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Abstract13

Linear mixed models can be applied in the meta-analyses of responses from individuals across14

multiple contexts, increasing power to detect associations while accounting for confounding effects15

arising from within-individual variation. However, traditional approaches to fitting these models16

are computationally intractable. Here, we describe an efficient and exact method for fitting a17

multi-context linear mixed model. Whereas existing methods are cubic or quadratic in their time18

complexity with respect to the number of individuals, our approach (mcLMM) is linear. These19

improvements allow for large-scale analyses requiring computing time and memory magnitudes20

of order less than existing methods. As examples, we apply our approach to identify expression21

quantitative trait loci from large-scale gene expression data measured across multiple tissues as well22

as joint analyses of multiple phenotypes in genome-wide association studies at biobank scale.23
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1 Introduction35

Over the last decade, the scale of genomic datasets has steadily increased. These datasets36

have grown to the size of hundreds of thousands of individuals [3] with millions soon to come37

[18]. Similarly, datasets for transcriptomics and epigenomics are growing to thousands of38
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samples [1, 5, 12]. These studies provide valuable insight into the relationship between our39

genome and complex phenotypes [20].40

Identifying these associations requires statistical models that can account for biases41

in study design that can negatively influence results through false positives or decreased42

power. Linear mixed models (LMMs) have been a popular choice for controlling these43

biases in genomic studies, utilizing variance components to account for issues such as44

population stratification [8]. These models can also be used to analyze studies with repeated45

measurements from individuals, such as replicates or measurements across different contexts.46

Meta-Tissue [17] is a method that applies this model in the context of identifying expression47

quantitative trait loci (eQTLs) across multiple tissues. In this framework, gene expression48

is measured in several tissues from the same individuals and the LMM is utilized to test49

the association between these values and genotypes. A meta-analytic approach is used to50

combined effects across multiple tissues to increase the power of detecting eQTLs. This51

approach has also been applied to increase power in genome-wide association studies (GWAS)52

by testing the association between genotypes and multiple related phenotypes [7].53

However, these approaches are computationally intensive. Existing approaches for fitting54

these models are cubic in time complexity with respect to the number of samples across all55

contexts [8, 23]. Here, we present an ultra-fast LMM framework specifically for multiple-56

context studies. Our method, mcLMM, is linear in complexity with respect to the number of57

individuals and allows for statistical tests in a manner of hours rather than days or years with58

existing approaches. To illustrate the computational efficiency of mcLMM, we compare the59

runtime and memory usage of our method with EMMA and GEMMA [8, 23], two popular60

approaches for fitting these models. We further apply mcLMM to identify a large number61

of eQTLs in the Genotype-Tissue Expression (GTEx) dataset [5] and compare our results62

from METASOFT [6], which performs the meta-analysis of the mcLMM output, to a recent63

meta-analytic approach known as mash [19]. Finally, to demonstrate the practicality of64

mcLMM on modern datasets, we perform a multiple-phenotype GWAS combining over a65

million observations sampled from hundreds of thousands of individuals in the UK Biobank66

[3] within hours.67

2 Results68

2.1 Multi-context linear mixed models69

We implement the statistical model described in Meta-Tissue [17], where we model the70

multi-context data as follows:71

y = Xβ + u + e (1)72

where u ∼ N(0, σ2
gK) and e ∼ N(0, σ2

eI). For n individuals and t contexts, y is a vector of nt73

responses, K is an nt by nt binary matrix where a value of 1 indicates that the observations74

were sampled from the same individual. Compared to a standard regression model, the75

variance component u accounts for within-individual variation that may occur with repeated76

sampling. The design matrix X fits coefficients β for each feature within each context77

independently. These coefficients, which describe the effect of the feature on the response78

within each context, can be used in a meta-analytic framework to combine the results. In79

our pipeline, we utilize the random effects model (RE2) from METASOFT, which assumes80

that effect sizes may be different across contexts and was shown to outperform existing81

meta-analysis methods [6].82
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Fitting this LMM requires estimation of the parameters σ2
g and σ2

e , which can be estimated83

with traditional likelihood or restricted-likelihood approaches or through various optimized84

methods that have been developed, such as EMMA and GEMMA [8, 23]. These approaches85

require an eigendeomposition of the matrix K with is traditionally considered to be an86

