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—— Abstract

Linear mixed models can be applied in the meta-analyses of responses from individuals across
multiple contexts, increasing power to detect associations while accounting for confounding effects
arising from within-individual variation. However, traditional approaches to fitting these models
are computationally intractable. Here, we describe an efficient and exact method for fitting a
multi-context linear mixed model. Whereas existing methods are cubic or quadratic in their time
complexity with respect to the number of individuals, our approach (mcLMM) is linear. These
improvements allow for large-scale analyses requiring computing time and memory magnitudes
of order less than existing methods. As examples, we apply our approach to identify expression
quantitative trait loci from large-scale gene expression data measured across multiple tissues as well
as joint analyses of multiple phenotypes in genome-wide association studies at biobank scale.
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1 Introduction

Over the last decade, the scale of genomic datasets has steadily increased. These datasets
have grown to the size of hundreds of thousands of individuals [3] with millions soon to come
[18]. Similarly, datasets for transcriptomics and epigenomics are growing to thousands of
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samples [1, 5, 12]. These studies provide valuable insight into the relationship between our
genome and complex phenotypes [20].

Identifying these associations requires statistical models that can account for biases
in study design that can negatively influence results through false positives or decreased
power. Linear mixed models (LMMs) have been a popular choice for controlling these
biases in genomic studies, utilizing variance components to account for issues such as
population stratification [8]. These models can also be used to analyze studies with repeated
measurements from individuals, such as replicates or measurements across different contexts.
Meta-Tissue [17] is a method that applies this model in the context of identifying expression
quantitative trait loci (eQTLs) across multiple tissues. In this framework, gene expression
is measured in several tissues from the same individuals and the LMM is utilized to test
the association between these values and genotypes. A meta-analytic approach is used to
combined effects across multiple tissues to increase the power of detecting eQTLs. This
approach has also been applied to increase power in genome-wide association studies (GWAS)
by testing the association between genotypes and multiple related phenotypes [7].

However, these approaches are computationally intensive. Existing approaches for fitting
these models are cubic in time complexity with respect to the number of samples across all
contexts [8, 23]. Here, we present an ultra-fast LMM framework specifically for multiple-
context studies. Our method, mcLMM, is linear in complexity with respect to the number of
individuals and allows for statistical tests in a manner of hours rather than days or years with
existing approaches. To illustrate the computational efficiency of mcLMM, we compare the
runtime and memory usage of our method with EMMA and GEMMA [8, 23], two popular
approaches for fitting these models. We further apply mcLMM to identify a large number
of eQTLs in the Genotype-Tissue Expression (GTEx) dataset [5] and compare our results
from METASOFT [6], which performs the meta-analysis of the mecLMM output, to a recent
meta-analytic approach known as mash [19]. Finally, to demonstrate the practicality of
mcLMM on modern datasets, we perform a multiple-phenotype GWAS combining over a
million observations sampled from hundreds of thousands of individuals in the UK Biobank
[3] within hours.

2 Results

2.1 Multi-context linear mixed models

We implement the statistical model described in Meta-Tissue [17], where we model the
multi-context data as follows:

y=XB+u+e (1)

where u ~ N (0, O‘SK) and e ~ N(0,02I). For n individuals and ¢ contexts, y is a vector of nt
responses, K is an nt by nt binary matrix where a value of 1 indicates that the observations
were sampled from the same individual. Compared to a standard regression model, the
variance component u accounts for within-individual variation that may occur with repeated
sampling. The design matrix X fits coefficients § for each feature within each context
independently. These coefficients, which describe the effect of the feature on the response
within each context, can be used in a meta-analytic framework to combine the results. In
our pipeline, we utilize the random effects model (RE2) from METASOFT, which assumes
that effect sizes may be different across contexts and was shown to outperform existing
meta-analysis methods [6].
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Fitting this LMM requires estimation of the parameters 03

with traditional likelihood or restricted-likelihood approaches or through various optimized
methods that have been developed, such as EMMA and GEMMA [8, 23]. These approaches
require an eigendeomposition of the matrix K with is traditionally considered to be an

and o2, which can be estimated

O((nt)?) operation. mcLMM utilizes the block structure of the matrices in this model to
perform matrix operations within contexts and avoids any eigendecomposition operations.
This approach provides massive speedups with runtime complexities that are linear with
respect to sample size n rather than cubic. As a note, mcLMM is not an approximation and
fits identical models to these existing approaches.

