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Integration of data from probability surveys and big found
data for finite population inference using mass imputation

Shu Yang, Jae Kwang Kim and Youngdeok Hwang!

Abstract

Multiple data sources are becoming increasingly available for statistical analyses in the era of big data. As an
important example in finite-population inference, we consider an imputation approach to combining data from
a probability survey and big found data. We focus on the case when the study variable is observed in the big
data only, but the other auxiliary variables are commonly observed in both data. Unlike the usual imputation
for missing data analysis, we create imputed values for all units in the probability sample. Such mass
imputation is attractive in the context of survey data integration (Kim and Rao, 2012). We extend mass
imputation as a tool for data integration of survey data and big non-survey data. The mass imputation methods
and their statistical properties are presented. The matching estimator of Rivers (2007) is also covered as a
special case. Variance estimation with mass-imputed data is discussed. The simulation results demonstrate the
proposed estimators outperform existing competitors in terms of robustness and efficiency.

Key Words: Calibration weighting; Data fusion; Generalized additive model; Matching; Nearest neighbor imputation;
Post stratification.

1. Introduction

In finite population inference, probability sampling is the gold standard for obtaining a representative
sample from the target population. Because the selection probability is known, the subsequent inference
from a probability sample is often design-based and respect the way in which the data were collected; see
Sdarndal, Swensson and Wretman (2003), Cochran (2007), Fuller (2009) for textbook discussions.
However, large-scale survey programs continually face heightened demands coupled with reduced
resources. Demands include requests for estimates for domains with small sample sizes and desires for
more timely estimates. Simultaneously, program budget cuts force reductions in sample sizes, and
decreasing response rates make nonresponse bias an important concern. Baker, Brick, Bates, Battaglia,
Couper, Dever, Gile and Tourangeau (2013) address the current challenges in using probability samples

for finite population inferences.

To meet the new challenges, statistical offices face the increasing pressure to utilize convenient but
often uncontrolled big data sources (also called big found data), such as satellite information (McRoberts,
Tomppo and Neasset, 2010), mobile sensor data (Palmer, Espenshade, Bartumeus, Chung, Ozgencil and
Li, 2013), and web survey panels (Tourangeau, Conrad and Couper, 2013). Couper (2013), Citro (2014),
Tam and Clarke (2015), and Pfeffermann, Eltinge and Brown (2015) articulate the promise of harnessing
big data for official and survey statistics but also raise many issues regarding big data sources. While such
data sources provide timely data for a large number of variables and population elements, they are non-
probability samples and often fail to represent the target population of interest because of inherent

selection biases. Tam and Kim (2018) also cover some ethical challenges of big data for official
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statisticians and discuss some preliminary methods of correcting for selection bias in big data. See
Keiding and Louis (2016), Elliott and Valliant (2017), Buelens, Burger and van den Brakel (2018), and

Beaumont (2020) for recent reviews of the challenges in using non-probability samples for inferences.

To utilize modern data sources in statistically defensible ways, it is important to develop statistical
tools for data integration for combining a probability sample with big non-probability data. Data
integration for finite population inference is similar to the problem of combining randomized clinical trial
studies and non-randomized epidemiological studies for causal inference of treatment effects (Keiding and
Louis, 2016). We are particularly interested in developing data integration under the setup where the study
variable is observed in the big data only, but some other variables are commonly observed in both data. In
this case, survey statisticians and biostatisticians have provided different methods for combining
information from multiple data sources. Lohr and Raghunathan (2017), Yang and Kim (2020), and Rao
(2020) provide a review of statistical methods of data integration for finite population inference. Existing

methods for data integration can be categorized into three types as follows.

The first type is the so-called propensity score adjustment (Rosenbaum and Rubin, 1983). In this
approach, the probability of a unit being selected into the big sample, which is referred to as the
propensity score, is modeled and estimated for all units in the big data sample. The subsequent
adjustments, such as propensity score weighting or stratification, can then be used to adjust for selection
biases; see, e.g., Lee and Valliant (2009), Valliant and Dever (2011), Elliott and Valliant (2017). Stuart,
Bradshaw and Leaf (2015), Stuart, Cole, Bradshaw and Leaf (2011), Buchanan, Hudgens, Cole, Mollan,
Sax, Daar, Adimora, Eron and Mugavero (2018) use propensity score weighting to generalize results from
randomized trials to a target population. O’Muircheartaigh and Hedges (2014) propose propensity score
stratification for analyzing a nonrandomized social experiment. One of the notable disadvantages of the
propensity score methods is that they rely on an explicit propensity score model and are biased if the

model is mis-specified (Kang and Schafer, 2007).
The second type uses calibration (Deville and Séarndal, 1992; Kott, 2006; Dong, Yang, Wang, Zeng

and Cai, 2020). This technique can be used to calibrate auxiliary information in the big data sample with
that in the probability sample, so that after calibration the big data sample is similar to the target
population (DiSogra, Cobb, Chan and Dennis, 2011). Because calibration does not require parametric
modeling, it is attractive to survey practitioners. However, this approach requires the information (such as
the moments) of the auxiliary variables for the population is known or at least can be estimated from a

probability sample.

The third type is mass imputation, where the imputed values are created for the whole elements in the
probability sample. In the usual imputation for missing data analysis, the respondents in the sample
provide a training dataset for developing an imputation model. In the mass imputation, an independent big
data sample is used as a training dataset, and imputation is applied to all units in the probability sample.
While the mass imputation idea for incorporating information from big data is very natural, the literature

on mass imputation itself is sparse. Breidt, McVey and Fuller (1996) discuss mass imputation for two-
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phase sampling. Rivers (2007) proposes a mass imputation approach using nearest neighbor imputation
but the theory is not fully developed. Kim and Rao (2012) develop a rigorous theory for mass imputation
using two independent probability samples. Chipperfield, Chessman and Lim (2012) discuss composite
estimation when one of the surveys is mass imputed. Bethlehem (2016) discuss practical issues in sample
matching. Recently, Kim and Wang (2019) develop a theory for mass imputation for big data using a
parametric model approach. However, the parametric model assumptions do not necessarily hold in
practice. In order for mass imputation to be more useful and practical, the assumptions should be as weak

as possible.
We summarize our contributions in this paper below:

1. We first develop a formal framework for mass imputation incorporating information from big
data into a probability sample and present rigorous asymptotic results for the mass imputation
estimators. Our framework covers the nearest neighbor imputation estimator of Rivers (2007).
Unlike Kim and Wang (2019), we do not make strong parametric model assumptions for mass

imputation. Thus, the proposed method is appealing to survey practitioners.

2. We also investigate two strategies for improving the nearest neighbor imputation estimator, one
using k nearest neighbor imputation (Mack and Rosenblatt, 1979) and the other using generalized
additive models (Wood, 2006). In k& nearest neighbor imputation, instead of using one nearest
neighbor, we identify multiple nearest neighbors in the big data sample and use the average
response as the imputed value. This method is popular in the international forest inventory
community for combining ground-based observations with imagines from remote sensors
(McRoberts et al., 2010). In this paper, we establish asymptotic results for the & nearest neighbor
estimator. In the second strategy, we investigate modern techniques of prediction for mass
imputation with flexible models. We use generalized additive models (Wood, 2006) to learn the
relationship of the outcome and covariates from the big data and create predictions for the
probability samples. We note that this strategy can apply to a wider class of semi- and non-
parametric estimators such as single index models, Lasso estimators (Belloni, Chernozhukov,
Chetverikov and Kato, 2015), and machine learning methods such as random forests (Breiman,
2001).