O((nt)3) operation. mcLMM utilizes the block structure of the matrices in this model to87

perform matrix operations within contexts and avoids any eigendecomposition operations.88

This approach provides massive speedups with runtime complexities that are linear with89

respect to sample size n rather than cubic. As a note, mcLMM is not an approximation and90

fits identical models to these existing approaches.91

2.2 mcLMM is computationally efficient92

To demonstrate the efficiency of mcLMM compared to existing approaches, we applied93

our method to simulated data of varying sample sizes and number of contexts. For these94

simulations, we simulated a sampling rate of 0.5, which indicates that only half of all possible95

individual-context pairs of observations are expected to be sampled.96

We first applied our method to simulations with a fixed number of 50 contexts and varied97

the sample size from 100 to 500. From these experiments, we observed that mcLMM requires98

computational time orders of magnitude less than EMMA and GEMMA. Similarly, when we99

fixed the number of samples at 500 and varied the context sizes from 4 to 64, we observed100

dramatically reduced runtimes for mcLMM.101

In these experiments, mcLMM also significantly reduces the memory footprint compared102

to EMMA and GEMMA, since we avoid creating any nt by nt matrices. In these simulations,103

existing approaches quickly grow memory requirements, with usages that grow to dozens of104

gigabytes for modestly sized datasets in the thousands of samples. mcLMM allows large-scale105

studies to be performed on relatively little computational resources (Figure 1).106

In cases where there is no missing data, mcLMM allows for further speedups. We ran107

similar simulations to compare mcLMM with no missing data (optimal model) and mcLMM108

with missing data (iterative model). We observed a dramatic speedup, with sample sizes of109

500,000 individuals across 10 contexts completed in under 10 seconds for the optimal model110

compared to around 15 minutes for the iterative model.111

2.3 mcLMM enables powerful meta analyses to detect eQTLs112

We utilized mcLMM to reduce the computational resource requirements of the Meta-Tissue113

pipeline, which fits a multiple-context LMM and combines the resulting effect sizes using114

METASOFT [17]. While powerful, the existing approach utilizes EMMA to fit the LMM.115

For a recent release from the GTEx consortium [5], each pair of genes and single nucleotide116

polymorphisms (SNPs) required over two hours to run. Across hundreds of thousands of117

gene-SNP pairs, this method would require years of computational runtime to complete.118

Utilizing mcLMM, we were able to complete this analysis in 3 days parallelized over each119

chromosome.120

We compared our approach to a method known as mash [19]. This approach utilizes121

effect sizes estimated within each context independently and employs a Bayesian approach122

to combine their results for meta-analysis. In order to estimate the power of these methods,123

we performed simulations as described in the methods. In null simulations, we observed124

well-controlled false positive rates at α = 0.05 for mcLMM coupled with METASOFT. In our125

simulation with true positives, we observed an increased area under the receiver operating126

CVIT 2016
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4,502 23,025 56,545202,793 38,754

mash mcLMM+METASOFT (RE2)

mcLMM+METASOFT (FE)

Figure 3 Venn diagram of significant eQTLs identified by meta-analysis methods in the GTEx
dataset. We compared mcLMM using two different models in METASOFT (RE2 and FE) to mash.
Note that areas are not proportional to the number of eQTLs in each region. mcLMM+METASOFT
(RE2) identified a total of 321,117 significant associations that contained 225,818 eQTLs identified
by mash.

characteristic (AUROC) for mcLMM coupled with the random effects (RE2) METASOFT127

model compared to mash (Figure 2).128

Next, we compared the number of significant associations identified in the GTEx dataset.129

The mash approach utilized gene-SNP effect sizes estimated by the GTEx consortium within130

each tissue independently. Concordant with our simulations, we observed that the Meta-131

Tissue approach, utilizing mcLMM for vast speedup, identified more significant eQTLs than132

mash (Figure 3). These associations allow researchers to better understand the link between133

genetic variation and complex phenotypes through possible mediation of gene expression.134

2.4 mcLMM scales to millions of samples across related phenotypes135

As a practical application of the efficiency of mcLMM, we performed a multiple phenotype136

