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Abstract

To combat COVID-19, both clinicians and sci-
entists need to digest vast amounts of relevant
biomedical knowledge in scientific literature
to understand the disease mechanism and re-
lated biological functions. We have developed
a novel and comprehensive knowledge discov-
ery framework, COVID-KG to extract fine-
grained multimedia knowledge elements (en-
tities and their visual chemical structures, rela-
tions and events) from scientific literature. We
then exploit the constructed multimedia knowl-
edge graphs (KGs) for question answering and
report generation, using drug repurposing as
a case study. Our framework also provides
detailed contextual sentences, subfigures, and
knowledge subgraphs as evidence. All of the
data, KGs, reports1, resources, and shared ser-
vices are publicly available2.

1 Introduction

Practical progress at combating COVID-19 relies
heavily on effective search, discovery, assessment,
and extension of scientific research results. How-
ever, clinicians and scientists are facing two unique
barriers in digesting these research papers.

The first challenge is quantity. Such a bottle-
neck in knowledge access is exacerbated during a
pandemic when increased investment in relevant
research leads to even faster growth of literature
than usual. For example, as of April 28, 2020, at
PubMed3 there were 19,443 papers related to coro-
navirus; as of June 13, 2020, there were 140K+
related papers, nearly 2.7K new papers per day
(see Figure 1). The resulting knowledge bottleneck
contributes to significant delays in the development

1Demo video: http://159.89.180.81/demo/
covid/Covid-KG_DemoVideo.mp4

2Project website: http://blender.cs.illinois.
edu/covid19/

3https://www.ncbi.nlm.nih.gov/pubmed/

of vaccines and drugs for COVID-19. More intel-
ligent knowledge discovery technologies need to
be developed to enable researchers to more quickly
and accurately access and digest relevant knowl-
edge from the literature.

The second challenge is quality. Many research
results about coronavirus from different research
labs and sources are redundant, complementary, or
even conflicting with each other, while some false
information has been promoted in both formal pub-
lication venues as well as social media platforms
such as Twitter. As a result, some of the public
policy responses to the virus, and public perception
of it, have been based on misleading, and at times
erroneous claims. The relative isolation of these
knowledge resources makes it hard, if not impossi-
ble, for researchers to connect the dots that exist in
separate resources to gain new insights.

Let us consider drug repurposing as a case
study.4 Besides the long process of clinical trials
and biomedical experiments, another major cause
of the lengthy discovery phase is the complexity
of the problem involved and the difficulty in drug
discovery in general. The current clinical trials for
drug repurposing rely mainly on reported symp-
toms in considering drugs that can treat diseases
with similar symptoms. However, there are too
many drug candidates and too much misinforma-
tion published in multiple sources. The clinicians
and scientists thus urgently need assistance in ob-
taining a reliable ranked list of drugs with detailed
evidence, and also in gaining new insights into
the underlying molecular cellular mechanisms on
COVID-19 and the pre-existing conditions that may
affect the mortality and severity of this disease.

To tackle these two challenges we propose a new

4This is a pre-clinical phase of biomedical research to dis-
cover new uses of existing, approved drugs that have already
been tested in humans and so detailed information is available
on their pharmacology, formulation, and potential toxicity.

http://159.89.180.81/demo/covid/Covid-KG_DemoVideo.mp4
http://159.89.180.81/demo/covid/Covid-KG_DemoVideo.mp4
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framework, COVID-KG, to accelerate scientific
discovery and build a bridge between the research
scientists making use of our framework and clin-
icians who will ultimately conduct the tests, as
illustrated in Figure 2. COVID-KG starts by read-
ing existing papers to build multimedia knowledge
graphs (KGs), in which nodes are entities/concepts
and edges represent relations and events involving
these entities, as extracted from both text and im-
ages. Given the KGs enriched with path ranking
and evidence mining, COVID-KG answers natural
language questions effectively. With drug repur-
posing as a case study, we focus on 11 typical
questions that human experts pose and integrate
our techniques to generate a comprehensive report
for each candidate drug.
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Figure 1: Increasing numbers of COVID-19 papers
over time in PubMed website

