

1 An efficient linear mixed model framework for 2 meta-analytic association studies across multiple 3 contexts

4 **Brandon Jew¹**

5 Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA

6 **Jiajin Li¹**

7 Department of Human Genetics, University of California, Los Angeles, USA

8 **Sriram Sankararaman**

9 Department of Human Genetics, University of California, Los Angeles, USA

10 Department of Computer Science, University of California, Los Angeles, USA

11 **Jae Hoon Sul² **

12 Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA

13 — Abstract —

14 Linear mixed models can be applied in the meta-analyses of responses from individuals across
15 multiple contexts, increasing power to detect associations while accounting for confounding effects
16 arising from within-individual variation. However, traditional approaches to fitting these models
17 are computationally intractable. Here, we describe an efficient and exact method for fitting a
18 multi-context linear mixed model. Whereas existing methods are cubic or quadratic in their time
19 complexity with respect to the number of individuals, our approach (mcLMM) is linear. These
20 improvements allow for large-scale analyses requiring computing time and memory magnitudes
21 of order less than existing methods. As examples, we apply our approach to identify expression
22 quantitative trait loci from large-scale gene expression data measured across multiple tissues as well
23 as joint analyses of multiple phenotypes in genome-wide association studies at biobank scale.

24 **2012 ACM Subject Classification** Applied computing → Bioinformatics; Applied computing →
25 Computational genomics

26 **Keywords and phrases** Meta-analysis, Linear mixed models, multiple context genetic association

27 **Digital Object Identifier** 10.4230/LIPIcs.CVIT.2016.23

28 **Supplementary Material** mcLMM is available as an R package at <https://github.com/brandonjew/mcLMM>.

30 **Funding** *Brandon Jew*: National Science Foundation Graduate Research Fellowship Program under
31 Grant No. DGE-1650604.

32 *Jae Hoon Sul*: National Institute of Environmental Health Sciences (NIEHS) [K01 ES028064]; the
33 National Science Foundation grant [#1705197]; the National Institute of Neurological Disorders and
34 Stroke (NINDS) [R01 NS102371]; and NINDS [R03 HL150604].

35 **1 Introduction**

36 Over the last decade, the scale of genomic datasets has steadily increased. These datasets
37 have grown to the size of hundreds of thousands of individuals [3] with millions soon to come
38 [18]. Similarly, datasets for transcriptomics and epigenomics are growing to thousands of

¹ Equal contribution

² Corresponding author

23:2 Efficient LMM for multiple context meta-analysis

39 samples [1, 5, 12]. These studies provide valuable insight into the relationship between our
40 genome and complex phenotypes [20].

41 Identifying these associations requires statistical models that can account for biases
42 in study design that can negatively influence results through false positives or decreased
43 power. Linear mixed models (LMMs) have been a popular choice for controlling these
44 biases in genomic studies, utilizing variance components to account for issues such as
45 population stratification [8]. These models can also be used to analyze studies with repeated
46 measurements from individuals, such as replicates or measurements across different contexts.
47 Meta-Tissue [17] is a method that applies this model in the context of identifying expression
48 quantitative trait loci (eQTLs) across multiple tissues. In this framework, gene expression
49 is measured in several tissues from the same individuals and the LMM is utilized to test
50 the association between these values and genotypes. A meta-analytic approach is used to
51 combined effects across multiple tissues to increase the power of detecting eQTLs. This
52 approach has also been applied to increase power in genome-wide association studies (GWAS)
53 by testing the association between genotypes and multiple related phenotypes [7].

54 However, these approaches are computationally intensive. Existing approaches for fitting
55 these models are cubic in time complexity with respect to the number of samples across all
56 contexts [8, 23]. Here, we present an ultra-fast LMM framework specifically for multiple-
57 context studies. Our method, mcLMM, is linear in complexity with respect to the number of
58 individuals and allows for statistical tests in a manner of hours rather than days or years with
59 existing approaches. To illustrate the computational efficiency of mcLMM, we compare the
60 runtime and memory usage of our method with EMMA and GEMMA [8, 23], two popular
61 approaches for fitting these models. We further apply mcLMM to identify a large number
62 of eQTLs in the Genotype-Tissue Expression (GTEx) dataset [5] and compare our results
63 from METASOFT [6], which performs the meta-analysis of the mcLMM output, to a recent
64 meta-analytic approach known as mash [19]. Finally, to demonstrate the practicality of
65 mcLMM on modern datasets, we perform a multiple-phenotype GWAS combining over a
66 million observations sampled from hundreds of thousands of individuals in the UK Biobank
67 [3] within hours.

68 2 Results

69 2.1 Multi-context linear mixed models

70 We implement the statistical model described in Meta-Tissue [17], where we model the
71 multi-context data as follows:

$$72 \quad \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u} + \mathbf{e} \quad (1)$$

73 where $\mathbf{u} \sim N(0, \sigma_g^2 K)$ and $\mathbf{e} \sim N(0, \sigma_e^2 I)$. For n individuals and t contexts, \mathbf{y} is a vector of nt
74 responses, K is an nt by nt binary matrix where a value of 1 indicates that the observations
75 were sampled from the same individual. Compared to a standard regression model, the
76 variance component \mathbf{u} accounts for within-individual variation that may occur with repeated
77 sampling. The design matrix \mathbf{X} fits coefficients $\boldsymbol{\beta}$ for each feature within each context
78 independently. These coefficients, which describe the effect of the feature on the response
79 within each context, can be used in a meta-analytic framework to combine the results. In
80 our pipeline, we utilize the random effects model (RE2) from METASOFT, which assumes
81 that effect sizes may be different across contexts and was shown to outperform existing
82 meta-analysis methods [6].

83 Fitting this LMM requires estimation of the parameters σ_g^2 and σ_e^2 , which can be estimated
 84 with traditional likelihood or restricted-likelihood approaches or through various optimized
 85 methods that have been developed, such as EMMA and GEMMA [8, 23]. These approaches
 86 require an eigendecomposition of the matrix K which is traditionally considered to be an
 87 $O((nt)^3)$ operation. mcLMM utilizes the block structure of the matrices in this model to
 88 perform matrix operations within contexts and avoids any eigendecomposition operations.
 89 This approach provides massive speedups with runtime complexities that are linear with
 90 respect to sample size n rather than cubic. As a note, mcLMM is not an approximation and
 91 fits identical models to these existing approaches.

92 2.2 mcLMM is computationally efficient

93 To demonstrate the efficiency of mcLMM compared to existing approaches, we applied
 94 our method to simulated data of varying sample sizes and number of contexts. For these
 95 simulations, we simulated a sampling rate of 0.5, which indicates that only half of all possible
 96 individual-context pairs of observations are expected to be sampled.

97 We first applied our method to simulations with a fixed number of 50 contexts and varied
 98 the sample size from 100 to 500. From these experiments, we observed that mcLMM requires
 99 computational time orders of magnitude less than EMMA and GEMMA. Similarly, when we
 100 fixed the number of samples at 500 and varied the context sizes from 4 to 64, we observed
 101 dramatically reduced runtimes for mcLMM.

102 In these experiments, mcLMM also significantly reduces the memory footprint compared
 103 to EMMA and GEMMA, since we avoid creating any nt by nt matrices. In these simulations,
 104 existing approaches quickly grow memory requirements, with usages that grow to dozens of
 105 gigabytes for modestly sized datasets in the thousands of samples. mcLMM allows large-scale
 106 studies to be performed on relatively little computational resources (Figure 1).

107 In cases where there is no missing data, mcLMM allows for further speedups. We ran
 108 similar simulations to compare mcLMM with no missing data (optimal model) and mcLMM
 109 with missing data (iterative model). We observed a dramatic speedup, with sample sizes of
 110 500,000 individuals across 10 contexts completed in under 10 seconds for the optimal model
 111 compared to around 15 minutes for the iterative model.

112 2.3 mcLMM enables powerful meta analyses to detect eQTLs

113 We utilized mcLMM to reduce the computational resource requirements of the Meta-Tissue
 114 pipeline, which fits a multiple-context LMM and combines the resulting effect sizes using
 115 METASOFT [17]. While powerful, the existing approach utilizes EMMA to fit the LMM.
 116 For a recent release from the GTEx consortium [5], each pair of genes and single nucleotide
 117 polymorphisms (SNPs) required over two hours to run. Across hundreds of thousands of
 118 gene-SNP pairs, this method would require years of computational runtime to complete.
 119 Utilizing mcLMM, we were able to complete this analysis in 3 days parallelized over each
 120 chromosome.

