uniform bounds, in the relevant strong norms, which
are independent of n. Therefore, by the Aubin-Lions compactness theorem, there
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exists a subsequence {(Wn(j) k; Mn(j),k) } jo1 Which converges to a unique strong solu-
tion (w®),n*)) to system (3.8) on a common interval [—k(rA;)~!, T\ with initial
data w® (—=k(rA;)™1) = 0 and ) (—k(vA;)~1) = 0. Let [~k(rA;)~', Tis) be the
maximum forward interval of existence for (w(k), n(k)). Note that T, > T, and that
from the above mentioned energy type estimates we have

(w®,y®) € C([=kA) ", Tr), Vo x Vi) N Lo ([=k(wA) ™, Tew), D(Ag) x D(A1) ).

Step 2. Assume that Ty, < co. In Section 4.1 and Section 4.2, for the no-slip
and stress-free cases respectively, we show on the maximum interval of existence
[—k(vA1)™Y, Th) for (w®, n*)) uniform (in time t) bounds on the following quan-
tities (omitting the superscript k for simplicity)

min(t+7,Tsx)
(4.12) o2, [wl?, [lwl?, / Agw(r) dr ,
t

min(t4+7T,Tsx)
(4.13) 2, / Avy(r) 2 dr,

where T := (v)\1) L.

Remark 4.2. All the bounds for (4.12) will be independent of k and Ti.. On
the other hand, bounds for (4.13) in this step may depend on k; we will however,
improve in the next step the bounds so that they will be independent of k and 7.

For the no-slip case, the bounds (4.16), (4.24), (4.28), (4.35) and (4.37) in Section
4.1 imply that the solution (w(k), n(k)) cannot blow up in the space

C([=k(wA1) ™ Tu), Vo x Vi) N L ([=k(vA1) ™1, Ti), D(Ag) x D(A1)),

and thus we may extend it beyond T, which contradicts the maximality of T..
Therefore, we must have Ty, = oo.

The same argument works for the stress-free case by considering the bounds
(4.54), (4.56), (4.58), (4.64) and (4.66) in Section 4.2.

Step 3. For (w®), n(*®), we show uniform bounds on the interval Z;, := [—k(vA;) "'+
(vA1)71, 00), for all the quantities in (4.12) and (4.13). These bounds will all be
independent of k. Note that we need the extra time unit (¢A;)~! in Z due to the
use of Lemma 4.3.

By Remark 4.2, the uniform bounds for (4.12) in Step 2, i.e.,

(i) no-slip: (4.16), (4.24), (4.28);
(ii) stress-free: (4.54), (4.56), (4.58),

are all valid on the interval [—k(vA;1)~!, 00) and particularly on Zy; they are inde-
pendent of k.

For the no-slip case, in subsection 4.1.4, letting axy = T = (vA1)"! and t; =
Ty = 00, by (4.34), we have a uniform bound on the interval Z; for ||n||?, where C3
in (4.34) is now independent of k. It follows that the uniform bound (4.36) is also
valid for t € Zy.

The similar argument works for the stress-free case by considering (4.63) and
(4.65) in subsection 4.2.3.
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Step 4. For each positive integer m, consider a (sub)sequence of solutions
{(w(k),n(k))}zozmﬂ. By Step 3, this sequence satisfies all the uniform bounds on
(4.12) and (4.13) (with Ti. = o0) on the interval Z,,,41 = [-m(vA1) ™!, 00), and in
particular on [—m(vA1)~!, m(vA1) Y. Thus,

m(vA1)~ m(vA1)~!
(4.14) / | Aow™® ()2 dr < oo, / 1A ® (F) 2 dr < o0,
(A (A1

where the bounds in (4.14) may depend on m, but are independent of k. In partic-
ular, (4.14) implies that

m(viy) "t
(4.15) /

—m(vi)~1
are bounded uniformly in k, with bounds that may depend on m.

Applying the Aubin-Lions compactness theorem using (4.14), (4.15), and the
uniform, with respect to ¢t and k, bounds on the quantities

2
dw¥) (T)

dr

dn™(r)

dr

m(vA1) !
dr < oo, /
28

dr < o0,

B, Jw® P @2, (I ®2, e [mmA) T mAn) T,
we obtain a subsequence { (w( ™) n(km))1%0 that converges to a solution of system
(3.8) on the closed interval [—m(vA;) ™1, m(vA1) 1.

We then apply the Cantor diagonal process to nested subsequences, relabeling
when necessary, to get a subsequence {(w(km’m) nkmm)y1%0_ that converges to
a solution (w,n) on [—~M(vA1)~1, M(vA;)~!] for all M € N. Note that (w,n) is
defined on (—o0, oo). Hence, (w,n) satisfies all the uniform bounds on (4.12) and
(4.13) for t € R and thus (3.9). The proof of Proposition 3.4 is complete.

