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ABSTRACT

Machine learning (ML) methods already permeate environmental decision-making, from processing
high-dimensional data on earth systems to monitoring compliance with environmental regulations.
Of the ML techniques available to address pressing environmental problems (e.g., climate change,
biodiversity loss), Reinforcement Learning (RL) may both hold the greatest promise and present the
most pressing perils. This paper explores how RL-driven policy refracts existing power relations in the
environmental domain while also creating unique challenges to ensuring equitable and accountable
environmental decision processes. We leverage examples from RL applications to climate change
mitigation and fisheries management to explore how RL technologies shift the distribution of power
between resource users, governing bodies, and private industry.

1 Introduction

An autonomous robotic submarine first splashed into the warm waters of Australia’s Great Barrier Reef five years
ago with a simple mission: find and destroy. Armed with 200 doses of lethal injections and capable of independent
navigation and autonomous target image recognition, the COTSbot robot has become a front line of defense against the
voracious Crown-of-Thorns starfish, a venomous predator which the Marine Park Authority places alongside climate
change as a significant contributor to the reef’s recent decline (Platt, 2016). Artificial intelligence (Al) is already
pervading the policy and practice of environmental conservation (Scoville et al., 2021). While killer robots may raise
questions about ethics and accountability in science fiction novels, the real source of such concerns is deeper beneath
the surface of Al technologies and their applications.

Machine Learning (ML) is rapidly playing a more influential role in conservation and environmental policy through
a wide variety of less visible but more influential means than robotics. Importantly, ML technologies empower new
stakeholders not in the visible form of anthropomorphic robots but rather the private companies (including major
technology corporations) whose algorithms and infrastructures play a decisive role in the design and deployment
of technology to manage and monitor common pool environmental resources. Big technology companies already
maintain some of our most extensive environmental data sets (e.g., PLANET labs high-resolution satellite imagery) and
increasingly develop algorithms to process those as well as publicly maintained (e.g. LANDSAT satellite imagery) data
(Gorelick et al., 2017). As we explore throughout this paper, delegating control of both data and algorithms to private
industry can consolidate and commercialize environmental decision-making and agenda-setting power.

Of the ML techniques available to conservation science and practice, Reinforcement Learning (RL) might hold the
most promise to improve our decision-making capacity in complex environmental systems. Scientists have increasingly
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Typology of
environmental Example Citation
RL application
. Learning policies to sustainably Lapeyrolerie
Quota Setting harvest dynamic fish populations et al., 2021

Prioritizing the spatial configuration of Antonelli et
Spatial planning  protected areas and monitoring to al., 2021
maximize biodiversity benefits

Computing a patrolling strategy for Wang et al.,
protected areas that responds to real- 2019
time information on wildlife poachers

Enforcement and
policing

Autonomous underwater vehicle that  Cantrell et

Environmental ¢ .o o non-native species with lethal ~ al., 2017

manipulation salts to protect native coral species
Precision Fertilization management policies Overweg et
management that reduce environmental impact al., 2021

Table 1: Examples of RL applications to environmental domain problems range from precision management of
individual parcels of land to spatial planning of biodiversity monitoring and protection.

proposed Reinforcement learning (RL) as a method for addressing environmental management problems outside
of the realm of robotics precisely because of its explicit concern with ’actions’, rather than data classification and
processing (Lapeyrolerie et al., 2021). RL has proven effective in finding robust strategies under dynamic and uncertain
environments, precisely what many environmental policy decisions seek to accomplish. While RL-driven environmental
decision-making is still primarily a proposed, rather than implemented, idea (see Table 1 and the growing library
of "Conservation RL" problems at boettiger-1lab.github.io/conservation-gym/), adaptive management (an
iterative approach to making robust natural resource decisions under uncertainty) has long been applied in environmental
management (Doremus, 2001; Doremus, 2010; Rist et al., 2013). While adaptive management ranges in its exact
definition and implementation across the environmental literature, its formal definition (e.g., Chades et al., 2012)
closely mirrors the structure of reinforcement learning problems, making RL-driven environmental decision making a
reasonable methodology in adaptive management problems.

