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Burgess bounds for short character sums evaluated at forms II:
the mixed case

Abstract. This work proves a Burgess bound for short mixed charac-
ter sums in n dimensions. The non-principal multiplicative character of
prime conductor ¢ may be evaluated at any “admissible” form, and the
additive character may be evaluated at any real-valued polynomial. The
resulting upper bound for the mixed character sum is nontrivial when
the length of the sum is at least ¢ with 8 > 1/2 —1/(2(n + 1)) in each
coordinate. This work capitalizes on the recent stratification of multi-
plicative character sums due to Xu, and the resolution of the Vinogradov
Mean Value Theorem in arbitrary dimensions.
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1 - Introduction

Let x be a non-principal multiplicative Dirichlet character modulo a prime
q. Let g € R[xq,...,x,] be a polynomial of total degree d > 1, and let F' €
Z[z1,...,x,) be a form of degree D > 1. Define

SF,gNH) = > e(g(x)x(F(x)),

x€(N,N+H]

where N = (Ny,...,N,), H = (Hy,...,H,) and x € (N,N + H] denotes
those tuples x € Z" such that z; € (V;, N; + H;] for each 1 < i < n. Such
character sums are the building blocks of many methods in analytic number
theory. The trivial bound is |S(F,¢g;N,H)| < H;---H,, and bounds that
improve on this have many applications. Conjecturally one could expect square-
root cancellation to hold, for appropriate functions F and g. In the particular
case of short sums, namely those in which H; < ¢*/2, this remains out of
reach, and a central goal is to provide any nontrivial upper bound, that is
|S(F,g;N,H)| = o(H; --- Hy), valid for general choices of F, g.

Historically the most fundamental case has been that of a one-dimensional
multiplicative character sum, in which case Burgess’s work set the gold stan-
dard, also establishing a long-standing subconvexity result for Dirichlet L-
functions; see e.g. [Bur57, Bur63|. (This subconvexity bound has only now
been improved, in [PY19].) Burgess’s method of proof has been resistant to
substantial improvement, but recent work has begun to generalize the method
to new settings. For a survey of Burgess bounds, in particular in the case of
purely multiplicative sums, we refer to the overview given in [PX20].

In this paper we prove a Burgess bound for mixed sums of the form S(F,g;
N, H), for the largest class of forms F' (acting nontrivially on all variables) for
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which one would anticipate a nontrivial bound could be obtained. We formally
define this set of “admissible forms,” before stating our main result. For this
purpose, we recall that a polynomial h is said to be A-th power-free over F,
if when h is factored over F, into irreducible pairwise non-associate factors h;,
each h; appears to a power strictly smaller than A.

Condition 1.1 ((A,g)-admissible). Fiz a prime q and an integer A > 1.
A polynomial f € Fylz1,...,zp] is (A, q)-admissible if the following holds.
Upon writing f = g™h where g,h € Fylx1,...,2,] and h is A-th power-free
over [Fy, then h cannot be made independent of a variable after a linear trans-
formation, i.e. there exists no A € GLy(F,) such that h(xA) € Fylza, ..., xy].

For any A > 2, if a form F € Z[Xy,...,X,] satisfies F = GAH with
G,H € Z[xy,...,zy] where H is A-th power-free over Z and H cannot be
made independent of a variable after a GL,(Z) change of variables, then F' has
(A, g)-admissible reduction modulo ¢ for all but finitely many primes g. An
example of such a form is P +--- 4 22, and moreover, such forms are generic
amongst the set of all forms in Z[z1, ..., z,] of degree D. See [PX20, §3.1] for
further details on these facts.

Our main result is the following theorem.

Theorem 1.2. Fixn > 2 and d,D > 1. Let q be a fixed prime, and
let x be a non-principal Dirichlet character of conductor q and order A. Let
F € Z[zx1,...,x,] be a form of degree D such that its reduction modulo q is
(A, q)-admissible. Let g € R[zq,...,x,] be a polynomial of total degree d > 1.
Define for each integer r > 1,
r—1
n—1

(1.1) O =0, = { n+d> n

J , M =My, = d< .

’ n+1
Let H = (H,...,H). Then for every integer r > 1 such that © = ©,, > M
and H < q%+4<®17M)7

n

i1l mO-M)i1
(1.2) IS(F,g; N,H)| < H”_zirlq ar(®-M) ¢F

for every € > 0; the implied constant may depend on n,d, D, A, r e but is
independent of g, F.

Remark. In dimension n = 1, an inequality analogous to Theorem 1.2
with © = ©1, = r and F(x) = = was proved by Heath-Brown and the author
[HBP15]. Upon setting ©;, = r in each instance where © = ©,,, appears
in this paper, the method of the present paper also recovers this case, but we
focus on n > 2. At the time it was published, some results in [HBP15] were
conditional on the Main Conjecture in the Vinogradov Mean Value Method,
which now has been proved [Wo016, BDG16].
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Theorem 1.2 is the first Burgess bound for mixed sums in dimensions n > 2
in which F' is allowed to be any admissible form. In this sense it is a natural
sequel to the work of the author with Xu [PX20], which introduced the (A, q)-
admissible class of forms, in the setting of purely multiplicative sums (namely
the case S(F,0;N,H)). Theorem 1.2 is of comparable strength to the purely
multiplicative case considered in [PX20]. Precisely, define

1 1

(1'3) B = 9 - m

Theorem 1.2 provides a nontrivial bound of the form |S(F, g; N, H)| < H"¢™?
when H > ¢%»t* for some sufficiently small x > 0, and the savings is of the
strength

2
(n+1) 2
4(n—1)

as k — 0; see §6.1 for details. In particular, note that this savings is independent
of the degree D of the form F and the degree d of the polynomial g; this is
achieved by an application of the sharp upper bound in the multi-dimensional
Vinogradov Mean Value Theorem, due to [PPW13] in many cases and [GZ19]
in complete generality.

Earlier work on two special types of mixed sums in dimensions n > 2 ap-
peared in two recent papers. In the special case F(x) = x1 - -z, the author
proved nontrivial bounds for |S(F, g; N,H)| as long as H; > ¢*/45 for some
small x > 0 [Piel6]. See also the preprint of Kerr [Kerl4] in the case that
F(x) = [[i-; Li(x) is the product of n linear forms L; that are linearly inde-
pendent over F,. In each of these special settings, additional structure allowed
the argument to achieve the Burgess threshold ¢'/4t* for any x > 0, in any
dimension.

O~

1.1 - Method of proof

The proof of Theorem 1.2 capitalizes upon recent foundational work of two
kinds:

1. Xu’s stratification of multiplicative character sums [Xul8];

2. the resolution of the Main Conjecture in the setting of the Vinogradov
Mean Value Method. In the “one-dimensional” setting this is due to
Wooley [Woo016] in the cubic case and to Bourgain, Demeter and Guth
[BDG16] for all higher-degree cases (see also Wooley [Wo0019]). In the
higher-dimensional setting, this is due to Guo and Zhang [GZ19], and



[5] BURGESS BOUNDS FOR SHORT CHARACTER SUMS 155

in certain regimes the earlier work of Parsell, Prendiville, and Wooley
[PPW13].

