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Abstract. Public-key cryptography based on the lattice problem is ef-
ficient and believed to be secure in a post-quantum era. In this paper,
we introduce carefully-optimized implementations of Kyber encryption
schemes for 64-bit ARM Cortex-A processors. Our research contribution
includes optimizations for Number Theoretic Transform (NTT), noise
sampling, and AES accelerator based symmetric function implementa-
tions. The proposed Kyber512 implementation on ARM64 improved pre-
vious works by 1.79×, 1.96×, and 2.44× for key generation, encapsula-
tion, and decapsulation, respectively. Moreover, by using AES accelerator
in the proposed Kyber512-90s implementation, it is improved by 8.57×,
6.94×, and 8.26× for key generation, encapsulation, and decapsulation,
respectively.

Keywords: Post-quantum Cryptography · Kyber · ARM64 · Vectorized
Implementation.

1 Introduction

The integer factorization and discrete logarithm problems, where RSA and Ellip-
tic Curve Cryptography (ECC) are based on, can be easily solved by using Shor’s
algorithm [21] on a quantum computer. For this reason, the Post-Quantum Cryp-
tography (PQC) standardization process is initiated by NIST in 2016 to choose
quantum-resistant algorithms for the upcoming quantum era. In this process,
Crystals-Kyber (shortly Kyber) [5] is one of the promising candidates among the
third round finalists announced in 2020. It is an IND-CCA2-secure lattice-based
key-encapsulation mechanism (KEM), and its security is based on the hardness
of solving the learning-with-errors problem in module lattices (MLWE problem).
In addition, it is comparably fast due to the small parameter size. It is easier to
implement because the main primitives are modular reductions, small polyno-
mial multiplications, and Number Theoretic Transformation (NTT) operations.



2 P. Sanal et al.

Several works devoted to improve the performance of a primitive of Kyber
or of the scheme itself in several platforms. NTT operations are optimized on
Advanced Vector Extensions 2 (AVX2) (see [16, 20]) and on Cortex-M4 (see
[1,7]). It is also accelerated by using GPU (see [11,18]) and hardware accelerators
(see [2, 4, 8, 10, 12, 14,22, 23]). However, an efficient implementation of Kyber on
high-end ARM processor (i.e. ARMv8 Cortex-A) was not conducted. Since the
high-end ARM is widely used in smartphone, smartwatch, and laptop computer,
the efficient implementation should be highly considered.

Our contribution. We propose an optimized implementation of Kyber on
64-bit ARMv8 processors. Primitive operations of Kyber are fully vectorized
in ASIMD instructions. The reduction and NTT operations are improved by
3.0 ∼ 5.0× and 4.0 ∼ 6.0×, respectively, compared to its optimized C im-
plementation. Moreover, we implement full parameters for Kyber schemes. For
example, Kyber512 implementation outperforms by 1.79×, 1.96×, and 2.44×,
for key generation, encapsulation, and decapsulation, respectively. Lastly, we
use acceleration of symmetric functions through cryptography extension of 64-
bit ARMv8 processors. Results show that Kyber512-90s w/ accelerator is faster
than w/o accelerator by 8.57×, 6.94×, and 8.26×, for key generation, encapsu-
lation, and decapsulation, respectively.

Our code is available at https://github.com/psanal2018/kyber-arm64.

Outline. The paper is organized as follows. Section 2 presents an overview of the
Kyber algorithm. In Section 3, we introduce the ARMv8-A architecture. In Sec-
tion 4, proposed implementations of Kyber on 64-bit ARM Cortex-A processors
are presented. In Section 5, the performance evaluation of proposed implemen-
tations is described. Finally, the conclusion is given in Section 6.

2 Kyber

In this section, we give a brief description of the functions included in Kyber.
The details of the algorithm is given in its specification document [19].

2.1 Mathematical Background

The basic elements in Kyber are the polynomials in the ring Zq[X]/(Xn + 1),
denoted by Rq, with n = 256 and q = 3329 in all variants of Kyber. The poly-
nomials can be represented as a vector of linear polynomials by using Number-
Theoretic Transform (NTT): for a polynomial f =

∑255
i=0 fiX

i in Rq,

NTT(f) = (f̂0 + f̂1X, f̂2 + f̂3X, . . . , f̂254 + f̂255X)

where

f̂2i =
127∑
j=0

f2jζ
(2i+1)j and f̂2i+1 =

127∑
j=0

f2j+1ζ
(2i+1)j

https://github.com/psanal2018/kyber-arm64
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with ζ = 17 being the 256-th primitive root of unity. Two polynomials f and g
in Rq can be efficiently multiplied by using NTT:

NTT(f) ◦ NTT(g) = f̂ ◦ ĝ = ĥ

where ◦ is the component-wise multiplication of linear polynomials, that is,

ĥ2i + ĥ2i+1X = (f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X) mod (X2 − ζ2i+1)

for i = 0, 1, . . . , 127. Then, the product of f and g is

fg = NTT−1(ĥ) = NTT−1(NTT(f) ◦ NTT(g)).

