
Volume 7, Number Proof, 2022, 1–

A DETERMINING FORM FOR THE 2D RAYLEIGH-BÉNARD

PROBLEM

YU CAO, MICHAEL S. JOLLY†, AND EDRISS S. TITI

Abstract. We construct a determining form for the 2D Rayleigh-Bénard (RB)
system in a strip with solid horizontal boundaries, in the cases of no-slip and
stress-free boundary conditions. The determining form is an ODE in a Banach
space of trajectories whose steady states comprise the long-time dynamics of the
RB system. In fact, solutions on the global attractor of the RB system can be
further identified through the zeros of a scalar equation to which the ODE reduces
for each initial trajectory. The twist in this work is that the trajectories are for
the velocity field only, which in turn determines the corresponding trajectories of
the temperature.

1. Introduction

It was shown in [19] that the long-time dynamics of the 2D Rayleigh-Bénard (RB)
problem is entirely contained in the global attractor A , which is a compact finite-
dimensional subset of an infinite-dimensional Hilbert space H. An inertial manifold,
if it exists, is a finite-dimensional invariant smooth manifold that contains the global
attractor and attracts all the orbits at an exponential rate (see, e.g., [20]). The
system obtained by restriction to an inertial manifold is called an inertial form. It is
a finite-dimensional system of ODEs which reproduces the dynamics of the original
system. While the existence of the inertial manifolds has been established for a
considerable number of dissipative systems (see, e.g., [11, 21, 26, 27] and references
therein), it has been an open problem since the 1980s for the 2D Navier-Stokes
equations (NSE), and hence for the 2D RB problem as well.

The 2D NSE and 2D RB problem do enjoy a finite number of determining pa-
rameters (see, e.g., [9, 14, 18, 25]). For instance, in the case of determining Fourier
modes, if two complete trajectories in the global attractor coincide upon projection
Pm on a sufficiently large number m of low Fourier modes, then they must be the
same (see, e.g., [9,14,18,25]). Thus it is natural to expect the existence of a lifting
map W : PmA → A . This property inspired the notion of a determining form, in-
troduced in [15]. A determining form is an ODE in an infinite-dimensional Banach
space of trajectories that captures the dynamics of the original system in a certain
way. Rather than being a dimension reduction, as is the case for the inertial form,
the determining form trades the infinite-dimensionality of physical space for that
of time; the elements in its phase space are trajectories. It is an ODE in that it is
represented by a globally Lipschitz vector field.
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This paper is organized as follows. In Section 2, we lay out the functional setting
for the RB problem subject to each set of boundary conditions. In Section 3, we
recall the notion of interpolant operators and define the determining map. The
main results (Theorem 3.9) are then presented at the end of the section. We give
the proofs of Proposition 3.4, 3.5 and 3.7 in Section 4, 5 and 6, respectively.

2. Notation and preliminaries

Under a similar change of variables as in [19], the 2D RB problem in an infinite
strip {(x1, x2) : 0 < x2 < l} with solid boundaries at x2 = 0 and x2 = l, can be
written as

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = gθe2,(2.1a)

∂θ

∂t
− κ∆θ + (u · ∇)θ =

u · e2
l

,(2.1b)

∇ · u = 0,(2.1c)

u(0;x) = u0(x), θ(0;x) = θ0(x),(2.1d)

where g denotes the gravitational acceleration. Unlike [19], we retain the dimension
of the velocity u while the temperature fluctuation θ is dimensionless. In this paper,
we consider the following two sets of boundary conditions of physical interest.

No-slip:

in the x2-variable: u, θ = 0 at x2 = 0 and x2 = l,

in the x1-variable: u, θ, p are of periodic L.

Stress-free:

in the x2-variable:
∂u1
∂x2

, u2, θ = 0 at x2 = 0 and x2 = l,

in the x1-variable: u, θ, p are of periodic L.

2.1. Function spaces. We will use the same notation indiscriminately for both
scalar and vector Lebesgue and Sobolev spaces, which should not be a source of
confusion.

We denote

(u, v) :=

∫

Ω
u · v , |u| := (u, u)1/2 , for u, v ∈ L2(Ω) ,

((u, v)) :=

∫

Ω
∇u · ∇v , ∥u∥ := ((u, u))1/2 , for ∇u,∇v ∈ L2(Ω) ,

for a domain Ω that will be specified for each case of boundary conditions.

2.1.1. No-slip BCs. We define function spaces corresponding to the no-slip bound-
ary conditions as in [12]. Let Ω = Ω0 := (0, L) × (0, l) and F is the set of C∞(Ω)
functions, which are finite sums of the form

∑
pi(x1)ϕi(x2) where each pi is a

trigonometric polynomial with period L and each ϕi is compactly supported on the
interval (0, l).
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Denote the space of smooth vector-valued functions which incorporates the divergence-
free condition by

V := {u ∈ F × F : ∇ · u = 0} ,

and the closures of V and F in L2(Ω) by H0 and H1, respectively, which are endowed
with the usual inner products and associated norms

(u, v)H0
:= (u, v) , (ψ, ϕ)H1

:= (ψ, ϕ) , ∥u∥H0
:= (u, u)1/2 , ∥ψ∥H1

:= (ψ,ψ)1/2 .

(2.3)

The closures of V and F in H1(Ω) will be denoted by V0 and V1, respectively,
endowed with the inner products and associated norms

((u, v))V0
:= ((u, v)) , ((ψ, ϕ))V1

:= ((ψ, ϕ)) , ∥u∥V0
:= ∥u∥ , ∥ϕ∥V1

:= ∥ϕ∥ .

2.1.2. Stress-free BCs. Following [13], we consider the equivalent formulation of
the 2D RB problem (2.1) subject to the fully periodic boundary conditions on the
extended domain Ω = (0, L)× (−l, l) with the following special spatial symmetries:
for (x1, x2) ∈ Ω,

u1(x1, x2) = u1(x1,−x2) , u2(x1, x2) = −u2(x1,−x2) ,
p(x1, x2) = p(x1,−x2) , θ(x1, x2) = −θ(x1,−x2) .

Observe that for (x1, x2) ∈ Ω with x2 = −l, 0, l, and for smooth enough functions
one has

∂u1
∂x2

, u2, θ = 0 ,

that is, one recovers the original corresponding physical boundary conditions when
restricted to the physical domain Ω0.

We define function spaces corresponding to the “stress-free” boundary conditions,
i.e., the periodic BCs with the above symmetries, as in [13], where

F1 is the set of trigonometric polynomials in (x1, x2), with period L
in the x1-variable, that are even, with period 2l, in the x2-variable,

and

F2 is the set of trigonometric polynomials in (x1, x2), with period L
in the x1-variable, that are odd, with period 2l, in the x2-variable.

The symmetries of the two velocity components lead us to take in the stress-free
case

V := {u ∈ F1 ×F2 : ∇ · u = 0} .

The space H0 will again be the closure of V in L2(Ω), but H1 shall be that of F2 in
L2(Ω), with inner products and norms as in (2.3).

Similarly, we denote the closures of V and F2 in H1
per(Ω) by V0 and V1, respec-

tively, but with the inner products

((u, v))V0
:=

1

|Ω|(u, v) + ((u, v)) , ((ψ, ϕ))V1
:= ((ψ, ϕ)) ,
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and associated norms

∥u∥V0
:=

(
1

|Ω| |u|
2 + ∥u∥2

)1/2

, ∥ϕ∥V1
:= ∥ϕ∥ .

2.2. The linear operators Ai.

2.2.1. No-slip BCs. Let Ai : D(Ai) → Hi (i = 0, 1) be the unbounded linear oper-
ators defined by

(Aiu, v)Hi
= ((u, v))Vi

, i = 0, 1, ∀ u, v ∈ D(Ai) ,

where D(A0) = V0 ∩H2(Ω) and D(A1) = V1 ∩H2(Ω).
For each i = 0, 1, the operator Ai is self-adjoint and A

−1
i is a compact, positive-

definite, self-adjoint linear operator in Hi. There exists a complete orthonormal set
of eigenfunctions (ζi,j)

∞

j=1 in Hi such that Aiζi,j = λi,jζi,j where

0 < λi,1 ⩽ λi,2 ⩽ · · · ⩽ λi,m ⩽ · · · ,
Observe that we have the following Poincaré inequalities:

|ϕ|2 ⩽ λ−1
1 ∥ϕ∥2, ∀ϕ ∈ Vi,(2.4)

∥ϕ∥2 ⩽ λ−1
1 |A1ϕ|2, ∀ϕ ∈ D(Ai),(2.5)

where λ1 := λ1,1 = λ2,1.

Remark 2.1. We observe that in this case |A0ϕ| is equivalent to ∥ϕ∥H2 for every
ϕ ∈ D(A0).

2.2.2. Stress-free BCs. Let Ai : D(Ai) → Hi (i = 0, 1) be the unbounded linear
operators defined by Ai = −∆, whereD(A0) = V0∩H2(Ω) andD(A1) = V1∩H2(Ω).

Remark 2.2. The operator A0 is a nonnegative operator and possesses a sequence
of eigenvalues with

0 = λ0,1 < λ0,2 ⩽ · · · ⩽ λ0,m ⩽ · · · ,
associated with an orthonormal basis {ζ0,m}m∈N ofH0. The operator A1 is a positive
self-adjoint operator and possesses a sequence of eigenvalues with

0 < λ1,1 ⩽ λ1,2 ⩽ · · · ⩽ λ1,m ⩽ · · · ,
associated with an orthonormal basis {ζ1,m}m∈N of H1. Observe that we have the
Poincaré inequality for temperature:

|θ|2 ⩽ λ−1
1 ∥θ∥2, ∀ θ ∈ V1,(2.6)

∥θ∥2 ⩽ λ−1
1 |A1θ|2, ∀ θ ∈ D(A1),(2.7)

where λ1 = λ1,1.

Remark 2.3. In the stress-free case, we do not have the Poincaré inequality for
functions in V0, but we have

|u|2 ⩽ |Ω| ∥u∥2V0
, ∀u ∈ V0(2.8)

by the definition of the norm ∥·∥V0
.
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Remark 2.4. By the elliptic regularity of the operator A0 + I (see [13, Remark
2.3]), we have in the stress-free case the equivalency

c̃E
2

(
1

|Ω|∥u∥L2 + ∥A0u∥L2

)
⩽ ∥u∥H2 ⩽ c2E

(
1

|Ω|∥u∥L2 + ∥A0u∥L2

)
, ∀ u ∈ D(A0).

(2.9)

2.3. The bilinear maps Bi. Denote the dual space of Vi by V
′

i (i = 0, 1). Define
the bilinear map B0 : V0 × V0 → V ′

0 (and the trilinear map b0 : V0 × V0 × V ′

0 → R)
by the continuous extension of

b0(u, v, w) := ⟨B0(u, v), w⟩V ′
0
= ((u · ∇)v, w), u, v, w ∈ V .