2.2 mcLMM is computationally efficient

To demonstrate the efficiency of mcLMM compared to existing approaches, we applied
our method to simulated data of varying sample sizes and number of contexts. For these
simulations, we simulated a sampling rate of 0.5, which indicates that only half of all possible
individual-context pairs of observations are expected to be sampled.

We first applied our method to simulations with a fixed number of 50 contexts and varied
the sample size from 100 to 500. From these experiments, we observed that mcLMM requires
computational time orders of magnitude less than EMMA and GEMMA. Similarly, when we
fixed the number of samples at 500 and varied the context sizes from 4 to 64, we observed
dramatically reduced runtimes for mcLMM.

In these experiments, mcLMM also significantly reduces the memory footprint compared
to EMMA and GEMMA, since we avoid creating any nt by nt matrices. In these simulations,
existing approaches quickly grow memory requirements, with usages that grow to dozens of
gigabytes for modestly sized datasets in the thousands of samples. mcLMM allows large-scale
studies to be performed on relatively little computational resources (Figure 1).

In cases where there is no missing data, mcLMM allows for further speedups. We ran
similar simulations to compare mcLMM with no missing data (optimal model) and mcLMM
with missing data (iterative model). We observed a dramatic speedup, with sample sizes of
500,000 individuals across 10 contexts completed in under 10 seconds for the optimal model
compared to around 15 minutes for the iterative model.

2.3 mcLMM enables powerful meta analyses to detect eQTLs

We utilized mcLMM to reduce the computational resource requirements of the Meta-Tissue
pipeline, which fits a multiple-context LMM and combines the resulting effect sizes using
METASOFT [17]. While powerful, the existing approach utilizes EMMA to fit the LMM.
For a recent release from the GTEx consortium [5], each pair of genes and single nucleotide
polymorphisms (SNPs) required over two hours to run. Across hundreds of thousands of
gene-SNP pairs, this method would require years of computational runtime to complete.
Utilizing mcLMM, we were able to complete this analysis in 3 days parallelized over each
chromosome.

We compared our approach to a method known as mash [19]. This approach utilizes
effect sizes estimated within each context independently and employs a Bayesian approach
to combine their results for meta-analysis. In order to estimate the power of these methods,
we performed simulations as described in the methods. In null simulations, we observed
well-controlled false positive rates at o = 0.05 for mcLMM coupled with METASOFT. In our
simulation with true positives, we observed an increased area under the receiver operating
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Figure 1 Resource requirements of mecLMM, GEMMA, and EMMA across various simulated
individual and context sizes with missing values (sampling rate of 0.5). For varying individuals,
contexts were fixed at 50. For varying contexts, individuals were fixed at 500. (A-B) Runtime with
log10(seconds) on the y-axis and number of individuals or contexts simulated on the x-axis. (C-D)
Memory usage (GB) on the y-axis and number of individuals or contexts simulated on the x-axis.

A oo] B, 0]
0.75 0.751
2 2
© ©
:‘g 0.50 ‘g 0.50
@ @
3 3
& &
0.251 0.251
MASH (AUC: 0.59) MASH (AUC: 0.68)
=== mcLMM + Metasoft (FE} (AUC: 0.52) == mcLMM + Metasoft (FE) (AUC: 0.56)
0.004 meL MM + Metasoft (RE2) (AUC: 0.73) 0004 ! mcLMM + Metasoft (RE2) (AUC: 0.73)
0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
False positive rate False positive rate

Figure 2 AUROC curves of mcLMM+METASOFT and mash in simulated data, assuming the
effects of gene-SNP pairs are (A) shared and unstructured, and (B) shared and structured.



