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Abstract

This paper presents a conceptual review of our re-
cent advancements on the integration of machine
learning and optimization. It focuses on describ-
ing new hybrid machine learning and optimiza-
tion methods to predict fast, approximate, solutions
to combinatorial problems and to enable structural
logical inference.

1 Introduction

Constrained optimization (CO) is in daily use in our society,
with applications ranging from supply chains and logistics to
electricity grids, organ exchanges, marketing campaigns, and
manufacturing to name only a few. Although these problems
are often NP-hard and computationally challenging even for
medium-sized instances, they constitute fundamental build-
ing blocks for the optimization of many industrial processes
and are key to the stability of their operations with profound
effects on our society and economy. The AI and Opera-
tions Research communities have devised a wide spectrum of
techniques and algorithms to effectively leverage the problem
structure and solve many hard CO problems instances within
a reasonable time and with high accuracy. While this success
has made possible the deployment of CO solutions in many
real-world contexts, the complexity of these problems often
prevent them to be adopted in contexts of repeated (e.g., in-
volving expensive simulations, multi-year planning studies)
or real-time nature, or when they depend in nontrivial ways
on empirical data.

In many practical settings, we must solve many problem in-
stances sharing similar patterns. This is the case with power
system applications, for example, where the same problem is
solved repeatedly with different inputs (e.g., loads and gener-
ation bids), or in industrial manufacturing scheduling, where
the different inputs represent different tasks to be scheduled
on a constant set of machines. Therefore, the application of
deep learning methods to aid in solving computationally chal-
lenging constrained optimization problems is a promising ap-
proach and has gained traction in the nascent area at the inter-
section between constrained optimization and machine learn-
ing (ML) [Bengio et al., 2020; Kotary et al., 2021b; Vesseli-
nova et al., 2020]. However, while deep learning has proven
its power for unconstrained problem settings, it has struggled

to perform as well in domains where it is necessary to satisfy
hard constraints. For example, in power systems, materials
science, fluid dynamics, and many other areas, the data fol-
lows well-known physical laws, and violation of these laws
can lead to unreliable and unusable approximations. There is
thus a critical need for fast deep learning approximators that
can operate in settings where traditional optimizers are slow,
yet where feasibility criteria must be satisfied.

The goal of this paper it to summarize our recent research
efforts made to address this need.

2 Problem Definition

Our research uses deep learning to approximate the optimal
solutions to optimization problems of the form

P (d) : argmin
x

f(x,d) subject to: x 2 C(d), (1)

where x 2 Rn is a vector of decision variables, d 2 Rm a
vector of input data, and f : Rn+m ! R+ is the problem
objective. The set of constraints C is arbitrary. A recurrent
class of problems we consider are nonlinear nonconvex pro-
grams defined by the constraint set C(d) = {x | H(x,d) =
0; G(x,d) 0}, where H and G describe p equality and q

inequality constraints, respectively, hi(x,d) = 0 (i2 [p]) and
gi(x,d)  0 (i2 [q]), each defined on Rn ⇥ Rm.

The training task is given a dataset D = {(di,
?

xi2
P (di))}Ni=1 of N samples, where ?

xi is a (possibly) optimal
solution to Problem (1) for input di. The dataset is used to es-
timate a parametrized model represented by the function M.
Given its parameters vector ✓ and input di, the model predicts
x̂i =M✓(di)2Rn, a vector of values from the output space
of x.

3 Learning CO Approximations

Given an optimization problem P of the form specified in
Equation (1), the objective is to learn a parametric model
M✓ : Rm!Rn that, given the problem input data d, predicts
the optimal values ?

x for the decision variables. The learning
task must solve the following empirical risk optimization:

?