121 We compared our approach to a method known as mash [19]. This approach utilizes
 122 effect sizes estimated within each context independently and employs a Bayesian approach
 123 to combine their results for meta-analysis. In order to estimate the power of these methods,
 124 we performed simulations as described in the methods. In null simulations, we observed
 125 well-controlled false positive rates at $\alpha = 0.05$ for mcLMM coupled with METASOFT. In our
 126 simulation with true positives, we observed an increased area under the receiver operating

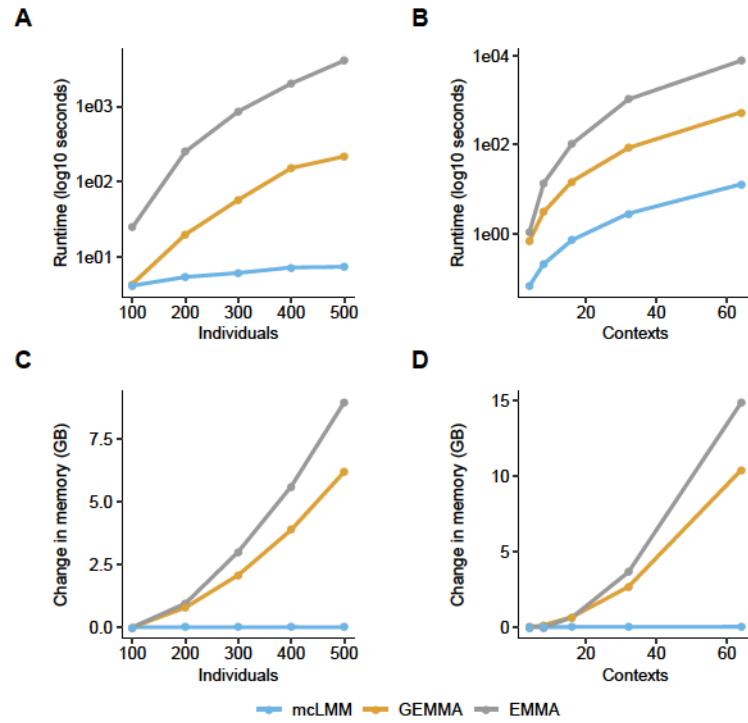


Figure 1 Resource requirements of mcLMM, GEMMA, and EMMA across various simulated individual and context sizes with missing values (sampling rate of 0.5). For varying individuals, contexts were fixed at 50. For varying contexts, individuals were fixed at 500. (A-B) Runtime with $\log_{10}(\text{seconds})$ on the y-axis and number of individuals or contexts simulated on the x-axis. (C-D) Memory usage (GB) on the y-axis and number of individuals or contexts simulated on the x-axis.

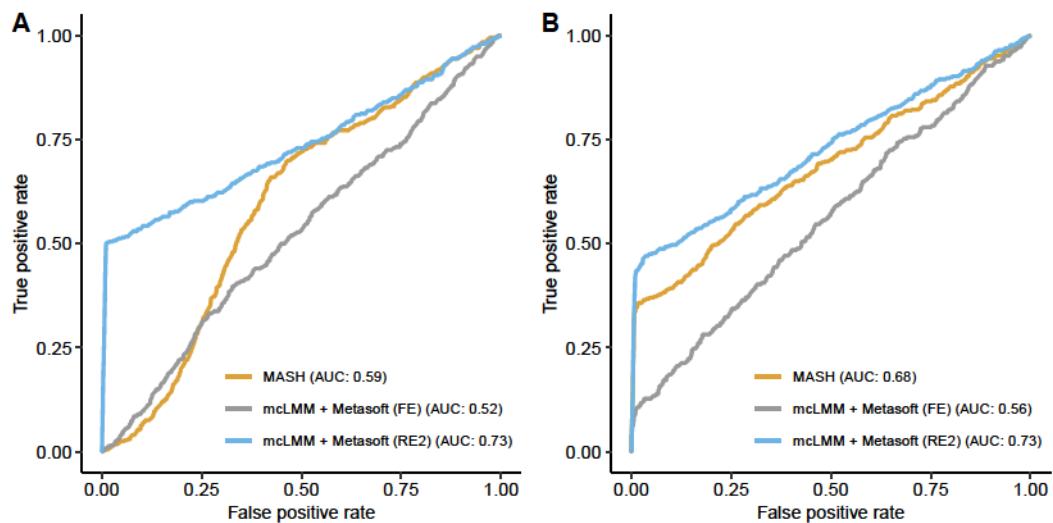


Figure 2 AUROC curves of mcLMM+METASOFT and mash in simulated data, assuming the effects of gene-SNP pairs are (A) shared and unstructured, and (B) shared and structured.

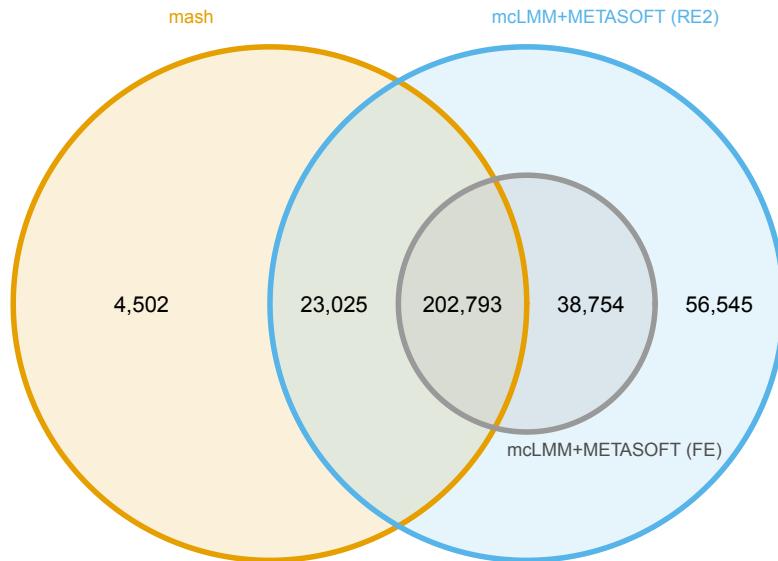


Figure 3 Venn diagram of significant eQTLs identified by meta-analysis methods in the GTEx dataset. We compared mcLMM using two different models in METASOFT (RE2 and FE) to mash. Note that areas are not proportional to the number of eQTLs in each region. mcLMM+METASOFT (RE2) identified a total of 321,117 significant associations that contained 225,818 eQTLs identified by mash.

characteristic (AUROC) for mcLMM coupled with the random effects (RE2) METASOFT model compared to mash (Figure 2).

Next, we compared the number of significant associations identified in the GTEx dataset. The mash approach utilized gene-SNP effect sizes estimated by the GTEx consortium within each tissue independently. Concordant with our simulations, we observed that the Meta-Tissue approach, utilizing mcLMM for vast speedup, identified more significant eQTLs than mash (Figure 3). These associations allow researchers to better understand the link between genetic variation and complex phenotypes through possible mediation of gene expression.

2.4 mcLMM scales to millions of samples across related phenotypes

As a practical application of the efficiency of mcLMM, we performed a multiple phenotype GWAS in the UK Biobank. A multiple phenotype GWAS associates SNPs with several related phenotypes in order to increase the effective sample size for greater power, under the assumption that the phenotypes are significantly correlated. For our analysis, we combined HDL and LDL cholesterol, Apolipoprotein A and B, and triglyceride levels across 323,266 unrelated caucasian individuals in the UK Biobank. In total, 1,616,330 observations of these related phenotypes were fit as responses in the LMM.