In particular, the proof of Theorem 1.2 applies a sharp upper bound for the
number of solutions to the (multi-dimensional) Vinogradov system

(1.4) xp bl =x e+ xg, 1<|8<d

withx; € Z" and 1 <z;; < X for 1 <j <2r, 1 <i<mn;here = (61,...,5)
is a multi-index with |B| = 1 + -+ + Bn. In fact our work also applies to
more general translation-dilation invariant systems (see Theorem 7.1), and as
our method naturally uses the properties of such systems, we introduce the
relevant terminology in the following section.

2 - Introducing the associated Vinogradov system

To prove Theorem 1.2 for a fixed (admissible) choice of F' € Z[z1,...,Zy)
and g € R[zq,...,z,], our primary object of focus will be

T(F,G;N,H)= sup sup| >  e(g(x)x(F(x))|,
9€F0(G) K<H |, c N N+K]

in which .%((QG) is a certain set of polynomials including the fixed polynomial g
of our choice. Our main bound for T'(F, G; N, H) involves counting the number
of solutions to a system of Diophantine equations, which we now introduce
precisely.

To prove Theorem 1.2, we may take G to be the set of all non-constant
monomials in n variables of total degree at most d, that is

(2.1) G={x"€Zlzr,...,x,),B=(Br,...,Bn) € Z2%,1 < |B| < d},

in which |B| = 81 + -+ + Bn. (Momentarily, we will also consider other sets
of monomials.) Given any set G of monomials, we define .%,(G) to be the set
of all real-variable polynomials that are linear combinations of the elements in
G U {1} (that is, including constant terms). We will call the set G defined
in (2.1) the standard system of monomials in n variables of degree at most d.
With this choice of G, given any polynomial g € R[x1,...,z,] of degree d, we
can embed it in #(G). In particular, |S(F,¢g; N,H)| < T'(F,G; N, H).

The main outcome of the Burgess argument we develop is an upper bound
for T(F,G;N,H) in terms of (i) a complete multiplicative character sum and
(ii) a complete additive character sum. We apply Xu’s stratification [Xul8]
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to bound the complete multiplicative character sum. We evaluate the com-
plete additive character sum precisely, and then dominate the outcome by the
number of integral solutions to the (multi-dimensional) Vinogradov system of
Diophantine equations (1.4) associated to the system G given in (2.1). (This is
sometimes also called a Parsell-Vinogradov system of equations when n > 2.)

Let J,(G, X) denote the number of integral solutions to the system (1.4)
with 1 < z;; < X for 1 <j <2r, 1 <i<n. Wealsolet M = M(G) denote
the sum of the total degrees of all multi-indices in {8 € ZZ, : 1 < |5| < d}.

Our main result in the context of Theorem 1.2 is as follows. For any n > 2
and r > 1, define © = O, as in Theorem 1.2. For all integers » > n and any
H=(H,...,H) and P < H with HP < g and P < Hq /?°,

T(F, G’, N,H) < (H/P)M/QTH_n/QTPn_l/qun/M‘(logq)n+1{Jr(G, 2H/P)1/2r
_’_q1/4r(H/P)nf®/2r}'

Theorem 1.2 then follows from an appropriate bound for J, (G, X) provided by
the multi-dimensional Vinogradov Mean Value Theorem, and an optimal choice
for P in terms of H,gq.

2.1 - Remark on more general systems G

Without any additional difficulty, our main arguments can replace the stan-
dard system G specified in (2.1) by any reduced monomial translation-dilation
invariant system. This terminology was introduced in [PPW13], and we briefly
recall the definitions. A given collection G = {¢1,...,gr} of R non-constant
monomials in Z[z1,...,x,] is said to be translation-dilation invariant if there
exist polynomials ¢, ¢ € Z[&1,...,&,] for 1 <m < R,0 <{ <m with ¢ ;m =1
for 1 < m < R and such that for any £ € Z",

In(X+8) = mo(©) + D eme(©)ge(x), 1<m<R
/=1

(See [PPW13, Eqn (2.3)] for an explanation of why such systems are called
translation-dilation invariant.) The system G is said to be reduced if the set
{91,...,9r} is linearly independent over R. To avoid degenerate cases, we
will only work with systems G that include all variables nontrivially, and in
particular include linear monomials in each variable.

For either the standard system (2.1) or for any reduced monomial transla-
tion-dilation invariant system G, the following quantities will arise in our proof.
Given G as above, we say it has dimension n and rank R. Let A(G) be the
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associated set of multi-indices, so that G = {x? : 3 € A(G)}. We set the
degree d(G) = max{|5| : B € A(G)} to be the highest total degree appearing
in a monomial in G. The rank is R(G) = |A(G)| and we define the weight
M (G) (or homogeneous dimension) by

(2.2) M@G)= Y I8l

BEA(G)

For the standard system G in (2.1) of monomials in n variables of total degree
at most d,

(2.3) R=R(G)= <”+d) 1, M=MG)= d(

n

n+d n
n Jn+1

We define the associated Vinogradov system of R(G) equations in 2r variables
by

(2.4) X poaxl=xl 4l e

We let J,.(G, X) denote the number of integral solutions to the system (2.4) with
1<z;; <X forl<j<2r,1<i<n. In full generality, our methods prove
that T'(F, G; N, H) can be controlled by the number of solutions J,.(G, X).

Proposition 2.1. Let n > 2. Let q be a fized prime and let x be a non-
principal Dirichlet character of conductor q and order A. Let F' € Z[xy, . .., xy)
be a form of degree D, with (A,q)-admissible reduction modulo q. Let G
be a reduced monomial translation-dilation invariant system (containing lin-
ear monomials in each variable) with weight M(G). For each r > 1 define
©=0,,= U;:%J For all integersr >n and any H=(H,...,H) and P < H
with HP < q and P < Hq /29,

T(F, G:N, H) < (H/P)M(G)/2ern/2rPn71/2rqn/4r(log q)nJrl{Jr(G, 2H/P)1/2r
+ q1/4r(H/P)n—@/2r}.
Thus for any translation-dilation invariant system G for which a suitable

bound is known for J, (G, X'), we can deduce a Burgess bound for |S(F, g; N, H)|,
for any polynomial g in the span of G.