4.1. No-slip BCs (bounds on [~k(vA;)~!, Ti) with T, < o). For simplicity,
we will omit the superscript & in (w®), (*)) in this section and the next (stress-free
BCs). All estimates are rigorous on the maximal interval [—k(vA1) ™!, Thx).

4.1.1. Bound for |n|. By a similar argument as in [19, Lemma 2.1], we can show, by
employing the maximum principle for the heat equation, that (see the Appendix)
(4.16) ()| <219 =K, Vte[—k(vh) !, Tu).

4.1.2. Bounds for |w| and ||w||. Taking the L? inner product of the auxiliary equa-
tion (3.8a) with w and Apw respectively, we have

1d -
(4.17) 5 dt’w‘2 + vl|w|]? = g(nes, w) — prAi(Ihw — v, w),
(4.18)
1d -
id—HwH +v |A0w\ + (Bo(w,w), Agw) = g(nez, Agw) — puvAi (Iyw — v, Agw) ,
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where we use bp(w,w,w) = 0. By the Cauchy-Schwarz, Young and Poincaré in-
equalities, we have

(4.19)

—,ul//\l(fhw —v,w) < urAy

(Tw = w, w)] +|(v,w)] = (w,w)]
< o [erhlw] - Jwl + e2h?| Ageo] - [wo] + o] - ] — Juw]? ]
(by Remark 3.3)

o 3
< A [eth AT 2 w)? + 26204 Agw|? + 2Jv]? — T W]

v V. _ 3
< lew\l2 +3M HAgw]® + 2pvfv)* — ZMV)\WUF (by (4.1)),

and

(4.20)
—pwi(Iyw — v, Agw) < vy [|(I~hw —w, Aow)| + |(v, Agw)| — (w, Aow)]
= uvy \(ELw —w, Aow)| + |((v,w))| — (w, Aow)] (since v(t) € V)

< vt [eih||wl| - [Agw| + e2h?| Agw|* + [Jv]] ||w|!] — prAdfwl®
(by Remark 3.3)

[ _ 3
< e Lo + ol v + o]? - Jul?

v 3
<3 | Agw|? + pw s [[o]|* — Zw//\l\lwll2 (by (4.1)).
For the nonlinear term, we have

(4.21) |(Bo(w, w), Agw)| < [|wl|24]|Vw||24|Agw| (Holder)
< C%|w\1/2|]w|| . |A0w|3/2 (Ladyzhenskaya)

270%
2u3

14
< Lol + Kafulullt, K=
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Combining (4.16)—(4.21), we get

(022) 3 Sl + 7wl + r(ll? + A7 Aowl?)
< glnllwl + 2ol + EAT Aowl? + 2pAalo? — 2w uf?
AT (gl gl + % gl + s ol = S )
7 (510wl + Kool ] )
< TR M o+ S e + 2 e agur
3 ol3r? = S (ul? + A7 ) + A7 K ]
Hence,

1d _ 1 _
(423) 5ol + 7 wl?) + Sl + A7 wl?)

1 2 2\ y—1 2 V>‘f1 2
+ (A = KiJuwPllwl AT wll? + Z5| Agw

<M Cip? (by (4.2), Cp:=402.
We now show that
(4.24) lw)? + X\ |w|? <4002, t e [—k(vh) ™!, Tu) .

By continuity and the initial condition w(—k(vA1)~!) = 0, there exists t, € [~k(vA;) ™!
such that

lw|? + A\ |w||* <4C1p?,  t e [—k(vh) 7Lt
It then follows from (4.24) and (4.3) that

1

Z,uy)\l — Ki|w)?||w||*> >0, te k()L t].

Let

**)

T = sup {r € [~k(wA) ", T) s @) + A Hw(®)||? < 4C1p° for all t € [—k(vAr) ™', 7]}

Notice that T > ¢, > —k(vA1)~t. We claim that T = T,.. If not, then T < T,
and

(4.25) w(T)[? + A7 Hlw(T)]* = 4C1p%,
1d _ 1 _
(4.26) 5 —([wl® + A w]?) + *MVA1(|U’|2 + 27 wl?)

A ~
Y 1 |Agw|? < pwM Cip?, Yt e [—k(vh) L, T).