✓ = argmin
✓

NX

i=1

L (M✓(di),
?

xi) (2)

such that: C (M✓(di),di) 8i 2 [N ], (3)



Dist. to feasible sol. (%) Dist. to AC-OPF sol. (%)
Test Case DC M� M DC M� M

30 ieee
pg 2.6972 2.0793 0.0007 0.1907 2.1353 0.0058

v 1.2929 83.138 0.0037 3.4931 6.2996 0.0086

118 ieee
pg 0.2011 0.1071 0.0038 0.5865 0.1353 0.0368

v 1.9971 3.4391 0.0866 2.2780 4.5972 0.1335

300 ieee
pg 0.1336 0.0447 0.0084 0.1717 0.0644 0.0175

v 3.8526 31.698 0.1994 0.6854 2.9985 0.2196

pg 0.7751 0.9843 0.0197 0.6090 0.5694 0.0356

v 2.4284 36.288 0.1995 1.7870 3.3879 0.2136

Total Average Total Average

(a) Solution Quality.

Dist. to AC-OPF cost (%) Runtime (sec.)
Test Case DC M� M AC DC M
30 ieee 7.9894 2.9447 0.0180 0.1024 0.0148 < 10�4

118 ieee 4.7455 1.0973 0.5408 0.4207 0.0785 0.0001

300 ieee 4.7508 1.9543 0.3011 8.0645 0.2662 0.0001

4.5733 2.3706 0.2124 1x 30.3x >104x
Total Average Min Speedup

(b) Objective cost distances and runtime.

Table 1: Lagrangian dual deep learning: Each test case represents a benchmark set with different load congestion scenarios.
Results are averaged across all scenarios and best results are shown in bold fonts.

to obtain an approximation P̂ =M ?

✓
of P . The loss function

L characterizes the similarity of the predictions x̂i=M✓(di)
to the ground truth ?

xi and C(x̂,d) holds if the problem con-
straints x̂ 2 C(d) are satisfied. However, this framework faces
a fundamental challenge: deep learning frameworks cannot
naturally handle the problem constraints.
Lagrangian Dual Deep Learning. To drive the DNN pre-
dictions toward satisfying the problem constraints, our work
has proposed several integrations of optimization techniques
with deep learning [Kotary et al., 2021b; Fioretto et al.,
2020b; Kotary et al., 2022b]. In particular, one approach ex-
ploits Lagrangian duality to integrate trainable and weighted
regularization terms that encapsulate constraints violations
[Fioretto et al., 2020a]. Indeed, the ML loss function should
be guided by both data and the task at hand. The Lagrangian
relaxation of problem P with C = {x|H(x) = 0; G(x) 0}
is a weighted sum of objective and constraint functions fL :
Rn⇥Rp⇥Rq!R, defined as:

fL(x,�
h
,�

g) = f(x) +
pX

i=1

�
h

i
hi(x) +

qX

i=1

�
g

i
gi(x), (4)

where �
h

i
and �

g

i
� 0 are the Lagrangian multipliers associ-

ated with constraints hi(x) = 0 and gi(x)  0, respectively.
The presentation omits the input data d 2Rm in the various
functions and constraints.

To approximate problem P with a DNN model M✓ while
accounting for the problem constraints, we parametrize the
model loss function L by the Lagrangian multipliers � =
{�c}c2C , as L�(x̂,

?

x) = LO(x̂,
?

x) + LC

�
(x̂), where x̂ =

M✓(d) represents the model prediction, LO(x̂,
?

x) measures
the prediction error and LC

�
(x̂) =

P
c2C �c⌫c(x̂) the con-

straint violations of the prediction. For multipliers �, solving
the optimization problem

?

✓(�) = argmin
✓

NX

i=1

L�(M✓(di),
?

xi) (5)

produces an approximation bP� = M ?

✓(�)
of P . The La-

grangian dual computes the optimal multipliers, i.e.,

?

�=argmax
�

min
✓

NX

i=1

L�(M✓(di),
?

xi) (6)

to obtain, bP ⇤ =M ?

✓(
?