Remark . Given g, one could optimize the choice of G as in [Piel6], but
we do not pursue this here.
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2.2 - Key results for Vinogradov Mean Value Theorems in multi-dimen-
stonal settings

Once we have proved Proposition 2.1, it is clear that the key remaining
step to prove Theorem 1.2 is to bound J,.(G, X). In dimensions n > 2, Parsell,
Prendiville, and Wooley [PPW13| proved that for any reduced translation-
dilation invariant system G, for all » > R(G)(d(G) + 1), the sharp upper
bound for J.(G, X) holds. For this range of r, the sharp upper bound is
(G, X) <pmge X2~ M(G)+e Recently, Guo and Zhang [GZ19] have proved
the sharp upper bound for J,.(G,X) for the standard system (2.1), for all
n > 2,d > 1 and all » > 1; the exact form of the sharp upper bound de-
pends on the size of r. This completely resolves the Main Conjecture for the
multi-dimensional Vinogradov Mean Value Method, for the standard system
(2.1). (See also the earlier proof of the sharp upper bound for n = 2,d = 2
in [BD16] and n = 2,d = 3 in [BDG17].) More generally, Guo and Zorin-
Kranich [GZK20] have now proved sharp upper bounds for J,.(G, X) for all
r, for any system G that is an Arkhipov-Chubarikov-Karatsuba system. We
provide more details on these bounds for J,(G, X), and their implications for
Burgess bounds, in an appendix in §7.

3 - Initiating the Burgess argument

For the remainder of the paper, we assume that n > 2 and that a prime g has
been fixed; we then fix a non-principal multiplicative character x of conductor
g and order A. We fix a degree D and assume F' € Z[xy,...,z,] is a form of
degree D such that its reduction modulo ¢ is (A, ¢)-admissible. We let G be a
reduced monomial translation-dilation invariant system with all corresponding
notation as defined above; to avoid degenerate situations, we assume that G
contains linear monomials in each of the n variables. In particular, for Theorem
1.2, we can take G as in (2.1). We then define

T(F,G:N,H)= sup sup | Y  e(gx)x(Fx)|.
9€70(G) K<sH |y e (N N+K]

The construction T'(F,G;N,H) (which also appeared in [HBP15]) has
several advantageous properties in comparison to a sum S(F,g;N,H) with
a fixed polynomial g. First, T(F, G;N,H) is periodic under any shift of N
by multiples of g, and thus we will assume from now on that 0 < N; < ¢
for i = 1,...,n. Second, the fact that T'(F,G;N,H) includes a supremum
over polynomials in .%(G) will allow us to replace a supremum over ranges
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of summation by a supremum over linear phases via Fourier inversion (Lemma
3.2), which in turn is subsumed in the supremum over polynomials in .%y(G).
Finally, and most crucially, the supremum over g € .%,(G) will allow us to run
the Burgess argument including the factor e(g(x)), as we now demonstrate.

To begin the Burgess argument, we suppose H = (H, ..., H) is fixed with
H < q. We consider any K < H, by which we mean K; < H fori=1,...,n.
For any tuple K we denote ||K|| = K --- K,. For a parameter P assumed to
satisfy 1 < P < H we define the set P of auxiliary primes by

P={P<p<2P:pfq},

so that |P| > P/log P. We write each x € (N, N + K] according to its residue
class modulo p, as
x = ag + mp,

where a = (ay,...,a,) with 0 < a; < p and m € (N®P N&P + KP], with the
definitions

N#P = N/p — aq/p, K? = K/p.
Then by applying the periodicity and multiplicativity of x and the homogeneity
of F, for any g € %y(G),

> elgx(FE) = Y > elglag +mp))x(F(aq + mp))

x€(N,N+K] el o, ME(NP Nar+KP]
=%

=x(") > > elg(ag + mp))x(F(m)).

iy N N K]

In particular, we note that KP < K/p < H/p < H/P. Consequently, after
taking absolute values and taking the supremum over g € Z#,(G) and K < H,
we have
T(F,G;N,H) < Y  T(F,G;N*?,H/P).
O§:;<p

Finally, we average this inequality over all p € P, so that

(3.1) T(F,G;N,H) <[P|[7'Y > T(F,G;N*? H/P).
pEP ogaai<p
Remark. In [Piel6], we restricted to the special case F(x1,...,z,) =

T1--+Tp, and we could freely average over a distinct set of primes in each
coordinate. Due to averaging over a larger set, we could recover a nontrivial
bound for H; as small as ¢/ for x > 0. In our present setting, we can see



160 LILLIAN B. PIERCE [10]

from the argument above that to exploit the homogeneity of F' we must use
the same prime p for each coordinate, leading to a smaller set to average over.
Nevertheless, many of the arguments of [Pie16| may be adapted, and thus we
will be efficient in our presentation.

Our next step is to introduce further averaging so that we may free the start-
ing points N#P from the dependence on a,p, enabling us to later interchange
the order of summation, and apply Holder’s inequality.

Lemma 3.1. Fiz U € R" and L € RY,. For any K <L,

T(F,G;UK) <2|L|™" )  T(F,Gim,2L).
U-L<m<U

This follows verbatim from the inclusion-exclusion proof given in [Piel6,
Lemma 3.1], with each instance of xi(x1) - xn(zyn) replaced by x(F(x)), so
we do not repeat the proof here. (See also [PX20, Lemma 5.1] for more details
on the inclusion-exclusion.)

We apply the lemma to (3.1) with L = H/P (recalling H/P > 1) to obtain

(3.2)
T GiNH) < /PP D, ) S T(F,Gim,2H/P).
PEP 0§;<p Na.»—H/P<m<N2p

Now for each m we define
Am)={peP,a,0<a; <p:N**—H/P <m < N}

By Lemma 5.2 of [PX20], A(m) vanishes unless |m;| < 2q for each i, and
moreover as long as

(3.3) HP < q,

which we henceforward assume, then
S Afm) < 3" A(m)? < PH].

Applying Holder’s inequality twice to (3.2) then shows that

T(F,G;N,H) < ||H/P”_1|'P|_1 (Z A(m))l—l/r (ZA(m)Q)l/Qr
1/2r
> T(F,Gim,2H/P)"

m, |m;|<2q
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After simplification (recalling the periodicity of T'(F, G; m, H) under shifts of
m modulo ¢), we see that
(3.4)
1/2r
T(F,G;N,H) < [H|"/> P/ (logP) | > T(F,G;m,2H/P)*
m (mod q)

3.1 - Strategy to remove the suprema

We required the definition of T'(F, G; N, H) to include two suprema in order
to complete the various averaging arguments in the opening steps of the Burgess
method, described above. Now we work to remove these suprema, in order to
reveal a complete character sum over m (mod gq).

We define

To(F,G;m,K) = sup > elgx))x(F(x))
9€70(C) | e (mm K]

— s | Y elg)x(P(x +m)).
9€70(G) | xc(0,K]
Next, we suppose that we have indexed a finite set of polynomials 6, € Rz, ...,
xy] according to a finite set of indices «, and for each such polynomial we define

Ty (F,00;m,K) = | Y e(fa(x))x(F(x +m))|.
0<x<K

Remark . Note that this is equal to S(F, g;m, K) with g(-) = 0,(- — m),
but for technical reasons it is easier to work with the notation 77, which builds
the shift by m into the argument of the multiplicative character.