18 Y. CAO, MICHAEL S. JOLLY, AND E. S. TITI

VA;l
2

Dropping the term | Agw|?, we have by the Gronwall inequality that

(D) + AT |w(T)? < 2C1p%(1 — e TR < 902,
which contradicts (4.25).
4.1.3. Bound for ftmin(HT’T**) |Agw(7)|? dr. Henceforth, we let T = (vA;)~ 1.
Inequality (4.26) implies that

1d V)\fl

2dt 2
For any t € [—k(vA1) ™!, T.y), integrating on both sides from ¢ to min(t + T, Ths),
observing that min(t + T, Ti.) — t < T, and using the bound (4.24), we have

(Jw]? + A\ Hlw|?) + | Agw|? < pvA i C1p2.

min(t+7,Tsx)
(4.27) 1// |Agw(7)|* dr < 4C1p* N + TuvAiChp*.
t
Since Ty, < 00, it follows that
T**
(4.28) 1// | Agw(7)|? dT < oo0.
7]6(1/)\1)_1

4.1.4. Bound for ||n||. Taking the L? inner product of the equation (3.8b) with 1,
and applying the Cauchy-Schwarz and Young inequalities, we have

1d KA1
2dt 4

1 2
jw] ™.

4.2
( 9) Klz)\l

[ + llnll* < == Inl* +
Let k = k(vA)~! and aj = T*T‘H; For any t € [k, —k + «y,), integrating (4.29)

from t to t + a4, we have

s K? rMK?AC
4.30 2dr < — * =1 By
@) w [ Il dr< e (4 ) i =
By taking the L? inner product of the equation (3.8b) with A;7, we have
1d (w-eq, A1) K 1
4.31) ~—|n|? Am*+ (B Apn) = 2 < AR+ o |wl]?
(431) 5l + 5l Al + (Ba(w,n), Av) = 2 TP + 5w
Integrating by parts, we have (as in [12, (3.22)])
(4.32) |(Bi(w, ), Avm)| < |Jwl| - [|Vnl|7a (Hélder)
< cplfwl - [lnll - [Ain]  (Ladyzhenskaya)
c? K
< Lywl2nl2 + Z 1402,
CwlZlnll + 7 [Aun]
Consequently,
d 202 2 86201>\1 801
4.33) — 2 A 2 < “~L 2 2 e 2 < S LA 9 2 el 2.
(433) Tl + s Al < 2L ol + ol < SR 2 4 2L

We now recall the following uniform Gronwall inequality from [19].
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Lemma 4.3 (Uniform Gronwall). Let g, h, y be three positive locally integrable
functions on (to,t1) which satisfy for all t with to <t <t+ a < ty,

d

y t+a t+a t+o
o S9yth, / g(7) dr < ay, / h(7) dr < as, / y(7) dr < as,
t t t

where a1, a9, as, @ are positive constants. Then
as a
y(t+a) < (——Fag)e Lo to<t<t+a<t.
Q@

Applying Lemma 4.3 to (4.33) with
to = —k(l/)\l)fl, t1 =Ty, a= g,

802 01A1p2 8C1p2
glt) = LR () = 2 () = In@),
86%01/\1 2 801 2 ﬁk
alszaa CLZZWPC% az = —«,
we get
(4.34) sup H77(15)||2 < (@ + ag) eM =:Cs,
te[—k+a,Tus) @
and thus
a
(4.35) sup [n(®)]? < (2 +az) e+ sup  [In(®)]* < .
te[—k,Tux) a te[—k,—k+a]

4.1.5. Bound for ftmin(HT’T**) |A1n(7)|2dr. For any t € [—k+ay, T,.), inserting the
bound (4.34) in (4.33) and then integrating from ¢ to min(¢ 4 7, Tis) on both sides,
we have

min(t4+T,Thx) 8c2CH A\ C ]C
(4.36) ﬁ/ |Aun(T)]? dr < C5 + < LTS 5 1) 0°T .
¢ K I°K
Since Ty < 00, it follows that
T
(4.37) / |Ain(T)]? dr < .
—k(vA1)—1

4.2. Stress-free BCs (bounds on [~k(v);)™}, Ti) with T, < o0). The argu-
ment using the maximum principle for showing the bound for |n| in Section 4.1 also
works here. Taking advantage of the orthogonality property that by(w,w, Agw) =0
in the case of stress-free BCs, we combine the estimates of ||wl|y, and [n| together.

4.2.1. Bounds for ||w||y, and |n|. Taking the L? inner products of the auxiliary
system (3.8) with w, Agw and 7 repectively, we have

1d ~ 1
(4.38) e <2dt|w|2 + 1/Hw||2> =€ (Q(Uez,w) — pv A (Thw — U,w)) , €= a
1d

(4.39) wl|? + v|Agw|* = g(nea, Agw) — pwdi (Iyw — v, Agw),

2 dt

1d w - ey,
@10) e (Gl +elnl?) =e (52 g =
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where we used bg(w,w,w) = 0, by(w,w, Apw) = 0 and by (w,n,n) = 0. Note that
equations (4.38)—(4.40) have the same dimension and no nonlinear term appears in
the equations above.