GWAS in the UK Biobank. A multiple phenotype GWAS associates SNPs with several137

related phenotypes in order to increase the effective sample size for greater power, under the138

assumption that the phenotypes are significantly correlated. For our analysis, we combined139

HDL and LDL cholesterol, Apolipoprotein A and B, and triglyceride levels across 323,266140

unrelated caucasian individuals in the UK Biobank. In total, 1,616,330 observations of these141

related phenotypes were fit as responses in the LMM.142

The mcLMM approach completed this analysis over 211,642 SNPs with an additional 14143

CVIT 2016
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Figure 4 Multiple phenotype GWAS results from UK Biobank. Five phenotypes (LDL cholesterol,
HDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglyceride levels) were used as responses
in the mcLMM framework. The model was fit with 1,616,330 observations from 323,266 unrelated
Caucasian individuals. In total, 211,642 SNPs were tested with an additional 14 covariates. Each
test required around 2 seconds to run on a 32GB machine and was parallelized over each chromosome.
The -log10 of the p-values are plot on the y-axis and genomic positions on the x-axis. The horizontal
dashed line indicates the genome wide significance level at p = 0.05/1e6. The top hit for 5 different
chromosomes is annotated with the gene containing the SNP. These genes have been previously
identified as associated with a subset of these phenotypes.

covariates, parallelized over each chromosome, within a day. Each chromosome was analyzed144

on a single core machine with 32 GB of memory, with each test taking around 2 seconds145

to complete. We identified several significant loci, a subset of which replicate previous146

findings for specific phenotypes included in the model, such as HDL cholesterol [22] (Figure147

4). Existing approaches, namely EMMA and GEMMA, require orders of magnitude more148

memory to begin this analyses and could not be run on the available computational resources.149

3 Discussion150

We presented mcLMM, an efficient method for fitting LMMs used for multiple context151

association studies. Our method provides exact results and scales linearly in time and152

memory with respect to sample size, while existing methods are cubic. This efficiency allows153

mcLMM to process hundreds of thousands of samples over several contexts within a day on154

minimal computational resources, as we showed in simulation and in the UK Biobank. The155

association parameters learned by mcLMM can further be utilized with the METASOFT156

framework to provide powerful meta-analysis of the associations, as we showed in the GTEx157

dataset.158

Previous work has observed the potential speedup to linear complexity for LMMs when the159

matrix K is approximated with a low rank representation [9]. Here, we optimize the method160
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specifically for the low rank matrix that arises naturally in multiple context association161

studies, allowing our method to provide exact results and scale to hundreds of thousands of162

samples with minimal computational resources.163

4 Methods164

4.1 Linear Mixed Model165

For multi-context experiments with n individuals, t contexts, and c covariates, we fit the166

following linear mixed model167

y = Xβ + u + e (2)168

where u ∼ N(0, σ2
gK), e ∼ N(0, σ2

eI), y ∈ Rnt is a vectorized representation of the responses,169

X ∈ Rnt×tc is the matrix of covariates, β ∈ Rtc is the vector of estimated coefficients,170

K ∈ Rnt×nt is a binary matrix where Ki,j = 1 indicates that sample i and sample j in171

Y come from the same individual, and I ∈ Rnt×nt is an identity matrix. X is structured172

such that both an intercept and the covariate effects are fit within each context. For sake173

of simplicity, dimensions of nt assume that there is no missing data; however, this is not a174

requirement for the model.175

The full and restricted log-likelihood functions for this model are176

lF (y; β, σg, δ) = 1
2

[
−N log (2πσ2

g) − log(|H|) − 1
σ2

g

(y − Xβ)T H−1(y − Xβ)
]

(3)177

178

lR(y; β, σg, δ) = lF (y; β, σg, σe) + 1
2
[
tc log(2πσ2

g) + log (|XT X|) − log (|XT H−1X|)
]

(4)179

where N is the total number of measurements made across the individuals and contexts,180