3. Using a novel calibration weighting idea, we propose an efficient mass imputation estimator and
develop its asymptotic results. The efficiency gain is justified under a purely design-based
framework and no model assumptions are used. We consider the case when additionally the
membership to the big data can be determined throughout the probability sample. The key insight
is that the subsample of units in Sample A with the big data membership constitutes a second-
phase sample from the big data sample, which acts as a new population. We calibrate the
information in the second-phase sample to be the same as the new acting population. The
calibration process in turn improves the accuracy of the mass imputation estimator without

specifying any model assumptions.
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The structure of the paper is as follows. In Section 2, we introduce the basic setup. In Section 3, we
present the methodology for the nearest neighbor imputation and establish its asymptotic properties. In
Section 4, we investigate two strategies for improving the nearest neighbor imputation estimator, one
using k nearest neighbor imputation and the other using generalized additive models. In Section 5, we
propose a regression calibration technique to improve the efficiency of the mass imputation estimators
when additionally the big data membership is observed throughout the probability sample. In Section 6,
we demonstrate that the proposed estimators are robust and efficient by simulation studies based on
artificial data and real-life data from U.S. Census Bureau’s Monthly Retail Trade Survey. In Section 7, we
present a case study applying the proposed method to integrate national health survey data and national

health insurance records. Section 8 concludes with a discussion.

2. Basic setup

2.1 Notation: Two data sources
Let 7, ={(X,,Y,):ieU} with U= {l, ..., N} denote a finite population, where X, = (X}, ..., X/)

is a p-dimensional vector of covariates, and Y, is the study variable. We assume that _#, is a random
sample from a superpopulation model ¢, and N is known. Our objective is to estimate the general finite
population parameter 4, = N ’IZZI g(Y)) for some known g(-). For example, if g(¥)=7Y,
U, = N’IZZIYi is the population mean of Y. If g(¥)=1(Y <c) for some constant c, u, =

N le 1(Y, < ¢) is the population proportion of Y less than c.

Suppose that there are two data sources, one from a probability sample, referred to as Sample A, and
the other from a big data source, referred to as Sample B. Table 2.1 illustrates the observed data structure.
Sample A contains observations O, ={(d, = x;', X,):i € A} with sample size n=|A|, where
w,=P(ieA) is known throughout Sample A, and Sample B contains observations O, =
{(X,, Y,):i € B} with sample size N, = | B|. Often the probability sample contains many other items
but we only use those items overlapping with our big data. Although the big data source has a large
sample size, the sampling mechanism is often unknown, and we cannot compute the first-order inclusion
probability for Horvitz-Thompson estimation. The naive estimators without adjusting for the sampling
process are subject to selection biases. On the other hand, although the probability sample with sampling

weights represents the finite population, it does not observe the study variable.

Table 2.1
Two data sources. “V” and “?” indicate observed and unobserved data, respectively
Sample weight d = 7' Covariate X Study Variable ¥

Probability Sample 1 v N ?
OA : : : .

n v v
Big Data Sample 1 ? N v
o, : : : :

N, ? v N

Sample A is a probability sample, and Sample B is a big data but may have selection biases.
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2.2 Assumptions

Let /(Y |X) be the conditional density function of ¥ given X in the superpopulation model £. Let
f(X) and f(X|6, =1) be the density function of X in the finite population and Sample B,
respectively, where o, is the indicator of selection to Sample B. We first make the following

assumptions.

Assumption 1 (Ignorability). Conditional on X, the density of Y in Sample B follows the
superpopulation model; i.e., (Y |X; 6, =1)= f(Y|X).

Assumptions 1 and 2 constitute the strong ignorability condition (Rosenbaum and Rubin, 1983). This
setup has previously been used by several authors; see, e.g., Rivers (2007), Vavreck and Rivers (2008).
Assumption 1 states the ignorability of the selection mechanism to Sample B conditional upon the
covariates. Assumption 1 also implies that P(6, =1|X, Y) = P(5, = 1|X). This assumption holds if
the set of covariates contains all predictors for the outcome that affect the possibility of being selected in
Sample B. Under this assumption, the missing outcomes in Sample A are missing at random (Rubin,
1976).

Assumption 2 (Common support). The vector of covariates X € R? has a compact and convex support,
with its density bounded and bounded away from zero. There exist constants C, and C, such that
C, < f(X)/f(X|6, =1)<C, almost surely.

Assumption 2 implies that the support of X in Sample B is the same as that in the finite population.
This assumption can also be formulated as a positivity assumption that P(J, =1]|X) >0 for all X.
Assumption 2 does not hold if certain units would never be included in the big data sample. The
plausibility of this assumption can be judged by subject matter knowledge. For diagnosis purpose, we can
examine the distribution of the estimated propensity scores or the distribution of the propensity score
weights in Sample A. Values of propensity score close to zero or extreme large values of the propensity
score weights indicate the possible positivity violation. We assume all covariates are continuous.
Categorical variables can be handled by first defining imputation classes using the partition of the
categories and then estimating the average of the outcome using the nearest neighbor imputation within
imputation classes. In our context, Sample B is a big data sample and therefore the size of donors for each

imputation class can be reasonable large.

3. Methodology

3.1 Nearest neighbor imputation

For simplicity, we will focus on the Horvitz-Thompson type estimator, although our discussion applies

to other type of estimators. If ¥, were observed throughout Sample A, the Horvitz—Thompson estimator

i
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fyyr =N ’lzie P 77'g(Y,) can be used. We consider the imputation estimator of M, given by
i, =N ’121_6 o 'g(Y,"), where Y;" is an imputed value for Y,. Creating imputed values for the whole
data is called mass imputation (Chipperfield et al., 2012; Kim and Rao, 2012).

To find suitable imputed values, we consider nearest neighbor imputation; that is, find the closest
matching unit from Sample B based on the X values and use the corresponding ¥ value from this unit as
the imputed value. This approach has been called Sample Matching by Rivers (2007). To investigate the
theoretical properties, we first consider matching with replacement with single imputation; the discussion

on k nearest neighbor imputation is presented in Section 4.
The nearest neighbor approach to mass imputation can be described in the following steps:

Step 1. For each unit i € 4, find the nearest neighbor from Sample B with the minimum distance
between X, and X,. Let i(l) be the index of its nearest neighbor, which satisfies
d (X, X;) < d(Xj, X,), for j € B, where d(X,., Xj) is a distance function between X, and
X ;. If there are ties, randomly select one as the nearest neighbor. Without loss of generality, we
use the Euclidean distance, d (X, X,) =X, = X, ||, where || X| = (X"™X)"*, to determine

neighbors.

Step 2. The nearest neighbor imputation estimator of 1, is

frg i = %;nﬂg(xm)- (3.1)
Remark 1. Our theoretical development applies to a general class of distances | X|, = (XTZ"IX)I/2 ,
where X is a positive definite matrix (Abadie and Imbens, 2006). This class includes the standard
Mahalanobis distance by taking ¥ to be the empirical covariance matrix of X. Write ¥ = L'L. Notice
that | X |y = {(LX)LX}"? = || LX|. Hence, using |||, and X is equivalent to using ||-|| and LX. So,

we can carry over the the theoretical result to the case with | X|; .