Now we estimate the right-hand sides of the three equations above as follows:

(4.41)

—pvier(Inw — v, w) < priie (](I}w —w,w)|+ |(v,w)] — (w, w))

28!

1
< S (cam il ol + cab? Agul - + of? + § [l = P

(by Remark 3.3)

1 1
(a2 o, + 26 o + glu + ol + TP - uf?)
(by (2.8))
1 2 |V 2 2 3 2 1 2
< §/W)‘1 [Jwlly, + g\Aow\ + prie u|” — Z,u,w\lel\w\ + g/w/\lel\w]
(by (4.8))
< L ol + e o2 — S pnsefwf? + 2 Agw?
< gHvALfwlly, + prder ol = pwdrefw]” + ol Aow|
(4.42)
— v (Ihow — v, Agw) < v <\(I71w —w, Apw)| + |(v, Apw)| — (w,Aow)>
1
< s (eah ol - Aol + eat?lAgwl + o] + Gl ul?)
(by Remark 3.3)

1
< s (5 Volfy + An2lAoul? + canlAoul? + ol + § ol - ol

1 v 3
< A lwl¥, + §|A0w12 + v o]* - ZW/\lllw!F (by (4.9)).

g)\fl/2
(4.43)  e1|(gnea, w)| < || - Jw| < 7l - |wl
19| 1]

-1
<o 2Ll < S + 2 LN
(4.44)
(gmez, Aow)| < gllnea]| - wll < “Z2 n]* + H 12 < =2l u2+fu wl .
(4.45)
Flw-eam)] < Flw-esf - Inl < K}@uwn%nnn < 2l + ﬁ?nwua,
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where
g —1/2
(4.46) Ky = Q2] V2,

Combining (4.38)—(4.45), we have

d
erw]? + [wl|® + e2ln®) + erv|w|? + v|Agwl* + ez |n||?

(4.47) %ﬁ(

1 3

< §;w)\1 Hw||%/0 - ZMVA1(€1|U)|2 + [Jwl]?)

L (2N 2 Ke
‘Q’Iﬁ62 K€ Kl2

2
) ol + sa(enfol? + [[o]?)
+ Leallnll? + L1 Agul?
2K62 Ui 9 ow| ,

and thus, after dropping nonnegative terms on the left,

d
= (Il +eolnl?)

1 202071 242 K2

2 9 M g 162

+ ||U)HVO (4,[1,1/)\1 - < ‘Q|I€€2 + I€7€2 + 2 >
KA1

+ 5 e < oA

DN |

By (4.5), we have

d 2 2 2 2
T Ul +exInl”) + (llwlly, + e nl”) - (ur) < 2uv A fol% v A
which implies by the Gronwall inequality that

2uvAg

(4.48) ¥, + (A1) nf* < lolfv?A,

1R

and in particular

~ ~ A2\ 2u
4.49 2L 2 Copi= —— s = —.
( ) Gl orllvllx 0 MEWA)? Ak

We use (4.49) to improve the bound on ||wH%/O. Instead of (4.43) and (4.44), we
now estimate as follows

2
g v
(4:50) etl(gnes, w)| < gerlnlhol < Zjnf? + Zedfuwl,

2
g 14
(451) (gmez, Agw)]| < glullAowl < £ pnf? + % Agul?.
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Combining (4.38), (4.39), (4.41), (4.42), (4.50) and (4.51), we have
1d
(4.52) id—(el|w\2+ [wl|?) + erv|jw||® + v|Agw|®
1 3 v
< (g = SuAi) ol + s ol + ¥ Apwl?

12
+ 7|77|2 + Zﬁﬂw\z + 7\77|2 + Z\Aowfza
which implies that

1d 9 9 €1V v 292 9
> dt [wlly, + [lwlly, ( A — —) + §]A0w|2 < 7’77‘2 + pvAs o]l -

4
Therefore, by (4.6),
d 1 24°Co
459) S lll, + g il + Ao < 2220 4o ol

Dropping the term v|Agw|? in (4.53) and using the Gronwall inequality, we conclude
that

5 -
(454) lwlly, < Calloll

where

2[&(292,}6'0 + I/)\ll/2>\1>

~ 329° 2
4.55 Ch = = + 8v7 .
( ) ! %/W)\l ALKV v
Note that the constant C, is independent of .
By (4.40) and (4.45), we have
K3
S nl? + sl < Sl + 5L o,
and thus by (4.54) and the Poincaré inequality,
1d, , ml S 2Ch
— < K. Ky = .
Sl + B < alolly, Kp o= =1
Consequently, by the Gronwall inequality again, we have
- . 2K
(456) W< Gallole, Goi= 32,
1R

where Cy is also independent of .