2.3.1. No-slip BCs. Define the scalar analogue B1 : V0×V1 → V ′

1 (and the trilinear
map b1 : V0 × V1 × V ′

1 → R) by the continuous extension of

b1(u, θ, ϕ) := ⟨B1(u, θ), ϕ⟩V ′
1
= ((u · ∇)θ, ϕ), u ∈ V , θ, ϕ ∈ F .

The bilinear maps Bi (and the trilinear maps bi), i = 0, 1, have the orthogonality
property:

b0(u, v, v) = 0, b1(u, θ, θ) = 0, u, v ∈ V0, θ ∈ V1.(2.10)

2.3.2. Stress-free BCs. Define the scalar analogue B1 : V0 × V1 → V ′

1 (and the
trilinear map b1 : V0 × V1 × V ′

1 → R) by the continuous extension of

b1(u, θ, ϕ) := ⟨B1(u, θ), ϕ⟩V ′
1
= ((u · ∇)θ, ϕ), u ∈ V , θ, ϕ ∈ F2.

The bilinear maps Bi (and the trilinear maps bi), i = 0, 1, have the same or-
thogonality property (2.10) as in the no-slip case. Furthermore, we have for each
u ∈ D(A0),

b0(u, u,A0u) = 0 ,(2.11)

which is not true in general in the no-slip case.

2.4. Functional setting and bounds for the global attractor. Following [19],
we have the functional form of the RB problem (2.1):

du

dt
+ νA0u+B0(u, u) = Pσ(gθe2),(2.12a)

dθ

dt
+ κA1θ +B1(u, θ) =

u · e2
l

,(2.12b)

u(0;x) = u0(x), θ(0;x) = θ0(x),(2.12c)

where Pσ denotes the Helmholtz-Leray projector from L2(Ω) onto H0.

2.4.1. No-slip BCs. It is shown in [19] that the RB system (2.1) with no-slip bound-
ary conditions has a global attractor

A = {(u0, θ0) ∈ H0 ×H1 : ∃ a unique solution (u, θ)(t;u0, θ0) of (2.1) for all t ∈ R

(2.13)

and sup
t
(∥u(t)∥V0

+ ∥θ(t)∥V1
) <∞} .
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Alternatively, A is the maximal bounded invariant subset of V0 × V1 under the
dynamics of (2.12). Moreover, there exists some (dimensional) constants Ji > 0,
i = 1, 2, such that

sup
t∈R

∥u(t)∥V0
⩽ J1, sup

t∈R
∥u(t)∥H2 ⩽ J2, ∀ (u, θ) ∈ A .(2.14)

Henceforth, lowercase letters cL, cA, ci, · · · will denote universal dimensionless pos-
itive constants; uppercase letters C, Ji,K,Ki, · · · will denote positive dimensional
constants that depend on the physical parameters.

2.4.2. Stress-free BCs. The case of stress-free boundary conditions is studied further
in [7]. With the stress-free boundary conditions, the RB system has steady states
with arbitrarily large L2-norms:

u(x) = (c, 0), θ(x) = 0, c ∈ R,

which means that the system is not dissipative. However, since (see also [7])

d

dt

∫

Ω
u(x, t) dx = 0 ,

we may assume in the stress-free case that the velocity field has a fixed average:
∫

Ω
u(x, t) dx = a, ∀ t ∈ R,(2.15)

where a ∈ R is fixed. Observe that the spatial average is conserved and the system
is dissipative within each invariant affine space of fixed average a. It is shown in [7]
that the RB system has a global attractor A = Aa, in each affine subspace of
V0 × V1 where the spatial average (2.15) of velocity is fixed. Moreover, there exist
some (dimensional) constants Ji = Ji(a) > 0, i = 1, 2, such that (2.14) holds. In
this case of stress-free boundary conditions, the dependence of Ji, i = 1, 2, is shown
in [7] to be algebraic in the physical parameters ν, κ, l and L.

3. Determining form and main results

In order to define the determining form, we need the notion of interpolant oper-
ators.

3.1. Interpolant operators. We recall a general class of interpolant operators in-
troduced in [1, 2] for dealing with various determining parameters such as modes,
nodes, volume elements, etc. These operators are finite-rank operators (bounded,
linear and with finite-dimensional range) and are required to satisfy an approxima-
tion of identity type condition.

A finite-rank operator Ih : H1(Ω) → H1(Ω) is a Type I interpolant operator if it
satisfies

|φ− Ih(φ)| ⩽ c0h∥φ∥H1 , ∀φ ∈ H1 ;(3.1)

∥φ− Ih(φ)∥H1 ⩽ c̃0∥φ∥H1 , ∀φ ∈ H1 .(3.2)
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A finite-rank operator Ih : H2(Ω) → H1(Ω) is a Type II interpolant operator if it
satisfies

|φ− Ih(φ)| ⩽ c1h∥φ∥H1 + c2h
2∥φ∥H2 , ∀φ ∈ H2 ;(3.3)

∥φ− Ih(φ)∥H1 ⩽ c̃1∥φ∥H1 + c̃2h∥φ∥H2 , ∀φ ∈ H2.(3.4)

In this paper, we construct a determining form for the RB system using Type
II interpolants. The same can be done under slightly weaker assumptions on h for
Type I interpolants (see [6]).

Remark 3.1. The orthogonal projection onto low Fourier modes, those with wave
numbers k such that |k| ⩽ 1/h, is one example of a Type I interpolant. Another
is finite volume elements. In addition, an example of a Type II interpolant is an
interpolant operator that is based on nodal values satisfying (3.3) and (3.4). See,
e.g., [1] for more details.

Remark 3.2. In the stress-free case, by definition, we have ∥φ∥H1 = ∥φ∥V0
, for

φ ∈ V0. Moreover, by (2.9) in Remark 2.4, replacing the absolute constants when
necessary, we can replace ∥φ∥H2 by |A0φ| in (3.3) and (3.4), for φ ∈ D(A0).

We need to modify the interpolant operator Ih so that its has a range of functions
that are divergence-free and satisfy the boundary conditions. Motivated by [8,

Proposition 2.1], we define the modified Type II interpolant operator Ĩh : H2 → V0
as

Ĩh := PrIh, Prϕ =
r∑

i=1

(ϕ, ζ0,i)ζ0,i, h2 ∼ 1

λ0,r
,(3.5)

where we recall that {ζ0,i} are the eigenfunctions of the operator A0 in Section 2.2.
The phase space (X, ∥·∥X) of our determining form is then defined as

X := Cb(R; ĨhH
2), ∥v∥X :=

supt∈R ∥v(t)∥V0

νλ
1/2
1

.(3.6)

Remark 3.3. Based on the proof in [8, Proposition 2.1], we observe that Ĩh satisfies
conditions (3.3) and (3.4) with modified constants ci, c̃i, i = 1, 2. Furthermore,
in the no-slip case, by the Poincaré inequality, modifying the constants ci when
necessary, we have

|φ− Ĩh(φ)| ⩽ c1h∥φ∥V0
+ c2h

2 |A0φ| , ∀φ ∈ D(A0).(3.7)

We also have (3.7) for the stress-free case by Remark 3.2.

3.2. Auxiliary system and determining map. Consider the following auxiliary
system:

dw

dt
+ νA0w +B0(w,w) = Pσ(gηe2)− µνλ1(Ĩhw − v),(3.8a)

dη

dt
+ κA1η +B1(w, η) =

w · e2
l

,(3.8b)

where v ∈ BX(0, ρ) := {ξ ∈ X : ∥ξ∥X < ρ} with ρ > 0 and Ĩh is a (modified) Type
II interpolant operator. Note that the nudging term in (3.8) appears only in the
momentum equation.
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Proposition 3.4 (Solutions to the auxiliary system). Let ρ be a positive real num-
ber. Let µ > 0 be sufficiently large and h > 0 sufficiently small (see conditions in
Section 4). Then for each v ∈ BX(0, ρ), system (3.8) has a unique bounded solution
(w(t), η(t)) that exists for all t ∈ R such that

(w, η) ∈ Cb(R, V0 × V1) ∩ L2
loc(R, D(A0)×D(A1)),

(
dw

dt
,
dη

dt

)
∈ L2

loc(R,H0 ×H1) .

(3.9)

The proof of Proposition 3.4 is given in Section 4. Note that this proposition
provides a map, called the determining map,

W̃ : BX(0, ρ) → Cb

(
R;V0 × V1

)
∩ L2

loc

(
R;D(A0)×D(A1)

)
, W̃ (v) := (w, η).

The projection of W̃ to the first component w induces a map W : BX(0, ρ) → Y
with

Y := Cb(R;V0) ∩ L2
loc(R;D(A0)), W (v) = w ,

∥w∥Y :=
supt∈R ∥w(t)∥V0

νλ
1/2
1

+

(
1

νλ1
sup
t∈R

∫ t+ 1

νλ1

t
|A0w(τ)|2 dτ

)1/2

.

The induced map W will be used in the definition of the determining form. We
denote Z := Cb(R;V1) ∩ L2

loc(R;D(A1)) and

∥η∥Z := sup
t∈R

∥η(t)∥V1
+

(
ν sup

t∈R

∫ t+ 1

νλ1

t
|A1η(τ)|2 dτ

)1/2

.

Proposition 3.5. The maps W̃ : (BX(0, ρ), ∥·∥X) → (Y × Z, ∥·∥Y + ∥·∥Z) and
W : (BX(0, ρ), ∥·∥X) → (Y, ∥·∥Y ) are Lipschitz.

The proof of Proposition 3.5 is given in Section 5.

Remark 3.6. It is proved in [4] that the determining map W̃ is in fact Frechét
differentiable in the case of the 2D NSE.

3.3. Determining form and long-time dynamics of the RB system. Let
(u∗, θ∗) be a steady state of the RB problem (2.12); for instance, we may take
(u∗, θ∗) = (0, 0), or in the case of stress-free boundary conditions, (u∗, θ∗) = (c, 0),
where c is consistent with the fixed spatial average. Under the assumptions of
Proposition 3.4, we will prove (in Theorem 3.9 (i)) that the differential equation

dv

ds
= F (v) := −∥v − ĨhW (v)∥2X(v − Ĩhu

∗), v(0) = v0 ∈ BX(0, ρ),(3.10)

is an ODE in the sense that the vector field F is globally Lipschitz in the ball
BX(0, ρ), where ρ > 0 is to be determined. The ODE (3.10) is called a determining
form of the RB problem.

