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Human-robot collaboration is an emerging research area that has gained tremendous attention in both 
academia and industry. Yet, the feature that human and robot sharing the workplace has led to safety 
concerns. In particular, the psychological states of human teammates during human-robot collaboration 
remains unclear but is also of great importance to workplace safety. This manuscript briefly reviewed 
possible direct and indirect measures that can be used to evaluate workers’ mental stress and safety 
awareness during human robot collaboration. It was concluded that each measure reviewed in this paper 
has its validity and rationality, and a combination of different methods may provide a more comprehensive 
and accurate assessment.  

 
INTRODUCTION 

 
In recent years, the concept of human-robot collaboration 

(HRC) has been widely adopted in a variety of industries. In 
HRC, a human worker and a robot share the workplace and 
work together in a collaborative way. HRC takes advantage of 
the flexibility of human and the endurance of robots to 
substantially improve the productivity (Villani et al., 2018). A 
robot adopted in human-robot collaboration is typically 
referred as a collaborative robot, or a co-robot. Because a co-
robot is designed to work alongside workers, multiple 
engineering features (Michalos et al., 2015), such as limited 
end effector speed (International Organization for 
Standardization (ISO), 2016), torque sensors (Heinzmann & 
Zelinsky, 2003), and flexible exterior material (Pang et al., 
2018) have been implemented in co-robot design in order to 
physically ensure human workers’ safety.  

Co-robots also have psychological influences on human 
workers besides physical collision as human workers tend to 
treat their robot teammate as a social entity (Sauppé & Mutlu, 
2015). Therefore, it is important to ensure that co-robots are 
human-friendly and psychological acceptable (Kokabe et al., 
2008). Human-friendly means that the co-robots are both safe 
and in good performance, and psychological acceptable means 
robots should meet the functional expectations of human 
workers. To achieve these goals, co-robot motions need to be 
perceptible, comprehensible, and predictable without imposing 
mental stress. For example, in common industry practice, the 
movement trajectory criterion is set to minimize the integral of 
end effector jerk (derivative of acceleration) or to minimize 
the total execution time (Gasparetto & Zanotto, 2008). Such 
trajectories appear unpredictable to and confuse workers at the 
early phase of the movement (Dragan et al., 2015), and 
possibly impose mental stress on workers.  

Another important psychological aspect of workers during 
HRC is safety awareness. Safety awareness is a concept 
derived from situation awareness and emphasizes workers’ 
perception, comprehension, and projection of the safety-
related elements and events at work (Stanton & Piggott, 2017). 
To date, a variety of studies have been conducted in different 
fields such as aviation and ground transportation and proved 
situation awareness is of great importance to system safety 
(Kaber & Endsley, 1998). In HRC, safety awareness refers to 

workers’ understanding of potential hazards related to 
location, activities, and status of co-robots. From the hazard 
control perspective, safety awareness is just as important as 
engineering approaches, because it serves as a redundancy in 
safety mechanism. For example, when a worker quickly walks 
toward a co-robot, depending on the walking speed, the 
automatic obstacle avoidance function of the co-robot may not 
have enough time to retract its end effector for avoiding the 
approaching worker. Serious injuries can still occur if the 
worker is not aware of the existence of a co-robot in the 
shared workspace. Accident records of Occupational Safety 
and Health Administration (OSHA) show that multiple fatal 
and non-fatal injuries related to robots can be partially 
attributed to workers’ low safety awareness (e.g., OSHA 
Accident Report 202475737, 2009).  

Some studies have shown that higher stress level was 
significantly associate with lower level of safety awareness 
(Sneddon et al., 2013). As workers may be stressful and or 
have low safety awareness during HRC, it is important to 
understand workers’ psychological states for improving the 
safety conditions during HRC. To date, a number of 
approaches have been proposed and applied in literatures on 
quantifying human psychological state. The main approaches 
include direct measurements and indirect physiological 
measurements. The direct methods are those that can quantify 
or qualify the operator’s psychological states directly through 
self-reports, questionnaires or observations. Indirect 
measurements are those that estimate operator’s psychological 
states based on their performance or physiological data 
obtained by special sensors or devices. In this manuscript, we 
reviewed and summarized different methods for measuring the 
mental stress and safety awareness that have been adopted or 
can be applied in HRC. 
 

METHODS TO MEASURE MENTAL STRESS 
 

Direct measurements 
 

Self-report is the most commonly used direct method of 
psychological estimate. One can design a questionnaire based 
on psychological knowledge and then compute the stress 
index by the results.  Or et al. (2009) examined effects of 
moving speed and size of industrial robot on operators mental 
workload. The effects on workers were then estimated by 



subjective questionnaires. It was noted that when operators 
encountered a larger robot or a robot with a higher end 
effector speed, they perceived a significantly higher mental 
workload. One limitation of the direct measures is that 
participants may answer the questions in a way that they think 
the researchers want them to answer. Another issue is that to 
some extent the participant’s responses depend on his or her 
mood on the day of the experiment (Bethel et al., 2007). The 
self-reports were commonly used as reference to build 
connection between participants’ subjective stress levels and 
the objective physiological data. 
 