2.2 Compression and Encoding

An element x ∈ Zq is converted to an d-bit integer by Compressq(x, d). An d-bit
integer x is converted to a Zq element by Decompressq(x, d). They are defined
as follows:

Compressq(x, d) = d(2d/q) · xc mod 2d and Decompressq(x, d) = d(q/2d) · xc

where dac is the closest integer to a. When each function is applied to a polyno-
mial (or a vector/matrix of polynomials), it is applied to each coefficient individ-
ually. In addition, a polynomial (or a vector/matrix of polynomials) is serialized
to byte arrays by using Encode`() function, where ` is the bit-length of each
coefficient. On the other hand, Decode`() is the inverse of Encode`(), and it de-
serializes the byte arrays to polynomials. Lastly, Parse() converts a byte stream
to the NTT representation of a polynomial in Rq.

2.3 Sampling

The noise is sampled from a centered binomial distribution (CBD), denoted by
Bη, for η = 2 or η = 3. For a sample (a1, . . . , aη, b1, . . . , bη) ← {0, 1}2η, the

output is computed as
∑η
i=1(ai − bi). Using Bη, a polynomial f =

∑255
i=0 fiX

i

in Rq can be sampled by sampling each coefficient fi deterministically from
512η-bit output (β0, . . . , β512η−1) of a pseudo-random function:

fi =

η−1∑
j=0

(β2iη+j − β2iη+j+η) i = 0, 1, . . . , 255.

For this purpose, Kyber uses a function namely CBDη, which takes 512η-bit input
and outputs the corresponding polynomial.

2.4 Parameters

The fixed parameters are n = 256 and q = 3329. The parameter k represents
the dimension of the matrix of polynomials in Rq. The parameter pair (η1, η2)
are used in CBDη function for sampling. The parameter pair (du, dv) is used in
Compress and Decompress functions. The list of parameters are given in Table
1.
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Table 1: Kyber parameters.
Algorithm NIST-Level n q k (η1, η2) (du, dv)

KYBER512 1 (AES-128) 256 3329 2 (3,2) (10,3)
KYBER768 3 (AES-192) 256 3329 3 (2,2) (10,4)
KYBER1024 5 (AES-256) 256 3329 4 (2,2) (11,5)

2.5 Symmetric Functions

Kyber makes a use of a pseudo-random function (PRF), an extendable output
function (XOF), two hash functions H, and G, and a key-derivation function
(KDF). These functions are specified in Table 2. At this point, Kyber has an
alternative version Kyber-90s which uses SHA-2 hash functions and AES, while
Kyber uses SHA-3 hash functions.

Table 2: Symmetric primitives in Kyber.
Symmetric Kyber Kyber-90s
Primitive

XOF SHAKE-128 AES-256 in CTR mode

H and G SHA3-256 and SHA3-512 SHA-256 and SHA-512

PRF (s, b) SHAKE-256(s||b) AES-256 in CTR mode
(key=s and nonce=b)

KDF SHAKE-256 SHAKE-256

2.6 Kyber-PKE and Kyber-KEM

Kyber-PKE is an IND-CPA-secure public-key encryption scheme. It encrypts
messages of a fixed length of 32 bytes. It contains three algorithms: Key Gener-
ation, Encryption, and Decryption.

In Kyber-PKE Key Generation, the polynomial matrix A is randomly gen-
erated, and the polynomial vectors s and e are sampled according to Bη1 . Then,
normally, the secret key is s and the public key is As + e. However, for efficient
implementation purposes, the multiplication As is performed in NTT domain
by generating A in NTT domain (i.e. Â) and transforming s to ŝ = NTT(s). To

avoid NTT−1 operation, e is also transformed to ê and added to Â◦ ŝ. Therefore,
the values of secret and public keys are left in NTT domain and encoded to sk
and pk, respectively. In addition, the seed for randomness is appended to the
public key for letting the recipient generate the matrix A.