To remove the suprema in the expression 1T', we will pass from expressions
involving T to expressions involving Ty, and then to expressions involving 7T7.
Then we will be ready to evaluate the contribution of the additive character
sum exactly, and to apply Xu’s stratification to bound the contribution of the
multiplicative character sum.

3.2 - Approximations of the additive character contribution

We first pass from 7" to Tj inside (3.4), by applying Lemma 3.3 of [Piel6]
(an n-dimensional version of [BI86, Lemma 2]), which we recall here:
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Lemma 3.2. Let a(n) be a sequence of complex numbers indexed by integral
tuples n supported on the set n € (A, A+ B| C Z". Let I = (C,C + D] be any
product of intervals with I C (A, A + B]|. Then

Z a(n) < (H log(B; +2)) sup Z a(n)e( -n)|.

nel i=1 0ER™ | hc(A,A+B]

This lemma shows that for any m,

T(F,G;m,2H/P) < (][ log(2H;/P + 2))Ty(F, G; m, 2H/ P)
=1

since 2H;/P < 2q. Note that here we use the fact that G contains linear
monomials in each variable, so that the supremum over # € R" is subsumed in
the supremum over g € .%y(G). In the setting of Theorem 1.2, we are using
the hypothesis that the degree d of the polynomial g is at least 1.

Applying this in (3.4) proves

(3.5) T(F,G;N,H)
1/2r

< B2 P o gyt [ ST Ty (F, Gy, 28/ P
m (mod q)

In order to pass from Tj to expressions involving 77, we must fix a set of rep-
resentative polynomials 6, (indexed by «) with the following property: for each
m, one of the representative polynomials 6, (depending on m) has the property
that T4 (F, 6,; m,2H/P) is sufficiently close in value to Ty(F, G; m,2H/P).

We define these representative polynomials as in [Piel6, §4], according to
a fixed integer @) > 1 (to be chosen later), and Q = (Q, ..., Q).

We let Ag(G) = A(G)U{(0,...,0)} so |[Ao(G)|=R+1= R(G)+1. Since
within the phase of an exponential sum, the coefficients of a polynomial g are
regarded modulo 1, .%(G) is represented by [0,1]%*!, and upon ordering the
R+ 1 multi-indices 8 € Ag(G) in a fixed manner as 50 = 0, ..., 3%) once and
for all, we partition the 3)-th unit interval [0, 1] in this product [0, 1]%+! into
Q%" = QB sub-intervals of length Q=181

We recall from [Piel6, §4] the following facts about this decomposition.
Recall the weight M = M(G). The decomposition partitions [0, 1]%+! into QM
boxes, which we call B, according to indices « that we order once and for all.
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For each such box B, we assign its distinguished vertex 6, to be the vertex
with the least value in each coordinate, which is of the form

—18(0) —|18(R)
(36) 06! = (Qa,ﬁ(oh SRR ea,B(R)) = (Cﬁ(O)Q 18 |a sy Cﬁ(R)Q 18 |)7

where cgo) = 0 and for each j =1,..., R, () 1s an integer with 0 < cg() <
(4)
QP —1.

Remark . The outcome here is simplified relative to [Piel6] since in our
setting all the coordinates of Q = (Q,...,Q) are the same. In particular we
do not require the notion of the “density” of the system G, introduced with
the notation v(G) in [Piel6]; this was the sum of the exponents in A(G). A
reader comparing the notation here to [Piel6] will observe that any term of
the form Q7 in the previous work can be written here as QM with M = M(G)
the weight of the system G.

Now for any point 6 € [0, 1]f+!

nomial in R[X1,..., X,] by

(3.7) 0(X):= >  05X°.
BEA(G)

, we define an associated real-valued poly-

In particular, for each box B, with distinguished vertex 6, € [0,1]%+!, we
define the associated polynomial 6, (X). Finally, we define

Sp(k):=>_ Y Ti(F.0a;m k)”.

@ m (mod q)

Here the sum over a denotes the sum over the finitely many indices « in the
decomposition. The following lemma records an upper bound for T'(F, G; N, H)
in terms of S (k), according to this decomposition.

Lemma 3.3. Fiz any Q > 2H/P. Let [0,1]%! = U, B, be partitioned as
described above, according to indices o. Also assume HP < q. Then

1/2r
(38) T(FGNH) < HHH‘”Z’"P”‘W(Iogq)”“( sup sF<k>> .
k<2H/P

The proof follows that of [Piel6, Lemma 4.3] verbatim, upon replacing
each appearance of x1(z1) - xn(2n) by x(F(x)). Thus we do not repeat the
proof in full detail, but highlight the most important steps. Fix m and consider
the corresponding term Ty(F, G;m,2H/P)?" on the right-hand side of (3.5).
Since the coefficients of polynomials g € Z#,(G) are regarded modulo 1, by
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compactness the supremum over g € Z#y(G) in Ty(F, G;m,2H/P) occurs for
a particular polynomial, say g (depending on m). Then Ty(F, G;m,2H/P) =
T1(F, §; m, 2H/P).

The partition of [0, 1]#+! constructed according to the parameter @ contains
a box B, with index a (depending on m) with the following property: for
each multi-index 8¢ with j = 0,...,R, if 0, ) denotes the corresponding
coordinate of the distinguished vertex in By, and gg(;) denotes the coeflicient

of XA in g(X), then

~ —18@) .
‘Haﬂ(]')_gﬁ(]')’SQ |/8J‘7 .7:077R
Under the assumption that @ > 2H/P, partial summation shows that re-
placing the polynomial §g(X) in 73 (F, g;m,2H/P) by the polynomial 6,(X)
corresponding to this box B, makes a sufficiently small error. To state this

precisely, we define the notation that for any subset J C {1,...,n} with cardi-
nality 0 < |.J| < n and complement J = {1,...,n}\ J,

eJ),(J
Tl( I )(F,Ga;m,k(cJ),t(J)) = Z Z (x+m)) .
0<z;<k; 0<z;
JECI jeJ

Then partial summation (applied as in [Piel6, Lemma 4.1]) shows that as long
as Q > 2H/P,

T\(F, §; m,2H/P)

< Y (2H/P) lJ/ / DIV E 0o m, (2H/ P) ey, b)) db (-

JC{L,n} 2H/P]\J\

A repeated application of Hoélder’s inequality then shows that
T\(F, §;m,2H/P)*

< Y (2H/P) lJ'/ / TP D (F, 00 m, (2H/ P)e gy, b)) db (.
JC{L,m} (0,2H/ P)I7

Now, since we do not know which index o was chosen to approximate §(X) by
0. (X), we replace the right-hand side by the sum of this expression over all «;
by positivity, this only enlarges the right-hand side. We conclude that

Ti(F,§;m, 2H/P)*" < Z (2H/P)—J|/...