�)
, i.e., the strongest Lagrangian relax-

ation of P . Learning bP ⇤ relies on an iterative scheme that in-
terleaves the learning of a number of Lagrangian relaxations
(for various multipliers) with a subgradient method to learn
the best multipliers and described in [Fioretto et al., 2020a].
A Glimpse of its Effectiveness. The effectiveness of the
Lagrangian dual learning framework was shown in several
domains, including learning power flows in energy systems
[Fioretto et al., 2020b; Mak et al., 2021], learning optimal
compression settings in gas networks [Fioretto et al., 2020a],
trasnprecision computing [Fioretto et al., 2020a], ML model
pruning [Kaur et al., 2022], and fair machine learning [Tran
et al., 2021b, 2022; Nagar et al., 2021].

In the following we provide an overview of the results ob-
tained to the problem of finding the least cost generator dis-
patch to meet the demands in a power network (AC-OPF).
The problem is required to satisfy the nonconvex nonlinear
AC power flow equations that are a core building block in
many power system applications. Table 1 summarizes re-
sults for power systems with up to 1,000+ lines [Fioretto
et al., 2020b; Chatzos et al., 2020]. It compares the La-
grangian dual method M against the DC-OPF model (DC)–
which is a linear approximation of the AC-OPF–and a DNN
model M� whose loss function only includes the prediction
error LO(x̂,

?

x) component (i.e., it does not encourage con-
straint satisfaction). The DNN architectures are based on a
feed-forward multi-task network to predict the various physi-
cal quantities (generators power and voltage) [Fioretto et al.,
2020b]. Table 1a compares the accuracy of the proposed
DNN model against the approximation found by the DC-OPF
model and the optimal AC-OPF solutions. The solution qual-
ity is measured by first finding the closest AC feasible so-
lution to the predictions returned by the DC or by the DNN
models to restore feasibility. Then, the dispatch values are
compared to the original ones. The table reports the average
distances (%) for the active power (pg) and voltage magnitude
(v) against the model predictions (left sub-table) and the AC-
OPF solutions (right sub-table). The table reports the results
for three benchmark networks (with 30, 118, and 300 buses)
and the last row reports the average results for an extensive
set of medium-size networks [Fioretto et al., 2020b; Chat-
zos et al., 2020]. The results illustrate that the Lagrangian
dual model is up to two orders of magnitude more precise



Why does it work?
• Solution trajectories can be approximated by

piecewise linear functions.

• ReLU neural networks have the ability to capture
piecewise linear functions. 

• When many variables have “simple” solution trajectories, 
highly accurate approximations can be obtained. 

• Thm (informal). The approximation error of a ReLU network 
depends on the trajectory complexity (number of pieces and 
their total variations) and the network capacity. 

• Dependency between complexity of the trajectories and 
prediction error, in some contexts, regardless of the model 
capacity. 
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Fig. 1: Solution Trajectories of AC-OPF variables and their
learned approximations (top) and prediction errors at varying
of the model size (bottom).

than the DC model and the baseline DNN. Table 1b com-
pares accuracy and runtime of the proposed DNN model and
DC against the AC-OPF solutions found by a state-of-the-art
(SoTA) nonlinear solver. The left sub-table reports the av-
erage L1-distances of the dispatch costs against the optimal
costs and the right sub-table illustrates the time required to
find an AC-OPF solution, a linear DC approximation, and a
prediction using the proposed Lagrangian approach. Observe
that the proposed model finds dispatches whose costs are at
least one order of magnitude closer to the true solution than
those returned by the DC while being several orders of mag-
nitude faster. These results are significant: They suggest that
the integration of optimization and deep learning has the po-
tential to replace approximations, such as the DC model in
energy systems, and deliver solutions with greater fidelity and
computing speed.

4 Why Constraints help Predictions?

While this line of research has been shown effective to ap-
proximate CO solutions, still little is known on when and
why these models can predict solutions to CO problems ac-
curately, as well as about their predictions robustness. In an
effort to address this knowledge gap, and recognizing that an-
swers to this questions may depend on the target problem and
computational budgets, in [Dinh et al., 2021] we focused on
AC-OPF predictions.