The mcLMM approach completed this analysis over 211,642 SNPs with an additional 14

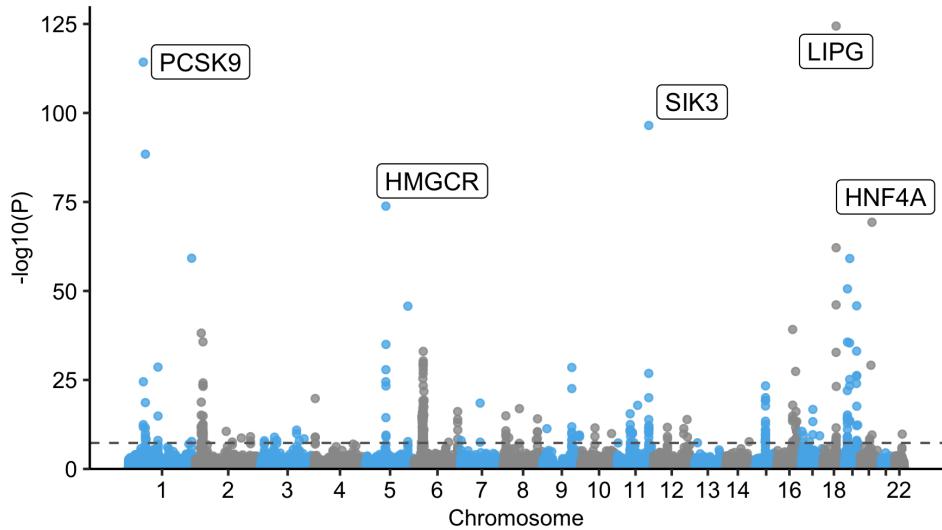


Figure 4 Multiple phenotype GWAS results from UK Biobank. Five phenotypes (LDL cholesterol, HDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglyceride levels) were used as responses in the mcLMM framework. The model was fit with 1,616,330 observations from 323,266 unrelated Caucasian individuals. In total, 211,642 SNPs were tested with an additional 14 covariates. Each test required around 2 seconds to run on a 32GB machine and was parallelized over each chromosome. The $-\log_{10}$ of the p-values are plot on the y-axis and genomic positions on the x-axis. The horizontal dashed line indicates the genome wide significance level at $p = 0.05/1e6$. The top hit for 5 different chromosomes is annotated with the gene containing the SNP. These genes have been previously identified as associated with a subset of these phenotypes.

144 covariates, parallelized over each chromosome, within a day. Each chromosome was analyzed
 145 on a single core machine with 32 GB of memory, with each test taking around 2 seconds
 146 to complete. We identified several significant loci, a subset of which replicate previous
 147 findings for specific phenotypes included in the model, such as HDL cholesterol [22] (Figure
 148 4). Existing approaches, namely EMMA and GEMMA, require orders of magnitude more
 149 memory to begin this analyses and could not be run on the available computational resources.

150 3 Discussion

151 We presented mcLMM, an efficient method for fitting LMMs used for multiple context
 152 association studies. Our method provides exact results and scales linearly in time and
 153 memory with respect to sample size, while existing methods are cubic. This efficiency allows
 154 mcLMM to process hundreds of thousands of samples over several contexts within a day on
 155 minimal computational resources, as we showed in simulation and in the UK Biobank. The
 156 association parameters learned by mcLMM can further be utilized with the METASOFT
 157 framework to provide powerful meta-analysis of the associations, as we showed in the GTEx
 158 dataset.

159 Previous work has observed the potential speedup to linear complexity for LMMs when the
 160 matrix K is approximated with a low rank representation [9]. Here, we optimize the method

161 specifically for the low rank matrix that arises naturally in multiple context association
 162 studies, allowing our method to provide exact results and scale to hundreds of thousands of
 163 samples with minimal computational resources.

164 **4 Methods**

165 **4.1 Linear Mixed Model**

166 For multi-context experiments with n individuals, t contexts, and c covariates, we fit the
 167 following linear mixed model

168
$$\mathbf{y} = X\beta + \mathbf{u} + \mathbf{e} \quad (2)$$

169 where $\mathbf{u} \sim N(0, \sigma_g^2 K)$, $\mathbf{e} \sim N(0, \sigma_e^2 I)$, $\mathbf{y} \in R^{nt}$ is a vectorized representation of the responses,
 170 $X \in R^{nt \times tc}$ is the matrix of covariates, $\beta \in R^{tc}$ is the vector of estimated coefficients,
 171 $K \in R^{nt \times nt}$ is a binary matrix where $K_{i,j} = 1$ indicates that sample i and sample j in
 172 Y come from the same individual, and $I \in R^{nt \times nt}$ is an identity matrix. X is structured
 173 such that both an intercept and the covariate effects are fit within each context. For sake
 174 of simplicity, dimensions of nt assume that there is no missing data; however, this is not a
 175 requirement for the model.

176 The full and restricted log-likelihood functions for this model are

177
$$l_F(\mathbf{y}; \beta, \sigma_g, \delta) = \frac{1}{2} \left[-N \log(2\pi\sigma_g^2) - \log(|H|) - \frac{1}{\sigma_g^2} (\mathbf{y} - X\beta)^T H^{-1} (\mathbf{y} - X\beta) \right] \quad (3)$$

178

179
$$l_R(\mathbf{y}; \beta, \sigma_g, \delta) = l_F(\mathbf{y}; \beta, \sigma_g, \sigma_e) + \frac{1}{2} [tc \log(2\pi\sigma_g^2) + \log(|X^T X|) - \log(|X^T H^{-1} X|)] \quad (4)$$

180 where N is the total number of measurements made across the individuals and contexts,
 181 $\delta = \frac{\sigma_e^2}{\sigma_g^2}$, and $H = K + \delta I$ [21]. These likelihood functions are maximized with the generalized
 182 least squares estimator $\hat{\beta} = (X^T H^{-1} X)^{-1} X^T H^{-1} \mathbf{y}$ and $\hat{\sigma}_g^2 = \frac{R}{N}$ in the full log-likelihood
 183 and $\hat{\sigma}_g^2 = \frac{R}{N-tc}$ in the restricted log-likelihood, where $R = (\mathbf{y} - X\hat{\beta})^T H^{-1} (\mathbf{y} - X\hat{\beta})$. Our
 184 goal is to maximize these likelihood functions to estimate the optimal $\hat{\delta}$.

185 **4.2 Likelihood refactoring in the general case**

186 The EMMA algorithm optimizes these likelihoods for δ by refactoring them in terms of con-
 187 stants calculated from eigendecompositions of H and SHS , where $S = I - X(X^T X)^{-1} X^T$,
 188 that allow linear complexity optimization iterations with respect to the number of indi-
 189 viduals [8]. The GEMMA algorithm further increases efficiency by replacing the SHS
 190 eigendecomposition with a matrix-vector multiplication [23]. Both approaches require the
 191 eigendecomposition of at least $1 N$ by N matrix which is typically cubic in complexity. Here,
 192 we show that our specific definition of K as a binary indicator matrix allows us to refactor
 193 these likelihood functions without any eigendecomposition steps. It should be noted that
 194 EMMA and GEMMA can fit this model for any positive semidefinite K , while mCLMM is
 195 restricted to the definition described above.

196 First, note that $H = K + \delta I$ is a block diagonal matrix (as exemplified in Equation 5).
 197 Specifically, each block corresponds to an individual i with t_i contexts measured and is equal

23:8 Efficient LMM for multiple context meta-analysis

198 to $[\mathbf{1}_{t_i} + \delta I_{t_i}] \in R^{t_i \times t_i}$, where $\mathbf{1}_{t_i}$ is a t_i by t_i matrix composed entirely of 1. These properties
199 of H make its eigendecomposition and inverse directly known.

200 The eigenvalues of a block diagonal matrix are equal to the union of the eigenvalues of
201 each block. Moreover, the eigenvalues of $[\mathbf{1}_{t_i} + \delta I_{t_i}]$ are $t_i + \delta$ with multiplicity 1 and δ with
202 multiplicity $t_i - 1$. Therefore, H has eigenvalues δ with multiplicity $N - n$ and $t_i + \delta$ for
203 each t_i . This provides our first refactoring

$$204 \quad \log(|H|) = (N - n) \log(\delta) + \sum_{i=1}^n \log(t_i + \delta) \quad (5)$$

205 The inverse of a block diagonal matrix can also be computed by inverting each block
206 individually. Moreover, using the Sherman-Morrison formula [14], the inverse of $[\mathbf{1}_{t_i} + \delta I_{t_i}]$
207 is known

$$208 \quad (\mathbf{1}_{t_i} + \delta I_{t_i})^{-1} = -\frac{1}{t + \delta} \mathbf{1}_{t_i} + \frac{1}{\delta} I_{t_i} \quad (6)$$

209 Given each entry of H^{-1} , we can show algebraically that

$$210 \quad X^T H^{-1} X = \frac{1}{\delta} (E - D) \quad (7)$$

211

$$212 \quad E_{i,j} = \begin{cases} \sum_{\text{ind} \in f(i)} x_{\text{ind},g(i)} x_{\text{ind},g(j)} & \text{if } f(i) = f(j) \\ 0 & \text{if } f(i) \neq f(j) \end{cases} \quad (8)$$

213

$$214 \quad D_{i,j} = \sum_{g \in \text{groups}} \frac{1}{t_g + \delta} \sum_{\text{ind} \in f(i), f(j), g} x_{\text{ind},g(i)} x_{\text{ind},g(j)} \quad (9)$$

215 where $f(i) = i \% t$ (modulo operator) provides the context of a given 0-indexed column of
216 X , $g(i) = i // t$ (integer division) provides the covariate of a given index. A group g defines
217 the set of individuals that share the same number of measured contexts t_g . The expression
218 “ $\text{ind} \in f(i), f(j), g$ ” indicates the set of all individuals that have t_g measured contexts that
219 include context i and j .