Indirect measurements 
 

Indirect measurements to estimate mental stress are 
mainly divided into psychological signals and facial 
expression recognition.  

The major systems in human body that respond to the 
mental stress are the autonomic nervous system (ANS) and 
hypothalamic-pituitary-adrenal (HPA) axis.  HPA is a 
neuroendocrine system that adjusts response to stress, but the 
response is slow and not intuitionistic. Therefore, ANS 
response is more suitable for examining worker mental stress 
(Park & Kim, 2018). Common physiological signals for ANS 
include blood pressure, cardiac response, electrodermal 
activity (EDA), Electroencephalogram (EEG), and 
electromyographic (EMG).  

Cardiac response. Heart Rate Variability (HRV) has an 
effect in determining the role of the human autonomic nervous 
system fluctuations. Increased sympathetic nervous system 
activity results an acceleration of heart rate while an increases 
parasympathetic nervous system activity causes a decrease of 
the heart rate. Under mental stress, it is commonly observed 
that the parasympathetic activity of the heart decreases and the 
sympathetic activity increases.  Rani et al. (2002) exploited 
this feature of heart rate variability to detect stress. They used 
video games to induce stress and acquire the 
electrocardiogram (ECG) waveforms, and then both Fourier 
Transform and Wavelet Transform were used to process the 
signals. These signals were then adopted to infer the stress 
condition based on the level of activation of the sympathetic 
and parasympathetic nervous systems using fuzzy logic. 

Electrodermal Activity (EDA). The change of skin 
electrical properties is referred as electrodermal activity 
(EDA). EDA is affected by the sweat secreted by eccrine 
sweat glands (Safta & Grigore, 2011). Eccrine sweating is 
known as emotional sweating, which is a kind of sympathetic 
nervous activity involved with mental stress. EDA is divided 
into exosomatic measurement and endosomatic measurement 
(Bari et al., 2018). Exosomatic methodology mainly includes 
Skin Conductance Response (SCR), Galvanic Skin Response 
(GSR) and Skin Resistance Response (SRR). Endosomatic 
methodology mainly includes Skin Potential Response (SPR), 
Galvanic Skin Potential (GSP) and Skin Potential Level (SPL) 
(A. Affanni & Chiorboli, 2014). Most research use GSR or 
SCR to analyze mental stress based on EDA. Dehais et al. 
(2011) examined the effect of the different types of robot 
trajectories on galvanic skin conductance response. The results 

suggested that a strong GSR was observed when a participant 
was surprised to a quickly approaching robot. 

SPR signal is more difficult to obtain because it needs 
complicated and high-cost instrumentations (Antonio Affanni 
et al., 2018). However, endosomatic methodology exhibits a 
faster response to stress stimuli than exosomatic methodology, 
which make exosomatic methodology more suitable to 
measure mental stress in time. Arai et al. (2010) investigated 
mental stress of workers when they are working together with 
a moving robot by measuring the SPR. The results showed 
that when an operator felt high mental stress at a condition the 
robot moved too near to them or the moving speed was too 
fast, the rate of occurrence of spike of SPR was greater. 

Electroencephalogram (EEG). EEG is an imaging 
technique that detect the electrical activities generated by 
brain (Teplan, 2002). EEG signal is an effective signal to 
represent the changes in autonomic nervous system. To gain 
useful information, the decomposition of EEG signals in some 
frequency bands are extracted using band filter (alpha (8-13 
Hz), beta (14-30 Hz), theta (4-8 Hz) and delta (0.5-4 Hz)) 
(Saidatul et al., 2011). The increased or decreased level of 
brain activities in frequency band often reflects the level of 
mental stress (Yang et al., 2010). Al-Shargie et al (2016) 
utilized arithmetic task as stress stimuli to induce different 
levels of mental stress and classified the stress based on the 
EEG signals. The results demonstrated that participants were 
appeared less attentive and could not relax under high level of 
stress based on the analysis of alpha and beta rhythm power 
values. In general, the studies revealed EEG was an effective 
method to detect mental stress and right prefrontal cortex 
played a leading role in mental stress.  