In Kyber-PKE Encryption, the message m is encrypted to the ciphertext
c = (c1, c2) by using the public key pk and random coins r. The polynomial
vector t and the matrix A are obtained using the public key. The polynomial
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Algorithm 1: Kyber-PKE Key Generation

Output : secret key and public key pair (pk, sk)

1: d
$←− {0, 1}256

2: ρ, σ ← G(d)
3: Â← Parse(XOF(ρ, nonce++)) . Generate matrix A ∈ Rk×kq (in NTT domain)
4: s← CBDη1(PRF(σ, nonce++)) . Sample s ∈ Rkq
5: e← CBDη1(PRF(σ, nonce++)) . Sample e ∈ Rkq
6: ŝ← NTT(s)
7: ê← NTT(e)
8: t̂← Â ◦ ŝ + ê . t := As + e (in NTT domain)
9: pk ← Encode12(t̂)‖ρ

10: sk ← Encode12(ŝ)
11: return (pk, sk)

vector r is sampled according to Bη1 using r. The polynomial vector e1 and
the polynomial e2 are sampled according to Bη2 using r. Then, normally, the
ciphertext c = (c1, c2) is (AT r+ e1, t

T r+ e2 +m). However, multiplications are
performed in NTT domain and then transformed to the normal domain by using
NTT−1. Moreover, the ciphertext is compressed and encoded.

In Kyber-PKE Decryption, the polynomial vector u and the polynomial v
are obtained from the ciphertext by decoding and decompressing. The vector
s is obtained from the secret key. Then, the message m is v − sTu. Again,
the multiplications are performed in NTT domain and then transformed to the
normal domain by using NTT−1.

Nonce values (which are 0 in the beginning of the algorithms) are incremental
in each computation. Algorithms are given in Algorithm 1, 2, and 3.

Algorithm 2: Kyber-PKE Encryption

Input : public key pk, message m, random coins r ∈ {0, 1}256
Output : ciphertext c = (c1, c2)
1: t̂← Decode12(pk)
2: ρ← pk
3: Â← Parse(XOF(ρ, nonce++)) . Generate matrix Â ∈ Rk×kq in NTT domain
4: r← CBDη1(PRF(r, nonce++)) . Sample r ∈ Rkq
5: e1 ← CBDη2(PRF(r, nonce++)) . Sample e1 ∈ Rkq
6: e2 ← CBDη2(PRF(r, nonce++)) . Sample e2 ∈ Rq
7: r̂← NTT(r)
8: u← NTT−1(ÂT ◦ r̂) + e1 . u := AT r + e1

9: v ← NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1) . v := tT r + e2 +m
10: c1 ← Encodedu(Compressq(u, du))
11: c2 ← Encodedv (Compressq(v, dv))
12: return c = (c1, c2)
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Algorithm 3: Kyber-PKE Decryption

Input : secret key sk, ciphertext c = (c1, c2)
Output : message m
1: u← Decompressq(Decodedu(c1), du)
2: v ← Decompressq(Decodedv (c2), dv)
3: ŝ← Decode12(sk)
4: m← Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)
5: return m

On the other hand, Kyber-KEM is an IND-CCA2-secure KEM and it is con-
structed from Kyber-PKE using (a slightly tweaked) Fujisaki-Okamoto trans-
form. It contains three steps: Key Generation, Encapsulation, and Decapsula-
tion. In the first step, Alice generates the public and secret keys by using Kyber-
PKE Key Generation algorithm, and shares her public key with Bob. In the
second step, Bob encrypts the message to the ciphertext by using Kyber-PKE
Encryption algorithm, and sends the ciphertext to Alice. He also computes the
shared secret by using the message, Alice’s public key, and the ciphertext. In
the last step, Alice decrypts the ciphertext to the message by using Kyber-PKE
Decryption algorithm, and then verifies whether it can be encrypted to the same
ciphertext (sent by Bob) by following similar steps as Bob did by using Kyber-
PKE Encryption algorithm. If ciphertexts match, Alice computes the shared
secret by using the message, her public key, and the ciphertext. Otherwise, she
computes the shared secret by using a random value and the ciphertext. Details
of Kyber-KEM are illustrated in Figure 1.