220 Note that with all values independent of δ pre-computed, specifically the sum of covariate
221 interactions within the sets of individuals indicated above, E is constant with respect to
222 δ and each entry of the symmetric matrix D can be calculated in linear time with respect
223 to the number of groups, which is less than or equal to the number of contexts t . For a
224 given δ , we can compute $X^T H^{-1} X$ in $O(t(tc)^2)$ time complexity. Both the restricted and
225 full log-likelihoods require the calculation of $(X^T H^{-1} X)^{-1}$. The restricted log-likelihood
226 requires the additional calculation of $\log(|X^T H^{-1} X|)$. To calculate both of these terms, we
227 perform a Cholesky decomposition of $X^T H^{-1} X = LL^*$, where $*$ indicates the conjugate
228 transpose. Given this decomposition, we can compute

$$229 \quad \log(|X^T H^{-1} X|) = \sum_{i=1}^{tc} L_{i,i}^2 \quad (10)$$

230

231
$$(X^T H^{-1} X)^{-1} = (L^*)^{-1} L^{-1} \quad (11)$$

232 These operations can be done in $O((tc)^3)$ time complexity.233 Let $P(X)$ denote a projection matrix and $M(X) = (I - P(X))$. Note that both $P(X)$
234 and $M(X)$ are idempotent. The term remaining term in the likelihood functions, R , can be
235 reformulated as follows

236
$$\begin{aligned} \mathbf{y} - X\hat{\beta} &= \mathbf{y} - X(X^T H^{-1} X)^{-1} X^T H^{-1} \mathbf{y} \\ &= (I - X(X^T H^{-1} X)^{-1} X^T H^{-1}) \mathbf{y} \\ &= (I - P(X)) \mathbf{y} \\ &= M(X) \mathbf{y} \end{aligned} \quad (12)$$

239
$$\begin{aligned} M(X)^T H^{-1} &= (I - X(X^T H^{-1} X)^{-1} X^T H^{-1})^T H^{-1} \\ &= (I - H^{-1} X(X^T H^{-1} X)^{-1} X^T) H^{-1} \\ &= H^{-1} - H^{-1} X(X^T H^{-1} X)^{-1} X^T H^{-1} \\ &= H^{-1} (I - X(X^T H^{-1} X)^{-1} X^T H^{-1}) \\ &= H^{-1} M(X) \end{aligned} \quad (13)$$

242
$$\begin{aligned} R &= (\mathbf{y} - X\hat{\beta})^T H^{-1} (\mathbf{y} - X\hat{\beta}) \\ &= \mathbf{y}^T M(X)^T H^{-1} M(X) \mathbf{y} \\ &= \mathbf{y}^T H^{-1} M(X) M(X) \mathbf{y} \\ &= \mathbf{y}^T H^{-1} M(X) \mathbf{y} \\ &= (\mathbf{y}^T H^{-1} \mathbf{y}) - (\mathbf{y}^T H^{-1} X(X^T H^{-1} X)^{-1} X^T H^{-1} \mathbf{y}) \\ &= a - \mathbf{b}^T (X^T H^{-1} X)^{-1} \mathbf{b} \\ &= a - \mathbf{b}^T (L^*)^{-1} L^{-1} \mathbf{b} \end{aligned} \quad (14)$$

245 The scalar a and vector \mathbf{b} are a function of δ and can be algebraically formulated as

246
$$a = \frac{1}{\delta} \left(\left(\sum_{i=1}^N \mathbf{y}_i^2 \right) - \left(\sum_{g \in \text{groups}} \frac{1}{t_g + \delta} \sum_{\text{ind} \in g} (\sum \mathbf{y}_{\text{ind}})^2 \right) \right) \quad (15)$$

247
$$\mathbf{b}_i = \frac{1}{\delta} \left(\left(\sum_{\text{ind} \in \text{context}(i)} x_{\text{ind}, g(i)} \mathbf{y}_{\text{ind}, f(i)} \right) - \left(\sum_{g \in \text{groups}} \frac{1}{t_g + \delta} \sum_{\text{ind} \in f(i), g} x_{\text{ind}, g(i)} (\sum \mathbf{y}_{\text{ind}}) \right) \right) \quad (16)$$

248 where $\sum \mathbf{y}_{\text{ind}}$ indicates the sum of responses across all contexts for an individual. With
249 values independent of δ pre-calculated, a and \mathbf{b} can be calculated in linear time with respect
250 to the number of groups.

251 We can reformulate the entire likelihood functions as follows

23:10 Efficient LMM for multiple context meta-analysis

$$\begin{aligned}
252 \quad l_F(\mathbf{y}; \beta, \sigma_g, \delta) &= \frac{1}{2} \left[-N \log (2\pi\sigma_g^2) - \log(|H|) - \frac{1}{\sigma_g^2} (\mathbf{y} - X\beta)^T H^{-1} (\mathbf{y} - X\beta) \right] \\
&= \frac{1}{2} \left[-N \log (2\pi \frac{R}{N}) - \log(|H|) - N \right] \\
&= \frac{1}{2} \left[-N \log (2\pi \frac{R}{N}) - \left((N-n) \log (\delta) + \sum_{i=1}^n \log (t_i + \delta) \right) - N \right] \\
253 \quad &\approx -N \log (a - \mathbf{b}^T (L^*)^{-1} L^{-1} \mathbf{b}) - \left((N-n) \log (\delta) + \sum_{i=1}^n \log (t_i + \delta) \right) \tag{17}
\end{aligned}$$

$$\begin{aligned}
l_R(\mathbf{y}; \beta, \sigma_g, \delta) &= l_F(\mathbf{y}; \beta, \sigma_g, \sigma_e) + \frac{1}{2} \left[tc \log(2\pi\sigma_g^2) + \log(|X^T X|) - \log(|X^T H^{-1} X|) \right] \\
&\approx (tc - N) \log(a - \mathbf{b}^T (L^*)^{-1} L^{-1} \mathbf{b}) \\
&\quad - \left((N - n) \log(\delta) + \sum_{i=1}^n \log(t_i + \delta) \right) - \sum_{i=1}^{tc} L_{i,i}^2
\end{aligned} \tag{18}$$

258 Note that Equations 17 and 18 remove terms that are independent of δ since they are
259 not required for finding its optimal value, indicated by the \approx symbol. These likelihoods are
260 maximized using the optimize function in R. For the full likelihood

$$_{261} \quad \hat{\sigma}_g^2 = \frac{R}{\hat{\delta}N} \quad (19)$$

²⁶² For the restricted likelihood

$$263 \quad \hat{\sigma}_g^2 = \frac{R}{\hat{\delta}(N - tc)} \quad (20)$$

264 For both likelihoods

$$265 \quad \hat{\sigma}_e^2 = \hat{\delta} \hat{\sigma}_g^2 \quad (21)$$

4.3 Likelihood refactoring with no missing data

When there is no missing data, the likelihood functions can be further simplified. Note that in this case, $N = nt$ and all $t_i = t$. Hence,

$$\begin{aligned}
 269 \quad \log(|H|) &= (N-n) \log(\delta) + \sum_{i=1}^n \log(t_i + \delta) \\
 270 \quad &= (nt - n) \log(\delta) + n \log(t + \delta) \tag{22}
 \end{aligned}$$