4.2.2. Bound for |, min(t+1,T%.) \Aow(T)]2 dr. For any t € [~k(vA1) ™!, Tk), dropping
the term §uvA; Hw||v0 in (4.53) and integrating, then using the bound (4.54), we
have

min(t4+7",Tk«) 20 )
(4.57) 1// |Agw (T )| dr < C’1Hv||X +2,uT< + vy )\1>||UHX
t
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Since Ty, < 00, it follows that
T**

(4.58) 1// | Agw(7)|? dr < 0.
—k’(V/\l)*l

4.2.3. Bound for ||n||. Proceeding as in the no-slip case (Section 4.1.4) but using
the bounds (4.54) and (4.56) for |w| and |n| in (4.29) instead, we get for any ¢ €

[—k, —k + ), k= k(vA)~" and a), = Lonth

ta C. KA C! C .
) 2 <72 1“2 1 2 —.
(4.5) g / In()I* dr < = +ak< Tt | el = By

Similarly as in (4.31), we have
1d

4.60
( ) 2dt

Il + £l Awnl® + (Bi(w, 1), A1n)
]

K 9 1 9 K 9 2
< Z!A177| +m\w| < Z|A177’ +m”wHVO

K 2 ‘Q’él 2
< Sl + S ol

For the nonlinear term, we have

(4.61)
[(B1(w,n), Ain)| < [A1n] - [[w]| 4[| V7l (Holder)

< eplAn| - w2 wl]? nlY?| Ai[Y?  (Ladyzhenskaya)
< el Jwlly, [AmPP2nl? - (by (2.8))
< ezl QY282 vl x| vl |2
K N . 27 _
< Z!ANII2 + Ksllv|X|Inl*> (Young) Ks:= 4730%!9?012-
By (4.60) and (4.61), we have
d ~ ~ - 2|1Q2|Cy
@62) Ll w AP < 2Rl + Kol K= 2
Proceeding as in Section 4.1.4, using Lemma 4.3 with
tyg = —k(V)\l)_l, t1 = T**, a = g,
g(t) =2K3p*, h(t) = Kap®, y(t) = n(t)|,
ay = 2f('3ap4, ag = K4p2a, as = @a,
we get
(4.63) sup  [n(®)? < Cullolk,  Cui= (Cs+ RaT)eX 77",

te[—k4a,Tus)
and as in Section (4.1),

(4.64) sup  [[n(t)[* < oo
te[—k,Twx)
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4.2.4. Bound for ﬁmin(HT’T**) |A1n(7)|? d. Similarly as in Section 4.1.5, combining

(4.62) and (4.63), we get for any t € [—k + ay, Te),
(4.65)

min(t+7,Tsx) 9 5 ) 5 s ) _ 9
K/ [Aun(T)|” dr < Callv]lx +T<2K3||U||XC4||U||X + K4||v||x)~
t

Also,

Tx
(4.66) /1/ |An(T)|? dr < 0.
—k(l/)q)fl

5. LIPCHIT@OPERTY OF THE MAP W

We assume in this section that ||v;||x < p, i =1,2. Let ¢ = wy —wa, Y =01 — 12
and v = v; — va where (w;,7;) = W(vz) We establish in this section the Lipchitz
property of the map W for each set of boundary conditions.

By the auxiliary system (3.8), we have

d ~

(5.1) d_f + vAop + Bo(wa, @) + Bo(p, w1) = Py(gpes) — pvhi(Inp — ),
d -e

(5.2) d_f + kA1 + Bi(we, ) + Bi(p,m) = 4 ;i 2.

5.1. No-slip BCs.

5.1.1. Bound for ||¢||? and |¢|* by ||7||%. Taking the L? inner product of (5.1)-(5.2)
with Agp and 1 respectively, we have

1d
(5.3) 55”94\2 + v|Aop|? + (Bo(wz, ¢), Aow) + (Bo(p,w1), Aop)
= (gvbez, Aop) — pvhi(Inp — 7, Aop),
1d 1
GA) DR R+ (Buoam). ) = e ).

Proceeding as for (4.20), we find

~ v 1 1
(5:5)  —mdi(lne =7, Aop) < glAogl* + Sl = Suvdllel®
By the Cauchy-Schwarz, Young and Poincaré inequalities, we have

k(vAy)?
4

92

(56 (gvez Aop) < gl llol < 91”4+ esliel®

2
2X\2k

1 1 1 K
5.7 S(erev) < Slol Wl < =l - Il < llell® + llll?
l l I\ 8
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For the two nonlinear terms involving By, we have (see [28])

1/2
e|App|
(5.8) |(Bo(wa, ), Aop)| < crllwa]| - H<P||< Ve | Aol
A el
3 elAop| | v
le 1% /ll1? log 7 +Z| 2
>\1 1%
and by the Brézis-Gallouet inequality (see [5,28])
5.9 B A [4o|
(5.9) |(Bo(p, w1), Aow)| < ellwil] - [ 1/2
el
c elAop| | v
< % Jun Pl tog 0P 1 ¥ ggl?
A el