2 Multimedia Knowledge Graph
Construction

2.1 Coarse-grained Text Knowledge
Extraction

Our coarse-grained Information Extraction (IE)
system consists of three components: (1) coarse-
grained entity extraction (Wang et al., 2019a) and
entity linking (Zheng et al., 2015) for four en-
tity types: Gene nodes, Disease nodes, Chemi-
cal nodes, and Organism. We follow the entity
ontology defined in the Comparative Toxicoge-
nomics Database (CTD) (Davis et al., 2016), and
obtain a Medical Subject Headings (MeSH) Unique
ID for each mention. (2) Based on the MeSH
Unique IDs, we further link all entities to the
CTD and extract 133 subtypes of relations such as
Gene–Chemical–Interaction Relationships, Chemi-
cal–Disease Associations, Gene–Disease Associa-

tions, Chemical–GO Enrichment Associations and
Chemical–Pathway Enrichment Associations. (3)
Event extraction (Li et al., 2019): we extract 13
Event types and the roles of entities involved in
these events as defined in (Nédellec et al., 2013),
including Gene expression, Transcription, Local-
ization, Protein catabolism, Binding, Protein modi-
fication, Phosphorylation, Ubiquitination, Acetyla-
tion, Deacetylation, Regulation, Positive regulation,
and Negative regulation. Figure 3 shows an exam-
ple of the constructed KG from multiple papers.
Experiments on 186 documents with 12,916 sen-
tences manually annotated by domain experts show
that our method achieves 83.6% F-score on node
extraction and 78.1% F-score on link extraction.

2.2 Fine-grained Text Entity Extraction
However, questions from experts often involve fine-
grained knowledge elements, such as “Which an-
imo acids in glycoprotein are most related to Gly-
can (CHEMICAL)?”. To answer these questions,
we apply our fine-grained entity extraction system
CORD-NER (Wang et al., 2020c) to extract 75
types of entities to enrich the KG, including many
COVID-19 specific new entity types (e.g., coron-
aviruses, viral proteins, evolution, materials, sub-
strates, and immune responses). CORD-NER re-
lies on distantly- and weakly-supervised methods
(Wang et al., 2019b; Shang et al., 2018), with no
need for expensive human annotation. Its entity an-
notation quality surpasses SciSpacy (up to 93.95%
F-score, over 10% higher on the F1 score based
on a sample set of documents), a fully supervised
BioNER tool. See Figure 4 for results on part of a
COVID-19 paper (Zhang et al., 2020).

2.3 Image Processing and Cross-media
Entity Grounding

Figures in biomedical papers may contain differ-
ent types of visual information, for example, dis-
playing molecular structures, microscopic images,
dosage response curves, relational diagrams, and
other unique visual content. We have developed
a visual IE subsystem to extract the visual infor-
mation from figures to enrich the KG. We start by
designing a pipeline and automatic tools shown
in Figure 5 to extract figures from papers in the
CORD-19 dataset and segment figures into nearly
half a million isolated subfigures. In the end, we
perform cross-modal entity grounding, i.e., associ-
ating visual objects identified in these subfigures
with entities mentioned in their captions or refer-



Figure 2: COVID-KG Overview: From Data to Semantics to Knowledge

Figure 3: Constructed KG Connecting Losartan (candi-
date drug in COVID-19) and cathepsin L pseudogene
2 (gene related to coronavirus), where red nodes repre-
sent chemicals, grey nodes represents genes, and edges
represents gene-chemical relations.NER Result Visualization

Angiotensin-converting enzyme 2 GENE_OR_GENOME ( ACE2 GENE_OR_GENOME ) as a
SARS-CoV-2 CORONAVIRUS receptor: molecular mechanisms and potential therapeutic target.
SARS-CoV-2 CORONAVIRUS has been sequenced [3]. A phylogenetic EVOLUTION analysis
[3, 4] found a bat WILDLIFE origin for the SARS-CoV-2 CORONAVIRUS. There is a diversity of
possible intermediate hosts for SARS-CoV-2 CORONAVIRUS, including pangolins WILDLIFE,
but not mice EUKARYOTE and rats EUKARYOTE [5]. There are many similarities of SARS-
CoV-2 CORONAVIRUS with the original SARS-CoV CORONAVIRUS. Using computer
modeling, Xu et al. [6] found that the spike proteins GENE_OR_GENOME of SARS-CoV-2
CORONAVIRUS and SARS-CoV CORONAVIRUS have almost identical 3-D structures in the
receptor binding domain that maintains Van der Waals forces PHYSICAL_SCIENCE. SARS-
CoV spike proteins GENE_OR_GENOME has a strong binding affinity to human ACE2
GENE_OR_GENOME, based on biochemical interaction studies and crystal structure analysis
[7]. SARS-CoV-2 CORONAVIRUS and SARS-CoV spike proteins GENE_OR_GENOME share
identity in amino acid sequences and ……