But do RL-derived decisions meaningfully differ from the human-derived decisions currently used in adaptive man-
agement problems? The opacity of solutions derived from RL methods (i.e., inability to explain what aspects of
the state space drive the agents’ action or create counterfactual scenarios (Atrey et al., 2019)) both give power to,
and reduce the accountability of, new environmental resource stakeholders: developers of RL algorithms. While
human-derived solutions to adaptive natural resource management problems could present similar problems, just
with different stakeholders, we suggest that RL applications in environmental decision-making also create unique
considerations. The emergent issues and social implications of applying RL to domain-specific problems (Whittelstone
et al., 2018), such as the trade-offs between oversight and efficacy, are particularly relevant to environmental domain
applications. While a small body of existing literature has explored ethics and transparency issues in RL applications to
the environmental domain (Galaz et al., 2017), this previous work has primarily responded to problems arising from the
more visible applications of RL, like the COTSbot.

This paper focuses on how reinforcement learning could reshape the terrain of power relations in environmental
decision-making and policy. Given that private industry has become integral to the operations of some of the largest-
scale environmental initiatives and data sets, we explore the intersection of power, accountability, and privatization in
RL-driven environmental decision processes.

2 A brief introduction to reinforcement learning in environmental domain problems

A thorough introduction to reinforcement learning (RL) can be found in other texts (Sutton and Barto, 2018). Here, we
briefly present concepts critical to our discussion of power and accountability in environmental applications.
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A. RL formulation
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B. Fisheries System C. “World-Earth” System
(Lapeyrolerie et al., 2021) (Strnad et al., 2019)
Summary: Determining fishing quotas is both a Summary: World-Earth system models
critical ecological issue and an ideal case study for are used for describing the dynamics of the
adaptive management of renewable resources. In interactions between the biophysical, or "earth”,
the fishery RL example, a deep RL agent interacts system and the socio-political-economic human,
with a simulated fish population. At each time step, or “world” system. In the example, Strnad et al.,
the agent determines a quota as its action. The RL develop an agent to learn strategies to stay
environment consequently reports the population within biosphere boundaries. This work uses
of the fishery and the actualized harvest as the stylized models of the Earth system to
state and reward, respectively. The objective for demonstrate the potential of applying DRL
the agent is thus formulated to maximize the algorithms to large scale biosphere governance
expected cumulative harvest. issues.

Action space: Discrete set of governance
management options (Carbon Tax, Subsidies
for renewables, nature Protection policy)

Action space: Harvest quota, continuous
between [0, 2K) where K is the stock carrying
capacity

State space: tuple consisting of atmospheric

State space: Number of fish in stock,
continuous between [0,2K) where K is the
carrying capacity

carbon level, economic output , and renewable
resource stock

Reward function: Distance of S from

Reward function: Actualized harvest of fish planetary boundary

Figure 1: (A) Conceptual diagram of Reinforcement learning. RL problems consist of a set of states S, a set of actions
A, set of conditional transition probabilities between states T'(s¢1|s¢, at+), a reward function 7(s¢, a;), and a discount
factor. The task for the agent is to learn a policy, that maps what action the agent should take given a state s to maximize
the expected sum of future rewards, r.(B-C) There are numerous proposals for applying RL to environmental problems.
We highlight two examples here, which serve as examples throughout the paper. Additional examples of RL applications
to environmental domain problems can be found in Table 1.
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Faces of power Definition Potential RL Implementation

Ability of one person/group to
achieve compliance of others
(who change how they
behave as a result of the
power being exerted)

Defining reward functions and objectives of
an RL problem and implementing solutions
that center a given perspective interest over
another

Ability to control the context
within which decisions are Defining the possible structures of reward
made in a way that influences | functions and environments.

those decisions

Ability to control what people | Ability to shape taken for granted conceptions
think about as being ‘right’in | of reality (e.g., state and action sets,
quiescence. Can lead to transition functions). Can lead to the
acceptance of decisions unquestioned acceptance of decisions as
framed by dominant actors framed by dominant actors.