If the input terms y , X , and K are permuted resulting in samples being sorted in order of context, and the covariates in X are sorted in order of context, we can decompose H and X into

$$275 \quad H = (\mathbf{1}_t + \delta I_t) \otimes I_n \quad (23)$$

276

$$277 \quad X = I_t \otimes X_{\text{dense}} \quad (24)$$

278 where \otimes indicates the Kronecker product and $X_{\text{dense}} \in R^{n \times c}$ is a typical representation
 279 of the covariates for each individual without multiple contexts (i.e. samples as rows and
 280 covariates as columns). Utilizing the properties of Kronecker products, we can perform the
 281 following reformulation

$$282 \quad \begin{aligned} (X^T H^{-1} X)^{-1} &= ((I_t \otimes X_{\text{dense}}^T)((\mathbf{1}_t + \delta I_t) \otimes I_n)^{-1}(I_t \otimes X_{\text{dense}}))^{-1} \\ &= ((\mathbf{1}_t + \delta I_t)^{-1} \otimes X_{\text{dense}}^T X_{\text{dense}})^{-1} \\ &= (\mathbf{1}_t + \delta I_t) \otimes (X_{\text{dense}}^T X_{\text{dense}})^{-1} \end{aligned} \quad (25)$$

$$285 \quad \begin{aligned} \log(|(X^T H^{-1} X)^{-1}|) &= \log(|(\mathbf{1}_t + \delta I_t) \otimes (X_{\text{dense}}^T X_{\text{dense}})^{-1}|) \\ &= \log(|(\mathbf{1}_t + \delta I_t)|^c |(X_{\text{dense}}^T X_{\text{dense}})^{-1}|^t) \\ &= c \log(|(\mathbf{1}_t + \delta I_t)|) + t \log(|(X_{\text{dense}}^T X_{\text{dense}})^{-1}|) \\ &= c \log\left(\frac{1}{(t + \delta)^{\delta t - 1}}\right) + t \log(|(X_{\text{dense}}^T X_{\text{dense}})^{-1}|) \\ &= c(-\log(t + \delta) - (t - 1)\log(\delta)) + t \log(|(X_{\text{dense}}^T X_{\text{dense}})^{-1}|) \end{aligned} \quad (26)$$

286 Note that the remaining determinant in Equation 26 will not need to be calculated since it
 287 is independent of δ . Next, we show that $\hat{\beta}$ is independent of δ .

$$290 \quad \begin{aligned} \hat{\beta} &= (X^T H^{-1} X)^{-1} X^T H^{-1} \mathbf{y} \\ &= ((\mathbf{1}_t + \delta I_t) \otimes (X_{\text{dense}}^T X_{\text{dense}})^{-1}) X^T H^{-1} \mathbf{y} \\ &= ((\mathbf{1}_t + \delta I_t) \otimes (X_{\text{dense}}^T X_{\text{dense}})^{-1}) (I_t \otimes X_{\text{dense}}^T) ((\mathbf{1}_t + \delta I_t)^{-1} \otimes I_n) \mathbf{y} \\ &= ((\mathbf{1}_t + \delta I_t) \otimes (X_{\text{dense}}^T X_{\text{dense}})^{-1} X_{\text{dense}}^T) ((\mathbf{1}_t + \delta I_t)^{-1} \otimes I_n) \mathbf{y} \\ &= ((\mathbf{1}_t + \delta I_t)(\mathbf{1}_t + \delta I_t)^{-1} \otimes (X_{\text{dense}}^T X_{\text{dense}})^{-1} X_{\text{dense}}^T) \mathbf{y} \\ &= (I_t \otimes (X_{\text{dense}}^T X_{\text{dense}})^{-1} X_{\text{dense}}^T) \mathbf{y} \end{aligned} \quad (27)$$

293 This form of $\hat{\beta}$ shows that the optimal coefficients are equivalent to fitting separate
 294 ordinary least squares (OLS) models for each context. We compute $\hat{\beta}$ by concatenating
 295 these OLS estimates. Given this term, we can also compute the residuals of this model
 296 $\mathbf{s} = (\mathbf{y} - X\hat{\beta})$ and reformulate R as follows.

$$297 \quad \begin{aligned} R &= (\mathbf{y} - X\hat{\beta})^T H^{-1} (\mathbf{y} - X\hat{\beta}) \\ &= \mathbf{s}^T H^{-1} \mathbf{s} \\ &= \sum_{i=1}^{nt} \mathbf{s}_i \sum_{j=1}^{nt} \mathbf{s}_j H_{j,i}^{-1} \\ &= \frac{1}{\delta} \left(\sum_{i=1}^{nt} \mathbf{s}_i^2 \right) + \frac{1}{\delta(t + \delta)} \left(- \sum_{i=1}^n \left(\sum_{j \in \text{ind}(i)} \mathbf{s}_j \right)^2 \right) \end{aligned} \quad (28)$$

23:12 Efficient LMM for multiple context meta-analysis

300 The term $\sum \mathbf{s}_{\text{ind}(i)}$ denotes the sum of residuals for an individual across all contexts. Let
 301 $u = \sum_{i=1}^{nt} \mathbf{s}_i^2$ and $v = -\sum_{i=1}^n (\sum \mathbf{s}_{\text{ind}(i)})^2$.

$$302 \quad R = \frac{1}{\delta} u + \frac{1}{\delta(t + \delta)} v \quad (29)$$

303 Now we can reformulate the log-likelihoods, omitting terms that do not depend on δ .

$$304 \quad l_F(\delta) = -nt \log(R) - \log(|H|) \\ = -nt \log\left(\frac{1}{\delta}u + \frac{1}{\delta(t + \delta)}v\right) - (nt - n) \log(\delta) - n \log(t + \delta) \\ = -nt \log\left(u + \frac{1}{t + \delta}v\right) + n \log\left(\frac{\delta}{t + \delta}\right) \quad (30)$$

$$307 \quad l_R(\delta) = (tc - nt) \log(R) - \log(|H|) - \log(|(X^T H^{-1} X)^{-1}|) \\ = (tc - nt) \log\left(u + \frac{1}{t + \delta}v\right) + (c - n) \log\left(\frac{t + \delta}{\delta}\right) \quad (31)$$

310 Both functions are differentiable with respect to δ . Moreover, both derivatives have the
 311 same root

$$312 \quad \hat{\delta} = \frac{-tu - v}{u + v} \quad (32)$$

313 The scalar values u and v can be calculated by performing a separate OLS regression for
 314 each context, which can be completed in $O(t(nc^2 + c^3))$ time for a naive OLS implementation.
 315 Compared to the methods described above, this approach requires no iterative optimization
 316 and the estimate is optimal. Our implementation has a time complexity of $O(c^3 + nc^2 + tcn)$.

317 4.4 Resource requirement simulation comparison

318 We installed EMMA v1.1.2 and manually built GEMMA from its GitHub source (genetics-
 319 statistics/GEMMA.git, commit 9c5dfbc). We edited the source code of GEMMA to prevent
 320 the automatic addition of intercept term in the design matrix (commented out lines 1946 to
 321 1954 of src/param.cpp).

322 Data were simulated using the mcLMM package. Sample sizes of 100, 200, 300, 400, and
 323 500 were simulated with 50 contexts. Context sizes of 4, 8, 16, 32, and 64 were simulated
 324 with 500 samples. Data were simulated with $\sigma_e^2 = 0.2$ and $\sigma_g^2 = 0.4$ and a sampling rate of
 325 0.5. Memory usage of each method was measured using the peakRAM R package (v 1.0.2).

326 4.5 False positive rate simulation

327 We simulated gene expression levels in multiple tissues for individuals where there were
 328 no eQTLs. In other words, gene expression levels were not affected by any SNPs. We
 329 considered 10,000 genes and 100 SNPs resulting in one million gene-SNP pairs. We simulated
 330 1,000 individuals. We also examined false positive rates with 500 and 800 individuals. We
 331 generated 49 such datasets where the number of tissues varied from 2 to 50. To simulate
 332 the genotypes for each subject, we randomly generated two haplotypes (vectors consisting

333 of 0 and 1) assuming a minor allele frequency (MAF) of 30%. To simulate gene expression
 334 levels from multiple tissues among the same individuals, we sampled gene expression from
 335 the following multivariate normal distribution:

336 $\mathbf{y} \sim N(0, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I})$ (33)

337 where \mathbf{y} is an $N \times T$ vector representing the gene expression levels of N individuals in T
 338 tissues and \mathbf{K} is an $NT \times NT$ matrix corresponding the correlation between the subjects
 339 across the tissues. $K_{i,j} = 1$ when i and j are from two tissues of the same individuals,
 340 $K_{i,j} = 0$ otherwise. Here, we let $\sigma_g = \sigma_e = 0.5$. We used a custom R function (included with
 341 the mcLMM package) to simulate data from this distribution, which is based on sampling
 342 from a smaller covariance matrix for each block of measurements from an individual.