JCA{1,...,n}

/ ZT V(F,00;m, (2H/P) ey, ()% db -
(0,2H/ P]lJ1
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This statement now holds uniformly in m, and we can sum it over all m (mod q).
Note that by positivity, for any t(, € (0, 2H /P!,

SN TYNE b m, (2H/P) e gy, b))
@ m (mod q)

< sup Z Z T1(F, o; m, k)*"

k<2H/P "o (mod q)

In conclusion, we have proved that

> T(Fgm2H/P)” < sup > Y Ti(F,60;m k)*

k<2H/P

m (mod q) @ m (mod q)

and this suffices to complete the proof of Lemma 3.3.

Remark . While the introduction of the sum over a seems wasteful, the
key observation is that if the partition of [0,1]%*! is chosen in an arithmeti-
cally meaningful way, this sum over « can later be precisely evaluated. This
observation occurred first in [HBP15] in the case of dimension n = 1, and then
in [Piel6] in arbitrary dimensions. The precise evaluation of the sum over «,
which we carry out in the next section, introduces bounds for the number of
solutions to a system of Diophantine equations associated to G, and the corre-
sponding analogue of the Vinogradov Mean Value Theorem. The known bound
in the Vinogradov Mean Value Theorem leads to a savings that compensates
for the loss incurred by summing over all « in this step.

Finally, we remark on the fact that the right-hand side of (3.8) still contains
a supremum, while we claimed our maneuvers aimed to remove the suprema
from the objects we were considering. The point is that we will bound S (k)
by a non-negative function that is increasing in the coordinates of k, so that
the supremum over k < 2H/P may be handled quite simply at a later step (see

(5.7)).

4 - Evaluation of the additive component

We now turn to studying Sp(k) for a fixed k < 2H/P. It is convenient
to define the following notation. Given 27 tuples xW L x®) e 77 we will
represent this collection by {x}. For each j = 1,...,2r, let £(j) = (—1)’*! and
set 0(j) = +1if j is odd and A — 1 if j is even, where A is the order of x
modulo g. Given such a collection {x}, we then define

Yadd {X} Ze Z ] a(X(j))

7=1
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in which the sum over « denotes a sum over all the indices in the decomposition
of [0,1]%+! constructed above. Also define

Shas{xD) = D x(Fp(m)),

m (mod q)
in which
2r '
(4.1) Fg(X) = H F(X +xW)0),
j=1

Define Z(G; {x}) to be the indicator function for the set

2r
Vo(G) = {xM,.. . xC) ezm: Y " e(j)(xY) =0,v8 € A(G)}.
J=1

Later we will use the fact that
Ve (G) N (0,K]*"| < Jo(G, kmax),

where kpax = max{ki, ..., k,}, and we recall the notation that J, (G, X) counts
the number of solutions of the system (2.4).

Evaluating the sum over a in Y,4q({x}) leads to the following identity,
which we will apply with the choice K = 2H/P. Recall the weight M = M (G)
of the system G.

Lemma 4.1. Let K = (K,...,K). Upon setting Q = [2rK], for each
k <K,

(4.2) Spk) =QY > E(Gi{x})Sha({x}):