Table 2: Three faces of power (inspired by Lukes, 2004) and their connection to RL applications to the environmental
domain.

Reinforcement learning is a subfield of machine learning in which an agent learns to take action in an environment
to maximize some notion of reward via trial and error. When the environment is fully observable, the reinforcement
learning problem can be formalized as a Markov Decision Process (MDP), which consist of a set of states S, a set of
actions A, set of conditional transition probabilities between states as a function of actions, a reward function r(s;, a;),
and a discount factor. The task for the agent is to learn a policy that maps what action the agent should take given a
state s to maximize the expected sum of future rewards. While there are numerous reinforcement learning algorithms to
approach finding optimal action policies, the main objective to maximize expected rewards remains (Figure 1A). It is
noteworthy that deep RL, or RL that leverages deep learning methods (e.g., Neural networks) to find action policies, has
excelled in solving sequential decision-making problems with complex state-action spaces, which are often intractable
with classical optimization methods.

While RL is not widely applied in environmental decision making, an expanding literature suggests that there are
potential applications of RL in spatial conservation planning (Antonelli et al., 2021), harvest quota setting (Lapeyrolerie
et al., 2021), precision agricultural management (Overweg et al., 2021), and enforcement of environmental regulations
(Wang et al.,2021) (Table 1). We focus our discussion around two proposed applications of RL in environmental
decision making: (1) Harvest quota setting in fisheries and (2) global climate change mitigation strategies (Figure
1B-C).

3 Reinforcement learning and power: Deciding on the salient features of an environmental
reality

Reinforcement learning algorithms have primarily been developed and trained in the context of games (e.g., chess)
or simple physical tasks (e.g., robotics) - where distilling "reality" into a formal set of possible states and actions is
comparatively uncomplicated. Most games offer a discrete set of states with defined dynamics, a set of possible actions,
and rules for receiving rewards (or winning). In the case of a "game," formalizing the RL state and action space, and the
reward function, is straightforward, even when learning to navigate that space effectively is not (Silver et al., 2018).
Because reinforcement learning methods are still being developed predominantly in the context of these toy problems,
the process of formulating environments to train and test RL algorithms has largely been uncontroversial. However, in
application domains (such as environmental management), the power inherent to distilling problem scope is essential to
address.
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Applying RL to problems in the environmental domain (e.g., Figure 1B-C; Table 1) creates considerations beyond
how to develop effective learning algorithms. We must first address how we define and bound that environmental
problem and process. In the example of chess, the way in which we formalize the game for the agent/algorithm to
learn action policies shape the "reality" that results from the agent’s chosen actions. RL is "world-making" (Table 2) in
the sense of conditioning "practices and capacities entailed in ordering and arranging different ways of being in the
world" (Bucher, 2018:3). In domain applications, like environmental management problems, the RL agent is often first
trained on some model or simulation of reality. Modeling that reality necessarily involves making assumptions about
the world’s salient features. However, defining the most salient features of an environmental management problem (the
system dynamics, the objective, the scope of reasonable actions) is not as simple as doing so in the case of chess. The
plurality of environmental problems and processes raises the central issue herein (Levin et al., 2018).

The world-making conditions of RL are not disconnected from the long-standing issue of representing and reconciling
diverse perspectives in environmental decision-making processes. The biosphere is complex and dynamic, and as
a result, reasonable differences in opinion about its reality are sure to exist among and between stakeholders and
environmental decision-makers (Levin et al., 2018). The process of bounding and formalizing environmental systems
effectively entrenches a particular version of what is "real" at the expense of other ways of bounding and formalizing
the environment. However, unlike statistical models or scenario planning which similarly bound a complex system, RL
directly implicates the decision in the conception of the world. By defining the action space in an RL problem, we
shape the scope of possibility for that environmental policy. By defining the states of the environment and the reward
functions, we shape the scope of possibility for the environment the most optimal actions. When applied to a real-world
setting, by shaping the state and action space and the reward process, we shape the world itself.!