3 ARMv8-A Architecture

ARMv8-A is a 64-bit architecture. It provides 31 general purpose registers which
can hold 32-bit values in registers w0-w30 or 64-bit values in registers x0-x30.
It provides SIMD (Single Instruction Multiple Data) instruction set, which can
process 128 bit data per instruction on average. The SIMD vectorization is possi-
ble for same data per vector registers and it does not allow carry handling. There
are 32 128-bit registers (v0-v31), which can be divided into lanes which are 8,
16, 32, or 64 bits wide. They are defined via operand suffix b, indicated byte,
h indicates half-word, s indicates word, d indicated double-word. For instance,
v0.8h create a vector with eight 16-bit elements. Single element of a vector can
be accessed via square brackets (e.g. v0.4s[0] is the first 32-bit element of the
vector v0, and v1.8h[2] is the third 16-bit element of the vector v1).

The ARMv8-A has a various SIMD instructions. Load and store operations
are performed by using LD and ST operations. Each has 4 types according to
the degree of interleaving: LD1/ST1, LD2/ST2, LD3/ST3 and LD4/ST4. For ex-
ample, LD1 fills the vector va first, and continues to fill the vector vb later.
However, LD2 fills the vectors va and vb simultaneously, that is, one element for
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Public parameters
n = 256, q = 3329, k, (η1, η2), (du, dv)

Alice

KeyGen

1. z
$←− {0, 1}256

2. (pk, sk′) := Kyber.CPAPKE.KeyGen()

3. sk := (sk′‖pk‖H(pk)‖z)

Bob

Encaps

1. m
$←− {0, 1}256

2. m← H(m)

3. (K̄, r) := G(m‖H(pk))

4. c := Kyber.CPAPKE.Enc(pk,m, r)

5. K := KDF(K̄‖H(c))

Decaps

1. pk, h = H(pk), z ← sk

2. m′ := Kyber.CPAPKE.Dec(sk, c)

3. (K̄′, r′) := G(m′‖h)

4. c′ := Kyber.CPAPKE.Enc(pk,m′, r′)

5. If c = c′ then
K := KDF(K̄′‖H(c))

else
K := KDF(z‖H(c))

pk

c

Fig. 1: Kyber-CCA-KEM.

va and the next element for vb, another element for va again and so on. LD3
follows a similar order for the vectors va, vb and vc. ZIP1/ZIP2 zip two vec-
tors into a single vector according to even/odd indices. UZP1/UZP2 concatenate
even or odd elements from two vectors. The SXTL/SXTL2 instructions widens
the lower/upper halfs of the source register (e.g. widens 8-bit elements to 16-
bit elements). TBL is an instruction used for permutation according the indices
given in a look-up table. SSHR/USHR performs vectorized signed/unsigned right
shift operations. AND/ORR are bitwise and/or operations. ADD/SUB performs vec-
torized addition/subtraction. MUL performs vectorized multiplication restricted
to the vector element size, however, SMULL/SMULL2 perform the actual multipli-
cation and widens the vector element. All of MUL/SMULL/SMULL2 also support
multiplication by a scalar, that is, all the vector elements are multiplied with a
single scalar element. Moreover, multiplication can be combined with addition
or subtraction within a single instruction. For example, MLA/MLS adds/subtracts
the product to/from the original value (i.e. MLS c, a, b performs c← c+ab and
MLA c, a, b performs c← c− ab). The details of ARMv8-A architecture can be
found in [3].
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4 Implementation Details

Kyber performs the mathematical operations on the polynomials in Rq. Each
polynomial, and its representation in NTT-domain, can be serialized as a vector
of length 256 as follows:

f =
255∑
i=0

fiX
i → (f0, f1, . . . , f255)

and

f̂ = NTT(f) = (f̂0 + f̂1X, . . . , f̂254 + f̂255X)→ (f̂0, . . . , f̂255).

The addition and subtraction of two polynomials f and g can be performed
component-wise on their serialized forms: fi ± gi or f̂i ± ĝi. However, the mul-
tiplication is only performed in NTT domain (for efficiency) by multiplying

component-wise pairs: (f̂2i, f̂2i+1) ◦ (ĝ2i, ĝ2i+1). Modular reductions can also be

performed component-wise: fi mod q, or f̂i mod q.

In our implementation, the basic goal is to vectorize the input and take the
advantage of SIMD operations on ARM. As q = 3329 is a 12-bit integer, the
input values can be stored in 16-bit (or multiples of 16-bit). Later, 16-bit values
are vectorized in vx.8h registers. In addition, 32-bit values are vectorized in vx.4s
registers, if needed. Here, x is the vector index in {0, 1, . . . , 31}.

4.1 Reduction

For a given 16-bit integer a, Barrett reduction computes the centered rep-
resentative congruent to a mod q, that is, the unique integer x in the inter-
val

[
− q−12 , ..., q−12

]
such that x = a mod q. It uses a special constant value

r = b(226 + bq/2c)/qc), which is 20159 as q = 3329. On the other hand, for a
given 32-bit integer a, Montgomery reduction computes 16-bit integer congruent
to aR−1 mod q, where R = 216, in the interval [−q + 1, . . . , q − 1].