Electromyogram (EMG). The electromyogram (EMG) 
measures the electrical activity related to muscle contraction 
level. In stressful situations, the EMG activity in some 
muscles increases compared to non-stressful situations. 
Wijsman et al. (2013) measured EMG signals generated by 
upper trapezius muscle in three different stressful conditions. 
The results have shown that amplitude of the EMG signal 
during stress situations was much higher than rest situations. 
The relative time with gaps decreased during stress conditions 
because fewer gaps would occur during stressful situation than 
during rest. The results suggested that EMG was a useful 
method to detect stress.  Orguc et al. (2018) adopted an EMG-
based facial gesture recognition system that could classify 
different jaw movements. They used discrete wavelet 
transforms to extract features and a support vector machine to 
classify jaw movements at different stress level.  

Facial expressions. From the psychology perspective, 
facial expression is a highly reliable measure to infer mental 
stress (Mauss & Robinson, 2009). There are two mainly 
techniques to measure emotional facial expressions (Höfling et 
al., 2020). One is recording the activities of specific muscles 
with EMG, as mentioned in the previous section. The other 
technique is by applying computer vision algorithms to face 
images to infer human stress levels in real-time (Mollahosseini 
et al., 2017). For example, an intelligent tutoring system uses 
facial expressions of a student to decide whether a student is 
confused and needs more practice or is ready to proceed to 
more difficult concepts. Lerner et. al (2007) experimentally 



revealed the facial expressions corresponded with the 
biological stress response. The participants were required to 
perform stress-challenge tasks, during which the facial 
expressions as well as several other physiological signals and 
subjective emotional experience were evaluated. As the results 
have shown, the facial expression of fear was positively 
associated with stress whereas the facial expression of anger 
and disgust were negatively associated with stress.  

Bueno et. al (2013) proposed a method of emotional 
interaction between a robot and a human. The robot could 
recognize the human emotion changes based on Neural 
Evolution Algorithm and Active Appearance Models and then 
performed adaptive actions to mitigate workers’ negative 
emotions. 
 
Multimodal measurements 

 
Although each physiological indicator to measure mental 

stress has its validity and rationality, there are two main 
concerns that need to be considered when these methods are 
applied. One is the large individual difference in physiological 
response, and the other is that the same physiological signal 
may be triggered by a range of psychological states. (Kulić & 
Croft, 2003). For these reasons, some studies sought to 
compare the stress level derived by different method and infer 
mental stress in a multimodal way. 

Pourmohammadi at el. (2020) classified stress level by 
detecting the EMG signal of right and left erector spinal 
muscles and the right and left trapezius muscles and ECG 
signal. ECG signal was applied as a reference to evaluate the 
efficiency of EMG signals for stress detection. The results 
indicated EMG and ECG signals together could successfully 
classify stress into multiple levels with a satisfactory accuracy. 
It has also been shown that the EMG signal of the right 
trapezius muscle recognized stress better than other muscles.  

Rani et al. (2007) focused on jointly detecting and 
recognizing stress through ECG, blood volume pulse (BVP), 
pulse transit time (PTT), SCR, skin temperature and EMG 
signal form both corrugator supercilii muscle (eyebrow) and 
masseter muscle (jaw). The results were compared with the 
participant’s self-reports psychological state. The 
physiological data were classified using fuzzy logic along with 
decision tree learning. It was concluded that this approach was 
able to detect affective state reliably.  
 

METHODS TO MEASURE SAFETY AWARENESS 
 

Self-report measurements 
 

Safety awareness can be evaluated through questionnaires 
or reports, which are direct approaches to determine a person’s 
situation awareness regarding safety. The most commonly 
applied measures are Situational Awareness Rating Technique 
(SART), Situation Awareness Global Assessment Technique 
(SAGAT) and Situational Present Assessment Method 
(SPAM). As a subjective method, SART outcomes are easy to 
obtain as the queries are genetic. SART measures one’s 
situation awareness from ten dimensions, each of these 
dimensions has seven points rating scale.  Both SAGAT and 

SPAM are objective measures, which provide unbiased 
estimation of an operator’s situation awareness (Endsley, 
2019). The queries for SAGAT and SPAM are special 
designed according to the situation, and the questions can be 
scored correct or false objectively and are asked during live 
missions. 

SART questionnaire is provided after the trial, and it is 
based on a subjective estimation of situation awareness of the 
operator. Da Merwe et. al (2019) developed a VR mediated 
HRC framework for non-professional operator. They 
compared operator’s situation awareness and attentional 
demand under the full information and preprocessed 
information context based on the answers of SART 
questionnaire. The results suggested that there was no 
significant difference of operators’ situation awareness 
between the two information contexts. However, attentional 
demand scores were significantly greater for the full 
information context. 