Comparing to model-based imputation, nearest neighbor imputation has several advantages. First, it
does not require strong parametric model assumptions and therefore is robust to model misspecification.
Second, nearest neighbor imputation is donor-based, where the imputed value is a value that was actually
measured and will always be within the bounds of observed values. Third, in contrast to regression
imputation approaches, nearest neighbor imputation can retain the complex variance covariance structure
of the data. Moreover, for the same imputed dataset, one can estimate different parameters by choosing
reasonable g(-). Recall that p is the dimension of X. The asymptotic bias of [, is of order
0, (N ;/7) (Abadie and Imbens, 2006), which is negligible when the number of continuous covariates is
fixed at a reasonable number and the size of the matching donor pool is huge as in our big data setup. In
the presence of a large dimension of X, variable selection is necessary for the nearest neighbor
imputation estimator to have good statistical properties. In this case, we suggest selecting important
variables that are associated with the outcome in order to ensure Assumption 1 holds and also to increase

estimation precision (Brookhart, Schneeweiss, Rothman, Glynn, Avorn and Stiirmer, 2006).
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3.2 Asymptotic results

To study the asymptotic properties of £, .., we impose the following regularity conditions.

Assumption 3. (i) f(X) and p,(X) = E{g(Y)|X} are continuously differentiable for any continuous
and bounded g (Y), and (i) E{g(Y)” |X} is bounded for g =1, 2.

Assumption 4. (i) There exist positive constants C, and C, suchthat C, < Nn"'zn, < C,, fori =1, ..., N;
(ii) the sampling fraction for Sample A is negligible, nN~" = o(1); and (iii) the sequence of the Horvitz-
Thompson estimators f1, . satisfies var (i, y)=0("") and {var,(@, )} (2, yr— 1) | F3—>NV(O,1)
in distribution, as n — oo, where var, (-) = var(-|_#y) is the variance under the sampling design for

Sample A.

For clarification, the probability distribution underpinning the notation E(-), var(-), o, (-) and O, (")
is the joint distribution of the superpopulation model and the sampling processes for Samples A and B.
Assumption 3 is a technical condition imposed on the functional continuity and finite moments, which
holds for common models; see, e.g., Mack (1981). Assumption 4 holds for standard sampling designs in
survey practice (Fuller, 2009; Chapter 1). It requires the sampling weights to behave well in the sense that
there do not exist extremely large weights that dominate other weights. This occurs when subjects when
certain characteristics are largely underrepresented in the sample. Sufficient conditions for Assumption 4
(iii) can be found in Chapter 3 of Fuller (2009).

We derive the asymptotic theory for £, .. in the following theorem and defer its proof to the
Supplementary Material.

Theorem 1. Under Assumptions 1-3 and NN = O(1), fy i has the same distribution as [l y; as

Ny — oo. Furthermore, under Assumption 4, fl, ., is consistent for u,, and

nni

nllz (/}g,nni - ﬂg) - W(O’ V )’ (32)

where

n
Vi = lim F E|:Varp {Z ﬂilg(Yi)}:l’

n—0 ied

Theorem 1 implies that the standard point estimator can be applied to the imputed data {(X;, ¥;,)): 7 € 4}
as if the ¥,,’s were observed values. Let 7, be the joint inclusion probability for units i and ;. We

show in the Supplementary Material that the direct variable estimator based on the imputed data

ZZ m, =7, () (Vi)

icA jeAd ﬂl”[ 7Z-i 72-]

I} n
nni =
N 2

is consistent for V..
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4. Other techniques for mass imputation
4.1 k-nearest neighbor imputation

Instead of using a single imputed value, we now consider fractional imputation with & imputed values
for each missing outcome. Fractional imputation is designed to reduce the variance of the final estimator
due to imputation (Kalton and Kish, 1984; Kim and Fuller, 2004).

Assume no matching ties, let _/, (i) be the set of k nearest neighbors for unit i

TG = {z €B: Y Ly ) euny) < k} — i), ..., i (k).

JjeB

The k nearest neighbor approach to mass imputation can be described in the following steps:

Step 1. For each unit i € 4, find the k nearest neighbors from Sample B, _/, (i). Impute the ¥ value for
L A _ k
unit i by Hg (Xi) =k le:lg(Yi(f))'
Step 2. The k nearest neighbor imputation estimator of 4, is

1 1
i E T, (X)) 4.1
NigA i g( z) ( )

yii gkm

In the non-parametric estimation literature, researchers have investigated the asymptotic properties of
the & nearest neighbor imputation estimators extensively. See, e.g., Mack and Rosenblatt (1979) and
Mack (1981) for early references. Cheng (1994) establishes root-n consistency of the k& nearest neighbor
imputation estimator of the outcome mean when the outcome is subject to missingness. We derive the
asymptotic theory for £, ,,, in the context of mass imputation combining a probability sample and a big

data sample in the following theorem and defer its proof to the Supplementary Material.

Theorem 2. Under Assumptions 14, n(k/N)4/p — 0, k/n— 0, and k*/n — o,
n? (g — 1) = NV (0,V,00), (4.2)

where

Viw = lim % (E [Varp {Z 7y (Xf)ﬂ tE {% i (X)})’

n—o ied

and 7, (X) = P(6, = 1|X) and o;(X) = var {g (Y)|X}.

If 7,(X) goes to 1, V,,, reduces to lim, .(n/N*)E [Varp {ZiEA 77, (X )}] It suggests that if
the big sample is a large fraction of the target population, ¥, can be smaller than V, ., suggesting that
Ay o gains efficiency over £, .. In finite samples, Beretta and Santaniello (2016) conduct a simulation
study to compare nearest neighbor imputation and % nearest neighbor imputation in the setting with
independent and identically distributed data. They found that £ nearest neighbor imputation with a small
k outperforms nearest neighbor imputation in terms of mean squared error. On the one hand, a larger &

can use more information in the big data sample and leads to more efficiency gain; on the other hand,
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cannot be too large, in order to control the bias of our estimator. In practice, we suggest using data-driven
methods, such as cross-validation, to choose a reasonable &, and conducting sensitivity analysis varying
the choice of £.

4.2 Generalized additive models

Nearest neighbor imputation methods are non-parametric. On the other hand, parametric models
especially linear models are sensitive to model misspecification. We now consider semiparametric
methods for mass imputation. Among semiparametric methods, generalized additive models (Hastie and
Tibshirani, 1990) are flexible regarding model specification of the dependence of ¥ on X by specifying
the model only through smooth functions rather than assuming a parametric relationship. As other non-
parametric methods, the performance of generalized additive models will deteriorate as the dimension of
X becomes large. For X with a moderate dimension, we apply generalized additive models to leverage
the predictive power of the big data sample to produce a predictive model for ¥ given X, so as to

facilitate mass imputation for the probability sample.