For the nonlinear term involving Bi, we have

(5:10)  |(Bilp,m)s )| < lellpalllizallmll < el 2ol 212 ]2 m

2
‘L Koone 2L 2 2
S —7&== <3 + == .
A lelligllimil < gll™+ S lelliml

Combining the estimates above, we have for ||¢||,

2

g
611 1y w[ - —

I/A1)2
v|Aop|? elAop| |
+ 4” ||2 _(C%||w2||2+6%”w1”2) lOg 1/2 v !
v Al

1 1 1 K(vAg)2
+V|A090|2|:1_8__:| (41)

2dt

< B e,

But the second line of (5.11) can be estimated by

v| Aol elAog| |
4” H2 - (C%||w2||2+623||w1”2) logT v !
4 A el

v Aopl? i llwa|® + chllw | (HQIO |A0<P\>

(5.12)

— g
2
4ol v Al
_ v [ |Agpl? _c%uwzuuc%rrww( O |A090!2)]
4 [ Mgl V21 /4 Mllel?
>%(—elog6)

where we used the elementary relation (see [16, p.371])

(5.13) X —€(l+1logx) > —eloge, Vx=>1

25



26 Y. CAO, MICHAEL S. JOLLY, AND E. S. TITI

with
ctllwal® + chllwil® _ 4(ct + c)p”
5.14 = T B <Meptcpe”
(5:14) ‘ 2\ /4 2\ 2
Hence,
2
g ALY
515) el + el gon - S - M g )
v (1/)\1)
+ 5 [owl* - [l
;w)\l

—— Il
Combining (5.4), (5.7) and (5.10), we have

202 2 K K
2 2 L 2 2 2 2

Combining the differential inequalities (5.15) and (5.16) for ||¢||?> and |¢|?, we
get
1d
2dt

(5.16)

(w wlw?) SO e+ A

Ko log K- Li _
= (K2log K3) - X2 T T 2Nk

2
g Av
+Hso||[w1 - !

9 2¢;(vM)? 5 2(VA1)2]
V)\1)2 4

1
< iuw\lH’ﬂB{’ﬂ/\l-

Consequently, by (4.4) and the Poincaré inequality,

d v
CRUN (w ; wl)W) 4 RMI0I? + X Aopl? + ol

d v
< g (1ol + @21 +n (el + A1 ) + 140l
< |y [5 v A

Dropping the terms %|A0<p|2 in the second inequality, using the Gronwall inequality
and the fact that ||w;]|, |n;| are bounded, we obtain

VA
(5.18) lol2 + (vAn)? | < 222

IylI%v? .

5.1.2. Bound for ftHT | Aoe|? and fHTHwnZ by ||'y|]§( The inequality (5.17) implies
that

d v
& (1ol + AP + 5 Aal + sOM I < ksl

Integrating from ¢ to t + 7T, T = (vA1)~!, and using the bound (5.18), we have
(5.19)

14

t+T t+T 1
] P soa) [l ar < (T ) Il
t t
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5.1.3. Bounds for ||¢||? and ft+T | A1 by ||7]|%- Taking the L? inner product of
(5.2) with Ay, we have

1
5 dtHwH2 + £ | A1 + by (wa, ¥, A1) + b1 (e, m1, ArY) = ( -e2, A1), .
Integrating by parts, we have

(5.20)

(5.21) b1 (w2, 9, Ar)| < [wal - | V)12 (Holder)
<cpflwall - [ - |A19]  (Ladyzhenskaya)
K 202
< Al + = w1
K
Similarly,
(5.22)

01(p, 1, Av)| < loll - IVl pal[ Vb4 (Hélder)

<
<crlel- HmHl/z\Alm\1/2\\¢\\1/2!A1¢\1/2 (Ladyzhenskaya)

*H</>||2+ HmH |A1771! [0 - Ay (Young)
4

< 5!\90”2 !Alw\z HmH |[Avm 2|1
By Cauchy-Schwarz and Young 1nequaht1es,
1 K 1
(5.23) 1@ e, A < Z’Alw\z + WW-
Combining (5.20)—(5.23), we obtain

(5 24)

2, 2 2c} 2 L
S+ A < (2l 4
Let the function g and A in Lemma 4 3 be

2¢2 civ 1 2
529 gi=2 (Xl + L Pl ) . b= 1P+ el

By the bounds (4.24), (4.34) and (4.36), we have
(5.26)

t+T 42 4.2 820)\0
/ g(s)ds < &-4Clp2)\1T—|—Cig Cs [Cg—i—( L ; 13 —i-SCl)pzT} T
¢ K

1 1
IP[Am ) 19117 + = llell® + =z lel*-
2v Kl

12k
=:aj.