The connection between the long-time dynamics, i.e. the global attractor, of the
RB problem (2.12) and the determining form will be made through the following
result:
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Proposition 3.7. Let (u(t), θ(t)), t ∈ R, be a solution of the RB problem (2.12) that
lies in the global attractor A . Suppose µ, h satisfy the assumptions in Proposition
3.4. Suppose (w, η) is a solution to the system

dw

dt
+ νA0w +B0(w,w) = Pσ(gηe2)− µνλ1(Ĩhw − Ĩhu),(3.11a)

dη

dt
+ κA1η +B1(w, η) =

w · e2
l

,(3.11b)

and satifies

(w, η) ∈ Cb(R, V0 × V1) ∩ L2
loc(R, D(A0)×D(A1)) ,

(
dw

dt
,
dη

dt

)
∈ L2

loc(R,H0 ×H1) .

Then (w(t), η(t)) = (u(t), θ(t)) for all t ∈ R.

The proof of Proposition 3.7 is given in Section 6.

3.4. Main theorem. In order to state the main theorem, we first prove the fol-
lowing result:

Proposition 3.8. Let Ĩh be a (modified) Type II interpolant operator as in (3.5),
with h < L. For every (u, θ) ∈ A , we have

∥Ĩhu∥X ⩽ R :=
(
(c̃1 + 1)J1 + c̃2LJ2

)
/(νλ

1/2
1 ).(3.12)

Proof. Let (u, θ) ∈ A . By (3.4), Remark 3.3, and the bound (2.14), we have

∥Ĩhu∥V0
⩽ ∥Ĩhu− u∥V0

+ ∥u∥V0

⩽ c̃1∥u∥H1 + c̃2h∥u∥H2 + ∥u∥V0
⩽ (c̃1 + 1)J1 + c̃2LJ2 ,

which completes the proof by (3.6), the definition of the norm ∥·∥X . □

The main results regarding the determining form are summarized in the following
theorem:

Theorem 3.9. Suppose the assumptions in Proposition 3.4 hold for ρ = 4R, where
R > 0 satisfies (3.12). Suppose also that h < L as in Proposition 3.8. Then the
following hold.

(i) The vector field F : BX(0, ρ) → X in the determining form (3.10) is Lip-
schitz. Hence the determining form (3.10) is an ODE in X which has
short-time existence and uniqueness of solutions for every initial data v0 ∈
BX(0, ρ).

(ii) The ball BX(Ĩhu
∗, 3R) ⊂ BX(0, ρ) is forward invariant in the evolution

variable s under the dynamics of the determining form, which implies that

(3.10) has a unique global solution for every initial data v0 ∈ BX(Ĩhu
∗, 3R).

(iii) Every solution of (3.10) with initial data v0 ∈ BX(Ĩhu
∗, 3R) converges to a

steady state of (3.10) as s→ ∞.
(iv) All the steady states of the determining form (3.10) that are contained in

BX(0, ρ) have the form v(t) = Ĩhu(t) for all t ∈ R, where (u(·), θ(·)) is a
trajectory in the global attractor A of the RB problem (2.12) for a uniquely
determined termperature θ(·).
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We should emphasize that (3.10) governs an evolution of “trajectories” that are
with range in a finite-dimensional space which correspond to velocity only. Yet
it determines full trajectories of both the velocity and temperature on the global

attractor of the RB system through the determining map W̃ .

Remark 3.10. It is easy to see, as in [17], that the solution to (3.10) is always a
convex combination of the initial condition and the chosen steady state. Indeed,
since u∗ is independent of s, we have

d

ds
(v − Ĩhu

∗) = −∥v − ĨhW (v)∥2X(v − Ĩhu
∗) .

and hence

v(s; t) = β(s)v0(t) + (1− β(s))Ĩhu
∗ s ⩾ 0, t ∈ R ,(3.13)

where

β(s) = exp

(
−
∫ s

0
∥v(τ)− ĨhW (v(τ))∥2X dτ

)
.(3.14)

So in fact β satisfies a scalar ODE, which for the RB problem written in the form
(2.12) with (u∗, θ∗) = (0, 0), amounts to

(3.15) v = βv0 ,
dβ

ds
= −β∥βv0 − ĨhW (βv0)∥2X , β(0) = 1.

The dynamics of (3.15) are completely understood (see [17]). As s → ∞, along

the straight line through v0 and 0 in X, either v(s) → 0, or v(s) → Ĩhu, where

(u, θ) is the first trajectory in A , with Ĩhu between v0 and 0. Thus the solutions
in the global attractor can be identified as the zeros of the scalar function on the
right-hand side of equation (3.15).

Proof of Theorem 3.9. Part (i). Define q : BX(0, ρ) → R with q(v) := ∥v −
ĨhW (v)∥X . Let v1, v2 ∈ BX(0, ρ). By the triangle inequality and the definition
of the vector field F ,

∥F (v1)− F (v2)∥X = ∥[q2(v1)− q2(v2)](v1 − Ĩhu
∗) + q2(v2)(v1 − v2)∥X

⩽
∣∣q2(v1)− q2(v2)

∣∣ · ∥v1 − Ĩhu
∗∥X +

∣∣q2(v2)
∣∣ · ∥v1 − v2∥X .

Hence, to show that F is Lipschitz (in the ball BX(0, ρ)), it suffices to show that
the map q is Lipschitz. Note that

|q(v1)− q(v2)| =
∣∣∥v1 − ĨhW (v1)∥X − ∥v2 − ĨhW (v2)∥X

∣∣

⩽ ∥v1 − ĨhW (v1)− [v2 − ĨhW (v2)]∥X
⩽ ∥v1 − v2∥X + ∥ĨhW (v1)− ĨhW (v2)∥X .

It suffices to show that

∥ĨhW (v1)− ĨhW (v2)∥X ⩽ c∥v1 − v2∥X .(3.16)

Observe the following diagram:

BX(0, ρ) ⊂ (X, ∥·∥X)
W−→ (Y, ∥·∥Y )

Ĩh−→ (X, ∥·∥X).
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To prove (3.16), it suffices to show that

∥w1 − w2∥Y ⩽ c∥v1 − v2∥X ,(3.17)

∥Ĩhw1 − Ĩhw2∥X ⩽ c∥w1 − w2∥Y ,(3.18)

where wi :=W (vi) with i = 1, 2.
Proposition 3.5 implies that W is Lipschitz and hence we have (3.17). Inequality

(3.18) follows from Remark 3.3 for the linear operator Ĩh and the definitions of the
norms ∥·∥X and ∥·∥Y . The proof of (i) is done.

By Proposition 3.8 and the triangle inequality1,

BX(Ĩh(u
∗), 3R) ⊂ BX(0, ρ),

which implies short-time existence of a solution of the determining form (3.10).
Thus, (ii) follows from the observation that

∥v(s; ·)− Ĩh(u
∗)∥X = β(s)∥v0(·)− Ĩh(u

∗)∥X , s ⩾ 0,

where β is as in (3.14). Alternatively, (ii) follows from the dissipativity property of
(3.10): for every fixed t ∈ R,

d

ds
∥v(s; t)− Ĩh(u

∗)∥2V0
= −2∥v − ĨhW (v)∥2X · ∥v(s; t)− Ĩh(u

∗)∥2V0
.

This property implies that the ball BX(Ĩh(u
∗), 3R) is forward invariant for all s ⩾ 0,

which proves both (ii) and (iii).
To prove (iv) we observe that the steady states of equation (3.10) in the ball

BX(0, ρ) are either v = Ĩh(u
∗) or v ∈ BX(0, ρ) such that ∥v − ĨhW (v)∥X = 0. In

the first case (u∗, θ∗) ∈ A since (u∗, θ∗) is a steady state of the RB system (2.12).

In the second case we have v(t) = ĨhW (v)(t) for all t ∈ R. Let (w, η) = W̃ (v). It
then follows from (3.8) that (w, η) is a bounded solution (thus a trajectory in the
global attractor A by (2.13)) to the RB system (2.12).

Conversely, since ρ = 4R, it follows from Proposition 3.8 that

Ĩh(A ) ⊂ BX(Ĩhu
∗, 3R) ⊂ BX(0, ρ).

Thus, for every trajectory (u(·), θ(·)) ⊂ A it follows from the auxiliary system

(3.8) and Proposition 3.7 that u(t) = W (Ĩhu)(t) for all t ∈ R. In particular,

Ĩhu = ĨhW (Ĩhu), which implies that Ĩhu is a steady state of equation (3.10) in
BX(0, ρ). □

4. Proof of Proposition 3.4

Let µ, h > 0 and assume that ∥v∥X ⩽ ρ. For the case of no-slip boundary
conditions, we assume that the following hold:

µλ
1/2
1 c1h ⩽

1

4
, µλ212c

2
2h

4
⩽

1

8
, µνλ1(c1hλ

−1/2
1 + c2h

2) ⩽
ν

8
,(4.1)

µν2λ21C1 >
5g2K

2ρ2
,(4.2)

1Note that ∥v∥X ⩽ ∥v − Ĩhu
∗∥X + ∥Ĩhu

∗∥X ⩽ 3R+R = 4R.
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1

4
µν − 16K1C

2
1ρ

4 > 0 ,(4.3)

1

2
µνλ1 −

g2

κ(νλ1)2
− λ1ν

4
(K2 logK2)−

2c2Lν
2

κ
ρ2 − 2ν2

l2κ
⩾
κλ1
2

,(4.4)

where the constants K,C1,K1,K2 are defined in (4.16), (4.23), (4.21) and (5.14);
they are all independent of µ and h.

For the case of stress-free boundary conditions, we assume that the following
hold:

1

4
µνλ1 −

(
2g2

|Ω|κϵ2λ1
+

2g2

κϵ2
+
K̃2

1ϵ2
κl2

)
⩾
κλ1
2
,(4.5)

1

8
µλ1 −

|Ω|−1

4
⩾ 0,(4.6)

1

4
µνλ1 −K16 ⩾

κλ1
4
,(4.7)

c1h|Ω|−1/2
⩽

1

8
, 2c22h

4µλ1|Ω|−1
⩽

1

8
,(4.8)

µνλ1(c
2
1h

2 + c2h
2) ⩽

ν

2
,(4.9)

where the constants ϵ2, K̃1,K16, being independent of µ and h, are defined in (4.40),
(4.46) and (5.41).

The uniqueness of bounded solutions follows from Proposition 3.5. In this section,
we prove the existence of strong solutions.

Remark 4.1. Assumptions (4.4) and (4.7) are not needed for the proof of existence;
they are used to prove the uniqueness of bounded solution.