δ = σ2
e

σ2
g
, and H = K + δI [21]. These likelihood functions are maximized with the generalized181

least squares estimator β̂ = (XT H−1X)−1XT H−1y and σ̂2
g = R

N in the full log-likelihood182

and σ̂2
g = R

N−tc in the restricted log-likelihood, where R = (y − Xβ̂)T H−1(y − Xβ̂). Our183

goal is to maximize these likelihood functions to estimate the optimal δ̂.184

4.2 Likelihood refactoring in the general case185

The EMMA algorithm optimizes these likelihoods for δ by refactoring them in terms of con-186

stants calculated from eigendecompositions of H and SHS, where S = I − X(XT X)−1XT ,187

that allow linear complexity optimization iterations with respect to the number of indi-188

viduals [8]. The GEMMA algorithm further increases efficiency by replacing the SHS189

eigendecomposition with a matrix-vector multiplication [23]. Both approaches require the190

eigendecomposition of at least 1 N by N matrix which is typically cubic in complexity. Here,191

we show that our specific definition of K as a binary indicator matrix allows us to refactor192

these likelihood functions without any eigendecomposition steps. It should be noted that193

EMMA and GEMMA can fit this model for any positive semidefinite K, while mcLMM is194

restricted to the definition described above.195

First, note that H = K + δI is a block diagonal matrix (as exemplified in Equation 5).196

Specifically, each block corresponds to an individual i with ti contexts measured and is equal197

CVIT 2016
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to [1ti +δIti ] ∈ Rti×ti , where 1ti is a ti by ti matrix composed entirely of 1. These properties198

of H make its eigendecomposition and inverse directly known.199

The eigenvalues of a block diagonal matrix are equal to the union of the eigenvalues of200

each block. Moreover, the eigenvalues of [1ti + δIti ] are ti + δ with multiplicity 1 and δ with201

multiplicity ti − 1. Therefore, H has eigenvalues δ with multiplicity N − n and ti + δ for202

each ti. This provides our first refactoring203

log (|H |) = (N − n) log (δ) +
n∑

i=1
log (ti + δ) (5)204

The inverse of a block diagonal matrix can also be computed by inverting each block205

individually. Moreover, using the Sherman-Morrison formula [14], the inverse of [1ti
+ δIti

]206

is known207

(1ti + δIti)−1 = − 1
t + δ

1ti + 1
δ

Iti (6)208

Given each entry of H−1, we can show algebraically that209

XT H−1X = 1
δ

(E − D) (7)210

211

Ei,j =


∑

ind∈f(i)
xind,g(i)xind,g(j) if f(i) = f(j)

0 if f(i) ̸= f(j)
(8)212

213

Di,j =
∑

g∈groups

1
tg + δ

∑
ind∈f(i),f(j),g

xind,g(i)xind,g(j) (9)214

where f(i) = i%t (modulo operator) provides the context of a given 0-indexed column of215

X, g(i) = i//t (integer division) provides the covariate of a given index. A group g defines216

the set of individuals that share the same number of measured contexts tg. The expression217

“ind ∈ f(i), f(j), g" indicates the set of all individuals that have tg measured contexts that218

include context i and j.219

Note that with all values independent of δ pre-computed, specifically the sum of covariate220

interactions within the sets of individuals indicated above, E is constant with respect to221

δ and each entry of the symmetric matrix D can be calculated in linear time with respect222

to the number of groups, which is less than or equal to the number of contexts t. For a223

given δ, we can compute XT H−1X in O(t(tc)2) time complexity. Both the restricted and224

full log-likelihoods require the calculation of (XT H−1X)−1. The restricted log-likelihood225

requires the additional calculation of log (|XT H−1X|). To calculate both of these terms, we226

perform a Cholesky decomposition of XT H−1X = LL∗, where ∗ indicates the conjugate227

transpose. Given this decomposition, we can compute228

log (|XT H−1X|) =
tc∑

i=1
L2

i,i (10)229
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230

(XT H−1X)−1 = (L∗)−1L−1 (11)231

These operations can be done in O((tc)3) time complexity.232

Let P (X) denote a projection matrix and M(X) = (I − P (X)). Note that both P (X)233

and M(X) are idempotent. The term remaining term in the likelihood functions, R, can be234

reformulated as follows235

y − Xβ̂ = y − X(XT H−1X)−1XT H−1y
= (I − X(XT H−1X)−1XT H−1)y
= (I − P (X))y

236

= M(X)y (12)237
238

M(X)T H−1 = (I − X(XT H−1X)−1XT H−1)T H−1

= (I − H−1X(XT H−1X)−1XT )H−1

= H−1 − H−1X(XT H−1X)−1XT H−1

= H−1(I − X(XT H−1X)−1XT H−1)