We assume that g (¥;) given X, follows some exponential family distribution, and
h71 {‘ng (Xt)} = fl (Xll) + f2 (th) + "'fp (ij)z (43)

where %(-) is an inverse link function, and each f, () is a smooth function of X*, for k =1, ..., p.
Model (4.3) allows for rather flexible specification of the dependence of ¥ on X. The estimated function

f. (X*) can reveal possible nonlinearities of the relationship of ¥ and X*.

There are several challenges in fitting model (4.3). First, £, (x) is an infinite-dimensional parameter,
estimation of which often relies on some approximation. Second, we need to decide how smooth the

f, (x) should be to balance the trade-off between model complexity and overfitting to the data at hand.

To solve the first issue, a common way to approximate f, (x) using splines. Let B, (x) be the basis
spline functions for m =1, ..., M (Ruppert, Wand and Carroll, 2009). We approximate f, (x) by
f, (x)= Zle 7XB, (x) with spline coefficients 7. This leads to an approximation of model (4.3):
. P M
W E{g(D)IXA] = 2 vaB, (X7). (44)

k=1 m=1

In (4.4), alarge M allows for increased model complexity and also an increased chance of overfitting;
while a small M may result in an inadequate model. This trade-off is balanced by choosing a relatively
large M and then penalizing the model complexity in the estimation stage (Eilers and Marx, 1996). Let
the vector of spline coefficients be y; = (yf,..., %) and y" =(»/,..., 7). The estimate 7 is

obtained by maximizing the penalized likelihood:
p
21 (7) + Z lk7kTSk7k 4.5)
k=1

where [(y) is the log likelihood function of y, S, is a matrix with the (m, I)Ih component

IB,Z (x) B, (x)dx, 1 S,y, regularizes f, to be smooth for which the degree of smoothness is controlled
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by A,. Given the smoothing parameter A7 = (A5 -5 4,), the penalized likelihood function in (4.5) is
optimized by a penalized version of the iteratively reweighted least squares algorithm (Nelder and Baker,
1972; McCullagh, 1984) to obtain 7. Regarding the choice of A, we note that A controls the trade-off
between model complexity and overfitting, which can be estimated separately from other model
coefficients using generalized cross-validation or estimated simultaneously using restricted maximum
likelihood estimation (Wood, 2006). In practice, the model performance is not sensitive to the choice of
the number of basis functions as long as the number of basis functions is large relative to the sample size
in the specification, but rather estimation of the smoothing parameter is critical to control the model

complexity.

Once fitting the model, we can create an imputed value for each element i in Sample A as
Beona (X)) = BT (X0) + 1 (X2) + . F, (XD,
where f, (x) = Zi; 7B (x) for k =1, ..., p. The mass imputation estimator based on the generalized
additive model is

N 1 in
Hq gam ~ _Zﬂi 1/ug,GAM (X,)-

N ieAd

Because in our context, the sample size of Sample B is much larger than that of Sample A, the estimation

error in the imputation model can be negligible compared to the sampling variability of £, ;ay-

To close this subsection, it is worth commenting on the assumption of additive effects of X in model
(4.3). This assumption may be fairly strong one. To relax the additivity assumption, we can extend model
(4.3) to include interactions through using the tensor product basis. For example, we can include a
bivariate interaction surface f, (X', X?)= Z:; ,L:1 7,,B, (X')B,(X?). When using the tensor
product basis, care should be taken with respect to the penalty function in order to result in appropriate
effective degrees of freedom for the smoother. This topic has been investigated extensively in the
literature; see, e.g., Wood (2006).

5. Regression calibration

In practice, especially for government agencies, one nearest neighbor may be preferred because of its
simplicity in implementation and data storage. We now consider another strategy to improve the
efficiency for 4, when additionally the membership to Sample B can be determined throughout
Sample A with the indicator 6. In some situation, we can obtain &, by matching the membership to
Sample B (i.e., data linkage). We focus on the ideal setting without linkage errors. The key insight is that
the subsample of units in Sample A with &, =1 constitutes a second-phase sample from Sample B,
where Sample B acts as a new population. Standard regression calibration requires all calibration variables
to be observed in Sample A and Sample B, and thus rules out the possibility of using ¥ as the calibration
variable due to lack of the outcome data from Sample B. One of the advantages of mass imputations is

that we can leverage the imputed outcomes to facilitate calibration of Y.
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Let h(d,, X,Y) be a multi-dimensional function of &,, §,X and 6,Y, eg., h(5,,X,Y)=
(85,1 - 6,,6,X, 5,Y)" . For simplicity of notation, we use h, to denote h(5,, X,,¥,) and h’ to
denote h(J,,, X,, ¥,;)). We can calculate the population quantity H = N _IZL h, from Sample B. This
insight enables the typical calibration weighting in survey sampling with known marginal totals. In
Sample A, we treat the imputed values as observed values, and the design weighted estimator of H is
H,=N “ZieA 7;7'h}. In general, H , is not equal to H. We can use the known information H to

improve the efficiency of z,, ;-

This suggests the following calibration strategy. We modify the original design weights {d,:i € A} in

A, i to anew set of weights {@,: i € 4} by minimizing a distance function
o, ?
> G(w,d)=Yd|—-1]|, (5.1)
icA ied di
subject to the calibration constraints N ’lzieA oh; = H. By Lagrange multiplier, the solution to the

constraint minimization problem is
T -1
w, =d, + (N x H - deth (deh;h;Tj dh’,
keAd keA
for i € A. The resulting weights {®,: i € 4} can be called generalized regression weights.
The proposed estimator utilizing the new set of weights is
. 1
Here = an)[g (Yi(l))’ (5.2)
ied

which is asymptotically equivalent to a generalized regression estimator (Park and Fuller, 2012).

Following Yang and Ding (2020), one can show that [, . is the optimal estimator among the class of
{,[zg’nm +(NxH=-Y a’khi)T yiye R‘“m(")}.

We derive the asymptotic theory for /i, p. in the following theorem and defer its proof to the
Supplementary Material.

Theorem 3. Under Assumptions 1-4,
n'? (ftyne = #y) = NV (0, Vie)s (5.3)

in distribution, as n — o, where

Vee = lim ~— E(varp [Z 7' {g () - h?BN}} )

n—® N2 ied
and B, = (X" 0n!) T hg ().

The calibrated estimator /1, p. improves the efficiency of £, . in the sense that V. is at most as

large as V,

nni

given in Theorem 1. If h, explains a proportion of the variability of g (Y;), V. is strictly

less than V. and the efficiency gain does not require any parametric model assumption.

Remark 2 (Choice of distance functions). Different distance functions in (5.1) can be considered. If we
choose G(w,,d,))=—d, log(w,/d,), it leads to empirical likelihood estimation (Newey and Smith,
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2004). If we choose the Kullback-Leibler distance function G(w,, d,) = w,log(d,/®,), it leads to
exponential tilting estimation (Kitamura and Stutzer, 1997; Imbens, Johnson and Spady, 1998;
Schennach, 2007, Dong et al., 2020). Under mild conditions, these procedures provide a set of weights
that is asymptotically equivalent to the set of regression weights (Deville and Sdrndal, 1992; Breidt and
Opsomer, 2017).