Step 1. Let k be a fixed positive integer. For n ⩾ r, where r ∈ N is fixed in
(3.5), we consider a Galerkin approximation for system (3.8):

dwn

dt
+ νA0wn + P0,nB0(wn, wn) = P0,nPσ(gηne2)− µνλ1P0,n(Ĩhwn − v) ,(4.10)

dηn
dt

+ κA1ηn + P1,nB1(wn, ηn) = P1,n

(wn · e2
l

)
,

with initial data

wn(−k(νλ1)−1) = 0 , ηn(−k(νλ1)−1) = 0,(4.11)

where Pi,n is the orthogonal projection onto Hi,n = span{ζi,1, · · · , ζi,n}. This is a
finite system of ODEs with a quadratic polynomial nonlinearity. Hence, there exists
Tn > −k(νλ1)−1, so that there exists a solution (wn, ηn) to the initial value problem
on the interval [−k(νλ1)−1, Tn).

Thanks to the initial conditions (4.11), following the approach used to prove the
existence and uniqueness of strong solutions for the Navier-Stokes equations and
the RB system (see, e.g., [10, 27]), one can show by energy estimates that there
exists T∗ > −k(νλ1)−1, independent of n, such that solutions of (4.10) exist on
[−k(νλ1)−1, T∗] and satisfy uniform bounds, in the relevant strong norms, which
are independent of n. Therefore, by the Aubin-Lions compactness theorem, there
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exists a subsequence {(wn(j),k, ηn(j),k)}∞j=1 which converges to a unique strong solu-

tion (w(k), η(k)) to system (3.8) on a common interval [−k(νλ1)−1, T∗] with initial

data w(k)(−k(νλ1)−1) = 0 and η(k)(−k(νλ1)−1) = 0. Let [−k(νλ1)−1, T∗∗) be the

maximum forward interval of existence for (w(k), η(k)). Note that T∗∗ ⩾ T∗ and that
from the above mentioned energy type estimates we have

(w(k), η(k)) ∈ C
(
[−k(νλ1)−1, T∗∗), V0 × V1

)
∩ L2

loc

(
[−k(νλ1)−1, T∗∗), D(A0)×D(A1)

)
.

Step 2. Assume that T∗∗ < ∞. In Section 4.1 and Section 4.2, for the no-slip
and stress-free cases respectively, we show on the maximum interval of existence
[−k(νλ1)−1, T∗∗) for (w

(k), η(k)) uniform (in time t) bounds on the following quan-
tities (omitting the superscript k for simplicity)

|η|2, |w|2, ∥w∥2,
∫ min(t+T,T∗∗)

t
|A0w(τ)|2 dτ ,(4.12)

∥η∥2,
∫ min(t+T,T∗∗)

t
|A1η(τ)|2 dτ,(4.13)

where T := (νλ1)
−1.

Remark 4.2. All the bounds for (4.12) will be independent of k and T∗∗. On
the other hand, bounds for (4.13) in this step may depend on k; we will however,
improve in the next step the bounds so that they will be independent of k and T∗∗.

For the no-slip case, the bounds (4.16), (4.24), (4.28), (4.35) and (4.37) in Section

4.1 imply that the solution (w(k), η(k)) cannot blow up in the space

C
(
[−k(νλ1)−1, T∗∗), V0 × V1

)
∩ L2

loc

(
[−k(νλ1)−1, T∗∗), D(A0)×D(A1)

)
,

and thus we may extend it beyond T∗∗, which contradicts the maximality of T∗∗.
Therefore, we must have T∗∗ = ∞.

The same argument works for the stress-free case by considering the bounds
(4.54), (4.56), (4.58), (4.64) and (4.66) in Section 4.2.

Step 3. For (w(k), η(k)), we show uniform bounds on the interval Ik := [−k(νλ1)−1+
(νλ1)

−1,∞), for all the quantities in (4.12) and (4.13). These bounds will all be
independent of k. Note that we need the extra time unit (νλ1)

−1 in Ik due to the
use of Lemma 4.3.

By Remark 4.2, the uniform bounds for (4.12) in Step 2, i.e.,

(i) no-slip: (4.16), (4.24), (4.28);
(ii) stress-free: (4.54), (4.56), (4.58),

are all valid on the interval [−k(νλ1)−1,∞) and particularly on Ik; they are inde-
pendent of k.

For the no-slip case, in subsection 4.1.4, letting αk = T = (νλ1)
−1 and t1 =

T∗∗ = ∞, by (4.34), we have a uniform bound on the interval Ik for ∥η∥2, where C3

in (4.34) is now independent of k. It follows that the uniform bound (4.36) is also
valid for t ∈ Ik.

The similar argument works for the stress-free case by considering (4.63) and
(4.65) in subsection 4.2.3.
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Step 4. For each positive integer m, consider a (sub)sequence of solutions

{(w(k), η(k))}∞k=m+1. By Step 3, this sequence satisfies all the uniform bounds on

(4.12) and (4.13) (with T∗∗ = ∞) on the interval Im+1 = [−m(νλ1)
−1,∞), and in

particular on [−m(νλ1)
−1,m(νλ1)

−1]. Thus,

∫ m(νλ1)−1

−m(νλ1)−1

|A0w
(k)(τ)|2 dτ <∞,

∫ m(νλ1)−1

−m(νλ1)−1

|A1η
(k)(τ)|2 dτ <∞ ,(4.14)

where the bounds in (4.14) may depend on m, but are independent of k. In partic-
ular, (4.14) implies that

∫ m(νλ1)−1

−m(νλ1)−1

∣∣∣∣∣
dw(k)(τ)

dτ

∣∣∣∣∣

2

dτ <∞,

∫ m(νλ1)−1

−m(νλ1)−1

∣∣∣∣∣
dη(k)(τ)

dτ

∣∣∣∣∣

2

dτ <∞ ,(4.15)

are bounded uniformly in k, with bounds that may depend on m.
Applying the Aubin-Lions compactness theorem using (4.14), (4.15), and the

uniform, with respect to t and k, bounds on the quantities

|η(k)|2, |w(k)|2, ∥w(k)∥2, ∥η(k)∥2, t ∈ [−m(νλ1)
−1,m(νλ1)

−1],

we obtain a subsequence {(w(kl,m), η(kl,m))}∞l=1 that converges to a solution of system
(3.8) on the closed interval [−m(νλ1)

−1,m(νλ1)
−1].

We then apply the Cantor diagonal process to nested subsequences, relabeling
when necessary, to get a subsequence {(w(km,m), η(km,m))}∞m=1 that converges to
a solution (w, η) on [−M(νλ1)

−1,M(νλ1)
−1] for all M ∈ N. Note that (w, η) is

defined on (−∞,∞). Hence, (w, η) satisfies all the uniform bounds on (4.12) and
(4.13) for t ∈ R and thus (3.9). The proof of Proposition 3.4 is complete.

4.1. No-slip BCs (bounds on [−k(νλ1)−1, T∗∗) with T∗∗ < ∞). For simplicity,

we will omit the superscript k in (w(k), η(k)) in this section and the next (stress-free
BCs). All estimates are rigorous on the maximal interval [−k(νλ1)−1, T∗∗).

4.1.1. Bound for |η|. By a similar argument as in [19, Lemma 2.1], we can show, by
employing the maximum principle for the heat equation, that (see the Appendix)

|η(t)| ⩽ 2|Ω| := K, ∀ t ∈ [−k(νλ1)−1, T∗∗).(4.16)

4.1.2. Bounds for |w| and ∥w∥. Taking the L2 inner product of the auxiliary equa-
tion (3.8a) with w and A0w respectively, we have

1

2

d

dt
|w|2 + ν∥w∥2 = g(ηe2, w)− µνλ1(Ĩhw − v, w) ,(4.17)

1

2

d

dt
∥w∥2 + ν |A0w|2 + (B0(w,w), A0w) = g(ηe2, A0w)− µνλ1(Ĩhw − v,A0w) ,

(4.18)



16 Y. CAO, MICHAEL S. JOLLY, AND E. S. TITI

where we use b0(w,w,w) = 0. By the Cauchy-Schwarz, Young and Poincaré in-
equalities, we have

−µνλ1(Ĩhw − v, w) ⩽ µνλ1

[
|(Ĩhw − w,w)|+ |(v, w)| − (w,w)

]
(4.19)

⩽ µνλ1

[
c1h∥w∥ · |w|+ c2h

2|A0w| · |w|+ |v| · |w| − |w|2
]

(by Remark 3.3)

⩽ µνλ1

[
c1hλ

−1/2
1 ∥w∥2 + 2c22h

4|A0w|2 + 2|v|2 − 3

4
|w|2

]

⩽
ν

4
∥w∥2 + ν

8
λ−1
1 |A0w|2 + 2µνλ1|v|2 −

3

4
µνλ1|w|2 (by (4.1)) ,

and

−µνλ1(Ĩhw − v,A0w) ⩽ µνλ1

[
|(Ĩhw − w,A0w)|+ |(v,A0w)| − (w,A0w)

]
(4.20)

= µνλ1

[
|(Ĩhw − w,A0w)|+ |((v, w))| − (w,A0w)

]
(since v(t) ∈ V0)

⩽ µνλ1

[
c1h∥w∥ · |A0w|+ c2h

2|A0w|2 + ∥v∥ · ∥w∥
]
− µνλ1∥w∥2

(by Remark 3.3)

⩽ µνλ1

[
c1hλ

−1/2
1 |A0w|2 + c2h

2|A0w|2 + ∥v∥2 − 3

4
∥w∥2

]

⩽
ν

8
|A0w|2 + µνλ1∥v∥2 −

3

4
µνλ1∥w∥2 (by (4.1)).

For the nonlinear term, we have

|(B0(w,w), A0w)| ⩽ ∥w∥2L4∥∇w∥2L4 |A0w| (Hölder)(4.21)

⩽ c2L|w|1/2∥w∥ · |A0w|3/2 (Ladyzhenskaya)

⩽
ν

8
|A0w|2 +K1|w|2∥w∥4, K1 :=

27c8L
2ν3

.
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Combining (4.16)–(4.21), we get

1

2

d

dt
(|w|2 + λ−1

1 ∥w∥2) + ν(∥w∥2 + λ−1
1 |A0w|2)(4.22)

⩽ g|η||w|+ ν

4
∥w∥2 + ν

8
λ−1
1 |A0w|2 + 2µνλ1|v|2 −

3

4
µνλ1|w|2

+ λ−1
1

(
g|η||A0w|+

ν

8
|A0w|2 + µνλ1∥v∥2 −

3

4
µνλ1∥w∥2

)

+ λ−1
1

(ν
8
|A0w|2 +K1|w|2∥w∥4

)

⩽
g2K

2νλ1
+
νλ1
2

|w|2 + ν

4
∥w∥2 + 3ν

8
λ−1
1 |A0w|2 +

2g2K

νλ1
+
ν

8
λ−1
1 |A0w|2

+ 3µνλ1∥v∥2Xν2 −
3

4
µνλ1(|w|2 + λ−1

1 ∥w∥2) + λ−1
1 K1|w|2∥w∥4 .