127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

B. Jew et al.

4,502 23,025 202,793 38,754 56,545

mcLMM+METASOFT (FE)

Figure 3 Venn diagram of significant eQTLs identified by meta-analysis methods in the GTEx
dataset. We compared mcLMM using two different models in METASOFT (RE2 and FE) to mash.
Note that areas are not proportional to the number of eQTLs in each region. mcLMM+METASOFT
(RE2) identified a total of 321,117 significant associations that contained 225,818 eQTLs identified
by mash.

characteristic (AUROC) for mcLMM coupled with the random effects (RE2) METASOFT
model compared to mash (Figure 2).

Next, we compared the number of significant associations identified in the GTEx dataset.
The mash approach utilized gene-SNP effect sizes estimated by the GTEx consortium within
each tissue independently. Concordant with our simulations, we observed that the Meta-
Tissue approach, utilizing mcLMM for vast speedup, identified more significant eQTLs than
mash (Figure 3). These associations allow researchers to better understand the link between
genetic variation and complex phenotypes through possible mediation of gene expression.

2.4 mcLMM scales to millions of samples across related phenotypes

As a practical application of the efficiency of mcLMM, we performed a multiple phenotype
GWAS in the UK Biobank. A multiple phenotype GWAS associates SNPs with several
related phenotypes in order to increase the effective sample size for greater power, under the
assumption that the phenotypes are significantly correlated. For our analysis, we combined
HDL and LDL cholesterol, Apolipoprotein A and B, and triglyceride levels across 323,266
unrelated caucasian individuals in the UK Biobank. In total, 1,616,330 observations of these
related phenotypes were fit as responses in the LMM.

The mcLMM approach completed this analysis over 211,642 SNPs with an additional 14
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125 1

£ 75

1 2 3 4 5 6 7 8 9 1011121314 16 18 22
Chromosome

Figure 4 Multiple phenotype GWAS results from UK Biobank. Five phenotypes (LDL cholesterol,
HDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglyceride levels) were used as responses
in the mcLMM framework. The model was fit with 1,616,330 observations from 323,266 unrelated
Caucasian individuals. In total, 211,642 SNPs were tested with an additional 14 covariates. Each
test required around 2 seconds to run on a 32GB machine and was parallelized over each chromosome.
The -log10 of the p-values are plot on the y-axis and genomic positions on the x-axis. The horizontal
dashed line indicates the genome wide significance level at p = 0.05/1e6. The top hit for 5 different
chromosomes is annotated with the gene containing the SNP. These genes have been previously
identified as associated with a subset of these phenotypes.

covariates, parallelized over each chromosome, within a day. Each chromosome was analyzed
on a single core machine with 32 GB of memory, with each test taking around 2 seconds
to complete. We identified several significant loci, a subset of which replicate previous
findings for specific phenotypes included in the model, such as HDL cholesterol [22] (Figure
4). Existing approaches, namely EMMA and GEMMA, require orders of magnitude more
memory to begin this analyses and could not be run on the available computational resources.

3 Discussion

We presented mcLMM, an efficient method for fitting LMMSs used for multiple context
association studies. Our method provides exact results and scales linearly in time and
memory with respect to sample size, while existing methods are cubic. This efficiency allows
mcLMM to process hundreds of thousands of samples over several contexts within a day on
minimal computational resources, as we showed in simulation and in the UK Biobank. The
association parameters learned by mcLMM can further be utilized with the METASOFT
framework to provide powerful meta-analysis of the associations, as we showed in the GTEx
dataset.

Previous work has observed the potential speedup to linear complexity for LMMs when the
matrix K is approximated with a low rank representation [9]. Here, we optimize the method
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specifically for the low rank matrix that arises naturally in multiple context association
studies, allowing our method to provide exact results and scale to hundreds of thousands of
samples with minimal computational resources.