We use the vectorized form of Barrett reduction as given in Listing 1. We use
the vectorized form of Montgomery reduction inplaced in tomont (see Listing
2) and fqmul (see Listing 3) functions. The tomont function performs the con-
version of polynomial coefficients from normal domain to Montgomery domain
by multiplying them with t = 232 mod q first and by applying the Montgomery
reduction later. As q = 3329, the constant values in tomont are q′ = 62209 =
q−1 mod 216 and t = 1353. Moreover, the fqmul function performs the multi-
plication of two Zq-elements and then apply the Montgomery reduction. It uses
the constant value q′ as defined before. In the comments of the listings, (x)hi
and (x)lo refer to the most significant and the least significant 16-bit of a 32-bit
integer x, respectively.
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Listing 1: BARR: Vectorized Barrett Reduction
(r = b(226 + bq/2c)/qc)

Input : va.8h = [a0, a1, ..., a7] and vq.8h = [q, r, ...]
(vx is an intermediate vector)

Output : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)

1: SQDMULH vx.8h, va.8h, vq.h[1] . x← (2 · a · r)hi
2: SSHR vx.8h, vx.8h, 11 . x← x� 11
3: MLS va.8h, vx.8h, vq.h[0] . a← a− q · x

Listing 2: TOMONT: Vectorized conversion of polynomial coefficients from
normal domain to Montgomery domain (q′ = q−1 mod 216 and t =
232 mod q)

Input : va.8h = [a0, a1, ..., a7] and vq.8h = [q, q′, t, ...]
(vx, vy, vz, vt are intermediate vectors)

Output : va.8h = [a0, a1, ..., a7]

1: MUL vx.8h, va.8h, vq.h[2] . x← (t · a)lo
2: SQDMULH vy.8h, va.8h, vq.h[2] . y ← (2 · a · t)hi
3: MUL vz.8h, vx.8h, vq.h[1] . z ← (q−1 · x)lo
4: SQDMULH vt.8h, vz.8h, vq.h[0] . t← (2 · q · z)hi
5: SHSUB va.8h, vy.8h, vt.8h . a← (y − t)/2

Listing 3: FQMUL: Vectorized Multiplication followed by Montgomery
Reduction
Input : Vectors va.8h = [a0, ..., a7], vb.8h = [b0, ..., b7] and vq.8h = [q, q′, ...]

(vx, vy, vz, vt are intermediate vectors)
Output : vc.8h = [c0, c1, ..., c7]

1: MUL vx.8h, va.8h, vb.8h . x← (a · b)lo
2: SQDMULH vy.8h, va.8h, vb.8h . y ← (2 · a · b)hi
3: MUL vz.8h, vx.8h, vq.h[1] . z ← (q−1 · x)lo
4: SQDMULH vt.8h, vz.8h, vq.h[0] . t← (2 · q · z)hi
5: SHSUB vc.8h, vy.8h, vt.8h . c← (y − t)/2

4.2 NTT Operations

In NTT, the state-of-art computation is performed using Butterfly operations.
As n = 256 = 28 in Kyber, the Butterfly operations are performed in 7 levels.
In each level, the serialized representation (f0, f1, . . . , f255) are filled into the
8×16-bit vectors, and each two vectors (according to some distance in each level)
are updated using Butterfly operation in NTT (see Listing 4). In the end, the

its NTT representation (i.e. (f̂0, f̂1, . . . , f̂255)) is obtained. Vice versa, a vector
in NTT domain can also be transformed to the normal domain by using the
Butterfly operation in NTT−1 (see Listing 5).
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Listing 4: Butterfly operation in NTT

Input : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vb.8h = [b0, b1, ..., b7] (b0, b1, . . . , b7)
vz.8h = [z0, z1, ..., z7] (ζ0, ζ1, . . . , ζ7)
(vc is an intermediate vector)

Output : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vb.8h = [b0, b1, ..., b7] (b0, b1, . . . , b7)

1: FQMUL vc.8h, vz.8h, vb.8h
2: SUB vb.8h, va.8h, vc.8h . b← a− b · ζ
3: ADD va.8h, va.8h, vc.8h . a← a+ b · ζ