Hence,

1

2

d

dt
(|w|2 + λ−1

1 ∥w∥2) + 1

2
µνλ1(|w|2 + λ−1

1 ∥w∥2)(4.23)

+
(1
4
µνλ1 −K1|w|2∥w∥2

)
λ−1
1 ∥w∥2 + νλ−1

1

2
|A0w|2

⩽ 3µνλ1∥v∥2Xν2 +
5g2K

2νλ1

⩽ µνλ1C1ρ
2 (by (4.2)) , C1 := 4ν2 .

We now show that

|w|2 + λ−1
1 ∥w∥2 ⩽ 4C1ρ

2, t ∈ [−k(νλ1)−1, T∗∗) .(4.24)

By continuity and the initial condition w(−k(νλ1)−1) = 0, there exists t∗ ∈ [−k(νλ1)−1, T∗∗)
such that

|w|2 + λ−1
1 ∥w∥2 ⩽ 4C1ρ

2, t ∈ [−k(νλ1)−1, t∗] .

It then follows from (4.24) and (4.3) that

1

4
µνλ1 −K1|w|2∥w∥2 ≥ 0 , t ∈ [−k(νλ1)−1, t∗] .

Let

T̃ = sup
{
τ ∈ [−k(νλ1)−1, T∗∗) : |w(t)|2 + λ−1

1 ∥w(t)∥2 ⩽ 4C1ρ
2 for all t ∈ [−k(νλ1)−1, τ ]

}
.

Notice that T̃ ⩾ t∗ > −k(νλ1)−1. We claim that T̃ = T∗∗. If not, then T̃ < T∗∗,
and

|w(T̃ )|2 + λ−1
1 ∥w(T̃ )∥2 = 4C1ρ

2,(4.25)

1

2

d

dt
(|w|2 + λ−1

1 ∥w∥2) + 1

2
µνλ1(|w|2 + λ−1

1 ∥w∥2)(4.26)

+
νλ−1

1

2
|A0w|2 ⩽ µνλ1C1ρ

2, ∀ t ∈ [−k(νλ1)−1, T̃ ].
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Dropping the term
νλ−1

1

2 |A0w|2, we have by the Gronwall inequality that

|w(T̃ )|2 + λ−1
1 ∥w(T̃ )∥2 ⩽ 2C1ρ

2(1− eµνλ1(−k(νλ1)−1
−T̃ )) < 2C1ρ

2,

which contradicts (4.25).

4.1.3. Bound for
∫ min(t+T,T∗∗)
t |A0w(τ)|2 dτ . Henceforth, we let T = (νλ1)

−1.
Inequality (4.26) implies that

1

2

d

dt
(|w|2 + λ−1

1 ∥w∥2) + νλ−1
1

2
|A0w|2 ⩽ µνλ1C1ρ

2.

For any t ∈ [−k(νλ1)−1, T∗∗), integrating on both sides from t to min(t + T, T∗∗),
observing that min(t+ T, T∗∗)− t ⩽ T, and using the bound (4.24), we have

ν

∫ min(t+T,T∗∗)

t
|A0w(τ)|2 dτ ⩽ 4C1ρ

2λ1 + Tµνλ21C1ρ
2.(4.27)

Since T∗∗ <∞, it follows that

ν

∫ T∗∗

−k(νλ1)−1

|A0w(τ)|2 dτ <∞.(4.28)

4.1.4. Bound for ∥η∥. Taking the L2 inner product of the equation (3.8b) with η,
and applying the Cauchy-Schwarz and Young inequalities, we have

1

2

d

dt
|η|2 + κ∥η∥2 ⩽ κλ1

4
|η|2 + 1

κl2λ1
|w|2 .(4.29)

Let k̃ = k(νλ1)
−1 and αk = T∗∗+k̃

2 . For any t ∈ [−k̃,−k̃ + αk), integrating (4.29)
from t to t+ αk, we have

κ

∫ t+αk

t
∥η(τ)∥2 dτ ⩽

K2

2
+ αk

(
κλ1K

2

4ρ2
+

4C1

κl2λ1

)
ρ2 =: βk.(4.30)

By taking the L2 inner product of the equation (3.8b) with A1η, we have

1

2

d

dt
∥η∥2 + κ|A1η|2 + (B1(w, η), A1η) =

(w · e2, A1η)

l
⩽
κ

4
|A1η|2 +

1

l2κ
|w|2.(4.31)

Integrating by parts, we have (as in [12, (3.22)])

|(B1(w, η), A1η)| ⩽ ∥w∥ · ∥∇η∥2L4 (Hölder)(4.32)

⩽ cL∥w∥ · ∥η∥ · |A1η| (Ladyzhenskaya)

⩽
c2L
κ
∥w∥2∥η∥2 + κ

4
|A1η|2 .

Consequently,

d

dt
∥η∥2 + κ |A1η|2 ⩽

2c2L
κ

∥w∥2∥η∥2 + 2

l2κ
|w|2 ⩽ 8c2LC1λ1

κ
ρ2∥η∥2 + 8C1

l2κ
ρ2 .(4.33)

We now recall the following uniform Gronwall inequality from [19].
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Lemma 4.3 (Uniform Gronwall). Let g, h, y be three positive locally integrable
functions on (t0, t1) which satisfy for all t with t0 ⩽ t < t+ α < t1,

dy

dt
⩽ gy + h,

∫ t+α

t
g(τ) dτ ⩽ a1,

∫ t+α

t
h(τ) dτ ⩽ a2,

∫ t+α

t
y(τ) dτ ⩽ a3,

where a1, a2, a3, α are positive constants. Then

y(t+ α) ⩽
(a3
α

+ a2

)
ea1 , t0 ⩽ t < t+ α < t1 .

Applying Lemma 4.3 to (4.33) with

t0 = −k(νλ1)−1, t1 = T∗∗, α = αk,

g(t) =
8c2LC1λ1ρ

2

κ
, h(t) =

8C1ρ
2

l2κ
, y(t) = ∥η(t)∥2,

a1 =
8c2LC1λ1

κ
ρ2α, a2 =

8C1

l2κ
ρ2α, a3 =

βk
κ
α ,

we get

sup
t∈[−k̃+α,T∗∗)

∥η(t)∥2 ⩽
(a3
α

+ a2

)
ea1 =: C3 ,(4.34)

and thus

sup
t∈[−k̃,T∗∗)

∥η(t)∥2 ⩽
(a3
α

+ a2

)
ea1 + sup

t∈[−k̃,−k̃+α]

∥η(t)∥2 <∞.(4.35)

4.1.5. Bound for
∫ min(t+T,T∗∗)
t |A1η(τ)|2 dτ . For any t ∈ [−k̃+αk, T∗∗), inserting the

bound (4.34) in (4.33) and then integrating from t to min(t+T, T∗∗) on both sides,
we have

κ

∫ min(t+T,T∗∗)

t
|A1η(τ)|2 dτ ⩽ C3 +

(
8c2LC1λ1C3

κ
+

8C1

l2κ

)
ρ2T .(4.36)

Since T∗∗ <∞, it follows that
∫ T∗∗

−k(νλ1)−1

|A1η(τ)|2 dτ <∞.(4.37)

4.2. Stress-free BCs (bounds on [−k(νλ1)−1, T∗∗) with T∗∗ < ∞). The argu-
ment using the maximum principle for showing the bound for |η| in Section 4.1 also
works here. Taking advantage of the orthogonality property that b0(w,w,A0w) = 0
in the case of stress-free BCs, we combine the estimates of ∥w∥V0

and |η| together.

4.2.1. Bounds for ∥w∥V0
and |η|. Taking the L2 inner products of the auxiliary

system (3.8) with w, A0w and η repectively, we have

ϵ1

(
1

2

d

dt
|w|2 + ν∥w∥2

)
= ϵ1

(
g(ηe2, w)− µνλ1(Ĩhw − v, w)

)
, ϵ1 :=

1

|Ω| ,(4.38)

1

2

d

dt
∥w∥2 + ν|A0w|2 = g(ηe2, A0w)− µνλ1(Ĩhw − v,A0w),(4.39)

ϵ2

(
1

2

d

dt
|η|2 + κ∥η∥2

)
= ϵ2

(
(w · e2, η)

l

)
, ϵ2 := (νλ1)

2,(4.40)
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where we used b0(w,w,w) = 0, b0(w,w,A0w) = 0 and b1(w, η, η) = 0. Note that
equations (4.38)–(4.40) have the same dimension and no nonlinear term appears in
the equations above.

Now we estimate the right-hand sides of the three equations above as follows:

−µνλ1ϵ1(Ĩhw − v, w) ⩽ µνλ1ϵ1

(
|(Ĩhw − w,w)|+ |(v, w)| − (w,w)

)
(4.41)

⩽
µνλ1
|Ω|

(
c1h ∥w∥V0

· |w|+ c2h
2|A0w|2 · |w|+ |v|2 + 1

4
|w|2 − |w|2

)

(by Remark 3.3)

⩽
µνλ1
|Ω|

(
c1h|Ω|1/2 ∥w∥2V0

+ 2c22h
4|A0w|+

1

8
|w|2 + |v|2 + 1

4
|w|2 − |w|2

)

(by (2.8))

⩽
1

8
µνλ1 ∥w∥2V0

+
ν

8
|A0w|2 + µνλ1ϵ1 |v|2 −

3

4
µνλ1ϵ1|w|2 +

1

8
µνλ1ϵ1|w|2

(by (4.8))

⩽
1

4
µνλ1 ∥w∥2V0

+ µνλ1ϵ1 |v|2 −
3

4
µνλ1ϵ1|w|2 +

ν

8
|A0w|2

−µνλ1(Ĩhw − v,A0w) ⩽ µνλ1

(
|(Ĩhw − w,A0w)|+ |(v,A0w)| − (w,A0w)

)
(4.42)

⩽ µνλ1

(
c1h ∥w∥V0

· |A0w|+ c2h
2|A0w|2 + ∥v∥2 + 1

4
∥w∥2 − ∥w∥2

)

(by Remark 3.3)

⩽ µνλ1

(
1

4
∥w∥2V0

+ c21h
2|A0w|2 + c2h

2|A0w|2 + ∥v∥2 + 1

4
∥w∥2 − ∥w∥2

)

⩽
1

4
µνλ1 ∥w∥2V0

+
ν

8
|A0w|2 + µνλ1∥v∥2 −

3

4
µνλ1∥w∥2 (by (4.9)) .