239

= H−1M(X) (13)240
241

R = (y − Xβ̂)T H−1(y − Xβ̂)
= yT M(X)T H−1M(X)y
= yT H−1M(X)M(X)y
= yT H−1M(X)y
= (yT H−1y) − (yT H−1X(XT H−1X)−1XT H−1y)
= a − bT (XT H−1X)−1b

242

= a − bT (L∗)−1L−1b (14)243
244

The scalar a and vector b are a function of δ and can be algebraically formulated as245

a = 1
δ

( N∑
i=1

y2
i

)
−

 ∑
g∈groups

1
tg + δ

∑
ind∈g

(
∑

yind)2

 (15)246

bi = 1
δ

 ∑
ind∈context(i)

xind,g(i)yind,f(i)

−

 ∑
g∈groups

1
tg + δ

∑
ind∈f(i),g

xind,g(i)(
∑

yind)


(16)247

where
∑

yind indicates the sum of responses across all contexts for an individual. With248

values independent of δ pre-calculated, a and b can be calculated in linear time with respect249

to the number of groups.250

We can reformulate the entire likelihood functions as follows251

CVIT 2016
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lF (y; β, σg, δ) = 1
2

[
−N log (2πσ2

g) − log(|H|) − 1
σ2

g

(y − Xβ)T H−1(y − Xβ)
]

= 1
2

[
−N log (2π

R

N
) − log(|H|) − N

]
= 1

2

[
−N log (2π

R

N
) −

(
(N − n) log (δ) +

n∑
i=1

log (ti + δ)
)

− N

]
252

≈ −N log (a − bT (L∗)−1L−1b) −

(
(N − n) log (δ) +

n∑
i=1

log (ti + δ)
)

(17)

253

254

lR(y; β, σg, δ) = lF (y; β, σg, σe) + 1
2
[
tc log(2πσ2

g) + log (|XT X|) − log (|XT H−1X|)
]

≈ (tc − N) log (a − bT (L∗)−1L−1b)

255

−

(
(N − n) log (δ) +

n∑
i=1

log (ti + δ)
)

−
tc∑

i=1
L2

i,i (18)256

257

Note that Equations 17 and 18 remove terms that are independent of δ since they are258

not required for finding its optimal value, indicated by the ≈ symbol. These likelihoods are259

maximized using the optimize function in R. For the full likelihood260

σ̂2
g = R

δ̂N
(19)261

For the restricted likelihood262

σ̂2
g = R

δ̂(N − tc)
(20)263

For both likelihoods264

σ̂2
e = δ̂σ̂2

g (21)265

4.3 Likelihood refactoring with no missing data266

When there is no missing data, the likelihood functions can be further simplified. Note that267

in this case, N = nt and all ti = t. Hence,268

log (|H |) = (N − n) log (δ) +
n∑

i=1
log (ti + δ)269

= (nt − n)log(δ) + n log (t + δ) (22)270
271

If the input terms y, X, and K are permuted resulting in samples being sorted in order272

of context, and the covariates in X are sorted in order of context, we can decompose H and273

X into274

H = (1t + δIt) ⊗ In (23)275
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276

X = It ⊗ Xdense (24)277

where ⊗ indicates the Kronecker product and Xdense ∈ Rn×c is a typical representation278

of the covariates for each individual without multiple contexts (i.e. samples as rows and279

covariates as columns). Utilizing the properties of Kronecker products, we can perform the280

following reformulation281

(XT H−1X)−1 = ((It ⊗ XT
dense)((1t + δIt) ⊗ In)−1(It ⊗ Xdense))−1

= ((1t + δIt)−1 ⊗ XT
denseXdense)−1

282

= (1t + δIt) ⊗ (XT
denseXdense)−1 (25)283

284

log
(
|(XT H−1X)−1|

)
= log (|(1t + δIt) ⊗ (XT

denseXdense)−1|)
= log (|(1t + δIt)|c|(XT

denseXdense)−1|t)
= c log (|(1t + δIt)|) + t log (|(XT

denseXdense)−1|)