Listing 5: Butterfly operation in NTT−1

Input : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vb.8h = [b0, b1, ..., b7] (b0, b1, . . . , b7)
vz.8h = [z0, z1, ..., z7] (ζ0, ζ1, . . . , ζ7)
(vc is an intermediate vector)

Output : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vb.8h = [b0, b1, ..., b7] (b0, b1, . . . , b7)

1: MOV vc.16b, va.16b . c← a
2: ADD va.8h, vc.8h, vb.8h . a← b+ c
3: BARR va.8h . a← BarrettRed(a)
4: SUB vb.8h, vc.8h, vb.8h . b← b− c
5: FQMUL vb.8h, vz.8h, vb.8h . b← b · ζ

4.3 Polynomial Operations

Polynomials stored in the vectors are simply added or subtracted using ADD or
SUB instructions as many times as needed. For the multiplication, two linear
polynomials a0 + a1X and b0 + b1X are multiplied to compute their product
c0 + c1X in modulo X2 − ζk as mentioned in Section 2.1. For this purpose, we
use the BASEMUL function (see Listing 6) as the vectorized multiplication of two
linear polynomials.

4.4 Noise Sampling

Vectors are sampled according to B2 or B3 since η ∈ {2, 3}. We use CBD2 (see
Listing 7) and CBD3 (see Listing 8) when η = 2 and η = 3, respectively. We
initialize some vector registers (as many as needed) in the beginning: the vectors
vmi are used for masking and the vector vs is used for shuffling. As mentioned in
Section 2.3, every 4 bits (resp. 6 bits) produce an output when η = 2 (resp. η =
3). Therefore, CBD2 takes a 128-bit input and produces 32 output values (which
are stored in vc0.8h, vc1.8h, vc2.8h and vc3.8h). Similarly, CBD3 takes a 96-bit
input and produces 16 output values (which are stored in vc0.8h and vc1.8h). For
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Listing 6: BASEMUL: Vectorized multiplication of two linear polynomials

Input : va0.8h = [a00, ..., a07] and va1.8h = [a10, ..., a17] as a0 + a1X
vb0.8h = [b00, ..., b07] and vb1.8h = [b10, ..., b17] as b0 + b1X
vz.8h = [z0,−z0, ..., z3,−z3] as ζ values
(vd is an intermediate vector)

Output : vc0.8h = [c00, ..., c07] and vc1.8h = [c10, ..., c17] as c0 + c1X

1: FQMUL vc0.8h, va1.8h, vb1.8h
2: FQMUL vc0.8h, vc0.8h, vz.8h . c0 ← a1 · b1 · ζ
3: FQMUL vd.8h, va0.8h, vb0.8h
4: ADD vc0.8h, vc0.8h, vd.8h . c0 ← c0 + a0b0
5: FQMUL vc1.8h, va0.8h, vb1.8h
6: FQMUL vd.8h, va1.8h, vb0.8h
7: ADD vc1.8h, vc1.8h, vd.8h . c1 ← a0 · b1 + a1 · b0

these functions, we mainly followed the steps in Kyber’s AVX implementation
given in [6].

Listing 7: CBD2: Vectorized noise sampling for η = 2

Input : va.16b = [a0, a1, ..., a15], (input values)
vm0.16b = [0x55, ..., 0x55], vm1.16b = [0x33, ..., 0x33],
vm2.16b = [0x03, ..., 0x03], vm3.16b = [0x0F, ..., 0x0F] (masking)
(vd, ve, vf are intermediate vectors)

Output : vc0.8h = [c00, c01, ..., c07] vc1.8h = [c10, c11, ..., c17]
vc2.8h = [c20, c21, ..., c27] vc3.8h = [c30, c31, ..., c37]

1: USHR vd.8h, va.8h, 1
2: AND va.16b, va.16b, vm0.16b
3: AND vd.16b, vd.16b, vm0.16b
4: ADD va.16b, va.16b, vd.16b
5: USHR vd.8h, va.8h, 2
6: AND va.16b, va.16b, vm1.16b
7: AND vd.16b, vd.16b, vm1.16b
8: ADD va.16b, va.16b, vm1.16b
9: SUB va.16b, va.16b, vd.16b

10: USHR vd.8h, va.8h, 4
11: AND va.16b, va.16b, vm3.16b
12: AND vd.16b, vd.16b, vm3.16b
13: SUB va.16b, va.16b, vm2.16b
14: SUB vd.16b, vd.16b, vm2.16b
15: ZIP1 ve.16b, va.16b, vd.16b
16: ZIP2 vf.16b, va.16b, vd.16b
17: SXTL vc0.8h, ve.8b
18: SXTL2 vc1.8h, ve.16b
19: SXTL vc2.8h, vf.8b
20: SXTL2 vc3.8h, vf.16b
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Listing 8: CBD3: Vectorized noise sampling for η = 3