ϵ1|(gηe2, w)| ⩽
g

|Ω| |η| · |w| ⩽
gλ

−1/2
1

|Ω| ∥η∥ · |w|(4.43)

⩽
κϵ2
8

∥η∥2 + 2

κϵ2

g2λ−1
1

|Ω|2 |w|2 ⩽ κϵ2
8

∥η∥2 + 2

κϵ2

g2λ−1
1

|Ω| ∥w∥2V0
,

|(gηe2, A0w)| ⩽ g∥ηe2∥ · ∥w∥ ⩽
κϵ2
8

∥η∥2 + 2g2

κϵ2
∥w∥2 ⩽ κϵ2

8
∥η∥2 + 2g2

κϵ2
∥w∥2V0

,

(4.44)

ϵ2
l
|(w · e2, η)| ⩽

ϵ2
l
|w · e2| · |η| ⩽

K̃1ϵ2
l

∥w∥V0
∥η∥ ⩽

κϵ2
4

∥η∥2 + K̃2
1ϵ2
κl2

∥w∥2V0
,

(4.45)
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where

K̃1 := |Ω|1/2λ−1/2
1 .(4.46)

Combining (4.38)–(4.45), we have

1

2

d

dt

(
ϵ1|w|2 + ∥w∥2 + ϵ2|η|2

)
+ ϵ1ν∥w∥2 + ν|A0w|2 + κϵ2∥η∥2(4.47)

⩽
1

2
µνλ1 ∥w∥2V0

− 3

4
µνλ1(ϵ1|w|2 + ∥w∥2)

+

(
2g2λ−1

1

|Ω|κϵ2
+

2g2

κϵ2
+
K̃2

1ϵ2
κl2

)
∥w∥2V0

+ µνλ1(ϵ1|v|2 + ∥v∥2)

+
1

2
κϵ2∥η∥2 +

ν

2
|A0w|2 ,

and thus, after dropping nonnegative terms on the left,

1

2

d

dt

(
∥w∥2V0

+ ϵ2|η|2
)

+ ∥w∥2V0

(
1

4
µνλ1 −

(
2g2λ−1

1

|Ω|κϵ2
+

2g2

κϵ2
+
K̃2

1ϵ2
κl2

))

+
κλ1
2

· ϵ2 |η|2 ⩽ µνλ1∥v∥2Xν2λ1 ,

By (4.5), we have

d

dt

(
∥w∥2V0

+ ϵ2 |η|2
)
+
(
∥w∥2V0

+ ϵ2 |η|2
)
· (λ1κ) ⩽ 2µνλ1∥v∥2Xν2λ1 ,

which implies by the Gronwall inequality that

∥w∥2V0
+ (νλ1)

2|η|2 ⩽ 2µνλ1
λ1κ

∥v∥2Xν2λ1 ,(4.48)

and in particular

|η|2 ⩽ C̃0µ∥v∥2X , C̃0 :=
2νλ1ν

2λ1
λ1κ(νλ1)2

=
2ν

λ1κ
.(4.49)

We use (4.49) to improve the bound on ∥w∥2V0
. Instead of (4.43) and (4.44), we

now estimate as follows

ϵ1|(gηe2, w)| ⩽ gϵ1|η||w| ⩽
g2

ν
|η|2 + ν

4
ϵ21|w|2,(4.50)

|(gηe2, A0w)| ⩽ g|η||A0w| ⩽
g2

ν
|η|2 + ν

4
|A0w|2.(4.51)
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Combining (4.38), (4.39), (4.41), (4.42), (4.50) and (4.51), we have

1

2

d

dt

(
ϵ1|w|2 + ∥w∥2

)
+ ϵ1ν∥w∥2 + ν|A0w|2(4.52)

⩽
(1
2
µνλ1 −

3

4
µνλ1

)
∥w∥2V0

+ µνλ1 ∥v∥2V0
+
ν

4
|A0w|2

+
g2

ν
|η|2 + ν

4
ϵ21|w|2 +

g2

ν
|η|2 + ν

4
|A0w|2,

which implies that

1

2

d

dt
∥w∥2V0

+ ∥w∥2V0

(1
4
µνλ1 −

ϵ1ν

4

)
+
ν

2
|A0w|2 ⩽

2g2

ν
|η|2 + µνλ1 ∥v∥2V0

.

Therefore, by (4.6),

d

dt
∥w∥2V0

+
1

4
µνλ1 ∥w∥2V0

+ ν|A0w|2 ⩽ 2µ

(
2g2C̃0

ν
+ νλ1ν

2λ1

)
∥v∥2X .(4.53)

Dropping the term ν|A0w|2 in (4.53) and using the Gronwall inequality, we conclude
that

∥w∥2V0
⩽ C̃1∥v∥2X(4.54)

where

C̃1 :=

2µ

(
2g2C̃0

ν + νλ1ν
2λ1

)

1
4µνλ1

=
32g2

λ1κνλ1
+ 8ν2λ1.(4.55)

Note that the constant C̃1 is independent of µ.
By (4.40) and (4.45), we have

1

2

d

dt
|η|2 + κ∥η∥2 ⩽ κ

4
∥η∥2 + K̃2

1

κl2
∥w∥2V0

and thus by (4.54) and the Poincaré inequality,

1

2

d

dt
|η|2 + κλ1

2
|η|2 ⩽ K̃2∥v∥2X , K̃2 :=

K̃2
1 C̃1

κl2
.

Consequently, by the Gronwall inequality again, we have

|η|2 ⩽ C̃2∥v∥2X , C̃2 :=
2K̃2

λ1κ
,(4.56)

where C̃2 is also independent of µ.

4.2.2. Bound for
∫ min(t+T,T∗∗)
t |A0w(τ)|2 dτ . For any t ∈ [−k(νλ1)−1, T∗∗), dropping

the term 1
4µνλ1 ∥w∥

2
V0

in (4.53) and integrating, then using the bound (4.54), we
have

ν

∫ min(t+T,T∗∗)

t
|A0w(τ)|2 dτ ⩽ C̃1∥v∥2X + 2µT

(
2g2C̃0

ν
+ νλ1ν

2λ1

)
∥v∥2X .(4.57)
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Since T∗∗ <∞, it follows that

ν

∫ T∗∗

−k(νλ1)−1

|A0w(τ)|2 dτ <∞.(4.58)

4.2.3. Bound for ∥η∥. Proceeding as in the no-slip case (Section 4.1.4) but using
the bounds (4.54) and (4.56) for |w| and |η| in (4.29) instead, we get for any t ∈
[−k̃,−k̃ + αk), k̃ = k(νλ1)

−1 and αk = T∗∗+k̃
2 ,

κ

∫ t+αk

t
∥η(τ)∥2 dτ ⩽

C̃2

2
+ αk

(
κλ1C̃2

4
+

C̃1

κl2λ1

)
∥v∥2X =: β̃k(4.59)

Similarly as in (4.31), we have

1

2

d

dt
∥η∥2 + κ|A1η|2 + (B1(w, η), A1η)(4.60)

⩽
κ

4
|A1η|2 +

1

l2κ
|w|2 ⩽ κ

4
|A1η|2 +

|Ω|
l2κ

∥w∥2V0

⩽
κ

4
|A1η|2 +

|Ω|C̃1

l2κ
∥v∥2X .

For the nonlinear term, we have

|(B1(w, η), A1η)| ⩽ |A1η| · ∥w∥L4∥∇η∥L4 (Hölder)

(4.61)

⩽ cL|A1η| · |w|1/2 ∥w∥1/2V0
∥η∥1/2|A1η|1/2 (Ladyzhenskaya)

⩽ cL|Ω|1/2 ∥w∥V0
|A1η|3/2∥η∥1/2 (by (2.8))

⩽ cL|Ω|1/2C̃1/2
1 ∥v∥X |A1η|3/2∥η∥1/2

⩽
κ

4
|A1η|2 + K̃3∥v∥4X∥η∥2 (Young) K̃3 :=

27

4κ3
c4L|Ω|2C̃2

1 .

By (4.60) and (4.61), we have

d

dt
∥η∥2 + κ |A1η|2 ⩽ 2K̃3∥v∥4X∥η∥2 + K̃4∥v∥2X , K̃4 :=

2|Ω|C̃1

l2κ
.(4.62)

Proceeding as in Section 4.1.4, using Lemma 4.3 with

t0 = −k(νλ1)−1, t1 = T∗∗, α = αk,

g(t) = 2K3ρ
4, h(t) = K4ρ

2, y(t) = ∥η(t)∥2,

a1 := 2K̃3αρ
4, a2 := K̃4ρ

2α, a3 :=
β̃k
κ
α ,

we get

sup
t∈[−k̃+α,T∗∗)

∥η(t)∥2 ⩽ C̃4∥v∥2X , C̃4 := (C̃3 + K̃4T )e
2K̃3Tρ4 ,(4.63)

and as in Section (4.1),

sup
t∈[−k̃,T∗∗)

∥η(t)∥2 <∞ .(4.64)
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For the two nonlinear terms involving B0, we have (see [28])

|(B0(w2, φ), A0φ)| ⩽ cT ∥w2∥ · ∥φ∥
(
log

e|A0φ|
λ
1/2
1 ∥φ∥

)1/2

|A0φ|(5.8)

⩽
c2T
ν
∥w2∥2∥φ∥2 log

e|A0φ|
λ
1/2
1 ∥φ∥

+
ν

4
|A0φ|2

and by the Brézis-Gallouet inequality (see [5, 28])

|(B0(φ,w1), A0φ)| ⩽ cB∥w1∥ · ∥φ∥
(
log

e|A0φ|
λ
1/2
1 ∥φ∥

)1/2

|A0φ|(5.9)

⩽
c2B
ν
∥w1∥2∥φ∥2 log

e|A0φ|
λ
1/2
1 ∥φ∥

+
ν

4
|A0φ|2

For the nonlinear term involving B1, we have

|(B1(φ, η1), ψ)| ⩽ ∥φ∥L4∥ψ∥L4∥η1∥ ⩽ cL|φ|1/2∥φ∥1/2|ψ|1/2∥ψ∥1/2∥η1∥(5.10)

⩽
cL√
λ1

∥φ∥∥ψ∥∥η1∥ ⩽
κ

8
∥ψ∥2 + 2c2L

κλ1
∥φ∥2∥η1∥2 .

Combining the estimates above, we have for ∥φ∥,
1

2

d

dt
∥φ∥2 + ∥φ∥2

[
1

2
µνλ1 −

g2

κ(νλ1)2
(5.11)

+
ν|A0φ|2
4∥φ∥2 − (c2T ∥w2∥2 + c2B∥w1∥2)

(
log

e|A0φ|
λ
1/2
1 ∥φ∥

)
ν−1

]

+ ν|A0φ|2
[
1− 1

8
− 1

2
− 1

4

]
− κ(νλ1)

2

4
∥ψ∥2

⩽
µνλ1
2

∥γ∥2.