Consider a simple example of using RL to set harvest quotas in a fishery (Figure 1B). The action space could be defined
as an annual harvest quota (how many fish you are allowed to take from the sea) to maximize expected long-term yields.
The state-space could be a one-dimensional representation of a given fish stock. In this case, an RL agent might be
trained on a simple simulation of approximate fishery dynamics to learn an effective policy for setting quotas. After we
train an agent on a simulation environment that approximates the fishery, we could query the agent’s policy to find a
quota for the observed stock in real life (Lapeyrolerie et al., 2021). But in an alternative representation of the problem,
the state space could represent the fish stock as part of a larger ecological (or socio-ecological) system. The action
space could remain the same, but the algorithm’s solution to the problem in the simulation space and the real world
would undoubtedly change. Alternatively, the action space could be changed (e.g. to a temporally and spatially dynamic
closure of a fishery rather than a harvest quota). Like changing the state space, this would shift the environmental and
social reality over time by shifting the world in which the agent is learning and making decisions. We can imagine
even more options in a second example, where RL provides strategies for avoiding planetary boundaries (Figure 1C).
In the case of global environmental problems, like climate change, capturing the salient features of both biophysical
and socio-political-economic realities hands both agenda setting and world-making power to those implementing the
methodologies even if decision making itself stays in the hands of existing governance structures (Table 2).

In each of these examples (Figure 1B-C), it is easy to imagine where political concerns could define ’reality’ (Mol,
1999): problems can be formalized to benefit the actors with the most power. But, again, these issues are not necessarily
specific to or emergent from the RL technology itself. Instead, those with decision-making power already hold power to
define which environmental realities are given weight and whose interests are centered. RL only refracts these issues
onto a new set of stakeholders. However, RL differs from more transparent algorithmic decision making process (like
an analytical model or MDP) in the relative lack of capacity to query solutions, shifting the decision making and agenda
setting power to those who "define the world" in the first place.

4 Power and Privatization

Manipulation of preferences, behavior and political ideologies by technology (and technology companies) is widespread
(Morgan, 2019). It is reasonable, then, to think that in the case of environmental decision-making processes, private
industry could exert power by not only manipulating outcomes and agendas (decision making and agenda setting power;
Table 2) in favor of their interests but also by shifting the framing of realities.

The increasingly ubiquitous private industry involvement and the potential of proprietary or partly proprietary platforms
within which private industry operates create new stakeholders and shifts the balance of power in RL-driven policy. One
lens for making sense of the world-making capacity of RL (and algorithmic approaches to conservation more generally)
is that it may simply reshape or replace existing infrastructures of environmental policy. Private infrastructure for public

'In this sense, RL (and potentially environmental models more generally) is "performative” in MacKenzie’s (2006) sense of
"effective performativity" - making a difference in the world, and potentially "Barnesian performativity" of self-validating feedback
loops.
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policy — or in the words of Plantin et al. (2018), the "infrastructuralization of platforms" — poses unique problems
related to stakeholder engagement, transparency and accountability. The use of RL in environmental conservation
may contribute to the infrastructuralization of tech companies’ platforms by making policy design and implementation
reliant on particular (and potentially proprietary) technical systems. Proprietary technical systems are already used
to support environmental decisions (e.g., forest and land use satellite monitoring from Planet Labs). However, unlike
other technologies (e.g., ML) and data platforms, reinforcement learning centers around the formulation of decisions
themselves. Figure 1C outlines a relevant example. Providing climate projections differs from the RL formulation of
the problem which offers effective governance policies given some state of the system. Projections do not necessitate
outlining a discrete set of potential actions. In the case of carbon taxes and subsidy allocation (Figure 1C), private
industry (and tech industry specifically) has clear incentives to influence decision options to match their financial
interests.

The problem is not that tech companies might control the entire policy process through RL, or even the decision-making
itself, but that their platforms mediate policy more than they previously have, and may displace other decision-making
(or decision-supporting) mediums. Tech companies thus become de facto stakeholders by shaping the tools through
which policies become formulated and assessed (agenda setting power; Table 2). The reliance on private companies’
platforms effectively involves a delegation of the power to define policy problems away from democratically elected
decision makers, even when those decision-makers still have the final say.