For variance estimation, by Theorem (3), we construct a consistent variance estimator for [, .. as

Vre / n, where

) n .. — .. é 4
RC NZ ;; 7Z.Ij ﬂ'l, ﬂ'j
with &, = g(¥,,,) — h;"B, and
N
-1 g (Y))
-1
A ¥ -1 ea i (1 - 5Bi)g(Yi(1))
p = (Zhjth) NA '
i=1 Zi=1 §BiXig (Yz)
N
ZH 0,Yg(Y)

6. Empirical experiments

In this section, we evaluate the finite sample performance of the proposed estimator using simulation
studies, one based on artificial data using simple random sampling and the other based on a synthetic
population file from a single month sample of the U.S. Census Bureau’s Monthly Retail Trade Survey

using stratified sampling.

6.1 Kim-Wang example

We use the simulation example in Kim and Wang (2019) to compare various estimators. We generate
the data according to the following mechanism. We first generate a finite population _#, =
X, =(X,, X,,), Y, =, Y,):i=1,..., N} with size N = 1,000,000, where Y, is a continuous
outcome and Y,; is a binary outcome. From the finite population, we select a big data Sample B where the
inclusion indicator &, ~Ber(p,) with p, the inclusion probability for unit i with the sample size
around 700,000. We obtain a representative Sample A of size n = 1,000 using simple random sampling.
The parameters of interest are the population mean N ’IZZI Y, and the conditional population mean of
Y, given ¥, = 1.

For generating the finite population, we consider linear models
Y, =1+ X, +X,, +a +¢, (6.1)

P(YZi = 1|X11” Xois ai) = IOgit(l + X, + X, + ai)’
and nonlinear models

Y

1i

= 05(X, 15’ + X2 +a, + ¢, (6.2)
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P(Y, =1]1X,. X,: ;) = logit{0.5(X,, —1.5)" + X2 + a|,

where X, ~ ANV (1,1), X,, ~Exp(1), o, ~ NV (0,1),¢, ~ N (0,1), and X, X,,, ¢, and &, are

li>

mutually independent. The variables «, induce the dependence of Y, and Y,, even adjusting for X,; and

i

X,,. For the big-data inclusion probability, we also consider a logistic linear model
logit(p,) = X,,, (6.3)

and a nonlinear logistic model
logit(p,) = =3 + (X, - 1.5)* + (X,, - 2)°. (6.4)
We consider the following combinations: 1. (6.1) and (6.3); IL. (6.1) and (6.4); 1I. (6.2) and (6.3); and IV.

(6.2) and (6.4) for data generating mechanisms. Therefore, the simulation setup isa 2 x 2 factorial design

with two levels in each factor.

Chen, Li and Wu (2020) propose the inverse propensity score weighting estimator using the estimated
probability of selection into Sample B and the doubly robust estimator which further incorporates an
outcome regression model. To evaluate the robustness and efficiency, we compare the following
estimators:

1. ft,;, the Horvitz-Thompson estimator assuming the Y,’s were observed in Sample A for the
purpose of benchmark comparison;
2. [, , the inverse propensity score weighting estimator,
Ay = =Y ——7,
™ N i D (ﬁ) a

where p, (7) = P(J, =1|X,,; n7) is a logistic regression model with the linear predictor X,, with

an unknown parameter 7, and 7 is an estimator of 7 obtained by maximizing the modified

likelihood function of 7 (Chen et al., 2019) based on Samples A and B;
3. A, the doubly robust estimator of Chen et al. (2019),
By = Y — (Y, - XIB) + - T XTB.

N i p; (1) n;

where ﬁ is the estimated regression coefficients using (6.1) as the working outcome regression

model based on Sample B;
A, ., the nearest neighbor imputation estimator;
., the k nearest neighbor imputation estimator with k& = 5;

fan» the generalized additive model imputation estimator;

N s

[rc, the regression calibration estimator based on 4, with calibration variables H(J,, X, Y) =
(85, 1=5,,8,X,5,7)".

All simulation results are based on 1,000 Monte Carlo runs. Table 6.1 summarizes the simulation
results with biases, standard errors, and coverage rates of 95% confidence intervals using asymptotic
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normality of the point estimators. The following observations can be made from Table 6.1. ,,, has large
biases when the propensity score is misspecified. /i, gains robustness over [, if one of the outcome
regression model or the propensity score is correctly specified. However, if both models are misspecified,
A, has a larger bias. i, has small biases across four scenarios, which shows its robustness.
Importantly, the performance of /i  is close to that of f,; in terms of standard errors and coverage
rates, which is consistent with our theory in Theorem 1. Moreover, as predicted by our theoretical results,
4., improves /1 . in terms of efficiency. Also, fi;,,, shows robustness because of the flexibility of the
model specification. The regression calibration estimator /.. has small biases across all scenarios and
therefore shows robustness against model specifications for sampling score and outcome. Moreover, it has
smaller standard errors than both £ . and 4, . The coverage rates are all close to the nominal level.

Table 6.1

Simulation results: bias, standard error, and coverage rate of 95% confidence intervals under four scenarios
based on 1,000 Monte Carlo samples. OM: outcome model; PS: propensity score model (all numbers in the
table are the numerical results multiplied by 100)

Scenario 1 Scenario 11 Scenario 111 Scenario IV
oM linear linear nonlinear nonlinear
PS linear nonlinear linear nonlinear

Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R.
Population Mean of Y

e 0.2 6.5 96.0 -0.2 6.4 94.5 0.61 15.2 95.7 -0.5 15.6 93.5
y . -0.1 1.6 95.3 222 35.8 97.5 -0.1 42 95.3 4327 2845 75.6
My, 0.0 4.6 94.5 0.0 43 96.5 0.5 142 952 229.8  168.8 35.8
o 0.2 6.5 95.1 -0.3 6.4 94.7 0.7 15.2 94.6 -0.6 15.6 93.7
. 0.2 4.9 96.1 -0.3 4.9 95.6 0.5 14.5 94.6 -0.6 14.9 93.8
Hoam 0.1 4.5 95.7 -0.2 4.5 96.0 0.5 143 94.9 -0.6 14.8 93.4
Hre 0.0 32 95.5 -0.2 4.1 953 -0.1 4.8 95.0 0.1 6.7 95.5
Population Mean of Y,
i -0.0 1.5 96.2 -0.0 1.6 95.1 -0.1 1.6 95.2 0.1 1.6 94.4
I 0.0 0.2 95.0 -12.1 3.1 0.0 -0.0 0.3 95.4 3.0 1.8 94.7
My, -0.0 0.9 95.0 -1.1 1.8 68.6 0.0 0.4 94.9 -2.9 22 59.8
i 0.0 1.4 95.3 -0.0 1.6 95.3 -0.1 1.6 94.6 0.1 1.6 95.3
Ao 0.0 1.0 95.8 -0.0 1.1 95.8 -0.0 1.0 952 0.0 0.9 96.1
Hgam -0.0 0.9 95.3 -0.0 0.9 94.8 -0.0 0.8 96.2 0.0 0.8 94.5
Lre 0.0 1.2 95.5 -0.1 1.4 94.2 -0.0 1.4 94.1 0.1 1.5 95.6
Conditional Mean of ¥, given ¥, =1
i 0.0 7.3 95.1 -0.3 7.2 952 0.2 9.3 95.3 -0.1 9.8 94.1
y . -0.1 1.6 95.2 9.1 10.3 69.8 -0.1 4.3 95.0 5342  329.8 65.3
g 0.1 4.7 95.6 2.5 4.6 93.2 9.8 18.0 93.1 452.0 4654 65.6
i -0.0 7.3 95.0 -0.3 7.3 95.3 0.1 9.2 95.4 2.2 9.5 95.2
- -0.1 4.7 96.8 -0.3 4.6 96.5 0.1 6.0 94.8 0.0 6.4 93.6
Honm 0.0 4.8 94.2 -0.3 4.5 96.0 -0.1 6.5 95.5 -0.6 6.8 94.8
Hre -0.0 3.9 94.8 -0.2 5.0 96.0 -0.2 5.4 95.1 -0.1 5.4 96.7