But the second line of (5.11) can be estimated by

ν|A0φ|2
4∥φ∥2 − (c2T ∥w2∥2 + c2B∥w1∥2)

(
log

e|A0φ|
λ
1/2
1 ∥φ∥

)
ν−1(5.12)

⩾
ν|A0φ|2
4∥φ∥2 − c2T ∥w2∥2 + c2B∥w1∥2

ν

(
1 + 2 log

|A0φ|
λ
1/2
1 ∥φ∥

)

=
λ1ν

4

[ |A0φ|2
λ1∥φ∥2

− c2T ∥w2∥2 + c2B∥w1∥2
ν2λ1/4

(
1 + log

|A0φ|2
λ1∥φ∥2

)]

⩾
λ1ν

4
(−ϵ log ϵ)

where we used the elementary relation (see [16, p.371])

χ− ϵ(1 + logχ) ⩾ −ϵ log ϵ, ∀χ ⩾ 1,(5.13)
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with

ϵ :=
c2T ∥w2∥2 + c2B∥w1∥2

ν2λ1/4
⩽

4(c2T + c2B)ρ
2

ν2λ1
=: K2 .(5.14)

Hence,

1

2

d

dt
∥φ∥2 + ∥φ∥2

[
1

2
µνλ1 −

g2

κ(νλ1)2
− λ1ν

4
(K2 logK2)

]
(5.15)

+
ν

8
|A0φ|2 −

κ(νλ1)
2

4
∥ψ∥2

⩽
µνλ1
2

∥γ∥2.

Combining (5.4), (5.7) and (5.10), we have

1

2

d

dt
|ψ|2 − ∥φ∥2

[
2c2L
κλ21

∥η1∥2 +
2

l2λ21κ

]
+
[
κ∥ψ∥2 − κ

8
∥ψ∥2 − κ

8
∥ψ∥2

]
⩽ 0 .(5.16)

Combining the differential inequalities (5.15) and (5.16) for ∥φ∥2 and |ψ|2, we
get

1

2

d

dt

(
∥φ∥2 + (νλ1)

2|ψ|2
)
+
κ(νλ1)

2

2
∥ψ∥2 + ν

8
|A0φ|2

+ ∥φ∥2
[
1

2
µνλ1 −

g2

κ(νλ1)2
− λ1ν

4
(K2 logK2)−

2c2L(νλ1)
2

κλ21
ρ2 − 2(νλ1)

2

l2λ21κ

]

⩽
1

2
µνλ1∥γ∥2Xν2λ1 .

Consequently, by (4.4) and the Poincaré inequality,

d

dt

(
∥φ∥2 + (νλ1)

2|ψ|2
)
+ κ(νλ1)

2∥ψ∥2 + ν

4
|A0φ|2 + κλ1∥φ∥2(5.17)

⩽
d

dt

(
∥φ∥2 + (νλ1)

2|ψ|2
)
+ κλ1

(
∥φ∥2 + (νλ1)

2|ψ|2
)
+
ν

4
|A0φ|2

⩽ µνλ1∥γ∥2Xν2λ1 .
Dropping the terms ν

4 |A0φ|2 in the second inequality, using the Gronwall inequality
and the fact that ∥wj∥, |ηj | are bounded, we obtain

∥φ∥2 + (νλ1)
2|ψ|2 ⩽ µνλ1

κ
∥γ∥2Xν2 .(5.18)

5.1.2. Bound for
∫ t+T
t |A0φ|2 and

∫ t+T
t ∥ψ∥2 by ∥γ∥2X . The inequality (5.17) implies

that

d

dt

(
∥φ∥2 + (νλ1)

2|ψ|2
)
+
ν

4
|A0φ|2 + κ(νλ1)

2∥ψ∥2 ⩽ µνλ1∥γ∥2Xν2λ1 .

Integrating from t to t+ T , T = (νλ1)
−1, and using the bound (5.18), we have

ν

4

∫ t+T

t
|A0φ(τ)|2 dτ + κ(νλ1)

∫ t+T

t
∥ψ(τ)∥2 dτ ⩽ µνλ1

(
λ1T +

1

κ

)
∥γ∥2Xν2 .

(5.19)
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5.1.3. Bounds for ∥ψ∥2 and
∫ t+T
t |A1ψ|2 by ∥γ∥2X . Taking the L2 inner product of

(5.2) with A1ψ, we have

1

2

d

dt
∥ψ∥2 + κ |A1ψ|2 + b1(w2, ψ,A1ψ) + b1(φ, η1, A1ψ) =

1

l
(φ · e2, A1ψ), .(5.20)

Integrating by parts, we have

|b1(w2, ψ,A1ψ)| ⩽ ∥w2∥ · ∥∇ψ∥2L4 (Hölder)(5.21)

⩽ cL∥w2∥ · ∥ψ∥ · |A1ψ| (Ladyzhenskaya)

⩽
κ

8
|A1ψ|2 +

2c2L
κ

∥w2∥2∥ψ∥2 .

Similarly,

|b1(φ, η1, A1ψ)| ⩽ ∥φ∥ · ∥∇η1∥L4∥∇ψ∥L4 (Hölder)

(5.22)

⩽ cL∥φ∥ · ∥η1∥1/2|A1η1|1/2∥ψ∥1/2|A1ψ|1/2 (Ladyzhenskaya)

⩽
1

2ν
∥φ∥2 + c2Lν

2
∥η1∥ · |A1η1| · ∥ψ∥ · |A1ψ| (Young)

⩽
1

2ν
∥φ∥2 + κ

8
|A1ψ|2 +

c4Lν
2

2κ
∥η1∥2|A1η1|2∥ψ∥2 .

By Cauchy-Schwarz and Young inequalities,

1

l
|(φ · e2, A1ψ)| ⩽

κ

4
|A1ψ|2 +

1

κl2
|φ|2 .(5.23)

Combining (5.20)–(5.23), we obtain

1

2

d

dt
∥ψ∥2 + κ

2
|A1ψ|2 ⩽

(
2c2L
κ

∥w2∥2 +
c4Lν

2

2κ
∥η1∥2|A1η1|2

)
∥ψ∥2 + 1

2ν
∥φ∥2 + 1

κl2
|φ|2 .

(5.24)

Let the function g and h in Lemma 4.3 be

g := 2

(
2c2L
κ

∥w2∥2 +
c4Lν

2

2κ
∥η1∥2|A1η1|2

)
, h :=

1

ν
∥φ∥2 + 2

κl2
|φ|2 .(5.25)

By the bounds (4.24), (4.34) and (4.36), we have

∫ t+T

t
g(s) ds ⩽

4c2L
κ

· 4C1ρ
2λ1T +

c4Lν
2

κ2
C3

[
C3 +

(
8c2LC1λ1C3

κ
+

8C1

l2κ

)
ρ2T

]
T

(5.26)

=: a1 .

By (5.18) and the Poincaré inequality, we have
∫ t+T

t
h(s) ds ⩽ T

(
1

2ν
+

1

κl2λ1

)
µνλ1
κ

∥γ∥2Xν2 =: K11∥γ∥2X =: a2 .(5.27)

By (5.19),
∫ t+T

t
∥ψ(τ)∥2 dτ ⩽

µνλ1
κ(νλ1)

(
λ1T +

1

κ

)
∥γ∥2Xν2 =: K12∥γ∥2X =: a3 .(5.28)
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Dropping the term κ
2 |A1ψ|2 in (5.24), applying Lemma 4.3 with (5.26), (5.27)

and (5.28) we have

sup
t∈R

∥ψ(t)∥2 ⩽ ea1
(
K11 +

K12

T

)
∥γ∥2X =: K13∥γ∥2X .

Now, by integrating (5.24) from t to t+ T and using (5.26) and (5.27), we get

κ

∫ t+T

t
|A1ψ(τ)|2 dτ ⩽ (K13 + a1K13 +K11)∥γ∥2X .

5.2. Stress-free BCs.

5.2.1. Bounds for |ψ|2, |φ|2 and ∥φ∥2 by ∥γ∥2X . Taking the L2 inner product of
(5.1)–(5.2) with φ and ψ respectively and taking the L2 inner product of (5.1) with
A0φ we have

ϵ1

(
1

2

d

dt
|φ|2 + ν∥φ∥2 + b0(φ,w1, φ)

)
= ϵ1

(
g(ψe2, φ)− µνλ1(Ĩhφ− γ, φ)

)
(5.29)

1

2

d

dt
∥φ∥2 + ν|A0φ|2 + b0(w2, φ,A0φ) + b0(φ,w1, A0φ)(5.30)

= g(ψe2, A0φ)− µνλ1(Ĩhφ− γ,A0φ)

ϵ2

(
1

2

d

dt
|ψ|2 + κ∥ψ∥2 + b1(φ, η1, ψ)

)
= ϵ2

(
1

l
(φ · e2, ψ)

)
,(5.31)

where, as in (4.38), (4.40), ϵ1 = |Ω|−1, ϵ2 = (νλ1)
2.