5 Accountability and blame

The power dynamics presented by RL-driven environmental policy contribute to emergent problems in decision
accountability. Even in the most advanced applications of RL (e.g., autonomous cars), the law has failed to keep up
with the technology’s ever-changing landscape (Greenblatt, 2016; Gless, 2016). Who is responsible for an autonomous
decision that results in a devastating outcome? Who should be held accountable for a machine’s actions? Referring
back to our theoretical fishery example where decisions are transitioned from a simple optimal control algorithm to an
RL agent, we could ask: Who is responsible if the fish stock collapses due to following decision rules suggested by
an RL agent? Who is accountable for addressing when the RL action policy benefits one resource user at the cost of
another, even when not immediately apparent in the RL reward function? Does accountability shift outcomes?

RL-driven decisions in the environmental domain might entrench existing problems of legally attributing accountability
for environmental degradation. Cases of negligence in environmental management have a long legacy of ambiguity in
the face of the law, even when considering human or corporate actors (e.g., prosecuting oil companies for the impacts
of climate change). Reinforcement learning stands to distort an already ambiguous concept of "foreseeability" in
environmental systems (Hunter, 2006). If companies that develop RL infrastructures for environmental decisions were
to be sued for negligence (that resulted in poor or inequitable outcomes, or outcomes that served their self-interest), to
place legal blame would require showing that any harm was a foreseeable consequence of negligent conduct. Because
the decision policy of RL (and in particular deep RL) depends on influences external to the developer (the software
evolves as it interacts with the environment and receives rewards) external forces could be pointed to as the actual
cause of any bad policies or outcomes. The situation could feasibly be deemed unforeseeable and remove any liability
from the RL developer. Particularly in the case of private industry management and development of RL platforms and
infrastructures the issue of accountability is critical. If developers are not accountable for outcomes, policies can center
self-interests over more broadly beneficial environmental results.

6 Navigating power and accountability in RL driven environmental decisions

As outlined above, RL-driven environmental decision-making creates novel power dynamics and important consid-
erations for environmental accountability. We suggest the following three paths to navigate the issues raised in this
piece:

1. Leverage and center participatory methods: Inclusion of diverse voices, perspectives, values is a critical
to improving the formalization of environmental problems and processes. To center the values of often-
marginalized communities in the "world making" process, meaningfully consulting with communities using
methods such as focus group discussions, participatory mapping, interviews, and surveys can help further
include voices from resource-dependent communities (Chapman et al., 2021). Additionally, algorithmic audits
by key stakeholders in a given application might help identify and prevent injustices (Raji et al., 2020).

2. Maintain transparency and public engagement with environmental data and algorithms: Avoiding
reliance on proprietary software and developing open source requirements for any RL-based automated
decision processes in the environmental domain is an important step towards navigating issues of power
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and accountability. While large technology companies have increased their control over environmental data
management and algorithms throughout the past decade (e.g. Gorelick et al., 2017; Joppa, L. 2017), reclaiming
public management and free and open access of data and algorithms is critical. Because the tuning and training
of RL algorithms often requires cost prohibitive amounts of computational time and power, documentation of
both tuning and training processes could help ensure that objectives are not hidden underneath the nuance of
RL implementation.

3. Clarify channels for accountability and responsibility: Engaging with experts in environmental law to
address how RL fits into existing environmental policy statutes will be necessary to ensure responsible use of
these technologies. Additionally, leveraging the broader literature on algorithms and society for lessons on
developing methods for auditing RL algorithms will be critical.

7 Conclusion

RL holds promise for improving policy and management decisions in high-dimensional and uncertain environmental
systems. Understanding the normative implications of building, deploying, and evaluating these technologies is critical
to navigating their use in environmental policy. We show how RL applications to environmental management might
refract existing power asymmetries in environmental decision-making while also creating unique problems to navigate.
Finally, we raise questions about who is accountable for the outcomes of RL-driven decisions in ecological systems and
how we might navigate these dimensions of RL applications to the environmental policy domain.
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