= c log
(

1
(t + δ)δt−1

)
+ t log (|(XT

denseXdense)−1|)

285

= c (− log (t + δ) − (t − 1) log (δ)) + t log (|(XT
denseXdense)−1|)

(26)
286

287

Note that the remaining determinant in Equation 26 will not need to be calculated since it288

is independent of δ. Next, we show that β̂ is independent of δ.289

β̂ = (XT H−1X)−1XT H−1y
=
(
(1t + δIt) ⊗ (XT

denseXdense)−1)XT H−1y
=
(
(1t + δIt) ⊗ (XT

denseXdense)−1) (It ⊗ XT
dense)((1t + δIt)−1 ⊗ In)y

=
(
(1t + δIt) ⊗ (XT

denseXdense)−1XT
dense

)
((1t + δIt)−1 ⊗ In)y

=
(
(1t + δIt)(1t + δIt)−1 ⊗ (XT

denseXdense)−1XT
dense

)
y

290

=
(
It ⊗ (XT

denseXdense)−1XT
dense

)
y (27)291

292

This form of β̂ shows that the optimal coefficients are equivalent to fitting separate293

ordinary least squares (OLS) models for each context. We compute β̂ by concatenating294

these OLS estimates. Given this term, we can also compute the residuals of this model295

s = (y − Xβ̂) and reformulate R as follows.296

R = (y − Xβ̂)T H−1(y − Xβ̂)
= sT H−1s

=
nt∑

i=1
si

nt∑
j=1

sjH−1
j,i

297

= 1
δ

(
nt∑

i=1
s2

i

)
+ 1

δ(t + δ)

(
−

n∑
i=1

(∑
sind(i)

)2
)

(28)298

299
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The term
∑

sind(i) denotes the sum of residuals for an individual across all contexts. Let300

u =
∑nt

i=1 s2
i and v = −

∑n
i=1
(∑

sind(i)
)2.301

R = 1
δ

u + 1
δ(t + δ)v (29)302

Now we can reformulate the log-likelihoods, omitting terms that do not depend on δ.303

lF (δ) = −nt log (R) − log(|H|)

= −nt log
(

1
δ

u + 1
δ(t + δ)v

)
− (nt − n) log (δ) − n log (t + δ)

304

= −nt log
(

u + 1
t + δ

v

)
+ n log

(
δ

t + δ

)
(30)305

306

lR(δ) = (tc − nt) log (R) − log(|H|) − log (|(XT H−1X)−1|)307

= (tc − nt) log
(

u + 1
t + δ

v

)
+ (c − n) log

(
t + δ

δ

)
(31)308

309

Both functions are differentiable with respect to δ. Moreover, both derivatives have the310

same root311

δ̂ = −tu − v

u + v
(32)312

The scalar values u and v can be calculated by performing a separate OLS regression for313

each context, which can be completed in O(t(nc2 + c3)) time for a naive OLS implementation.314

Compared to the methods described above, this approach requires no iterative optimization315

and the estimate is optimal. Our implementation has a time complexity of O(c3 + nc2 + tcn).316

4.4 Resource requirement simulation comparison317

We installed EMMA v1.1.2 and manually built GEMMA from its GitHub source (genetics-318

statistics/GEMMA.git, commit 9c5dfbc). We edited the source code of GEMMA to prevent319

the automatic addition of intercept term in the design matrix (commented out lines 1946 to320

1954 of src/param.cpp).321

Data were simulated using the mcLMM package. Sample sizes of 100, 200, 300, 400, and322

500 were simulated with 50 contexts. Context sizes of 4, 8, 16, 32, and 64 were simulated323

with 500 samples. Data were simulated with σ2
e = 0.2 and σ2

g = 0.4 and a sampling rate of324

0.5. Memory usage of each method was measured using the peakRAM R package (v 1.0.2).325

4.5 False positive rate simulation326

We simulated gene expression levels in multiple tissues for individuals where there were327

no eQTLs. In other words, gene expression levels were not affected by any SNPs. We328

considered 10,000 genes and 100 SNPs resulting in one million gene-SNP pairs. We simulated329