x(l) x(2'r) czn

~~~~~

0<x() <k

To prove the lemma, expand the 2r-th power in the definition of Sg(k) to
show that

(4.3) Sr(k) = Y Saa{x})Shae({x}):

,,,,, x(2'r) ez
o<x() <k

Now we recall the partition [0, 1]R+1 = Uy B, and the distinguished vertices 0,
which allow us to evaluate precisely the sum 3,44({x}) for each fixed collection
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{x}. Briefly (as also described in [Piel6, §6]), by definition of the distinguished
vertices 6, in (3.6) and their associated polynomials,

2r
Saaa({x}) =D e | D eli)fa(x)
2r )
= > el > Q| e,
€5(0) - C5(R) B=p00), ... B(R) j=1
where the sum over cg), ..., ¢z indicates summing for each ¢ = 0,..., R the

parameter cgi) over integers 0 < czi) < Qﬁm — 1. This can be re-written as

2r

Saaa({x}) =[] doooelesQ D e’ ,

B=B0)...8(R) | cz (mod QF) Jj=1
so that by orthogonality of characters, for each multi-index § we get a nonzero

contribution of Q® = QIP! if and only if 23221 £(5)(x9)? = 0 modulo QP.
Precisely, we have shown

Saa({x}) = QMEq(G; {x}),

where we recall the definition of M = M(G) from (2.2) and we define
E2qQ(G; {x}) to be the indicator function for the set

2r
44)  {xU, L xC ez e()(xD)? =0 (mod Q%),V8 € A(G)}.
j=1
Remark . Note that we do not need to consider a congruence condition

for Q% when 8 = (0,...,0), so we can write A(G) instead of Ag(G) in the
definition of this set.

If @ is sufficiently large relative to K, we may force the congruences in the
definition of this set (4.4) to be identities in Z, for every collection {x} such
that x(9) € (0,k], with k < K. It suffices to choose

Q= [2rKj.

Indeed, with this choice of (), we see that for any fixed k < K, each congruence
in (4.4) can only hold with x\9) € (0,k] if it holds as an identity in Z. We
conclude that

Zadd({x}> = QME<G7 {X})v

and this proves Lemma 4.1.
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5 - Stratification of the multiplicative component

The next step is to count the number of collections {x} for which I , ({x})
satisfies certain upper bounds. To do so, we will apply the stratification of
Xu [Xul8], in the format of [PX20, Theorem 4.4]. The key result we prove in
this section is as follows; we will apply this with K = 2H/P.

Proposition 5.1. Fizn > 2 and r > n. Suppose that K = (K,..., K)
with K > 1 and Q = [2rK]. Define © = ©,,, = [(r —1)/(n —1)|. Under the
assumption q1/2K_® <1

sup Sp(k) < QY{J(G, K)q"/? + K27~ Oq /2112y,
k<K

Remark . In the standard terminology of the Burgess method, the first
term in braces may be seen as the contribution of “good” collections {x},
namely those that lead to a complete character sum XF . ({x}) with square-
root cancellation. A key result of Xu’s work is that such “good” collections
are generic among all tuples in Z>"" N (0,k]?", once r is sufficiently large that
O, > 1. This term includes a factor J,.(G, K) instead of K*"" because of the
advantageous evaluation of the additive character sum, leading to the presence
of the indicator function Z(G;{x}) in (4.2), which imposes that the collection
{x} must lie in the set V,.(G). The savings of J,.(G, K) relative to K?"" will
compensate for the large factor QM in front, which we accrued by summing
over all indices o during the proof of Lemma 3.3.

The second term in braces is the contribution of the “bad” collections
{x}. The “bad” collections lead to character sums with bounds ranging from
O(q"+D/2) to O(¢™); Xu’s stratification helpfully shows that “bad” collections
have positive codimension in Z?"", and the collections that yield progressively
worse bounds for the character sum have progressively higher codimension.

Before we prove Proposition 5.1, let us see how it implies Proposition 2.1.
We apply the bound from Proposition 5.1 with the choice K = 2H/P in (3.8),
so that Q = [4rH/P] and so QM <, (H/P)™. We conclude that

T(F7 G:N, H) < (H/P)M/QTH—n/ZrPn—1/2rqn/4r(log q)n—l-l
A{Jn(G,2H/P)V? 4 ¢4 (H/P)" /2Ty,

as claimed in Proposition 2.1.

5.1 - Proof of Proposition 5.1

We first define some notation. Fix n > 2,7 > n. Recall that © = ©,,, =
|Z=1|. For any 1 < j < n, and for a tuple k = (ky,..., k) with ky < --- < ky,

n—1
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we define
(1 =0
1 = j=1,....n—2
B (jik) = B (fi k1, - kn) = k7 j=n-1
(Kp - kn/Q)zT j =mn,n even
(kp--- k(n_l)/Q)QTk’(n+1)/2 j =mn,n odd.

We now recall [PX20, Thm. 4.4], which is essentially the result of [Xul8],
specialized to our setting.

Theorem A. Let integersn > 2, r >n, A > 2, D > 1 be fired. Then
there exist constants C = C(n,r, D) > 1 and C" = C"(n,r,A, D) > 1 such that
the following holds.

Fiz a prime q, and let x be a non-principal multiplicative Dirichlet character
of conductor q and order A. Let F € Z[x1,...,x,] be a form of degree D
with (A, q)-admissible reduction modulo q. Define Fiyy(X) for each collection
{x} € Z* as in (4.1). Then for every 1 < j < n, for every tuple k =
(kiy... kn) €2 with 1 <k; <ky<---<k,<gq,

(5.1) #xW,xE) e (01| YT x(Fig(m))| > CgHI=D/2

m (mod q)
< C"||K[|* B (s k)"

Remark . For more information on the stratification theorem of Xu in
this setting, see [PX20, §2, §4], as well as the original work [Xul8]. Roughly
speaking, the exponent © = ©,, , arises from a lower bound on the codimension
of a subscheme of those collections {x} = (x(),...,x(7)) e Z>"" for which
square-root cancellation could fail to hold for the complete character sum. The
number of collections with a corresponding complete character sum that exceeds
square-root cancellation, i.e. Cg¢™/2, is bounded above by C” k| ki © the
number of collections with a corresponding complete character sum that exceeds
Cq"*t1/2 is bounded above by the smaller quantity C”||k||2’”kf2®, and so on.
This motivates the definition of the functions By, ,(j; k).

Now we prepare to apply the stratification result of Theorem A to Sp(k).
Let C = C(n,r, D) be the constant provided by Theorem A. Let us fix k < K,
not yet assuming the ordering k1 < ... < k,. For each 1 < j < n, define

(52) V=Y (k):=q{x} € (OK":| Y x(Fg(m))| > Cq"70/2

m (mod q)
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Then (0,k]” =Yy DY, DYo D --- DY, DY, 1 :=@. Upon employing the
disjoint dissection (0,k]?" = [17-0¥j \ Y41 in (4.2), we now see that for this
fixed k,

QMY > | S ({3}

J=0 (Y \Y; 1)V ()

Sr(k)

IN

3

IN

QM #(Y} N W(G))Cq(n+(j+l)_l)/2.
=0

Given that the method leading to Theorem A (see [Xul8]) can only compute
upper bounds for #Y; in terms of the dimension of Y}, it is difficult to obtain
a nontrivial upper bound for the intersection Y; N V,.(G), except in the case of
Yy = (0,Kk]?". But in this case, we see that

#(Yo NV, (G)) = #(Ve(G) N (0,K]*) < Jo(G, kmax)-

Thus we obtain
(5.3)  Sp(k) < CQY TG, kmax)qg™? + CQM Y #(Y] (k))gtm D=1/,
j=1

At this point, if in particular k1 < ko < -+ k,, < g then we can apply Theorem
A in the form of the upper bound #YJF(k) < C"||k||*" By, (j; k)7t for each
1 < j < n, uniformly in F'. Consequently in this case we have

(5.4) Sk(k) < CQYJ(G, kn)q"? + CC"QM Y~ ¢ |K|* By (5 k)

j=1
More generally, given any fixed k, we will re-order the variables x1,...,x, in
F(x1,...,2,) so that the correct ordering does hold for the entries in k, and

then we will apply Theorem A to a form defined according to this re-ordering.
This will use the uniformity of the bound in Theorem A, with respect to the
form F'.