By (5.18) and the Poincaré inequality, we have

=T 1 1 UV
s [ s <T (54 e ) PR = Kulhl = .

/ﬁ:lz)\l
By (5.19),

t+T
,uw\l 1
629 [ lEIPdr < 220 (WT+ 1) e = Kuloli = e
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Dropping the term g|A1¢]2 in (5.24), applying Lemma 4.3 with (5.26), (5.27)
and (5.28) we have

Ko

suplo@] < e (K + 522 ) I = Kualh
teR

Now, by integrating (5.24) from ¢ to ¢ + 1" and using (5.26) and (5.27), we get
t+T
< [ AR dr < (s + i+ Kl
¢

5.2. Stress-free BCs.

5.2.1. Bounds for [¥|%, |¢* and ||¢||* by ||v||%. Taking the L? inner product of
(5.1)-(5.2) with ¢ and 1 respectively and taking the L? inner product of (5.1) with
Agp we have

1d -
(5.29) € <2dtlso2 + vol” + bo(p, wi, w)) =€ (g(wea, @) — A1 (Ipp — 7, @))
1d
(5.30) 5@”@”2 + v|Aogp|? + bo(wa, ¢, Aop) + bo(, w1, Agp)

= g(ez, Aop) — A1 (Ing — 7, Aow)
d
6531 e (3P +rlelP +hiem ) = e (16 e

where, as in (4.38), (4.40), €1 = |Q|7L, €2 = (vA1)%
For the linear terms, as in (4.41)—(4.45) we have

(5.32)
= 1 2 2 3 2 YV 2
—twherlng =7, 0) < gurh el + prhieny[” = Juvdielel” + oldopl™,

(5.33)
~ 1 1% 3
—uh(Ing =7, Aogp) <z ey, + glAogl + |l ]* = v dallel?.

21—1
K€g 9 2 g )\1 9
5.34 < —= i ’
(5.34) eil(gves, 9 < VI + =S5 llelly
(5.35) (ges, Aogp)] < 2 ) + 22 )2
. gyez, ApP)| X 3 Keo (PVOa
€9 K€y k262
(5.36) Tl e, W)l < =FlW I + =55 lleli, -
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For the nonlinear terms, we have

(5.37) e1lbo(ip, w1, )| < el - l@l|7.  (Holder)
<eacplwill - lel - llelly, (Ladyzhenskaya)

<eaerCplol - llelly,  (by (4.54))
< aerC Pl 2 el (by (2.8))

(5.38)

ealbr (0, m, )| < eallllpellm |0l s (Holder)
< eaerlo2 oIl I 12 ([]|/?  (Ladyzhenskaya)

< eaer) Y v, AT el (by (2.8))

29

—-1/4 /1/2
< eacr QYN o el 10l (by (4.63))
€2k €2 K13 —1/2 A
< Nl + 2R el (Young)  Kus = ¢ [0f2A) 20y

(5.39)  |bo(swi, Aop)| < l@llzoollwn]|| Ao  (Holder)
V2|2 lwn ||| Ao (2D Agmon)

o2 |A0<P|1/2> lw [ Aog]  (by (2.9))

< calellel]

< CACE|Q0|1/2<

CACE
= ‘9’1/2

Q12
o] - ‘AOSO‘CY%/QP + CAcE\wfl/z\Aowl?’/Qéll/Qp (by (4.54))

14 K14
< Z’AOSOIQ +—=|¢> (Young)
v
where

54 4 N cAcEé'll/2p

o2 -~ s ~1/2
K =2K1 + 5Ky, K= Q2 Ky = cacgCy' " p;

(5.40)

[bo (w2, Aop)| < [lwal[L4[[VellLa [Aop|  (Holder)
< eplwa] V2 wa|| M2 Vo V2|Vl 42 Agp|  (Ladyzhenskaya)
1/2
< en|Q Y4 wallve 2210l | Aol

2 + |A080!1/2> Aog| (by (2.9))

~1/2
e P

~1/2 Q 1/2
< CLcE|Q|1/40/ pligl (;91/ Il + 14012 | Aug]

|A090|2 4 s IISOHVO (Young)
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where

54 4

K5 = 2K32 + K4 ) kS = CECLC%/Q% Kz& = CECL|Q’1/4011/29'

Combining (5.29)—(5.40), we have

d
5 g7 (el +llel® + el®) + el + vldop] + exnv ]
292)\1_1 2¢> f(feg

kel key  kiZ

K K K140
621%13 LB 14/€2]

14 1%

3
< lelfy [ = Fon +

+ee, Oy pl0 2 +

3 3
+ i I3, + Sv Aol + a9

It follows that

1d 1 1 v )
5 3511, + alvf) + el (o = Ko ) + JeaslolP + Sldogl? < ks I

where
(5.41)
Ky := 2:622?;2; ii [fj? + <510LC~'11/2F’|Q|1/2 + 62[/:13 + KV15 + Klim‘.
By (4.7), we have
(5.42)

d 9 kA1 1 v
S (llelv, + ealwl?) + (elly, + e2lv?) == + geanllvl® + S1Aopl® < 2wl Ik * M.