1,000 individuals. We also examined false positive rates with 500 and 800 individuals. We330

generated 49 such datasets where the number of tissues varied from 2 to 50. To simulate331

the genotypes for each subject, we randomly generated two haplotypes (vectors consisting332
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of 0 and 1) assuming a minor allele frequency (MAF) of 30%. To simulate gene expression333

levels from multiple tissues among the same individuals, we sampled gene expression from334

the following multivariate normal distribution:335

y ∼ N(0, σ2
gK + σ2

eI) (33)336

where y is an N × T vector representing the gene expression levels of N individuals in T337

tissues and K is an NT × NT matrix corresponding the correlation between the subjects338

across the tissues. Ki,j = 1 when i and j are from two tissues of the same individuals,339

Ki,j = 0 otherwise. Here, we let σg = σe = 0.5. We used a custom R function (included with340

the mcLMM package) to simulate data from this distribution, which is based on sampling341

from a smaller covariance matrix for each block of measurements from an individual.342

After generating the simulation datasets, we first ran mcLMM to obtain the estimated343

effect sizes and their standard errors, as well as the correlation matrices. The results from344

mcLMM were used as the input of METASOFT for meta-analysis to evaluate the significance.345

False positive rate was calculated as the proportion of gene-SNP pairs with p-values smaller346

than the significance level (α = 0.05).347

4.6 True positive simulations348

We developed the true positive simulation framework based on a previous study describing349

mash [19]. We simulated effects for 20,000 gene-SNP pairs in 44 tissues, 400 of which have350

non-null effects (true positives) and 19,600 of which have null effects. Let βjr denote the351

effects of the gene-SNP pair j in context/tissue r and βj is a vector of effects across various352

tissues, including null effects and non-null effects. We simulated the gene expression levels353

for 1,000 individuals as:354

y = βT
jrX + e (34)355

where X denotes the genotypes of the individuals that were simulated as described in the356

false positive rate simulation. e ∼ N(0, σ2
gK + σ2

eI), which is similar to the simulation in the357

false positive rate simulation. For βj , we defined two types of non-null effects and simulated358

them in different ways:359

Shared, structured effects: non-null effects are shared in all tissues and the sharing is360

structured. The non-null effects are similar in effect sizes and directions (up-regulation or361

down-regulation) across all tissues, and this similarity would be stronger among some362

subsets of tissues. For 19,600 null effects, we set βj = 0. For 400 non-null effects, we363

assumed that each βj independently followed a multivariate normal distribution with364

mean 0 and variance ωUk, where k is an index number randomly sample from 1, . . . , 8.365

ω = |ω′|, ω′ ∼ N(0, 1) represents a scaling factor to help capture the full range of effects.366

Uk are 44 × 44 data-driven covariance matrices learned from the GTEx dataset, which367

are provided in [19].368

Shared, unstructured effects: non-null effects are shared in all tissues but the sharing369

is unstructured or independent across different tissues. For 19,600 null effects, we set370

βj = 0. For 400 non-null effects, we sampled βj from a multivariate normal distribution371

with mean of 0 and variance of 0.01I, where I is a 44 × 44 identity matrix.372

After simulating the gene expression levels y, we first ran mcLMM on the simulated373

datasets to acquire the estimated effect sizes and their standard errors, as well as the374
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correlation matrices. Then we apply METASOFT for meta-analysis with mcLMM outputs375

to evaluate the significance. For mash, we first performed simple linear regression to get376

the estimates of the effects and their standard errors in each tissue separately. Later, these377

estimates and standard errors were used as the inputs for mash, which returned the measure378

of significance for each effect, the local false sign rate (lfsr). Finally, we employed the “pROC”379

R package [13] to calculate the receiver operating characteristic (ROC) curve and area under380

the ROC curve with the significance measures (p-values for mcLMM and METASOFT, lfsr381

for mash) and the correct labels of null effects and non-null effects.382

4.7 Analysis of the GTEx dataset383

The Genotype-Tissue Expression (GTEx) v8 dataset [5] was used in this study. We down-384

loaded the gene expression data, the summary statistics of single-tissue cis-eQTL data, using385

a 1 MB window around each gene, and the covariates in the eQTL analysis from GTEx portal386