Solution Trajectories as Piecewise Linear Functions. To
answer why DNNs are able to approximate OPF solutions
with low errors, we studied the relation between the training
data and their target outputs. Figure 1 (top) shows, with solid
lines, how generator outputs change as a function of the total
demand for selected IEEE-118 generators. Observe that, the
solution trajectory associated with the problem instances on
various input parameters can be naturally approximated by
piecewise linear functions. This approximation is in fact ex-
act for linear programs when the inputs capture incremental
changes to the objective coefficients or the right-hand side of

the constraints. Additionally, ReLU neural networks have the
ability to capture piecewise linear functions [Moon, 2021].

However, while these models are thus compatible with the
task of predicting the solutions of an optimization problem,
the model capacity required to represent a target piecewise
linear function exactly depends directly on the number of
constituent pieces. In a [Kotary et al., 2021a] we charac-
terized the error associated with the classes of functions that
can be learned by a ReLU network model with fixed capac-
ity with respect to a target trajectory. When many variables
have simple solution trajectories, thus, highly accurate ap-
proximation can be obtained by a ReLU networks, even if
ignoring the problem constraints. In the figure we illustrate
that a model equipped with ReLU activations (dotted line)
can indeed better approximate a model equipped with TanH
activations (dashed lines).

The Importance of Constraints. Givne the result above,
it is to be expected that larger DNN models will be better
suited to learning more complex solution trajectories. How-
ever, this aspect was not consistently observed in our exper-
iments [Dinh et al., 2021]. Figure 1 (bottom) illustrates this
surprising behavior for three generators with complex trajec-
torires, showing that the prediction error does not decrease
at increasing of the model size. To understand why this be-
havior occurs, in [Dinh et al., 2021] we examined the dynam-
ics of highly volatile solution trajectories, which, incidentally,
are also associated with high prediction errors, when a DNN
(unconstrained) model is used to predict them. In the paper
we show that, the highly volatile portions of the solution tra-
jectories are often associated with binding constraint in the
problem and that the prediction errors arise as the hidden rep-
resentation of the DNN does not accurately learn the opera-
tional and physical constraints which regulate the behavior of
the OPF solutions. When constraints are explicitly encoded
in the model, e.g., via the Lagrangian dual method described
above, these behaviors largely disappear obtaining highly ac-
curate predictions.

5 Dealing with Data and Discrete Structures

Section 3 focused on endowing deep learning models with
the ability to satisfy constraints. In all these studies, the ML
frameworks that learn to approximate solutions to hard op-
timization problems are assumed to have access to supervi-
sion labels that can guide the construction of the solutions to
target problems. However, when these labels are themselves
approximations, when the optimization problem has symmet-
ric solutions, and/or when the optimization solver uses ran-
domization, solutions to closely related instances may exhibit
large differences and the learning task can become inherently
more difficult. This issue particularly acute when learning
proxies to discrete optimization problems, whose solution
spaces often present a large number of symmetries.

These challenges are illustrated in Figure 2 (Standard La-
bels/blue curves). The left subplot shows the L1-distance be-
tween the obtained solution to each training instance (i.e., the
start times of the tasks in a job shop scheduling problem),
sorted by processing times, and a reference optimal solution
for some instance. The curve shows that meaningful patterns



Fig. 2: Data: L1 distance (left) and test loss (right).

can be lost, including the important relationship between an
increase in processing times and the resulting solutions. Fig-
ure 2 (right) shows that, despite the high volatility, the learn-
ing problem appears well behaved in the face of minimizing
the test loss. However, when training loss converges, accu-
racy (measured as the distance between the projection ⇧C(x̂)
of the prediction x̂ onto the schedule-feasible space C and
the real label ?

x) remains poor (blue star). Similar observa-
tions pertain to constraints violations, which remain high. It
is worth emphasizing that these volatility issues are further
exacerbated when time constraints prevent the solver from
obtaining optimal solutions.

In [Kotary et al., 2021a] we have analyzed this critical
challenge, connecting the volatility of the training data to the
ability of a model with given capacity to approximate it. In
addition, we devised a method for producing (exact or ap-
proximate) solutions to optimization problems that are more
amenable to supervised learning tasks.