4 Methods
4.1 Linear Mixed Model

For multi-context experiments with n individuals, ¢ contexts, and ¢ covariates, we fit the
following linear mixed model

y=Xpf+u+e (2)

where u ~ N(0, UgK), e~ N(0,021),y € R™ is a vectorized representation of the responses,
X € R™*t¢ is the matrix of covariates, 8 € R!® is the vector of estimated coefficients,
K € R™ "™ is a binary matrix where K, ; = 1 indicates that sample i and sample j in
Y come from the same individual, and I € R™*™ is an identity matrix. X is structured
such that both an intercept and the covariate effects are fit within each context. For sake
of simplicity, dimensions of nt assume that there is no missing data; however, this is not a
requirement for the model.
The full and restricted log-likelihood functions for this model are

Ly XB)TH (y - Xp) 3)

2
Oy

1
lp(y; B, 04,0) = 5 | =N log (2mog) — log(|H]) —

1
lr(y; B,04,0) =lp(y; B,04,0¢) + 3 [tclog(Zwaﬁ) + 10g(|XTX|) — log(|XTH_1XM (4)

where N is the total number of measurements made across the individuals and contexts,
2

6 = Z5, and H = K + 61 [21]. These likelihood functions are maximized with the generalized

least squares estimator B = (XTH'X)"'1XTH 1y and CTE = % in the full log-likelihood
and 02 = N]ftc in the restricted log-likelihood, where R = (y — XB)TAH_l(y — X,@’) Our
goal is to maximize these likelihood functions to estimate the optimal 4.

4.2 Likelihood refactoring in the general case

The EMMA algorithm optimizes these likelihoods for § by refactoring them in terms of con-
stants calculated from eigendecompositions of H and SHS, where S = I — X(XTX)71XT,
that allow linear complexity optimization iterations with respect to the number of indi-
viduals [8]. The GEMMA algorithm further increases efficiency by replacing the SHS
eigendecomposition with a matrix-vector multiplication [23]. Both approaches require the
eigendecomposition of at least 1 N by N matrix which is typically cubic in complexity. Here,
we show that our specific definition of K as a binary indicator matrix allows us to refactor
these likelihood functions without any eigendecomposition steps. It should be noted that
EMMA and GEMMA can fit this model for any positive semidefinite K, while mcLMM is
restricted to the definition described above.

First, note that H = K + 01 is a block diagonal matrix (as exemplified in Equation 5).
Specifically, each block corresponds to an individual 7 with ¢; contexts measured and is equal
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to [1¢, +61;,] € RY*% where 14, is a t; by ¢; matrix composed entirely of 1. These properties
of H make its eigendecomposition and inverse directly known.

The eigenvalues of a block diagonal matrix are equal to the union of the eigenvalues of
each block. Moreover, the eigenvalues of [1;, + d1;,] are t; + § with multiplicity 1 and § with
multiplicity ¢; — 1. Therefore, H has eigenvalues ¢ with multiplicity N —n and ¢; + § for
each t;. This provides our first refactoring

log (|H|) = (N —n)log (8) + Y _ log (t; + ) ()

i=1

The inverse of a block diagonal matrix can also be computed by inverting each block
individually. Moreover, using the Sherman-Morrison formula [14], the inverse of [1;, + §1;,]
is known

1
t; T 7Iti (6)

(]‘ti +5Iti)71 = 5

-1
t+4

Given each entry of H~!, we can show algebraically that

XTH1x = %(E - D) (7)

Z Tind,g(i)Tind,g(j) if f(l) = f(])
E; j = { indef() (8)

0 if f(z) # £(7)

1
D; ;= Z 7 Z Tind,g(i)Lind,g(5) 9)

gEgroups gt indef(4),f(4),9

where f(i) = (%t (modulo operator) provides the context of a given 0-indexed column of
X, g(i) = i//t (integer division) provides the covariate of a given index. A group g defines
the set of individuals that share the same number of measured contexts ¢,. The expression
“ind € f(4), f(j), ¢" indicates the set of all individuals that have ¢, measured contexts that
include context ¢ and j.