We now give the precise argument. Given any permutation = on {1,...,n},
define the form F7(z1,...,7n) = F(Tr), Tr(2)s -+ Ta(n)); F7 has (A, g)-ad-
missible reduction modulo ¢ if and only if ' does. Given any fixed k < K, let
o be a permutation on the indices {1,...,n} such that

(5.5) ko) < ko) < < ko(n)-
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Given any tuple x € Z" let X5 = (Zy(1); - - - s T(n)) and similarly let {x}, denote
the collection xgl), e 7x((yzr). Since F(xy1,...,x,) = FU_l(xU(l), e To(n)) We

see that for any fixed collection {x},

Yo xFpgm) = > x(Fly mo) = Y X(Ff, (m)).

m (mod q) m, (mod q) m (mod q)

Of course, the set of all {x}, € (0,k,|?* identifies with the set of all {x} €
(0,k]?". In particular, if we recall that YjF (k) denotes the set in (5.2) and let

(5.6)

f ) (ko) :=< {x}s € (O,ka]”: Z X(F{Ux_}la(m)) > er(n+j—1)/2 7

m (mod q)

p—
we see that #YjF(k) = #YjF (k,) for each j = 1,...,n. We will apply this
inside each term in (5.3) (which we recall holds for k without assuming an
ordering on the coordinates of k). We thus obtain from (5.3) that

n
o1 :
Sp(k) < CQY T (G, kmax)q"? + CQM D #(V]" (ky))gHUHD=D/2,
j=1
Now k, satisfies the ordering (5.5) and thus we may apply Theorem A to bound
0,71
the cardinality of the sets YJF (k,) and conclude that

(5.7) Sp(k) < CQM I (G, kinax) g2+ CC"QM S~ )2k | By (i ko)
j=1

Observe that with respect to the variable k € R”, ||k||*" B,,-(j;k)~! is a
non-decreasing function in each coordinate of k; that is, for fixed » > 1, for
each 1 < j < n, there exist exponents a;1,...,®;, > 0 (also depending on )
such that

K[| By (3 k) ™F = hy e
for all tuples k with k1 < --- < k,. This is an immediate consequence of
the definition of the functions B, ,(j;-). In particular, for any k < K with
ky < -+ <ky, where K = (K,..., K), we obtain that

%[ By (43 %) < K- K09 = [[K[* By (5, K) 7
We apply this to each term in (5.7), and we conclude that

sup Sp(k) <08 QY IH(G, K)g"? + QY|K|*¢"* Y ¢ B,y (5:K) 7

k<K j=1
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Proposition 5.1 follows, after we verify a lemma about sums of the functions
By, »(j; ), which we prove in a general setting.

Lemma 5.2. If 1 < Ky < Ky <--- < K, then for each r > n,

n
(5.8) > @B (i K) T < ¢ PR
j=1
as long as
(5.9) ¢"PKO <1
By definition, the sum over j = 1,...,n — 1 takes the form
n—2 ' ) n—1 '
(5.10) quKl—J@ + q(n—l)/zKl—(r—l) < Z(quzKl—e)a
j=1 j=1

in which © = [(r—1)/(n—1)]; this used the fact that r—1 > (n—1)|(r—1)/(n—
1)] = (n — 1)©. The right-most expression shows that under the assumption
(5.9), all terms j > 2 are dominated by j = 1. The last term to check is j = n.
For n > 2 even, the j = n term is

qn/2(K1 . "Kn/2)_2T < qn/ZK;nr < (ql/QK;@)n’

in which we have used the ordering K1 < Ky < --- < K, and the fact that
r>(r—1)/(n—1) > O when n > 2. For n > 3 odd, similar reasoning shows
the j = n term is

qn/Z(Kl . 'K(nfl)/2)72TK ) < qn/ZKl—rn < (ql/QKl—G)n.

-r
(n+1)/
In either case, under the assumption (5.9) we see that the j = n term is
< ¢'PK 1 ©_ This completes the proof of the lemma, verifying Proposition 5.1,
and hence Proposition 2.1.

Remark. On the other hand, observe that the summands on the right-
hand side of (5.10) increase with j if ¢"/2K;© > 1; this will motivate our later
choice of P so that (5.9) holds, with K; = 2H/P.

6 - Concluding arguments for Theorem 1.2

With Proposition 2.1 in hand, the final steps to prove Theorem 1.2 are to
apply a bound for J,.(G, X) and to choose P. In order to motivate our choice
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for P < H, we recall that so far we have supposed in (3.3) and the application
of Proposition 5.1 with K = 2H/P that

(6.1) HP <q, P < Hqg /70,

We first argue formally in some generality, in order to understand the role
of the Vinogradov Mean Value Theorem. We suppose we are in a range of r
where

(6.2) J (G, X) <« X2rn—pte,

for some positive integer u (depending on n,d,r and the system G). As we
remark below, this is known for p = M = M(G) for all values of r that we
will consider, but for later reference we initially argue in terms of the abstract
parameter p.

Under these assumptions,

JT(G72H/P)1/2r_|_(H/P)n—®/2rq1/4r <<qe((H/P)n—u/2r+(H/P)n—@/2rq1/4r).

Now we observe that to balance these two terms we would choose P to be an
integer with

(6.3) %Hq‘imelm <P < Hq 7w,

This supposes that © > p in order to meet the requirement that P < H; since
© = |(r—1)/(n — 1), this is a requirement that r is sufficiently large with
respect to p,n. This choice for P also satisfies the requirements in (6.1), as

1 1
long as we assume that H < q2+4(@—#>.

Remark . This will be satisfied, by a hypothesis of the theorem, when we
ultimately apply this reasoning with up = M = M(QG).

We apply this choice of P in Proposition 2.1 to conclude that if (6.2) holds
then

n(O@—pw)+M+1—p

(6.4) T(F,G;N,H) < H" 5 q  #®-n ¢,

for any ¢ > 0, as long as ©® = [(r —1)/(n — 1)] > p. This is a condition
on r, namely r > p 4+ 1 when n = 2, and in general it suffices to have r >
(u+1)(n—1)+1 when n > 3.

Now to understand p in (6.2), we restrict our attention to G being the
standard system (2.1) for dimension n and degree d. (We remark on more
general systems in §7.2 in an appendix.) One can calculate that in order for
i, 7 to be such that (6.2) holds and simultaneously © = |(r —1)/(n—1)| > pu,
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we must be in the range of r such that the savings in (6.2) is p = M(G).
(We provide the details to prove this simple observation in the appendix.)
This comes from the known upper bounds in the multi-dimensional Vinogradov
Mean Value Theorem, which we now recall.

Precisely, for all n > 2, (6.2) with u = M is true for all values of r satisfying

65 r>M+1 n=2), r>M+)n-1)+1 (n>3),

due to the truth of the Vinogradov Mean Value Theorem for the system G
defined in (2.1). To be precise, for n > 3, J.(G, X) < X2 =M+¢ for 1 in the
range (6.5) is known from [PPW13].

Remark . This uses the fact that for n > 3, the requirement on r in (6.5)
imposes that » > R(d 4 1), which was the requirement in the work [PPW13|.

On the other hand, for n = 2, for each d > 2, in order to obtain this upper
bound for 7 in the range (6.5) one requires the stronger results of [GZ19], which
apply for all r > 1.

Thus we now only consider the case that (6.2) holds with p = M = M(G)
and r is in the range (6.5). When both these conditions are met, (6.4) shows
that

nt1 n(O=—M)+1

(6.6) T(F,G;N,H) < H" 2r q 6-M) ¢,

This suffices to complete the proof of Theorem 1.2, since |S(F,g;N,H)| <
T(F,G;N,H).

6.1 - Quantification of the strength of Theorem 1.2

Supposing that H = ¢, then the bound for |S(F,g N,H)| provided by
Theorem 1.2 is nontrivial i.e. 0o(¢g?) as long as

1 (©O-M-1)

(6.7) 6>§_%@—Mmﬂﬂy

in which © = [Z=1|. This allows for values of /3 strictly smaller than 1/2 as
long as r is sufficiently large that © > M + 1. The right-hand side in (6.7) is
always > B3, with 3, as defined in (1.3). We thus suppose that H = ¢%** for
some small k¥ > 0, in which case we can compute that |[S(F,g; N, H)| < Hg™0

with

2k(n+1)(©—M) -1

4r(©@ — M)
We now use the approximation of replacing © by (r —1)/(n — 1) (which in fact
is exact, when n = 2, and not far off from the truth when r grows very large, as

5 =
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it will when we choose r according to x and k — 0). After this approximation,