Statistics Canada, Catalogue No. 12-001-X



Survey Methodology, June 2021 43

6.2 Monthly retail trade survey

To demonstrate the practical relevance, we consider the U.S. Census Bureau’s 2014 Monthly Retail
Trade Survey (Mulry, Oliver and Kaputa, 2014). The Monthly Retail Trade Survey is an economic
indicator survey whose monthly estimates are inputs to the Gross Domestic Product estimates. This survey
selects a sample of about 12,000 retail businesses each month with paid employees to collect data on sales
and inventories. It employs an one-stage stratified sample with stratification based on major industry,

further substratified by the estimated annual sales referred to as the size variable.

For simulation purpose, we use the simulated data from the 2014 Monthly Retail Trade Survey to
suggest the data generating model and the true parameter values (https://ww?2.amstat.org/meetings/ices/
2016/contests.cfm). We generate a finite population of N = 812,765 retail businesses with 16 strata with
a stratum identifier %, sales Y, inventories X, and a size variable Z on the log scale. Table 6.2 reports
some summary statistics. We generate the inventory data from X, ~ N(uy ,, 0% ,) fori=1,..., N,

and & =1, ..., 16, and the sales data from a linear model
Y, = By + X, + &, (6.5)
and a nonlinear model
Y, = B, + 05X, +¢,, (6.6)

where ¢,, ~ NV (0, 0.25). In (6.5) and (6.6), we specify different values for 3, so that the parameter of
interest, £ = N~ Z:’:l Z,IZ Y, ., matches with the true population mean 12.73.

Table 6.2
The stratum size, sample allocation, mean and standard error of the inventory data on the log scale extracted
from the 2014 Monthly Retail Trade simulated dataset

Stratum A | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N, 366 20 2,015 4,646 7,402 700 12,837 17,080 29,808 2,400 41,343 57,518 83,465 95,244 115,028 342,893
n, 37 5 34 57 74 7 103 115 116 12 184 196 218 200 220 336
My 16.816.7 16.6 164 16.1 156 16.0 157 156 155 15.4 15.1 14.8 14.5 13.9 11.5
O, 1.1 0.8 04 03 04 06 04 0.4 0.4 0.3 0.4 0.4 0.3 0.7 0.5 1.1
Mz 59 23 58 63 66 42 69 7.0 7.4 4.8 7.5 7.6 7.7 7.6 7.7 8.1

We also generate a big data sample ., where the inclusion indicator J,, ~Ber(p,,) with the
inclusion probability p,, for unit i in stratum /. The big data sample in practice is often available from
E-commercial companies who monitor inventories and sales for retail businesses. For the big data
inclusion probability, let Z, ~ N(u,,,0;,), for i=1,...,N, and h=1,...,16. We consider a

logistic linear model
logit(p,,) = a, + Z,,, (6.7)

and a nonlinear logistic model
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logit(p,,) = a, + X,, + Z;., (6.8)

where we specify different values for o, so that the mean inclusion probability is about 30%. Lastly, we
generate a representative sample .§, by stratified sampling with simple random sampling within strata

without replacement; see Table 6.2 for the sample allocation.

We consider the seven estimators in Section 6.1 adopted for stratified sampling. In each mass imputed
dataset, we apply the following point estimator and variance estimator: f& = N 'lzthl N Y, With y, - is
the sample mean of y in the A" stratum, V(&)= N‘ZZZI:] N;(l-n,/N,)s, /nh with s, =
(n, — 1)71 221 Vw — J_’n,,)z-

Table 6.3 summarizes the simulation results. A similar discussion to Section 6.1 applies. £, is
sensitive to misspecification of the selection model; while /1, has double robustness feature, which still
relies on at least one model to be correctly specified. Mass imputation based on nearest neighbor
imputation, £ nearest neighbor imputation and generalized additive model shows good performances by
leveraging the representativeness of the survey sample and the predictive power of the big data sample. In
addition, if the big data membership is known throughout the survey data, the regression calibration

estimator gains efficiency while maintaining the robustness against model misspecification.

Table 6.3

Simulation results: bias, standard error, and coverage rate of 95% confidence intervals under four scenarios
based on 1,000 Monte Carlo runs for the 2014 Monthly Retail Trade Survey. OM: outcome model; PS:
propensity score model (all numbers in the table are the numerical results multiplied by 100)

Scenario I Scenario I1 Scenario 111 Scenario IV

OM linear linear nonlinear nonlinear

PS linear nonlinear linear nonlinear
Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R.
. 0.0 3.0 95.0 0.0 3.0 95.0 1.1 31.5 95.0 1.1 31.5 95.0
fl;pw -0.6 5.8 96.6 -55.5 1.7 0.0 -7.3 76.2 96.6 -735.8 22.3 0.0
Ay -0.3 2.7 94 .4 -0.2 2.7 94.0 -3.3 34.6 93.8 -52.3 332 65.0
Jo. 0.1 3.1 94.5 -0.1 3.1 94.6 1.1 31.5 95.3 -0.3 31.7 94.6
Ao 0.1 2.7 94.4 -0.2 2.7 94.3 1.0 314 94.9 -2.3 314 94.1
Honm 0.1 2.7 94.9 0.1 2.7 94.9 1.1 31.6 94.9 -2.5 314 94.2
Hre 0.1 2.9 94.1 -0.1 2.6 95.1 0.6 30.7 94.6 -0.5 26.9 95.0

7. Real-data application

7.1 Data description

To demonstrate the practical use, we apply the proposed method to the survey data from the Korea
National Health and Nutrition Examination Survey (KNHANES) and the big data from National Health
Insurance Sharing Service (NHISS). The KNHANES is an annual national survey that studies the health
and nutritional status of Koreans since 1998. The surveys have been conducted by the Korea Centers for
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Disease Control and Prevention. This nationally representative cross-sectional survey includes
approximately 10,000 individuals each year as a survey sample and collects information on
socioeconomic status, health-related behaviours, quality of life, healthcare utilization, anthropometric
measures, biochemical and clinical profiles for non-communicable diseases and dietary intakes with three
component surveys: health interview, health examination, and nutrition survey. More details of the
KNHANES can be found in Kweon, Kim, jin Jang, Kim, Kim, Choi, Chun, Khang and Oh (2014). The
data set used in this study has 4,929 samples.