Note that with all values independent of § pre-computed, specifically the sum of covariate
interactions within the sets of individuals indicated above, E is constant with respect to
0 and each entry of the symmetric matrix D can be calculated in linear time with respect
to the number of groups, which is less than or equal to the number of contexts t. For a
given §, we can compute X7 H~'X in O(t(tc)?) time complexity. Both the restricted and
full log-likelihoods require the calculation of (X7 H~!X)~!. The restricted log-likelihood
requires the additional calculation of log (| X7 H~1X]|). To calculate both of these terms, we
perform a Cholesky decomposition of XTH~'X = LL*, where * indicates the conjugate
transpose. Given this decomposition, we can compute

tc
log (IXTH'X|) = L, (10)
i=1
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(XTH-'X)"L = (L)1t (11)

These operations can be done in O((tc)?) time complexity.

Let P(X) denote a projection matrix and M (X) = (I — P(X)). Note that both P(X)
and M (X) are idempotent. The term remaining term in the likelihood functions, R, can be
reformulated as follows

y— X3

y-XXTH'X)"'XTH 'y

(I-XXTH'X)"'XTH Yy
(I —P(X))y

=M(X)y (12)

MX)"H ' =(I-X(X"H'X)"'X"H ")TH!
=(I-H'XXTH 'x)"'XxT)g!
=H'-H'X(X"H'X)"'X"H!
=H ' -XXTH'X)"'XTH™)
= H'M(X) (13)

R=(y-XB)"H 'y - XB)

=a-bT(L*)"'L7'b (14)

The scalar a and vector b are a function of § and can be algebraically formulated as

SICIRE

gegroups

= PIDRT 19

indeg

1 1
b; =< Yo Twag@Ymase |~ | D tg+0 D T (D Yina)

ind€context (i) gegroups indef(i),9

(16)

where Y yinq indicates the sum of responses across all contexts for an individual. With
values independent of § pre-calculated, a and b can be calculated in linear time with respect
to the number of groups.

We can reformulate the entire likelihood functions as follows
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o Lelyifoy ) = 3 | <N log (2ro) —lon(H]) = 5y = XA H "y — X5)|
=2 :—Nlog (2730 ~ los(|H) — N]
- % [N log (%%) - ((N — 1) log (6) + Zj;log (t + 5)) -N
~ —Nlog(a — b (L") 'L~ 'b) — <(N —n)log (0) + zn: log (t; + 5))

(17)

254

1
255 lr(y; B,04,0) =lp(y; B,04,0¢) + 3 [tclog(?wo?) +log (|XTX|) —log (|IXTH' X|)]
~ (tc — N)log (a —b" (L*)"'L™'b)

n tc
- ((N —n)log (8) + Y _log (t; + 5)) -y L (18)
257 i=1 i=1
258 Note that Equations 17 and 18 remove terms that are independent of § since they are

9 not required for finding its optimal value, indicated by the ~ symbol. These likelihoods are
%0 maximized using the optimize function in R. For the full likelihood

R
)
g, = = 19
261 g 6N ( )
262 For the restricted likelihood
R
263 OA'; i e ——— (20)
O(N —te)
204 For both likelihoods
ws G2 =067 (21)

x 4.3 Likelihood refactoring with no missing data

27 When there is no missing data, the likelihood functions can be further simplified. Note that
x%s in this case, N = nt and all ¢; = t. Hence,

log (|H|) = (N —n)log (8) + > _log (t; + )

i=1
770 = (nt —n)log(d) + nlog (t + 9) (22)
2 If the input terms y, X, and K are permuted resulting in samples being sorted in order
a3 of context, and the covariates in X are sorted in order of context, we can decompose H and

e X into

275 H = (1t + 6It) ® I, (23)
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X = It & Xdense

where ® indicates the Kronecker product and Xgense € R™*€ is a typical representation
of the covariates for each individual without multiple contexts (i.e. samples as rows and
covariates as columns). Utilizing the properties of Kronecker products, we can perform the

following reformulation

(XTH-1Xx)"1

log ([(XTH'X)~

Note that the remaining determinant in Equation 26 will not need to be calculated since it