we can write § as the value at r of the function

br —c
fb,c,d(r)_m
with
1 1 —1
b:"‘(”;), c:(M(n—1)+1)“(”2+)+”4, d=M(n—1)+1.

The function f, . 4(r) attains a local extremum at r = b~ (c4+/c2 — dbc); using
the values for b, ¢, d above and simplifying using x — 0 we see that we should
choose 7 to be the nearest integer to

This choice of r satisfies © = O,,, > M if « is sufficiently small (relative to n, d).
We now apply this in the expression above for §, now further approximating ©
by r/(n — 1), and we see that in the limit as x — 0 we obtain a savings over
H™ of the form H"q ™%, in which

The significance of this savings is that it is independent of the degree d of g, due
to the application of the multi-dimensional Vinogradov Mean Value Theorem.
In particular, it is as strong as the savings of the first author and Xu [PX20]
in the purely multiplicative case.

7 - Appendix: Further remarks on Vinogradov systems

In this appendix, we briefly remark on three aspects of the proof of Theorem
1.2. First, we consider how improvements to © would lead to a setting in which
one would require the sharp results of [GZ19] for all n > 3, in addition to the
results of [PPW13]. Second, we explain why we only considered y = M in
the conclusion of the proof of Theorem 1.2, or equivalently, why the current
Burgess method in this setting leads to consideration of very large r. Third,
we briefly state a more general result for systems G other than the standard
system (2.1).
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7.1 - Remarks on the codimension ©

Let G denote the standard system (2.1) of monomials in n variables of
degree at most d. In the proof of Theorem 1.2, we applied the results of
[PPW13] to bound J,(G, X) when n > 3, and only required the stronger
results of [GZ19] when n = 2. We now remark that if one could improve the
stratification of Xu for complete multiplicative character sums (in the sense of
the discussion in [PX20, §8.2]), then one would require the results of [GZ19]
for all n > 2.

Precisely, we have seen in the argument in §6 that if the known upper bound
is J.(G,X) < X?~H+e then the result of the Burgess method developed
in this paper must restrict to values of r for which ® > u. Here © is the
codimension of the first exceptional subscheme X7 arising in the stratification
of Xu [Xul8]; see the remark following Theorem A for a rough idea. Currently,
for n > 2, Xu has obtained © > [(r—1)/(n—1)|. The appendix in [PX20, §8.2]
outlines conjectural possibilities for improvements to the codimension leading
to the value for ©; for example, one might hope to prove that © = r is possible.
In dimension n = 2 this is nearly attained already by © = |(r—1)/(n—1)], but
is significantly different from the current result for large n. Let us suppose that
one could prove © > r/a(n) for some function 1 < a(n) < n—1, leading to the
restriction r > pa(n) in the method of proof for Theorem 1.2. In particular, if
we use u = M and «(n) is not too large, then in order to obtain our theorem
unconditionally for all » > Ma(n) we would require the results of [GZ19] for
Jr (G, X) for those r with Ma(n) < r < R(d + 1), while [PPW13] would
continue to apply for r > R(d + 1).

7.2 - Remarks on intermediate ranges of r

In the proof of Theorem 1.2, we remarked that we need only consider the
upper bound (6.2) when p = M, where M = M(G) is the weight of the
associated system of Diophantine equations (the sum of the total degrees), and
r is very large. One might ask whether one could consider other values for u,
and correspondingly smaller values r. Here we explain why the Burgess method
developed in this paper only allows the regime of  in which y =M = M(G).

In the current discussion we can take G to be any reduced monomial
translation-dilation invariant system. Precisely, the question is: what must
 be in order for both (6.2) and © = [(r—1)/(n —1)] > p to hold? Given any
reduced monomial translation-invariant system G, suppose there is a sequence
of positive integers K; = K;(G) for 1 < j < n such that for all X > 1, for all



[27] BURGESS BOUNDS FOR SHORT CHARACTER SUMS 177

n
(7.1) Jr(G, X) Kpge XE(X™ 4 XIH=)=KG),
j=1
(Note that in this notation, K, plays the role of M(G).) In particular, by
the breakthrough work of Guo and Zhang [GZ19], this is now known for the
standard system G in (2.1) of monomials in n variables with total degree at
most d; in this case K; = ]Jd (J+d)

We claim that if a bound of the form (7.1) holds, then in order for both
(6.2) and [(r—1)/(n—1)| > p to hold (and hence certainly r > p), we must
have u = K,, (so that the j = n term dominates in (7.1)). Indeed, suppose that
r is such that the j-th term dominates in (7.1), for some 1 < j < n. In the
notation of (6.2), this would impose p = (2r — 1)(n — j) + K;. Then in order
to have r > p we must at least have r > (2r — 1)(n — j), which can only hold
if n = j. (Similarly, the term X" cannot dominate, since that would impose
i = rn, but the condition r» > u could not hold.) This proves the claim. (Even
if, for example, the codimension © could be improved to r, the analogue of
(6.3) would still require r > u, leading to p = M(G) via the same argument
given above.) Thus it appears that significant innovations to the method would
be required, in order to be able to apply counts for Vinogradov systems where
any term with j < n dominates in (7.1).

7.3 - Remarks on other systems

Let G be any reduced monomial translation-dilation invariant system, in
any dimension n > 2 and with degree d(G) > 1. Parsell, Prendiville and
Wooley proved that (7.1) holds for any » > R(G)(d(G) + 1), in which case
the j = n term dominates (with K,(G) = M(G)), and the upper bound is
(G, X) < X?n=M(G)+e More recently, Guo and Zorin-Kranich [GZK20]
have proved that a sharp upper bound of the form (7.1), with appropriately
defined K;(G), holds for all r > 1, for more general systems G, which we now
describe. Fix a tuple (ki, ..., ky) of positive integers. Fix an integer k. Let G
be the system defined according to the set of exponents

(7.2) MG) = {8 B < hry.or, B < hus1 < |B] < R},

If in particular k = k; = --- = k,, = d then this is the standard system (2.1).
If Kk =k + -+ k, then this is known as an Arkhipov-Chubarikov-Karatsuba
system. For the systems Guo and Zorin-Kranich handle we can thus obtain a
generalization of Theorem 1.2 in the largest range of r allowed by the Burgess
method developed in this paper. We record the conclusion of this discussion:
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Theorem 7.1. Fixn > 2 and d,D > 1. Let q be a fized prime, and
let x be a non-principal Dirichlet character of order A and conductor q. Let
F € Zlzy,...,zy,) be a form of degree D such that its reduction modulo q is
(A, q)-admissible. Let G be a reduced monomial translation-dilation invariant
system with rank R(G) and weight M (G) (containing linear monomials in each
variable). For each integer r > 1, define © = |(r —1)/(n—1)]. Then

il M(O—M(G))+1

(7.3) IT(F,G;N,H)| < H" "2 ¢ 7(®-MG) ¢,

for every integer r such that r > R(G)(d(G) + 1) and © > M(G), and for
every H = (H,...,H) with H < G2V AO-M(G) - Fyrthermore if G is a
system of the type (7.2) then we may take any r such that © > M(G). The
implied constant could depend on G,n, D, r e but is otherwise independent
of F.
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