Dropping %ear[|¢)]|2 + 4| Aop|? on the left and using the Gronwall inequality, we
conclude that

8)\1V3
(5.43) leliy, + ealv® < uCollylk,  Co:=——,
and in particular,
(5.44) lelly, < uCellvI%-

5.2.2. Bound for t+TH1/)H2 and ft+T |Aop|? by ||7]%- Using the inequality (5.42)
and proceeding as in the no-slip case, we get

t+T t+T
(5.45) eon / [ ()2 dr + v / Ao (7)2 dr < (ST + 4uCe) 1% -
t t

5.2.3. Bound for ||4||* and ft+T |A19]? by ||7||% . Proceeding as in the no-slip case,
we get (5.24):

D12 + 5 a0 < (2L fawal® + L o P42 ) 1912 + ol + 5l
2dt K 2K v Kl?

Using the bounds (4.54), (4.63) and (4.65), we have
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(5.46)
t+T 462 4 ~ - - ~
/ g(s)ds < L. p°T + C4p [C4p2 + T(2K3p404p2 + K4p2>] =:aj.
i K
By (5.43) and (2.8), we have
i 1 29| 2 . p 2
(5.47) (s s <7 (2 4+ 220 il = Rl
t

Applying Lemma 4.3 with (5.46), (5.47) and (5.45) yields

N

- 1 .
supl[ (O] < e [K L (gt + 4uce>] Il =: Baellnll .-
teR ﬁl€2T

By integrating (5.24) from ¢ to ¢t + 7T and using (5.46) and (5.47), we get

t+T
5 / A2 dr < (Riz + a1 Ko + Kl -
t

6. PROOF OF PROPOSITION 3.7

Let 6 = w —u and & = n — 6. Taking the difference of the RB system (2.12) and
the auxiliary equations (3.11), we have

dé ~
= + vApd + Bo(w,w) — Bo(u,u) = Py(géea) — uvAi(19),
d §-

d—i + kA€ + Bi(w,n) — Bi(u,0) = ZGQ.

Applying the (essentially) same calculation in Section 5, we conclude that
I8@I1* = 1€@)? =0, VieR,

which completes the proof.

7. APPENDIX

Let T(t;z) = n(t;x) + (1 — %) where z = (21, 22) € Q. Observe that for a given
smooth enough w with V -w = 0, T satisfies, on [—k(vA1) 7L, Th),
d
(7.1) 8;{ AT + (- V)T =
(7.2) T(—k(lj)\l)_l;l‘l,$2) =1- @

l
with boundary conditions

in the zo-variable: 7 =0 at o = 0 and xo =,
in the zq-variable: 7 is of periodic L.
Observe that 0 < T(—k(rvA1)~%7) < 1, and thus
T- (kA1) h2) =0, (T = 4(k(vh) H2) =0,
where we denote for any real number M, M, = max(M,0) and M_ = max(—M,0).
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Note that 7 := T_ satisfies (7.1) a.e. and also the boundary conditions.

chain rule and integration by parts yield

A((w.V)T)de:%;/Qwi(amm dx
- fua T
_ZJ:/Q 0= d
_ (7;)*
_—Zj:/ﬂ(v-w)Zda;

The

where the boundary term vanishes due to the boundary conditions. Hence, multi-

plying (7.1) by 7_ and integrating over €2, we obtain
ST OF + KT (0 =0,

which implies that

T2 < |T_(=k(wA) ™ D2 =0 forte [—k(wr) !, Th).

It follows that 7_(¢) = 0 and thus 7 (¢) > 0.
We now show that 7 < 1. Observe that

0
a(T— 1) —srA(T -1+ (w-V)(T-1)=0.
Proceeding similarly as above, we obtain,
1d 9 2
S (T = D42 R V(T — 1)1 =0,

which implies that

(T =1+ @ < (T = 1) (=k(A) )P =0 for t € [~k(vA1) ™", T,

and thus 7 (¢) < 1.
‘We conclude that

0<T(tz) <1, ae x€Q, te[—k(wh) ™, Tu),
which implies that

n(t;2)] < 1+sup|l - 2| < 2,
e l
and thus
(73) In(®)lza@ <2190,V t € [~k(pA) ™ T).
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