SAGAT is a popular freeze probe technique. A task is 
interrupted when the SAGAT is applied, and participants are 
required to answer the questions regarding the current 
situation. Unhelkar et al. (2014) evaluated human worker’s 
awareness of mobile robotic assistant in task environment 
through SAGAT.  The designed questions were about the 
features of robotic assistants and human assistants. The results 
showed that participants were significantly more aware of the 
tray’s color after a delivery was performed by a robotic 
assistant. In contrast, the background environment was noticed 
better by participants after a delivery was performed by a 
human assistant. This suggests that the robot may have a 
transitory distracting effect that degrades situation awareness, 
even after the robot left the participant. 

SPAM questionnaire is performed in real time but with no 
freeze while the participants carry out their operational tasks. 
Yeo et al. (2017) used four parameters obtained from SPAM 
to measure situation awareness and workload in an air traffic 
control context. The percentage of correct response and the 
latency of the response were two parameters to measure the 
situation awareness while time taken to be ready and the 
number of ready responses were used as workload measures. 
It is suggested to conduct nine situation awareness probes at a 
six-minute interval. 

Although the self-report methods are easy to apply, there 
are also some limitations (Zhang et al., 2020). SART is subject 
to memory decay since participants must complete the 
questionnaire at the end of the task (Gatsoulis et al., 2010). 
SAGAT requires interrupting tasks, which limits its 
application in case the task cannot be stopped (Sneddon et al., 
2013). SPAM requires participants to answer questions while 
performing tasks, which could have a negative affect on the 
participant’s performance. Furthermore, the obtained data 
from SPAM may suffer from bias because participant’s 
attention may be oriented to the relevant situation awareness 
elements due to the questionnaire (Salmon et al., 2006).  

 
Physiological measurements 
 

There are only a limited number of studies examining 
using physiological measures to infer situation awareness. Eye 



tracking was most commonly used physiological measures and 
account for the majority of the relevant literature. Another 
commonly used physiological method is EEG. 

Eye tracking. Eye tracking is an approach to measure 
situation awareness unobtrusively in an environment where 
multiple tasks exist. The situation awareness can be estimated 
by locating human gaze. Dini et al. (2017) developed a 
methodology to measure situation awareness from gaze 
interaction with objects of interest in the context of human 
robot handover events. Their research question was whether 
SAGAT or SART questionnaire could be replaced by 3D-gaze 
tracking. The results showed that fixation distribution analysis 
significantly served the purpose to measure situation 
awareness. Besides, the look rate, average dwell time and turn 
rate were all features considered in the frame. Although not all 
the metrics had significant correlations with situation 
awareness, discriminative features were selected to predict 
situation awareness and made successful estimations.  

Electroencephalogram (EEG). Brain wave activities in 
beta band are related to active thoughts and problem solving 
(Yeo et al., 2017). It has been demonstrated by some studies 
that there is a negative correlation between the workload and 
situation awareness while positive correlation exists between 
the situation awareness and performance (Dini et al., 2017; 
Schuster et al., 2012). EEG is widely deployed to examine the 
pilot or driver's brain activities during their driving tasks and 
what correlations built between the brain activities and 
situation awareness (Borghini et al., 2014). Catherwood et al. 
(2014) recorded participants brain activities with EEG during 
loss of situation awareness. They required participants to 
identify target pattern or “threat” in urban scenes and then 
changed the target to enforce a loss of situation awareness. By 
analyzing the EEG data obtained from different brain areas, it 
is concluded that there was a co-activity in visual and high-
order perception regions during loss of situation awareness. 
Luca Kästle et al. (2021) proposed a novel analytical 
methodology to correlate EEG signals to situation awareness. 
Participants completed the situation awareness test in 
Psychology Experiment Building Language (PEBL). PEBL is 
a psychological assessments framework contains a situation 
awareness test based on SAGAT technique. EEG data was 
collected throughout the whole test process. After processing 
the EEG data, the features were extracted and classified into 
high and low situation awareness categories. A correlation was 
found between the beta and gamma frequency bands and 
situation awareness.  

 
CONCLUSIONS 

 
As HRC is flourishing in recent years, there is an urgent 

need to better understand human workers’ physiological states 
when they are working with their robot teammates. This 
manuscript provides a brief review regarding the possible 
methods for assessing mental stress and safety awareness 
during HRC. According to our literature review, each method 
mentioned above for evaluating operators’ mental stress or 
safety awareness has its validity and rationality. In general, 
most experiments that have been carried in HRC scenarios 
employ both indirect physiological measurements and direct 

self-report measurements, which give us a depiction of 
psychological states from different dimensions. Some methods 
have been proved effective and feasible to measure mental 
stress and safety awareness but are lacking in the application 
in human robot collaboration. Future work is needed to 
explore the effectiveness and efficiency of these techniques 
based on other measurements as references. This review may 
provide insight into alternative methods to assess mental stress 
and Safety awareness. For example, a combination of different 
methods may provide a more comprehensive and accurate 
assessment of mental stress or safety awareness in HRC tasks. 
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