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Human-robot collaboration is a flourishing work configuration in modern plants. Yet, the potentially 
hazardous collision between human workers and collaborative robots raises safety concerns. In this study, 
we proposed a collision avoidance method in which a single camera and a computer-vision algorithm were 
deployed to sense the location of human workers. Two collision avoidance schemes were further developed 
to determine the timing for robot to retract its arm. Specifically, the static scheme continuously monitors 
whether a worker is in a hazard zone, while the dynamic scheme predicts worker’s position after a short time, 
and monitors whether the predicted worker’s position is in a hazard zone. Preliminary validation showed that 
our proposed method can effectively enable a collaborative robot to retract its arms when a worker is 
approaching. 

INTRODUCTION 
 

Human-robot collaboration is a blooming work 
configuration in which human workers and collaborative robots 
(co-robots) work together in a shared workspace. This 
configuration takes advantage of the co-robot’s endurance and 
the human’s ability to react to unpredicted and less structured 
environments (Murashov et al., 2016). For instance, human-
robot collaboration is commonly observed in the automobile 
industry where co-robots handle heavy parts while workers 
need to guide the co-robots’ behaviors to ensure the co-robots 
work properly (Michalos et al., 2014) (Figure 1). It is expected 
that the market of co-robot will proliferate at a compound 
annual growth rate of 61% (Sherwani et al., 2020). 
 

  
 
Figure 1. Two human-robot collaboration tasks performed in 
our Automation Lab. Left: A co-robot holds a deformable 
assembly base and the student mounts parts using a drill. Right: 
the student uses a pneumatic device to carefully level an 
assembly base, and the co-robot mounts small parts on this base. 
Given the nature of collaborative tasks, physically isolating the 
human workers from the co-robots is not applicable. 

Since a co-robot works with human workers, it is no longer 
an option to isolate the workers from the co-robot for avoiding 
potential collisions. Thus, the potentially hazardous collision 
raises safety concerns in human-robot collaboration. To date, 
multiple engineering design features, such as limited end effector 
speed, torque sensors (Schäffer et al., 2008), and rounded 
exterior (Matthias et al., 2011), have been implemented in the 
industrial co-robot design to improve working safety (Matthias 
et al., 2011). Yet, the National Institute of Occupational Safety 
and Health (NIOSH) (NIOSH, 2017) reported that the overall 
risk of human-robot collaboration is still concerning. 
Particularly, as co-robots were just introduced to the industry in 
recent years, human workers have limited experience of working 

with co-robots. This results in a lack of understanding of the 
potentially hazardous co-robot behavior. For example, workers 
may not fully understand the moving trajectory of a co-robot’s 
end effector and may collide with it.  

One possible way to avoid the collision is to inform a co-
robot of workers’ positions and postures and enable the co-
robot to actively respond to workers’ movement (Michalos et 
al., 2014). The key to this method is to track workers’ motion. 
To date, there are various methods for human motion tracking, 
and one of the most robust and accurate measurement system is 
laboratory-grade optical motion tracking system, which 
includes multiple cameras with markers attached to a human 
body (Furtado et al., 2019). However, applying such a motion 
tracking system in a plant for worker’s body motion tracking 
can be challenging because of the bulky size and the high cost 
of the motion tracking system as well as the expertise required 
for running the system. An inertial measurement units (IMU)-
based motion tracking system is also able to track human body 
motion and has been applied in different studies (Prayudi & 
Kim, 2012; Xie et al., 2021). Yet, for a precise body motion 
tracking, an IMU sensor needs to be attached on each body 
segment, which could be time consuming and may affect 
worker’s natural body motion.  

Alternative methods of human motion tracking for 
collision avoidance have been also reported in recent years. For 
instance, capacitive proximity sensors can detect the change of 
electric field when a worker is approaching. Thus, these sensors 
can be attached to a robot arm to detect nearby workers and help 
the robot arm respond to potential collisions (Schlegl et al., 
2013). However, capacitive proximity sensors show limitations 
in the object detection range and the sensitivity to electrical 
noise. Multiple depth cameras have also been applied to 
collision avoidance (Mohammed et al., 2017; Schmidt & Wang, 
2013). Depth cameras have good precision in nearby object 
detection. However, they are less robust for recognizing a 
worker from the background, which is essential in human-robot 
interaction. In addition, one needs at least two depth cameras to 
reconstruct 3D augmented environment due to the limited view 
angle of the depth sensor, which increases the difficulty of the 
field application.  