(11
1 +L)®

') =log

(]
log(l
log

((It ® Xg;nse)((lt + 6It) ® In)7
! Y nganseXdense)_l
(X({enseXdense)il

1, +461)

1

=c(—log(t+9)—

( ® (XinseXdense)_lD
(1t + 5It)|c|(Xg:enseXdense)71|t)
(|(1¢ + 61)[) + tlog (|(X§:3nseXdense)_1|)

(Xg;nseXdense)_l D

(t - 1) 1Og (5)) + thg (|(XgenseXdense)_1 |)

is independent of 6. Next, we show that /3 is independent of §.

(1:+ 6L
(]—t + (5.[15

(

( ®

( ®
= (1 +0L)®

(

(

—_— — ~— ~—

(1:+ 6L

(1 +01)~
I ® (XgenseXdense)ing:ense) y

(Xgl:enseXdense)_l) XTH_ly

(Xc:{:anseXdense) !

) (It ® Xc{ense)((lt + 6It)_

1(It ® Xdense))il

‘o 6)y

(ngenseXdeHSe)ingense) ((lt + 5It)71 ® ITL)y

! ® (Xg;nseXdense)_ngense) y

(24)

(26)

(27)

This form of B shows that the optimal coefficients are equivalent to fitting separate

ordinary least squares (OLS) models for each context. We compute B by concatenating
OLS estimates.

these

R:

_ STH71

(v — XB)TH-

Given this term, we can also compute the residuals of this model
s = (y — X ) and reformulate R as follows.

Yy - XP)

nt nt
= E S; E SjITl-i1

i=1  j=1

1 nt
(59
i=1

(-

n

1

(o))
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The term Y Sind(i) denotes the sum of residuals for an individual across all contexts. Let
t 2
=387 and v =~ (X Simae)) -

1 1

Now we can reformulate the log-likelihoods, omitting terms that do not depend on §.

[r(8) = (tc — nt)log (R) — log(|H) —log ((X"H™' X))

ti5u> + (c—n)log (tga) (31)

Both functions are differentiable with respect to §. Moreover, both derivatives have the

= (tc — nt) log (u +

same root
s —tu—
0= _tu—v (32)
u+v

The scalar values u and v can be calculated by performing a separate OLS regression for
each context, which can be completed in O(t(nc? + ¢?)) time for a naive OLS implementation.
Compared to the methods described above, this approach requires no iterative optimization
and the estimate is optimal. Our implementation has a time complexity of O(c3 +nc? + tcn).

4.4 Resource requirement simulation comparison

We installed EMMA v1.1.2 and manually built GEMMA from its GitHub source (genetics-
statistics/ GEMMA .git, commit 9cbdfbc). We edited the source code of GEMMA to prevent
the automatic addition of intercept term in the design matrix (commented out lines 1946 to
1954 of src/param.cpp).

Data were simulated using the mcLMM package. Sample sizes of 100, 200, 300, 400, and
500 were simulated with 50 contexts. Context sizes of 4, 8, 16, 32, and 64 were simulated
with 500 samples. Data were simulated with o2 = 0.2 and 0‘3 = 0.4 and a sampling rate of
0.5. Memory usage of each method was measured using the peakRAM R package (v 1.0.2).