Input : va.16b = [a0, a1, ..., a7]
vs.16b = [−1, 11, 10, 9,−1, 8, 7, 6,−1, 5, 4, 3,−1, 2, 1, 0], (shuffle)
vm0.4s = [0x00249249, ...], vm1.4s = [0x006DB6DB, ...]
vm2.4s = [0x00000007, ...], vm3.4s = [0x00070000, ...],
vm4.4s = [0x00030003, ...], (masking)
(vd is an intermediate vectors)

Output : vc0.4s = [c00, c01, c02, c03] and vc1.4s = [c10, c11, c12, c13]

1: TBL va.16b, va.16b, vs.16b
2: USHR vd.4s, va.4s, 1
3: USHR vc0.4s, va.4s, 2
4: AND va.16b, va.16b, vm0.16b
5: AND vd.16b, vd.16b, vm0.16b
6: AND vc0.16b, vc0.16b, vm0.16b
7: ADD va.4s, va.4s, vd.4s
8: ADD va.4s, va.4s, vc0.4s
9: USHR vd.4s, va.4s, 3

10: ADD va.4s, va.4s, vm1.4s
11: SUB va.4s, va.4s, vd.4s
12: SHL vd.4s, va.4s, 10
13: USHR vc0.4s, va.4s, 12
14: USHR vc1.4s, va.4s, 2
15: AND va.16b, va.16b, vm2.16b
16: AND vd.16b, vd.16b, vm3.16b
17: AND vc0.16b, vc0.16b, vm2.16b
18: AND vc1.16b, vc1.16b, vm3.16b
19: ADD va.8h, va.8h, vd.8h
20: ADD vd.8h, vc0.8h, vc1.8h
21: SUB va.8h, va.8h, vm4.8h
22: SUB vd.8h, vd.8h, vm4.8h
23: ZIP1 vc0.4s, va.4s, vd.4s
24: ZIP2 vc1.4s, va.4s, vd.4s

4.5 Symmetric Functions

As described in Table 2, Kyber requires SHAKE-128/256, SHA-256/512, SHA3-
256/512, and AES-256 for XOF, H, G, PRF, and KDF. For hash functions, we
utilized the implementation provided by PQClean [13]. For the AES implemen-
tation, we utilized the AES accelerator in the target board. If the board does
not support the AES accelerator, we utilized PQClean AES implementations.

5 Performance Results

Benchmark results were measured both ARM and Apple chips. The ARM board
is on Google Pixel 3 Android smartphone. The processor (Snapdragon 845) on
it has 8 cores including 4 of ARM Cortex-A53 (@1.77 GHz) and 4 of ARM
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Cortex-A75 (@2.8 GHz) based. Performance results are taken by using Cortex-
A75 processor. The executable is aarch64 cross-compiled on Linux operating
system (Ubuntu 20.04) with gcc-9.

The Apple board is on iPad mini 5-th generation. The processor (A12 Bionic)
on it has 6 cores including 2 of Vortex (@2.49 GHz) and 4 of Tempest (@1.54 GHz)
based. Performance results are taken by using Vortex processor on Apple oper-
ating system (iPadOS 14.3).

The reference C code is originally obtained from [13] as the clean format of
Kyber Round 3 submission [6]. Then, cycle count function is changed as how
is written in Microsoft’s SIDH code [17]. The clock is set as CLOCK MONOTONIC

which gives more accurate results than CLOCK REALTIME.
Results shown in the Tables 3 and 4 are median values for 1,000 tests. The

Table 3 shows reference and optimized implementation performance results for
the arithmetic functions in Kyber. Notice that these results are same for all
Kyber variants, because each Kyber variant has the same number of polynomial
coefficients (e.g. n = 256). The overall performance results of key generation (K),
encapsulation (E) and decapsulation (D) for all Kyber variants (including Kyber-
90s) are presented in Tables 4. They show that the optimized implementation is
∼2x faster than reference implementation even though the arithmetic functions
are optimized ∼5x faster. The main reason here is that the hashing operations
mainly in the matrix generation part and in other various sums up to a big
portion of the timing results as it is also indicated in the paper [1]. Detailed
percentages of these functions are illustrated in the Figure 2.