In recent years, state-of-the-art open-source computer-
vision algorithms, such as OpenPose (Cao et al., 2019), 
Detectron2 (Girshick, 2019) and VideoPose3D (Pavllo et al., 
2019), have been developed to extract 2D and 3D human body 



posture from an image or a video clip captured by a regular 
RGB camera. These algorithms can recognize a human from a 
complicated background, which may solve the potential 
problems associated with depth sensors. Furthermore, the 3D 
pose reconstruction accuracy of Videopose3D is comparable 
with depth sensors (Pavllo et al., 2019; Plantard et al., 2015). In 
addition, compared with a motion tracking system, a regular 
camera is much less costly and can be easily deployed around a 
co-robot in the field. Therefore, a regular RGB camera may 
serve as another alternative for achieving body motion tracking 
in human-robot collision avoidance.  

In this study, we focused on integrating a single RGB 
camera with a co-robot and developed proof-of-concept 
collision avoidance schemes during human-robot collaboration 
using images collected by the camera. The rest of the paper is 
organized as follows. The method section described the 
apparatus, data flow, and validation method of the proposed 
collision avoidance schemes. The discussion section briefly 
discussed the validation outcomes, current limitation and future 
works. 

METHOD 
Apparatus 
 

A co-robot (Sawyer, Rethink Robotics) with 7 degrees of 
freedom was adopted in this study (Figure 2). The Sawyer robot 
was connected to a workstation with an NVIDIA RTX 2080Ti 
GPU to support the deployment of computer-vision algorithms. 
All the programming was done using Python (ver 3.6) in Linux 
Ubuntu 16.04. The robot control was realized by using Robot 
Operating systems (ROS Kinetic) framework. A 100° wide-
angle webcam (Spedal, MF920P) was placed by the Sawyer 
robot and connected to the workstation. The placement of the 
camera ensured that workers interacting with the co-robot can 
be fully covered.   

 
Real-time worker pose reconstruction  
 

The real-time human pose reconstruction was realized by 
processing the image frames captured by the camera 
successively. Each frame was input to Detectron2 (Girshick, 
2019), an open-source computer-vision package that is able to 
identify the 2D key joints of the human body in an image. The 
identified body joint locations in the image were then input to 
VideoPose3D, another open-source package that can 
reconstruct 3D human pose in camera space based on the 2D 
key body joint locations (Figure 2). With the workstation 
adopted in this study, the time of analyzing one video frame is 
0.17 seconds, which is equivalent to a sampling rate of 5.8 Hz.  

 
Coordinates calibration 
 
Note that the 3D coordinates of key body joints output from 
Videopose3D is in camera space. In order for the co-robot to 
interpret these coordinate values, these values need to be 
converted to a coordinate system that the robot can understand. 

Thus, a calibration process is needed. For the convenience of 
algorithm development, the origin of this new coordinate 
system was set to the worker’s head during the calibration as 
shown in Figure 3, and this new coordinate system was referred 
as work space hereafter. 

 
Figure 2. The workflow of the proposed collision avoidance 
method. Directions of each axis in camera space are marked on 
the webcam. 

In work space, x- and z-axis form the the horizontal plane, and 
y axis is the axis perpendicular to the horizontal plane. During 
the calibration, a worker stands in front of the collaborative 
robot at an arbitrary location, and the worker’s head coordinate 
derived from VideoPose3D is 𝐏𝟎𝐜 = (𝑋0, 𝑌0, 𝑍0)𝑐   in camera 
space, which corresponds to 𝐏𝟎𝐰 = (0, 0, 0)𝑤 in work space. 
Initially, the worker stands straight (Figure 3c), and the 
coordinate of middle point of the worker’s two ankles is 
recorded as (𝑋𝑦 , 𝑌𝑦 , 𝑍𝑦)𝑐 . The worker’s height is measured as 
𝐿𝑦.  The worker then moves half a meter (𝐿𝑥 = 0.5 𝑚) in x-axis 
(left), and the recorded head’s coordinate in camera space is 
(𝑋𝑥, 𝑌𝑥 , 𝑍𝑥)𝑐 . Next, the worker moves back to the original 
location and then moves half a meter (𝐿𝑧 = 0.5 𝑚) in z-axis 
(backward). At this location, the recorded head’s coordinate in 
camera space is (𝑋𝑧 , 𝑌𝑧 , 𝑍𝑧)𝑐 . A coordinate in camera space 
could then be converted to the work space using Equation 1 and 
2. This calibration only needs to be performed once whenever 
the camera is moved to a new location. One can test the 
calibration result by moving in x, y, z axes and check the motion 
in both camera space and workspace as shown in Figure 3.  



 
Figure 3. The video captured that one was moving in x, y, z directions of robot workspace (top frame 1-6). The recorded motion in the 
camera space (a) and workspace (b) are shown. The colors of the rectangles in (a) and (b) indicate specific timeframe from 1 to 6.  in 
video and plot. The workspace coordinate system is shown in (c).  
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R is the approximate rotational matrix, S is the scaling matrix, 
𝐏𝐰 indicates the 3D coordinate of a point in workspace, and 𝐏𝐜 
indicates the 3D coordinate of the same point in camera space.  