Exploiting the Problem Structure This training data gen-
eration process was used to learn highly accurate job shop
scheduling problems [Kotary et al., 2022a], a notoriously
challenging combinatorial optimization problem, due to its
disjunctive constraints. When dealing with such problem,
we also observe that the network architecture plays a non-
trivial role in helping the training process to converge to better
minima and, even, to help generating predictions that satisfy
the problem constraints. More specifically, in [Kotary et al.,
2022a] we devise a network that differentiates three types of
layers: Job layers, that process processing times organized
by jobs, Machine layers, that process processing times orga-
nized by machines, and Shared layers, that process the out-
puts of the job layers and the machine layers to return a pre-
diction. Such architecture exploits directly the job-shop prob-
lem structure and was shown highly beneficial to the learning
task. We believe that this observation is highly generalizable
to other contexts and decision tasks.

Learning Constrained Policies Despite the high quality
results obtained in the learning methods described in the pre-
vious sections, their predictions offer no guarantees on the
satisfaction of the problem constraints. This issue is often
mitigated by a post-prediction step that projects the predic-
tions returned by the learning models onto the feasible space.
While these projections steps use a classical optimization
solver, they are generally extremely fast, as the solvers can be
warm-started with the predicted solutions, which are already
very close to the optimal ones.

This issue however, complicates further in the presence of
discrete structures, where efficient projections may not ex-
ists or where many symmetric solutions exists, as pointed out
above. Motivated by this challenge, we have proposed a in-
tegration of constrained optimization programs within a deep
learning pipeline which is trained end-to-end to produce opti-
mal (constraint-satisfying) solutions. This technique is stud-
ied in [Kotary et al., 2022b] in the context of fair learning to
rank tasks. The task consists in learning a mapping between
a list of items and a permutation of such list, which defines
the order in which the items should be ranked in response to a
user query while enforcing some desired notion of group fair-
ness over rankings. In addition to providing a certificate on
the fairness requirements, this method allows the modeler to
enforce a large number of fairness concepts that can be for-
mulated as linear constraints over rankings and is shown to
significantly improve current state-of-the-art fair learning-to-
rank systems with respect to established performance metrics.

Finally, we have shown how the integration of machine
learning and optimization can be used to enforce fairness con-
straints on predictors and obtain state-of-the-art results when
minimizing disparate treatments [Fioretto et al., 2020a]. This
technique can be used in combination with differential pri-
vacy to achieve a privacy-preserving deep learning algorithm
that also encourages the satisfaction of a variety of fairness
constraints, as we have shown in [Tran et al., 2021a,b].

6 Opportunities and Challenges

Our research on integrating constrained optimization with
end-to-end machine learning is part of a larger effort em-
barked by a nascent community at the intersection between
operations research and artificial intelligence [Kotary et al.,
2021b]. Despite the encouraging results, a number of chal-
lenges remain that must be addressed to allow an integration
that lives up to its full potential. (1) In predicting solutions
to constrained optimization problems, the current methods
cannot robustly guarantee arbitrary problem constraints to be
satisfied. This critical shortcoming may be addressed by in-
tegrating ML approaches with methods from the robust opti-
mization literature or by developing ad-hoc layers to project
the predictions onto the feasible space. (2) Despite the vari-
ety of approaches, the success of integrating an optimization
solver within a ML model in the loop has been demonstrated
on a relatively limited set of optimization problems and, fo-
cusing mostly on linear programming formulations. Chal-
lenges posed by the parametrization of constraints stand in
the way of broader applications. (3) Issues associated with the
runtime of combinatorial solvers in-the-loop still make some
potential applications impractical. (4) Finally, this area still
lacks theoretical results providing guarantees on the classes of
optimization problems that can be approximated via a learn-
ing proxy and their performance.

In summary, the integration of constrained optimization
and learning promises to produce a new generation of solvers
that will enable novel operation assessments at unprecedented
scales (e.g., over multi-years simulation studies) and may
transform the current concepts of robustness and high-quality
solutions in many engineering and scientific applications.
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