On the other hand, the big data from NHISS provides health-related information collected from
National Health Screening Program (NHSP) in South Korea. The NHSP was launched with the goal of
improving the overall health of the South Korean citizens and preventing the costly chronic diseases. All
beneficiaries are eligible for screening once every year or two depending on their demographic or
occupational status. The specific screening items are stipulated by the implementation standards, which
include, but not limited to, various blood tests and cancer screening. The total number of eligible
beneficiaries is about 16 million, where approximately 75% of them participated the screening. The data
that we have used in this study is the subset corresponding to the blood test results that are associated with
metabolic syndrome from the 2014 program. The variables in this data set are demographics as sex and
age, and clinical measurements such as total glycerides (mg/dL), total cholesterol (mg/dL), high-density
lipoprotein cholesterol (HDL, mg/dL), and medical diagnosis on whether having anemia. The data set is
made publicly available after anonymization and randomly selecting 1 million observations (National
Health Insurance Data Sharing Service, 2014). Note that more thorough data can be purchased with a paid
subscription and expert panel review.

7.2 Analysis and results

To apply the proposed method of mass imputation, we assume that total cholesterol is not available in
KNHANES data, and use the big data from NHSP to perform mass imputation for total cholesterol
variable. The actual survey values from KNHANES are used to compute a benchmark so that we can
validate the efficacy of our proposed method. We consider the six different estimators:

* HT: the Horvitz-Thompson estimator based on the Sample A data. This is used for a benchmark

comparison;
* NN: the nearest neighbor imputation estimator;
* KkNN: the & nearest neighbor imputation estimator with £ = 5;
*  GAM: the generalized additive model imputation estimator;

* LM: the linear regression model imputation estimator using sex, age group, HDL cholesterol and
total glycerides as the covariates;

» IPW: the inverse propensity score weighting estimator;
* NAIVE: the naive estimator using the Sample B without any treatment.

Total cholesterol is affected by the amount of HDL, because HDL is one of the components that
constitute the total cholesterol, and is known to be also affected by sex and age. Unless Sample B is from
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a particular sub-population such as cardiovascular stenosis patients group, we may assume that the
relationship between the total cholesterol and other variables remain the same. Hence ignorability holds.
Also the covariates are all medical/biological measurements, meaning they should stay within the similar
range both for Samples A and B. The variance estimator for each estimator is calculated, and 95% Wald
confidence interval for 4, is obtained using asymptotic normality. Figure 7.1 depicts the intervals, where
the population mean estimate from each method is presented as a vertical bar. The interval obtained from
HT can be viewed as a reference. It can be seen that all estimators produce intervals that are slightly
overestimated compared to the one from HT. It is because of the inherent bias in total cholesterol level in
NHSP data; the sample mean values of the total cholesterol from NHSP data is 7 point or 3.7 per cent
higher than HT estimator calculated with KNHANES data, as seen from the naive result. One can see that
all the proposed methods substantially reduce such bias to make the estimator close to the HT estimator,
which shows the benefit of the proposed methods. IPW estimator produced a relatively poor estimate
compared to other methods, which is probably because of either misspecification in logistic regression
model, or considerable discrepancy in sample sizes between KNHANES (4,929) and NHSP data
(1 million). We also tried the DR estimator but not included here, because the effect from the IPW is very
marginal due to the limited auxiliary variables available.

Figure 7.1 Estimated 95% confidence interval for the total cholesterol level.

NAIVE - 4

IPW - ._|_.

KNN -
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HT - }
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To better understand the prediction performance of the mass imputation methods, we calculated
RMSE, mean bias, and correlation of imputed values by comparing the imputed values and actual survey
values. Because we can observe the actual survey values from KNHANES, we can compute the prediction
quality measures. Table 7.1 presents the summarized table, where we compared the results at individual
levels and subgroup mean levels divided by age group and sex. For subgroup levels, we first obtain the
subgroup mean estimates and then calculate the statistics aggregated over different groups. It can be seen
that GAM performs better than the other methods in terms of RMSE and correlation. Overall, mass

imputation method provides reasonable results for subgroup level as can be seen in Figure 7.2.
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These quality measures need a predicted value for Sample A, hence IPW estimators are excluded in the

comparison. Estimating the population and subgroup means using Sample B can give a very biased
result — in the case of NHSP data, the difference between the mean of NHSP data and the HT estimator

from KNHANES is about 7.09, or 3.7 per cent.

Table 7.1
Comparison of the imputation methods
Method RMSE Bias Corr.
Individual NN 43.94 2.87 0.26
KNN 32.62 2.86 0.42
GAM 29.15 2.13 0.54
LM 30.35 2.59 0.48
Group Means NN 6.33 2.68 0.85
KNN 5.44 2.70 0.90
GAM 4.33 2.03 0.93
LM 4.57 2.52 0.93

Figure 7.2 Comparison of the HT estimates and estimates using mass imputation for subgroup average.
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8. Discussion

Mass imputation is an important technique for survey data integration. When the training dataset for
imputation is obtained from a probability sample, the theory of Kim and Rao (2012) can be directly
applied. If the training dataset is a non-probability sample and its size is huge, we have shown in this
paper that various non-parametric methods can be used for mass imputation, and the estimation error in
the imputation model can be safely ignored, under the assumption that the sampling mechanism for
training data is missing at random in the sense of Rubin (1976). If the sampling mechanism is believed to
be missing not at random, imputation techniques can be developed under the strong structural assumptions
for the sampling mechanism (e.g., Riddles, Kim and Im, 2016; Morikawa and Kim, 2018) or the outcome
model (e.g., Yang, Zeng and Wang, 2020). Also, when the training dataset has a hierarchical structure,
multi-level models can be used to develop mass imputation. This is closely related to unit-level small area
estimation in survey sampling (Rao and Molina, 2015).

The mass imputation estimator is not necessarily efficient. In Section 5, we have described a method of
using calibration weighting as a tool for efficient data integration with big data. The calibration weighting
requires correct matching between two data sources, as investigated by Kim and Tam (2020). Also, if the
fraction of big data in the finite population is not substantial, the efficiency gain will be limited. Instead,
one could improve the efficiency by combining the mass imputation estimator with the inverse propensity
weighting estimator in the big data (Yang, Kim and Song, 2020). However, the correct specification of the
propensity score model will be challenging. These are topics for future research.
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Appendix
A.1 Proof for Theorem 1

For a given X, = x in Sample A, we show that X,, converges to x in probability as N, — .

Consider for any & > 0, we show that
P{d(Xi(D,x)>g} = P{d(X,,x)> g, Vj e B} (A.1)

converges to zero, and therefore X, converges to x in probability as N, — oo, where the probability is
induced by the sampling process of Sample B of size N,. We show this fact by contradiction. Assume
that for some & >0, P{d (X,,, X) > &} does not coverage to zero as N, — . Define the region
A ={X:d (X, x) < &}. Then, we must have [ (X|5, =1)=0 for X € A ; otherwise, there exists
X € R, with a positive probability in Sample B as N, — oo, and therefore P{d (X, X) > ¢} =0 as
N, — oo. But the claim that /(X |5, =1) =0 for X € & implies that & is a non-overlap region of
the distribution of X between Sample A (and also the population) and Sample B, violating Assumption 2.
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Given X, = x in Sample A, for any continuous and bounded g (y),
Efg(Yip)|X, =xiedy = E[E{g(Yy)|Xi X; =X, i€ 4[X; = x, i € 4]

= E[E{g(¥,

i(l))|X

| X =x, i€ 4]

= E{u,(X;p)|X; =x,ied} - E{u, (X,)|X, =x,i€ 4}
= E{g(V)IX, =x,ie 4},

in probability as N, — oo, where — follows from the fact that , (x) is bounded and continuous. Then,
by Portmanteau Lemma (Klenke, 2006), Y,, = Y;|(X; = X, i € 4) in distribution as N, — c. By
Assumption 1, g (Y,,))|(X,, i€ 4) > u, (X,) + e, (X,) in distribution as N, — oo, where e, (X,)
has the same distribution as {g () [(X;, i € A)} — u, (X,).