Table 3: Comparison of clock cycles for functions of Kyber schemes on 64-bit
ARM Cortex-A75@2.8 GHz. (Ref-C: Reference C implementation [13]. Opt: Our
optimized implementation.)

Functions
Timing [cc]

Ref-C [13]/Opt
Ref-C [13] Opt

Reduction
poly tomont (Montgomery Red) 1,896 437 4.34
poly reduce (Barrett Red) 2,187 294 7.44

NTT
poly ntt (NTT+Barrett Red) 11,228 1750 6.42
poly invntt tomont (InvNTT) 17,500 2624 6.67
poly basemul montgomery 5,396 1168 4.62

5.1 Cryptography Extension for Kyber–90s

64-bit ARMv8 Cortex-A processor supports cryptography extension, which ac-
celerates AES encryption, SHA-1, SHA-224, and SHA-2565. In CT-RSA’15,

5 Recent ARM architecture even supports SHA-3, SHA-512, SM3, and SM4 functions.
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Fig. 2: Percentages of used functions in Keygen, Encapsulation and Decapsula-
tion

compact implementations of AES-GCM were presented [9]. They utilized new
cryptography instructions including 64-bit polynomial multiplication (e.g. PMULL
and PMULL2) and AES operations (e.g. AESE (AddRoundKey, SubBytes, and
ShiftRows) and AESMC (MixColumns)) for high-performance. In PQCrypto’18,
SPHINCS with different cryptographic hash functions on ARMv8-A platform
was presented [15]. The implementation of SHA256 is optimized with cryptogra-
phy extension (SHA256H, SHA256H2, SHA256SU0, and SHA256SU1). HARAKA im-
plementation is optimized with AES extension. These dedicated instruction sets
are also beneficial for a variant of Kyber, namely Kyber-90s, suggested by Ky-
ber team. This new scheme utilizes AES-256 in counter mode and SHA2 instead
of SHAKE. Kyber512-90s can be further optimized with AES-256 accelerator.
We evaluated Kyber512-90s on 64-bit Apple A12 processors@2.49 GHz. Refer-
ence implementations require 279,751, 292,742, and 305,511 clock cycles for key
generation, encryption, and decryption while optimized implementations with
ARM64 assembly and AES-256 accelerator require 32,640, 42,158, and 36,982
clock cycles for key generation, encryption, and decryption, respectively. The
implementation with accelerator shows 8.57×, 6.94×, and 8.26× faster than the
implementation without the AES accelerator.
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Table 4: Comparison of clock cycles for Kyber schemes. (Ref-C: Reference C
implementation [13]. Opt: Our optimized implementation.)

ARM Cortex-A75 @2.8 GHz Apple A12 @2.49 GHz
w/ AES accelerator

Schemes
Timing [cc]

Ref-C/Opt
Timing [cc]

Ref-C/Opt
Ref-C Opt Ref-C Opt

Kyber512
K 145.8 81.7 1.79 60.4 34.9 1.78
E 205.2 104.9 1.96 77.7 37.7 2.06
D 248.5 101.9 2.44 94.6 37.2 2.53

Kyber768
K 247.5 138.0 1.79 106.0 62.2 1.70
E 327.8 173.4 1.89 131.9 60.8 2.16
D 383.0 168.6 2.27 146.7 60.0 2.44

Kyber1024
K 385.1 222.7 1.73 171.2 95.2 1.79
E 476.7 262.8 1.81 182.2 93.0 1.95
D 546.0 257.7 2.12 209.1 91.0 2.29

Kyber512-90s
K 270.5 205.6 1.32 279.7 32.6 8.57
E 334.5 236.7 1.41 292.7 42.1 6.94
D 375.1 230.7 1.63 305.5 37.0 8.26

Kyber768-90s
K 491.7 379.2 1.30 554.2 56.4 9.82
E 581.4 426.1 1.36 576.0 64.5 8.92
D 632.9 417.1 1.52 590.7 57.0 10.35

Kyber1024-90s
K 790.3 625.8 1.26 941.9 87.1 10.80
E 897.3 680.5 1.32 964.8 93.8 10.28
D 959.6 669.4 1.43 983.0 83.5 11.76

6 Conclusion

This paper presented several optimization techniques to efficiently implement
Kyber-KEM on 64-bit ARM processors. We proposed optimizations for primitive
operations of Kyber and symmetric functions to accelerate the execution time.
A combination of these optimizations achieved 1.79×, 1.96×, and 2.44× faster
than previous Kyber512 implementations for key generation, encapsulation, and
decapsulation, which set new speed records for Kyber-KEM on an 64-bit ARM
processor.
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