343 After generating the simulation datasets, we first ran mcLMM to obtain the estimated
 344 effect sizes and their standard errors, as well as the correlation matrices. The results from
 345 mcLMM were used as the input of METASOFT for meta-analysis to evaluate the significance.
 346 False positive rate was calculated as the proportion of gene-SNP pairs with p-values smaller
 347 than the significance level ($\alpha = 0.05$).

348 4.6 True positive simulations

349 We developed the true positive simulation framework based on a previous study describing
 350 mash [19]. We simulated effects for 20,000 gene-SNP pairs in 44 tissues, 400 of which have
 351 non-null effects (true positives) and 19,600 of which have null effects. Let β_{jr} denote the
 352 effects of the gene-SNP pair j in context/tissue r and β_j is a vector of effects across various
 353 tissues, including null effects and non-null effects. We simulated the gene expression levels
 354 for 1,000 individuals as:

355 $\mathbf{y} = \beta_{jr}^T \mathbf{X} + \mathbf{e}$ (34)

356 where \mathbf{X} denotes the genotypes of the individuals that were simulated as described in the
 357 false positive rate simulation. $\mathbf{e} \sim N(0, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I})$, which is similar to the simulation in the
 358 false positive rate simulation. For β_j , we defined two types of non-null effects and simulated
 359 them in different ways:

- 360 ■ Shared, structured effects: non-null effects are shared in all tissues and the sharing is
 361 structured. The non-null effects are similar in effect sizes and directions (up-regulation or
 362 down-regulation) across all tissues, and this similarity would be stronger among some
 363 subsets of tissues. For 19,600 null effects, we set $\beta_j = 0$. For 400 non-null effects, we
 364 assumed that each β_j independently followed a multivariate normal distribution with
 365 mean 0 and variance ωU_k , where k is an index number randomly sample from $1, \dots, 8$.
 366 $\omega = |\omega'|, \omega' \sim N(0, 1)$ represents a scaling factor to help capture the full range of effects.
 367 U_k are 44×44 data-driven covariance matrices learned from the GTEx dataset, which
 368 are provided in [19].
- 369 ■ Shared, unstructured effects: non-null effects are shared in all tissues but the sharing
 370 is unstructured or independent across different tissues. For 19,600 null effects, we set
 371 $\beta_j = 0$. For 400 non-null effects, we sampled β_j from a multivariate normal distribution
 372 with mean of 0 and variance of $0.01I$, where I is a 44×44 identity matrix.

373 After simulating the gene expression levels \mathbf{y} , we first ran mcLMM on the simulated
 374 datasets to acquire the estimated effect sizes and their standard errors, as well as the

375 correlation matrices. Then we apply METASOFT for meta-analysis with mcLMM outputs
 376 to evaluate the significance. For mash, we first performed simple linear regression to get
 377 the estimates of the effects and their standard errors in each tissue separately. Later, these
 378 estimates and standard errors were used as the inputs for mash, which returned the measure
 379 of significance for each effect, the local false sign rate (lfsr). Finally, we employed the “pROC”
 380 R package [13] to calculate the receiver operating characteristic (ROC) curve and area under
 381 the ROC curve with the significance measures (p-values for mcLMM and METASOFT, lfsr
 382 for mash) and the correct labels of null effects and non-null effects.

383 4.7 Analysis of the GTEx dataset

384 The Genotype-Tissue Expression (GTEx) v8 dataset [5] was used in this study. We down-
 385 loaded the gene expression data, the summary statistics of single-tissue cis-eQTL data, using
 386 a 1 MB window around each gene, and the covariates in the eQTL analysis from GTEx portal
 387 (<https://gtexportal.org/home/datasets>). The subject-level genotypes data was acquired from
 388 dbGaP accession number phs000424.v8.p2. The GTEx v8 dataset includes 49 tissues from
 389 838 donors. And we selected 15,627 genes that express in all 49 tissues. We only included
 390 SNPs with minor allele frequency (MAF) larger than 1% and missing rate lower than 5%.
 391 We applied mash and mcLMM plus METASOFT to the GTEx v8 dataset in our analysis.

392 As mash needed to learn correlation structure among non-significant tests and data-driven
 393 covariance matrices before fitting its model. We prepared its input by selecting the top SNP
 394 with the smallest p-value and 49 random SNPs (or all other SNPs if there are fewer than 49
 395 SNPs left in a gene) in every gene from the eQTL analysis in the GTEx v8 dataset. There
 396 were 560,475 gene-SNP pairs in total. mash used the estimated effect sizes and standard
 397 errors of these gene-SNP pairs to learn the correlation structure of different conditions/tissues
 398 and later the canonical covariances. And we used the top SNPs to set up the data-driven
 399 covariances. Then we fitted mash to the random set of gene-SNP pairs with the canonical and
 400 data-driven covariances. With the fitted mash mode, we computed the posterior summaries
 401 including local false sign rate (lfsr) [16] for the selected gene-SNP pairs to estimate the
 402 significance. We defined significant gene-SNP pairs as those with lfsr < 0.05 in any tissues.

403 We applied mcLMM to the same set of gene-SNP pairs. We regressed out unwanted
 404 confounding factors in gene expression levels for each tissue with a linear model using
 405 covariates provided by GTEx. Covariates of each sample included top 5 genotyping principal
 406 components, PEER factors [15] (15 factors for tissues with fewer than 150 samples, 30 factors
 407 for those with 150-250 samples, 45 factors for those with 250-350 samples, and 60 factors for
 408 those with more than 350 samples), sequencing platform, and sex. Then we ran mcLMM with
 409 the SNP genotypes and processed gene expression levels of all 838 individuals across 49 GTEx
 410 tissues for each gene-SNP pair. Missing values in gene expression were allowed. The effect
 411 sizes, standard errors, and correlation matrices estimated by mcLMM were meta-analyzed
 412 with METASOFT to evaluate the significance. A gene-SNP pair was significant if its p-value
 413 was smaller than 0.05. We considered both FE and RE2 models of METASOFT in the
 414 calculation of p-values.

415 4.8 Analysis of the UK Biobank dataset

416 This work was conducted using the UK Biobank Resource under application 33127. Samples
 417 were filtered for Caucasian individuals (Data-Field 22006)). Hard imputed genotype data
 418 from the UK Biobank were LD pruned using a window size of 50, step size of 1, and correlation
 419 threshold of 0.2. SNPs were further filtered for minor allele frequency of at least 0.01 and

420 a Hardy-Weinberg equilibrium p-value greater than 1e-7 using Plink 2 [4]. Samples were
421 filtered for unrelated individuals with KING using a cutoff value of 0.125 [10]. Genotype data
422 were split by chromosome and converted to bigsnpr format (v 1.4.4) for memory efficiency
423 [11].

424 The following data fields were retrieved: age at recruitment (Data-Field 31), sex (Data-
425 Field 21022), BMI (Data-Field 23104), body fat percentage (Data-Field 23099), 10 genetic
426 principal components (Data-Field 22009), HDL Cholesterol (Data-Field 30760), LDL Direct
427 (Data-Field 30780), Apolipoprotein A (Data-Field 30630), Apolipoprotein B (Data-Field
428 30640), and Triglycerides (Data-Field 30870). Continuous phenotypes were visually inspected
429 and triglycerides were log-transformed due to skewness. Data were filtered for complete
430 observations. All fields were scaled to unit variance and centered at 0.

431 HDL cholesterol, LDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglycerides
432 were combined as response variables in the LMM and age, sex, BMI, body fat percentage,
433 and the top 10 genetic principal components were used as additional covariates in the model.
434 Each SNP was marginally fit with mcLMM. The coefficients output by this model for each
435 phenotype were meta-analyzed to calculate FE p-values using METASOFT as packaged with
436 Meta Tissue v 0.5. The top GWAS hits for five different chromosomes (one per chromosome)
437 were validated using the NHGRI-EBI GWAS catalog [2] and compared to studies for LDL
438 and HDL cholesterol (GCST008035 and GCST008037).