For the linear terms, as in (4.41)–(4.45) we have

−µνλ1ϵ1(Ĩhφ− γ, φ) ⩽
1

4
µνλ1 ∥φ∥2V0

+ µνλ1ϵ1 |γ|2 −
3

4
µνλ1ϵ1|φ|2 +

ν

8
|A0φ|2 ,

(5.32)

−µνλ1(Ĩhφ− γ,A0φ) ⩽
1

4
µνλ1 ∥φ∥2V0

+
ν

8
|A0φ|2 + µνλ1∥γ∥2 −

3

4
µνλ1∥φ∥2 ,

(5.33)

ϵ1|(gψe2, φ)| ⩽
κϵ2
8

∥ψ∥2 + 2

κϵ2

g2λ−1
1

|Ω| ∥φ∥2V0
,(5.34)

|(gψe2, A0φ)| ⩽
κϵ2
8

∥ψ∥2 + 2g2

κϵ2
∥φ∥2V0

,(5.35)

ϵ2
l
|(φ · e2, ψ)| ⩽

κϵ2
4

∥ψ∥2 + K̃2
1ϵ2
κl2

∥φ∥2V0
.(5.36)
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For the nonlinear terms, we have

ϵ1|b0(φ,w1, φ)| ⩽ ϵ1∥w1∥ · ∥φ∥2L4 (Hölder)(5.37)

⩽ ϵ1cL∥w1∥ · |φ| · ∥φ∥V0
(Ladyzhenskaya)

⩽ ϵ1cLC̃
1/2
1 ρ|φ| · ∥φ∥V0

(by (4.54))

⩽ ϵ1cLC̃
1/2
1 ρ|Ω|1/2 ∥φ∥2V0

(by (2.8))

ϵ2|b1(φ, η1, ψ)| ⩽ ϵ2∥φ∥L4∥η1∥∥ψ∥L4 (Hölder)

(5.38)

⩽ ϵ2cL|φ|1/2 ∥φ∥1/2V0
∥η1∥|ψ|1/2∥ψ∥1/2 (Ladyzhenskaya)

⩽ ϵ2cL|Ω|1/4 ∥φ∥V0
∥η1∥λ−1/4

1 ∥ψ∥ (by (2.8))

⩽ ϵ2cL|Ω|1/4λ−1/4
1 C̃

1/2
4 ρ ∥φ∥V0

∥ψ∥ (by (4.63))

⩽
ϵ2κ

4
∥ψ∥2 + ϵ2K13

κ
∥φ∥2V0

(Young) K13 := c2L|Ω|1/2λ
−1/2
1 C̃4ρ

2

|b0(φ,w1, A0φ)| ⩽ ∥φ∥L∞∥w1∥|A0φ| (Hölder)(5.39)

⩽ cA|φ|1/2∥φ∥1/2H2 ∥w1∥|A0φ| (2D Agmon)

⩽ cAcE |φ|1/2
(

1

|Ω|1/2 |φ|
1/2 + |A0φ|1/2

)
∥w1∥|A0φ| (by (2.9))

⩽
cAcE

|Ω|1/2 |φ| · |A0φ|C̃1/2
1 ρ+ cAcE |φ|1/2|A0φ|3/2C̃1/2

1 ρ (by (4.54))

⩽
ν

4
|A0φ|2 +

K14

ν
|φ|2 (Young)

where

K14 = 2K̂1
2
+

54

ν3
K̂2

4
, K̂1 =

cAcEC̃
1/2
1 ρ

|Ω|1/2 , K̂2 = cAcEC̃
1/2
1 ρ;

|b0(w2,φ,A0φ)| ⩽ ∥w2∥L4∥∇φ∥L4 |A0φ| (Hölder)

(5.40)

⩽ cL|w2|1/2∥w2∥1/2H1 |∇φ|1/2∥∇φ∥1/2H1 |A0φ| (Ladyzhenskaya)

⩽ cL|Ω|1/4∥w2∥V0
∥φ∥1/2∥φ∥1/2

H2 |A0φ|

⩽ cLcE |Ω|1/4C̃1/2
1 ρ∥φ∥1/2

(
1

|Ω|1/2 |φ|
1/2 + |A0φ|1/2

)
|A0φ| (by (2.9))

⩽ cLcE |Ω|1/4C̃1/2
1 ρ∥φ∥1/2

( |Ω|1/4
|Ω|1/2 ∥φ∥

1/2
V0

+ |A0φ|1/2
)
|A0φ|

⩽
ν

4
|A0φ|2 +

K15

ν
∥φ∥2V0

(Young)
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where

K15 = 2K̂3
2
+

54

ν3
K̂4

4
, K̂3 = cEcLC̃

1/2
1 ρ, K̂4 = cEcL|Ω|1/4C̃1/2

1 ρ.

Combining (5.29)–(5.40), we have

1

2

d

dt
(ϵ1|φ|2 + ∥φ∥2 + ϵ2|ψ|2) + ϵ1ν∥φ∥2 + ν|A0φ|2 + ϵ2κ∥ψ∥2

⩽ ∥φ∥2V0

[
1

2
µνλ1 −

3

4
µνλ1 +

2g2λ−1
1

κϵ2|Ω|
+

2g2

κϵ2
+
K̃2

1ϵ2
κl2

+ ϵ1cLC̃
1/2
1 ρ|Ω|1/2 + ϵ2K13

κ
+
K15

ν
+
K14|Ω|
ν

]

+ µνλ1 ∥γ∥2V0
+

3

4
ν|A0φ|2 +

3

4
κϵ2∥ψ∥2.

It follows that

1

2

d

dt
(∥φ∥2V0

+ ϵ2|ψ|2) + ∥φ∥2V0

(
1

4
µνλ1 −K16

)
+

1

4
ϵ2κ∥ψ∥2 +

ν

4
|A0φ|2 ⩽ µνλ1 ∥γ∥2V0

where

K16 :=
2g2λ−1

1

κϵ2|Ω|
+

2g2

κϵ2
+
K̃2

1ϵ2
κl2

+ ϵ1cLC̃
1/2
1 ρ|Ω|1/2 + ϵ2K13

κ
+
K15

ν
+
K14|Ω|
ν

.

(5.41)

By (4.7), we have

d

dt
(∥φ∥2V0

+ ϵ2|ψ|2) + (∥φ∥2V0
+ ϵ2|ψ|2)

κλ1
4

+
1

4
ϵ2κ∥ψ∥2 +

ν

2
|A0φ|2 ⩽ 2µνλ1∥γ∥2Xν2λ1.

(5.42)

Dropping 1
4ϵ2κ∥ψ∥2 + ν

2 |A0φ|2 on the left and using the Gronwall inequality, we
conclude that

∥φ∥2V0
+ ϵ2|ψ|2 ⩽ µC6∥γ∥2X , C6 :=

8λ1ν
3

κ
,(5.43)

and in particular,

∥φ∥2V0
⩽ µC6∥γ∥2X .(5.44)

5.2.2. Bound for
∫ t+T
t ∥ψ∥2 and

∫ t+T
t |A0φ|2 by ∥γ∥2X . Using the inequality (5.42)

and proceeding as in the no-slip case, we get

ϵ2κ

∫ t+T

t
∥ψ(τ)∥2 dτ + ν

∫ t+T

t
|A0φ(τ)|2 dτ ⩽ (8µνλ1ν

2λ1T + 4µC6)∥γ∥2X .(5.45)

5.2.3. Bound for ∥ψ∥2 and
∫ t+T
t |A1ψ|2 by ∥γ∥2X . Proceeding as in the no-slip case,

we get (5.24):

1

2

d

dt
∥ψ∥2 + κ

2
|A1ψ|2 ⩽

(
2c2L
κ

∥w2∥2 +
c4Lν

2

2κ
∥η1∥2|A1η1|2

)
∥ψ∥2 + 1

2ν
∥φ∥2 + 1

κl2
|φ|2 .

Using the bounds (4.54), (4.63) and (4.65), we have
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∫ t+T

t
g(s) ds ⩽

4c2L
κ

· C̃1ρ
2T +

c4Lν
2

κ2
C̃4ρ

2

[
C̃4ρ

2 + T

(
2K̃3ρ

4C̃4ρ
2 + K̃4ρ

2

)]
=: a1 .

(5.46)

By (5.43) and (2.8), we have
∫ t+T

t
h(s) ds ⩽ T

(
1

ν
+

2|Ω|
κl2

)
µC6∥γ∥2X =: K̃11∥γ∥2X .(5.47)

Applying Lemma 4.3 with (5.46), (5.47) and (5.45) yields

sup
t∈R

∥ψ(t)∥2 ⩽ ea1
[
K̃11 +

1

κϵ2T
(8µνλ1ν

2λ1T + 4µC6)

]
∥γ∥2X =: K̃12∥γ∥2X .

By integrating (5.24) from t to t+ T and using (5.46) and (5.47), we get

κ

∫ t+T

t
|A1ψ(τ)|2 dτ ⩽ (K̃12 + a1K̃12 + K̃11)∥γ∥2X .

6. Proof of Proposition 3.7

Let δ = w − u and ξ = η − θ. Taking the difference of the RB system (2.12) and
the auxiliary equations (3.11), we have

dδ

dt
+ νA0δ +B0(w,w)−B0(u, u) = Pσ(gξe2)− µνλ1(Ĩhδ),

dξ

dt
+ κA1ξ +B1(w, η)−B1(u, θ) =

δ · e2
l

.

Applying the (essentially) same calculation in Section 5, we conclude that

∥δ(t)∥2 = |ξ(t)|2 = 0, ∀ t ∈ R,

which completes the proof.

7. Appendix

Let T (t;x) = η(t;x) + (1− x2

l ) where x = (x1, x2) ∈ Ω. Observe that for a given

smooth enough w with ∇ · w = 0, T satisfies, on [−k(νλ1)−1, T∗∗),

∂T
∂t

− κ∆T + (w · ∇)T = 0,(7.1)

T (−k(νλ1)−1;x1, x2) = 1− x2
l
.(7.2)

with boundary conditions

in the x2-variable: T = 0 at x2 = 0 and x2 = l,

in the x1-variable: T is of periodic L.

Observe that 0 ⩽ T (−k(νλ1)−1;x) ⩽ 1, and thus

T−(k(νλ1)−1;x) = 0, (T − 1)+(k(νλ1)
−1;x) = 0,

where we denote for any real number M ,M+ = max(M, 0) andM− = max(−M, 0).
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Note that T̃ := T− satisfies (7.1) a.e. and also the boundary conditions. The
chain rule and integration by parts yield

∫

Ω
((w · ∇)T̃ )T̃ dx =

∑

i,j

∫

Ω
wi(∂iT̃j)T̃j dx

=
∑

i,j

∫

Ω
wi∂i

(T̃j)2
2

dx

= −
∑

j

∫

Ω
(∇ · w)(T̃j)

2

2
dx

= 0,

where the boundary term vanishes due to the boundary conditions. Hence, multi-
plying (7.1) by T− and integrating over Ω, we obtain

1

2

d

dt
|T−(t)|2 + κ|∇T−(t)|2 = 0,

which implies that

|T−(t)|2 ⩽ |T−(−k(νλ1)−1)|2 = 0 for t ∈ [−k(νλ1)−1, T∗∗).

It follows that T−(t) = 0 and thus T (t) ⩾ 0.
We now show that T ⩽ 1. Observe that

∂

∂t
(T − 1)− κ∆(T − 1) + (w · ∇)(T − 1) = 0.

Proceeding similarly as above, we obtain,

1

2

d

dt
|(T − 1)+|2 + κ|∇(T − 1)+|2 = 0,

which implies that

|(T − 1)+(t)|2 ⩽ |(T − 1)+(−k(νλ1)−1)|2 = 0 for t ∈ [−k(νλ1)−1, T∗∗),

and thus T (t) ⩽ 1.
We conclude that

0 ⩽ T (t;x) ⩽ 1, a.e. x ∈ Ω, t ∈ [−k(νλ1)−1, T∗∗),

which implies that

|η(t;x)| ⩽ 1 + sup
x∈Ω

|1− x2
l
| ⩽ 2,

and thus

∥η(t)∥L2(Ω) ⩽ 2|Ω|, ∀ t ∈ [−k(νλ1)−1, T∗∗).(7.3)
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