4.5 False positive rate simulation

We simulated gene expression levels in multiple tissues for individuals where there were
no eQTLs. In other words, gene expression levels were not affected by any SNPs. We
considered 10,000 genes and 100 SNPs resulting in one million gene-SNP pairs. We simulated
1,000 individuals. We also examined false positive rates with 500 and 800 individuals. We
generated 49 such datasets where the number of tissues varied from 2 to 50. To simulate
the genotypes for each subject, we randomly generated two haplotypes (vectors consisting
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of 0 and 1) assuming a minor allele frequency (MAF) of 30%. To simulate gene expression
levels from multiple tissues among the same individuals, we sampled gene expression from
the following multivariate normal distribution:

y ~ N(0,0,K +0?1) (33)

where y is an N x T vector representing the gene expression levels of N individuals in T'
tissues and K is an NT x NT matrix corresponding the correlation between the subjects
across the tissues. K;; = 1 when ¢ and j are from two tissues of the same individuals,
K; ; = 0 otherwise. Here, we let 0y = 0. = 0.5. We used a custom R function (included with
the mcLMM package) to simulate data from this distribution, which is based on sampling
from a smaller covariance matrix for each block of measurements from an individual.

After generating the simulation datasets, we first ran mcLMM to obtain the estimated
effect sizes and their standard errors, as well as the correlation matrices. The results from

mcLMM were used as the input of METASOFT for meta-analysis to evaluate the significance.

False positive rate was calculated as the proportion of gene-SNP pairs with p-values smaller
than the significance level (a = 0.05).

4.6 True positive simulations

We developed the true positive simulation framework based on a previous study describing
mash [19]. We simulated effects for 20,000 gene-SNP pairs in 44 tissues, 400 of which have
non-null effects (true positives) and 19,600 of which have null effects. Let f3;, denote the
effects of the gene-SNP pair j in context/tissue 7 and §; is a vector of effects across various
tissues, including null effects and non-null effects. We simulated the gene expression levels
for 1,000 individuals as:

y=8,X+e (34)

where X denotes the genotypes of the individuals that were simulated as described in the
false positive rate simulation. e ~ N (0, 02K + ¢2T), which is similar to the simulation in the
false positive rate simulation. For j3;, we defined two types of non-null effects and simulated
them in different ways:
Shared, structured effects: non-null effects are shared in all tissues and the sharing is
structured. The non-null effects are similar in effect sizes and directions (up-regulation or
down-regulation) across all tissues, and this similarity would be stronger among some
subsets of tissues. For 19,600 null effects, we set 3; = 0. For 400 non-null effects, we
assumed that each 3; independently followed a multivariate normal distribution with

mean 0 and variance wUy, where k is an index number randomly sample from 1,...,8.
w = |w'|,w’ ~ N(0,1) represents a scaling factor to help capture the full range of effects.

Uy are 44 x 44 data-driven covariance matrices learned from the GTEx dataset, which
are provided in [19].

Shared, unstructured effects: non-null effects are shared in all tissues but the sharing
is unstructured or independent across different tissues. For 19,600 null effects, we set
B; = 0. For 400 non-null effects, we sampled ; from a multivariate normal distribution
with mean of 0 and variance of 0.017, where [ is a 44 x 44 identity matrix.

After simulating the gene expression levels y, we first ran mcLMM on the simulated
datasets to acquire the estimated effect sizes and their standard errors, as well as the
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correlation matrices. Then we apply METASOFT for meta-analysis with mcLMM outputs
to evaluate the significance. For mash, we first performed simple linear regression to get
the estimates of the effects and their standard errors in each tissue separately. Later, these
estimates and standard errors were used as the inputs for mash, which returned the measure
of significance for each effect, the local false sign rate (Ifsr). Finally, we employed the “pROC”
R package [13] to calculate the receiver operating characteristic (ROC) curve and area under
the ROC curve with the significance measures (p-values for mcLMM and METASOFT, lfsr
for mash) and the correct labels of null effects and non-null effects.

4.7 Analysis of the GTEx dataset

The Genotype-Tissue Expression (GTEx) v8 dataset [5] was used in this study. We down-
loaded the gene expression data, the summary statistics of single-tissue cis-eQTL data, using
a 1 MB window around each gene, and the covariates in the eQTL analysis from GTEx portal
(https://gtexportal.org/home/datasets). The subject-level genotypes data was acquired from
dbGaP accession number phs000424.v8.p2. The GTEx v8 dataset includes 49 tissues from
838 donors. And we selected 15,627 genes that express in all 49 tissues. We only included
SNPs with minor allele frequency (MAF) larger than 1% and missing rate lower than 5%.
We applied mash and mcLMM plus METASOFT to the GTEx v8 dataset in our analysis.