439 ————— **References** —————

- 440 1 François Aguet, Andrew A. Brown, Stephane E. Castel, Joe R. Davis, Yuan He, Brian Jo,
441 Pejman Mohammadi, YoSon Park, Princy Parsana, Ayellet V. Segrè, Benjamin J. Strober,
442 Zachary Zappala, Beryl B. Cummings, Ellen T. Gelfand, Kane Hadley, Katherine H. Huang,
443 Monkol Lek, Xiao Li, Jared L. Nedzel, Duyen Y. Nguyen, Michael S. Noble, Timothy J.
444 Sullivan, Taru Tukiainen, Daniel G. MacArthur, Gad Getz, Anjene Addington, Ping Guan,
445 Susan Koester, A. Roger Little, Nicole C. Lockhart, Helen M. Moore, Abhi Rao, Jeffery P.
446 Struewing, Simona Volpi, Lori E. Brigham, Richard Hasz, Marcus Hunter, Christopher Johns,
447 Mark Johnson, Gene Kopen, William F. Leinweber, John T. Lonsdale, Alisa McDonald,
448 Bernadette Mestichelli, Kevin Myer, Bryan Roe, Michael Salvatore, Saboor Shad, Jeffrey A.
449 Thomas, Gary Walters, Michael Washington, Joseph Wheeler, Jason Bridge, Barbara A. Foster,
450 Bryan M. Gillard, Ellen Karasik, Rachna Kumar, Mark Miklos, Michael T. Moser, Scott D.
451 Jewell, Robert G. Montroy, Daniel C. Rohrer, Dana Valley, Deborah C. Mash, David A. Davis,
452 Leslie Sabin, Mary E. Barcus, Philip A. Branton, Nathan S. Abell, Brunilda Balliu, Olivier
453 Delaneau, Laure Frésard, Eric R. Gamazon, Diego Garrido-Martín, Ariel D. H. Gewirtz, Genna
454 Gliner, Michael J. Gloudemans, Buhm Han, Amy Z. He, Farhad Hormozdiari, Xin Li, Boxiang
455 Liu, Eun Yong Kang, Ian C. McDowell, Halit Ongen, John J. Palowitch, Christine B. Peterson,
456 Gerald Quon, Stephan Ripke, Ashis Saha, Andrey A. Shabalina, Tyler C. Shimko, Jae Hoon
457 Sul, Nicole A. Teran, Emily K. Tsang, Hailei Zhang, Yi-Hui Zhou, Carlos D. Bustamante,
458 Nancy J. Cox, Roderic Guigó, Manolis Kellis, Mark I. McCarthy, Donald F. Conrad, Eleazar
459 Eskin, Gen Li, Andrew B. Nobel, Chiara Sabatti, Barbara E. Stranger, Xiaoquan Wen,
460 Fred A. Wright, Kristin G. Ardlie, Emmanouil T. Dermitzakis, Tuuli Lappalainen, Robert E.
461 Handsaker, Seva Kashin, Konrad J. Karczewski, Duyen T. Nguyen, Casandra A. Trowbridge,
462 Ruth Barshir, Omer Basha, Alexis Battle, Gireesh K. Bogu, Andrew Brown, Christopher D.
463 Brown, Lin S. Chen, Colby Chiang, Farhan N. Damani, Barbara E. Engelhardt, Pedro G.
464 Ferreira, Ariel D.H. Gewirtz, Roderic Guigo, Ira M. Hall, Cedric Howald, Hae Kyung Im, Eun
465 Yong Kang, Yungil Kim, Sarah Kim-Hellmuth, Serghei Mangul, Jean Monlong, Stephen B.
466 Montgomery, Manuel Muñoz-Aguirre, Anne W. Ndungu, Dan L. Nicolae, Meritxell Oliva,
467 Nikolaos Panousis, Panagiotis Papasaikas, Anthony J. Payne, Jie Quan, Ferran Reverter,
468 Michael Sammeth, Alexandra J. Scott, Reza Sodaei, Matthew Stephens, Sarah Urbut, Martijn

469 van de Bunt, Gao Wang, Hualin S. Xi, Esti Yeger-Lotem, Judith B. Zaugg, Joshua M.
 470 Akey, Daniel Bates, Joanne Chan, Melina Claussnitzer, Kathryn Demanelis, Morgan Diegel,
 471 Jennifer A. Doherty, Andrew P. Feinberg, Marian S. Fernando, Jessica Halow, Kasper D.
 472 Hansen, Eric Haugen, Peter F. Hickey, Lei Hou, Farzana Jasmine, Ruiqi Jian, Lihua Jiang,
 473 Audra Johnson, Rajinder Kaul, Muhammad G. Kibriya, Kristen Lee, Jin Billy Li, Qin Li,
 474 Jessica Lin, Shin Lin, Sandra Linder, Caroline Linke, Yaping Liu, Matthew T. Maurano, Benoit
 475 Molinie, Jemma Nelson, Fidencio J. Neri, Yongjin Park, Brandon L. Pierce, Nicola J. Rinaldi,
 476 Lindsay F. Rizzardi, Richard Sandstrom, Andrew Skol, Kevin S. Smith, Michael P. Snyder,
 477 John Stamatoyannopoulos, Hua Tang, Li Wang, Meng Wang, Nicholas Van Wittenberghe, Fan
 478 Wu, Rui Zhang, Concepcion R. Nierras, Latarsha J. Carithers, Jimmie B. Vaught, Sarah E.
 479 Gould, Nicole C. Lockart, Casey Martin, Anjene M. Addington, Susan E. Koester, GTEx
 480 Consortium, Lead analysts:, Data Analysis & Coordinating Center (LDACC): Laboratory,
 481 NIH program management:, Biospecimen collection:, Pathology:, eQTL manuscript working
 482 group:, Data Analysis & Coordinating Center (LDACC)-Analysis Working Group Laboratory,
 483 Statistical Methods groups-Analysis Working Group, Enhancing GTEx (eGTEx) groups,
 484 NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH, NIH/NIDA, and Biospecimen
 485 Collection Source Site-NDRI. Genetic effects on gene expression across human tissues. *Nature*,
 486 550(7675):204–213, 10 2017. doi:10.1038/nature24277.

487 2 Annalisa Buniello, Jacqueline A L MacArthur, Maria Cerezo, Laura W Harris, James Hayhurst,
 488 Cinzia Malangone, Aoife McMahon, Joannella Morales, Edward Mountjoy, Elliot Sollis, Daniel
 489 Suveges, Olga Vrousgou, Patricia L Whetzel, Ridwan Amode, Jose A Guillen, Harpreet S
 490 Riat, Stephen J Trevanion, Peggy Hall, Heather Junkins, Paul Flicek, Tony Burdett, Lucia A
 491 Hindorff, Fiona Cunningham, and Helen Parkinson. The NHGRI-EBI GWAS Catalog of
 492 published genome-wide association studies, targeted arrays and summary statistics 2019.
 493 *Nucleic Acids Research*, 47(D1):D1005–D1012, 11 2018. arXiv:<https://academic.oup.com/nar/article-pdf/47/D1/D1005/27437312/gky1120.pdf>, doi:10.1093/nar/gky1120.

494 3 Clare Bycroft, Colin Freeman, Desislava Petkova, Gavin Band, Lloyd T. Elliott, Kevin Sharp,
 495 Allan Motyer, Damjan Vukcevic, Olivier Delaneau, Jared O’Connell, Adrian Cortes, Samantha
 496 Welsh, Alan Young, Mark Effingham, Gil McVean, Stephen Leslie, Naomi Allen, Peter Donnelly,
 497 and Jonathan Marchini. The uk biobank resource with deep phenotyping and genomic data.
 498 *Nature*, 562(7726):203–209, 10 2018. doi:10.1038/s41586-018-0579-z.

499 4 Christopher C Chang, Carson C Chow, Laurent CAM Tellier, Shashaank Vattikuti,
 500 Shaun M Purcell, and James J Lee. Second-generation PLINK: rising to the chal-
 501 lenge of larger and richer datasets. *GigaScience*, 4(1), 02 2015. s13742-015-0047-8.
 502 arXiv:https://academic.oup.com/gigascience/article-pdf/4/1/s13742-015-0047-8/25512027/13742_2015_article_47.pdf, doi:10.1186/s13742-015-0047-8.