We now show that for i # j € 4, e, (X,) and e, (X ) are conditionally independent, given data O, .
It is sufficient to show that P{i(1) = j(1)} = 0 as N, — oo; in other words, the same unit can not be
matched for unit ; and unit j with probability 1. This can be shown using (A.1) with ¢ =
X - X, ”

mini::jeA
Therefore, conditional on data O,, we have
N 1 -1 1 -1 0
Hemi = _Zﬂi g(Yi(l)) - _Zﬂ'[ g()= Hg ur
N icA N ied
in distribution as N, — oo. This completes the proof for Theorem 1.

Let

;o= n Ty — 7,7, g(Yz) g(Yj)

nni 2
N°idi=E T, T,

(A.2)

Then, V.

nni

is consistent for V..

Similar to the above argument, for i, j € 4, conditional on data O,, g(¥;;))g(¥,,)) = g(¥,) g(¥))

as N, — . Therefore, conditional on data O,

Y, 5
0) N (A.3)

nni °

Zzﬁij -z, g(Y) g(

icd jed aus 7T, T

~ n
Vnni - N2

in distribution as N, — co. Combining (A.2) and (A.3), I}n is consistent for V..

ni i

A.2 Proof for Theorem 2

To investigate the asymptotic properties of £, ,,,, We re-express

ZjeBKRx (x-X;)e(¥))

jEBKR;‘ (X - X/)

f (x) =

b

where
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K, () = hiK[Zj K@) = 0.50(Jull<1),

and the bandwidth # = R_ is the random distance between x and its furthest among the & nearest

neighbors. Therefore, £, ,,, canbe viewed as a kernel estimator incorporating a data-driven bandwidth.

In the literature, asymptotic properties of the k nearest neighbor imputation estimator have been
studied extensively. The result shown in the following lemma on & nearest neighbor imputation is
extracted from Mack (1981).

Lemma 1. Under Assumptions 1-3,

k 1

N 2[p
N’IZ::,%,_,KRX (x-X)g(,) = f®r,®)u, (x)+0, {(FJ + ;}. (A.4)

We now express
1y 1y
/’lg,knn = ﬁ;ﬂ; 5A,i/’lg (Xl) + N;ﬂ; §A,i {lng (Xl) - /’lg (Xl)}

Let T, = N’lzxi1 78, {1, (X,) — 1, (X,)}. To study the properties for Ty, we first look at 2, (x),
which can be expressed as

hy (%)

fr (%) ’

where &, (x) = N"ZL(SB,_/KRX (x-X,)g(¥;) and f,(x) = N’IZ:L&BJKRx (x - X,). By the

J

a,(x) =

result in Lemma 1, we obtain

2/p
hy(x) = f ()7, () p, (x) +0, {&) " %}

fy(x)= £ ()7, (x) +0, {[%j/ v %}

Now, by a Taylor expansion, we obtain

hy (x) _
Sy (x)

A, (0 - 1, () = 1, (%)

1
e 0~ S W (), )

W7, (0 4, ()
07, (o)

2/ p
{hy () =/ (9, ()} + O, {[gj . %}.

2/p
- rwm o 5]

-
S (X) 7y (x)
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Therefore, we obtain

| - N ‘ 2lp |
z;ﬂ f(X)ﬂ'B(X ]Z: Rx X.—Xj){g(Yj)—,ug(X,.)}+Op{(ﬁJ _,_z}

Under the assumption in Theorem 2, it is easy to derive that (k/ N)”* + 1/k = o(n™"?), and therefore,

] & N
X.—X. A XN+ -1/2).
2;7r f(X);zB(X Z 5K g () = u, (X))} + 0, (n7")
We then express I, in a form of U-statistics (van der Vaart, 2000; Chapter 12):
T, = h + -1/2),
N N(N Z‘; 0, (n?)
where Z, = (X,, Y;, 8, J5,) and
5/1 153 J 1
-5 K, (X, - X, A X.
( ) |: 7T; (Xi)ﬂ’-B (Xl) Rx, ( ! /){g( .I) ll'lg( 1)}

+ 5A,j53,i 1
7, [(X)7s(X;)

Ky, (X, =X ){g () - 4, (X/)}}

E%(‘:z‘j +¢5)-

Now, by Lemma 1, we obtain

5,.0, . 1
E(¢,|2,) = F| 22
/ 5 (X)7,(X)
5, 1

" T K) E Lo K, (X = X)) (1)~ (X} |2

")

Ko (%=X e (1) -, (5} 2

and

E(¢;1Z,) = E{gwém : Ky, (X, =X){g (V) = 1, (X))}

o f(X))7s (X))

:

s, 1
=5, E| E| 2] Ko (X, - X){g(¥) - u, (X,)|Ry » Z, | |2,
’”nf(X)()*( He (1) = 44 |}]
Sy kY1
= 7 (X) {e(V) — u, (X))} + O, {ﬁj + ;}-
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Therefore, by the theory of U-statistics, we obtain

2 ¥ _
, :wéwzn 2|2} + 0, (")

)

i=1 B(X)

{g(Y) = 1, (X))} + 0, (n772).
Combining the above results leads to

%IZN;{ D6 (X)) =, (X))
L

i“{ B(X)

Then, the asymptotic results in Theorem 2 follow by Assumptions 1-4 and (A.5).

/’lg,knn - /ug =

e 00 = (X)) 0, ), (A3

A.3 Proof for Theorem 3

The consistency and asymptotic normality of n'?/

4, ., follow by the standard arguments under
Assumptions 1-4. The remaining is to show that the asymptotic variance of n"/? cooni 18 Ve
Using the distance function G(w,, d,) =d, (w,/d, —1)° in (5.1), the minimum distance estimation

leads to generalized regression estimation (Park and Fuller, 2012). Therefore, we express

n]/Zﬁg
i€eAd
nl/Z . N .
t(l) N (Zﬂ-ilhiTﬁN - ZhiTBNj + Op(nfl/z). (A.6)
ied icA i=1
Similar to the argument in the proof for Theorem 1, we express
nY? nll2 N
”Vzﬁg i_l Yi(l)) TN (Zﬂi_lhiTﬁN - ZhiTﬁNj +o, (n?)
i ieA i=1
/2. N
Mg (V) = BTBy + = 2hBy o+ 0, (1), (A7)
i=1

icA

It is straightforward to show the variance of the second term in (A.7) is negligible given nN ™' = o(1).
Following the arguments in the proof for Theorems 1 and 2, g(K(l)) and h; have the asymptotic
distribution as g (Y,) and h, given the data @), from Sample A, respectively. Therefore, the asymptotic

variance of n'?j1, is

n—>00 icd

St e - wip, |

Vie = lim Val{
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