As mash needed to learn correlation structure among non-significant tests and data-driven
covariance matrices before fitting its model. We prepared its input by selecting the top SNP
with the smallest p-value and 49 random SNPs (or all other SNPs if there are fewer than 49
SNPs left in a gene) in every gene from the eQTL analysis in the GTEx v8 dataset. There
were 560,475 gene-SNP pairs in total. mash used the estimated effect sizes and standard
errors of these gene-SNP pairs to learn the correlation structure of different conditions/tissues
and later the canonical covariances. And we used the top SNPs to set up the data-driven
covariances. Then we fitted mash to the random set of gene-SNP pairs with the canonical and
data-driven covariances. With the fitted mash mode, we computed the posterior summaries
including local false sign rate (Ifsr) [16] for the selected gene-SNP pairs to estimate the
significance. We defined significant gene-SNP pairs as those with lfsr < 0.05 in any tissues.

We applied mcLMM to the same set of gene-SNP pairs. We regressed out unwanted
confounding factors in gene expression levels for each tissue with a linear model using
covariates provided by GTEx. Covariates of each sample included top 5 genotyping principal
components, PEER factors [15] (15 factors for tissues with fewer than 150 samples, 30 factors
for those with 150-250 samples, 45 factors for those with 250-350 samples, and 60 factors for
those with more than 350 samples), sequencing platform, and sex. Then we ran mcLMM with
the SNP genotypes and processed gene expression levels of all 838 individuals across 49 GTEx
tissues for each gene-SNP pair. Missing values in gene expression were allowed. The effect
sizes, standard errors, and correlation matrices estimated by mcLMM were meta-analyzed
with METASOFT to evaluate the significance. A gene-SNP pair was significant if its p-value
was smaller than 0.05. We considered both FE and RE2 models of METASOFT in the
calculation of p-values.

4.8 Analysis of the UK Biobank dataset

This work was conducted using the UK Biobank Resource under application 33127. Samples
were filtered for Caucasian individuals (Data-Field 22006)). Hard imputed genotype data
from the UK Biobank were LD pruned using a window size of 50, step size of 1, and correlation
threshold of 0.2. SNPs were further filtered for minor allele frequency of at least 0.01 and
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a Hardy-Weinberg equilibrium p-value greater than le-7 using Plink 2 [4]. Samples were
filtered for unrelated individuals with KING using a cutoff value of 0.125 [10]. Genotype data
were split by chromosome and converted to bigsnpr format (v 1.4.4) for memory efficiency
[11].

The following data fields were retrieved: age at recruitment (Data-Field 31), sex (Data-
Field 21022), BMI (Data-Field 23104), body fat percentage (Data-Field 23099), 10 genetic
principal components (Data-Field 22009), HDL Cholesterol (Data-Field 30760), LDL Direct
(Data-Field 30780), Apolipoprotein A (Data-Field 30630), Apolipoprotein B (Data-Field
30640), and Triglycerides (Data-Field 30870). Continuous phenotypes were visually inspected
and triglycerides were log-transformed due to skewness. Data were filtered for complete
observations. All fields were scaled to unit variance and centered at 0.

HDL cholesterol, LDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglycerides
were combined as response variables in the LMM and age, sex, BMI, body fat percentage,
and the top 10 genetic principal components were used as additional covariates in the model.
Each SNP was marginally fit with mcLMM. The coeflicients output by this model for each
phenotype were meta-analyzed to calculate FE p-values using METASOFT as packaged with
Meta Tissue v 0.5. The top GWAS hits for five different chromosomes (one per chromosome)
were validated using the NHGRI-EBI GWAS catalog [2] and compared to studies for LDL
and HDL cholesterol (GCST008035 and GCST008037).
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