503 5 GTEx Consortium. The GTEx consortium atlas of genetic regulatory effects across human
 504 tissues. *Science*, 369(6509):1318–1330, September 2020.

505 6 Buhm Han and Eleazar Eskin. Random-effects model aimed at discovering associations in
 506 meta-analysis of genome-wide association studies. *The American Journal of Human Genetics*,
 507 88(5):586–598, 05 2011. doi:10.1016/j.ajhg.2011.04.014.

508 7 Jong Wha J Joo, Eun Yong Kang, Elin Org, Nick Furlotte, Brian Parks, Farhad Hor-
 509 mozdiari, Aldons J Lusis, and Eleazar Eskin. Efficient and Accurate Multiple-Phenotype
 510 Regression Method for High Dimensional Data Considering Population Structure. *Genetics*,
 511 204(4):1379–1390, 12 2016. arXiv:<https://academic.oup.com/genetics/article-pdf/204/4/1379/36292201/genetics1379.pdf>, doi:10.1534/genetics.116.189712.

512 8 Hyun Min Kang, Noah A. Zaitlen, Claire M. Wade, Andrew Kirby, David Heckerman, Mark J.
 513 Daly, and Eleazar Eskin. Efficient control of population structure in model organism association
 514 mapping. *Genetics*, 178(3):1709–1723, 2008. doi:10.1534/genetics.107.080101.

515 9 Christoph Lippert, Jennifer Listgarten, Ying Liu, Carl M. Kadie, Robert I. Davidson, and
 516 David Heckerman. Fast linear mixed models for genome-wide association studies. *Nature
 517 Methods*, 8(10):833–835, 10 2011. doi:10.1038/nmeth.1681.

521 10 Ani Manichaikul, Josyf C. Mychaleckyj, Stephen S. Rich, Kathy Daly, Michèle Sale, and
522 Wei-Min Chen. Robust relationship inference in genome-wide association studies. *Bioinformatics*, 26(22):2867–2873, 10 2010. [arXiv:https://academic.oup.com/bioinformatics/article-pdf/26/22/2867/16896963/btq559.pdf](https://academic.oup.com/bioinformatics/article-pdf/26/22/2867/16896963/btq559.pdf), doi:10.1093/bioinformatics/btq559.

523 11 Florian Privé, Hugues Aschard, Andrey Ziyatdinov, and Michael G B Blum. Efficient analysis
524 of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. *Bioinformatics*, 34(16):2781–2787, 03 2018. [arXiv:https://academic.oup.com/bioinformatics/article-pdf/34/16/2781/25442043/bty185.pdf](https://academic.oup.com/bioinformatics/article-pdf/34/16/2781/25442043/bty185.pdf), doi:10.1093/bioinformatics/bty185.

525 12 Vardhman K. Rakyan, Thomas A. Down, David J. Balding, and Stephan Beck. Epigenome-
526 wide association studies for common human diseases. *Nature reviews. Genetics*, 12(8):529–541,
527 07 2011. 21747404[pmid]. doi:10.1038/nrg3000.

528 13 Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique Lisacek, Jean-
529 Charles Sanchez, and Markus Müller. pROC: an open-source package for R and s+ to analyze
530 and compare ROC curves. *BMC Bioinformatics*, 12:77, March 2011.

531 14 Jack Sherman and Winifred J. Morrison. Adjustment of an Inverse Matrix Corresponding to a
532 Change in One Element of a Given Matrix. *The Annals of Mathematical Statistics*, 21(1):124 –
533 127, 1950. doi:10.1214/aoms/1177729893.

534 15 Oliver Stegle, Leopold Parts, Matias Piipari, John Winn, and Richard Durbin. Using probabilistic
535 estimation of expression residuals (PEER) to obtain increased power and interpretability
536 of gene expression analyses. *Nat. Protoc.*, 7(3):500–507, February 2012.

537 16 Matthew Stephens. False discovery rates: a new deal. *Biostatistics*, 18(2):275–294, 2017.

538 17 Jae Hoon Sul, Buhm Han, Chun Ye, Ted Choi, and Eleazar Eskin. Effectively identifying
539 eqtls from multiple tissues by combining mixed model and meta-analytic approaches. *PLOS
540 Genetics*, 9(6):1–13, 06 2013. doi:10.1371/journal.pgen.1003491.

541 18 The All of Us Research Program Investigators. The “all of us” research program. *New England
542 Journal of Medicine*, 381(7):668–676, 2019. PMID: 31412182. [arXiv:https://doi.org/10.1056/NEJMsr1809937](https://doi.org/10.1056/NEJMsr1809937), doi:10.1056/NEJMsr1809937.

543 19 Sarah M. Urbut, Gao Wang, Peter Carbonetto, and Matthew Stephens. Flexible statistical
544 methods for estimating and testing effects in genomic studies with multiple conditions. *Nature
545 Genetics*, 51(1):187–195, 01 2019. doi:10.1038/s41588-018-0268-8.

546 20 Peter M. Visscher, Matthew A. Brown, Mark I. McCarthy, and Jian Yang. Five years of
547 gwas discovery. *American journal of human genetics*, 90(1):7–24, 01 2012. 22243964[pmid].
548 doi:10.1016/j.ajhg.2011.11.029.

549 21 S. J. Welham and R. Thompson. Likelihood ratio tests for fixed model terms using residual
550 maximum likelihood. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*,
551 59(3):701–714, 1997. doi:10.1111/1467-9868.00092.

552 22 Genevieve L. Wojcik, Mariaelisa Graff, Katherine K. Nishimura, Ran Tao, Jeffrey Haessler,
553 Christopher R. Gignoux, Heather M. Highland, Yesha M. Patel, Elena P. Sorokin, Christy L.
554 Avery, Gillian M. Belbin, Stephanie A. Bien, Iona Cheng, Sinead Cullina, Chani J. Hodonsky,
555 Yao Hu, Laura M. Huckins, Janina Jeff, Anne E. Justice, Jonathan M. Kocarnik, Unhee
556 Lim, Bridget M. Lin, Yingchang Lu, Sarah C. Nelson, Sung-Shim L. Park, Hannah Poisner,
557 Michael H. Preuss, Melissa A. Richard, Claudia Schurmann, Veronica W. Setiawan, Alexandra
558 Sockell, Karan Vahi, Marie Verbanck, Abhishek Vishnu, Ryan W. Walker, Kristin L. Young,
559 Niha Zubair, Victor Acuña-Alonso, Jose Luis Ambite, Kathleen C. Barnes, Eric Boerwinkle,
560 Erwin P. Bottinger, Carlos D. Bustamante, Christian Caberto, Samuel Canizales-Quinteros,
561 Matthew P. Conomos, Ewa Deelman, Ron Do, Kimberly Doheny, Lindsay Fernández-Rhodes,
562 Myriam Fornage, Benyam Hailu, Gerardo Heiss, Brenna M. Henn, Lucia A. Hindorff, Rebecca D.
563 Jackson, Cecelia A. Laurie, Cathy C. Laurie, Yuqing Li, Dan-Yu Lin, Andres Moreno-Estrada,
564 Girish Nadkarni, Paul J. Norman, Loreall C. Pooler, Alexander P. Reiner, Jane Romm,
565 Chiara Sabatti, Karla Sandoval, Xin Sheng, Eli A. Stahl, Daniel O. Stram, Timothy A.
566 Thornton, Christina L. Wassel, Lynne R. Wilkens, Cheryl A. Winkler, Sachi Yoneyama,
567 Steven Buyske, Christopher A. Haiman, Charles Kooperberg, Loic Le Marchand, Ruth J. F.
568

569 23

570 24

571 25

572 26

23:18 Efficient LMM for multiple context meta-analysis

573 Loos, Tara C. Matise, Kari E. North, Ulrike Peters, Eimear E. Kenny, and Christopher S.
574 Carlson. Genetic analyses of diverse populations improves discovery for complex traits. *Nature*,
575 570(7762):514–518, 06 2019. doi:10.1038/s41586-019-1310-4.
576 23 Xiang Zhou and Matthew Stephens. Genome-wide efficient mixed-model analysis for association
577 studies. *Nature Genetics*, 44(7):821–4, 2012. doi:10.1038/ng.2310.