(https://gtexportal.org/home/datasets). The subject-level genotypes data was acquired from387

dbGaP accession number phs000424.v8.p2. The GTEx v8 dataset includes 49 tissues from388

838 donors. And we selected 15,627 genes that express in all 49 tissues. We only included389

SNPs with minor allele frequency (MAF) larger than 1% and missing rate lower than 5%.390

We applied mash and mcLMM plus METASOFT to the GTEx v8 dataset in our analysis.391

As mash needed to learn correlation structure among non-significant tests and data-driven392

covariance matrices before fitting its model. We prepared its input by selecting the top SNP393

with the smallest p-value and 49 random SNPs (or all other SNPs if there are fewer than 49394

SNPs left in a gene) in every gene from the eQTL analysis in the GTEx v8 dataset. There395

were 560,475 gene-SNP pairs in total. mash used the estimated effect sizes and standard396

errors of these gene-SNP pairs to learn the correlation structure of different conditions/tissues397

and later the canonical covariances. And we used the top SNPs to set up the data-driven398

covariances. Then we fitted mash to the random set of gene-SNP pairs with the canonical and399

data-driven covariances. With the fitted mash mode, we computed the posterior summaries400

including local false sign rate (lfsr) [16] for the selected gene-SNP pairs to estimate the401

significance. We defined significant gene-SNP pairs as those with lfsr < 0.05 in any tissues.402

We applied mcLMM to the same set of gene-SNP pairs. We regressed out unwanted403

confounding factors in gene expression levels for each tissue with a linear model using404

covariates provided by GTEx. Covariates of each sample included top 5 genotyping principal405

components, PEER factors [15] (15 factors for tissues with fewer than 150 samples, 30 factors406

for those with 150-250 samples, 45 factors for those with 250-350 samples, and 60 factors for407

those with more than 350 samples), sequencing platform, and sex. Then we ran mcLMM with408

the SNP genotypes and processed gene expression levels of all 838 individuals across 49 GTEx409

tissues for each gene-SNP pair. Missing values in gene expression were allowed. The effect410

sizes, standard errors, and correlation matrices estimated by mcLMM were meta-analyzed411

with METASOFT to evaluate the significance. A gene-SNP pair was significant if its p-value412

was smaller than 0.05. We considered both FE and RE2 models of METASOFT in the413

calculation of p-values.414

4.8 Analysis of the UK Biobank dataset415

This work was conducted using the UK Biobank Resource under application 33127. Samples416

were filtered for Caucasian individuals (Data-Field 22006)). Hard imputed genotype data417

from the UK Biobank were LD pruned using a window size of 50, step size of 1, and correlation418

threshold of 0.2. SNPs were further filtered for minor allele frequency of at least 0.01 and419
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a Hardy-Weinberg equilibrium p-value greater than 1e-7 using Plink 2 [4]. Samples were420

filtered for unrelated individuals with KING using a cutoff value of 0.125 [10]. Genotype data421

were split by chromosome and converted to bigsnpr format (v 1.4.4) for memory efficiency422

[11].423

The following data fields were retrieved: age at recruitment (Data-Field 31), sex (Data-424

Field 21022), BMI (Data-Field 23104), body fat percentage (Data-Field 23099), 10 genetic425

principal components (Data-Field 22009), HDL Cholesterol (Data-Field 30760), LDL Direct426

(Data-Field 30780), Apolipoprotein A (Data-Field 30630), Apolipoprotein B (Data-Field427

30640), and Triglycerides (Data-Field 30870). Continuous phenotypes were visually inspected428

and triglycerides were log-transformed due to skewness. Data were filtered for complete429

observations. All fields were scaled to unit variance and centered at 0.430

HDL cholesterol, LDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglycerides431

were combined as response variables in the LMM and age, sex, BMI, body fat percentage,432

and the top 10 genetic principal components were used as additional covariates in the model.433

Each SNP was marginally fit with mcLMM. The coefficients output by this model for each434

phenotype were meta-analyzed to calculate FE p-values using METASOFT as packaged with435

Meta Tissue v 0.5. The top GWAS hits for five different chromosomes (one per chromosome)436

were validated using the NHGRI-EBI GWAS catalog [2] and compared to studies for LDL437

and HDL cholesterol (GCST008035 and GCST008037).438
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