 
Collision avoidance 
 

To actively avoid human-robot collision, the robot should 
be aware of worker’s existence and actively respond to potential 
collisions. In this study, we consider two collision avoidance 
schemes. The first scheme is referred as static collision 
avoidance, where an unsafe zone is defined as a bounding cubic 
with a one-meter length in x-, y-, and z-direction with the center 
located at the end effector. If a worker’s head position is within 
this unsafe zone, robot arm will retract. Please note that the 
actual shape and size of a real-world unsafe zone should be 
adjusted according to the configuration of the robot and layout 
of a workspace. The second scheme is referred as dynamic 
collision avoidance, which further considers workers’ walking 
speed. Given a worker’s current head position is 𝐏(𝑇) , the 
worker’s head position after time t is 𝐏(𝑇 + 𝑡) = 𝐏(𝑇) + 𝑡 ⋅
𝐕(𝑇), where V is the velocity vector at time T and is derived 
from the differential of position.  
 



Function validation 
 

In this study, we simulated a scenario where a worker first 
approached a co-robot and then left the co-robot in a different 
direction. One robot operator approached the co-robot twice 
(see Figure 4 caption for the details of operators moving path), 
once under the static scheme and once under the dynamic 
scheme. Whether a worker is in the unsafe zone is determined 

by calculating 𝐏(𝑇)  or 𝐏(𝑇 + 𝑡)  in static/dynamic collision 
avoidance scheme, where t is set to one second.  

The results indicated that the co-robot could actively retract 
its arm before the collision as the operator is approaching. The 
co-robot actions during static collision avoidance and dynamic 
collision avoidance are shown in Figure 4. For the dynamic 
collision avoidance, the co-robot responded to worker’s 
approaching and leaving motion earlier than the static collision 
avoidance.

 
Figure 4. Preliminary validation of the proposed collision avoidance schemes. Top: A robot operator approached the co-robot in x-
direction, turned right, and left in z-direction. This operator then turned back, approached the robot in –z-direction, turned left, and left 
the co-robot in x-direction. The first row of the key frames shows the co-robot’s behavior when static collision avoidance scheme is 
adopted. The second row shows the co-robot’s behavior when dynamic collision avoidance scheme is adopted. Bottom: The 𝐏(𝑇) in the 
static collision avoidance scheme and 𝐏(𝑇 + 𝑡) in dynamic collision avoidance scheme are compared over time. The two curves are 
matched by the initial time instant of operator’s move. Co-robot arm retraction and expansion time instants are marked. The co-robot 
responds earlier to the worker’s approaching/leaving motion when dynamic collision avoidance scheme is applied.

 
DISCUSSION 

 
This study proposed a collision avoidance method using a 

single RGB camera and computer vision algorithms. The 
preliminary validation indicates the proposed method is robust 
for allowing a co-robot to understand the existence of a 
surrounding worker and perform consequent collision 
avoidance actions.  

It should be noted that while the dynamic collision 
avoidance scheme makes the co-robot to retract its end effector 
earlier as a worker is apporaching, this scheme also makes the 
co-robot to expand its end effector earlier as a worker is moving 
away. This may lead to a collision if a worker suddenly stops 

moving within the hazard zone, but the predict position of this 
worker is out of the hazard zone. Therefore, it might be 
beneficial to use dynamic scheme for co-robot arm retraction, 
and static scheme for co-robot arm expansion.  

The predicted worker’s position also showes a zig-zag 
behavior. This is because human walking speed is not a constant 
value due to human bipedal motion. The speed variance may 
incorrectly trigger robot actions. A low-pass filter could remove 
this zig-zag behavior, but a filter can also introduce phase shift 
which may lead to robot action delay. Therefore, the type and 
order of a filter need to be carefully selected. 

There are a few limitations that need to be addressed. First, 
the optical features of a camera could influence the accuracy of 
the  estimated workers’ position. Specifically, some cameras 



could show distortions (e.g., a fisheye webcam), and these 
distortions could lead to less accurate reconstructed human 
pose. This limitation could be partially addressed by calibrating 
the camera calibration (Zhang, 2000). Second, the robot’s 
retracting speed could be affected by the robot’s joint motion 
speed. Thus, the parameter t in the dynamics collision 
avoidance method need to be carefully set to ensure the robot 
has enough time to retract its end effector. Third, in the current 
study we only harnessed workers’ head position data for 
detecting potential collision. In future works, we will consider 
adopting the position of other body segments, such as the wrist 
joint, the location of which can be closer to the co-robot. 

In a shell, the proposed method provides a potential simple 
solution for collision avoidance during human-robot 
collaboration. As this proposed method allows co-robot to 
understand workers’ posture, it can be also applied in other 
applications, such as human-robot communication through 
workers’ gestures (Abavisani et al., 2019; Li et al., 2019).  
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