Figure 4: Example of Fine-grained Entity Extraction

ring text. To start, since most figures are embedded
as part of PDF files, we run Deepfigures (Siegel
et al., 2018) to automatically detect and extract fig-
ures from each PDF document. Then each figure
is associated with text in its caption or referring

Figure 5: System Pipeline for Automatic Figure Ex-
traction and Subfigure Segmentation. The figure image
shown here is from (Kizziah et al., 2020)

context (main body text referring to the figure). In
this way, a figure can be attached, at a coarse level,
to a KG entity if that entity is mentioned in the
associated text.

To further delineate semantic and visual informa-
tion contained within each subfigure, we have de-
veloped a pipeline to segment individual subfigures
and then align each subfigure with its correspond-
ing subcaption. We run Figure-separator (Tsutsui
and Crandall, 2017) to detect and separate all non-
overlapping image regions. On occasion, subfig-
ures within a figure may also be marked with alpha-
betical letters (e.g., A, B, C, etc). We use deep neu-
ral networks (Zhou et al., 2017) to detect text within
figures and then apply OCR tools (Smith, 2007) to
automatically recognize text content within each
figure. To identify subfigure marker text and text
labels for analyzing figure content, we rely on the
distance between text labels and subfigures to lo-
cate subfigure text markers. Location information
of such text markers can also be used to merge
multiple image regions into a single subfigure. In



Figure 6: Expanding KG through Subfigure Segmen-
tation and Cross-modal Entity Grounding. The figure
image shown here is from (Ekins and Coffee, 2015)

the end, each subfigure is segmented, and associ-
ated with its corresponding subcaption and refer-
ring context. The segmented subfigures and as-
sociated text labels provide rich information that
can expand the KG constructed from text captions.
For example, as shown in Figure 6, we apply a
classifier to detect subfigures containing molecular
structures. Then by linking the specific drug names
extracted from within-figure text to corresponding
drug entities in the coarse KG constructed from
the caption text, an expanded cross-modal KG can
be constructed that then links images with specific
molecular structures to their drug entities in the
KG.

2.4 Knowledge Graph Semantic
Visualization

In order to enhance the exploration and discovery
of the information mined from the COVID-19 liter-
ature through the algorithms discussed in previous
sections, we create semantic visualizations over
large complex networks of biomedical relations us-
ing the techniques proposed by Tu et al. (2020).
Semantic visualization allows for the visualization
of user-defined subsets of these relations interac-
tively through semantically typed tag clouds and
heat maps. This allows researchers to get a global
view of selected relation subtypes drawn from hun-
dreds or thousands of papers at a single glance.
This in turn allows for the ready identification of
novel relations that would typically be missed by
directed keyword searches or simple unigram word
cloud or heatmap displays.5

We first build a data index from the knowledge
elements in the constructed KGs, and then create
a Kibana dashboard6 out of the generated data in-

5https://www.semviz.org/
6https://github.com/elastic/kibana

dices. Each Kibana dashboard has a collection
of visualizations that are designed to interact with
each other. Dashboards are implemented as web ap-
plications. The navigation of a dashboard is mainly
through clicking and searching. By clicking the
protein keyword EIF2AK2 in the tag cloud named

“Enzyme proteins participating Modification rela-
tions”, a constraint on the type of proteins in mod-
ifications is added. Correspondingly, all the other
visualizations will be changed.

One unique feature of the semantic visualiza-
tion is the creation of dense tag clouds and dense
heatmaps, through a process of parameter reduc-
tion over relations, allowing for the visualization of
relation sets as tag clouds and multiple chained rela-
tions as heatmaps. Figure 7 illustrates such a dense
heatmap that contains relations between proteins
and implicated diseases (e.g., “those proteins that
are down-regulators of TNF which are implicated
in obesity”), along with their type information7.

Figure 7: Regulatory Processes-Disease Interactions
Heatmap

3 Knowledge-driven Question
Answering

In contrast to most current question-answering
(QA) methods which target single documents, we
have developed a QA component based on a combi-
nation of KG matching and distributional semantic
matching across documents. We build KG indexing
and searching functions to facilitate effective and

7We use the following symbols to indicate the “action”
involved in each protein: “++” = increase, “−−” = decrease,
“→” = affect.

https://www.semviz.org/
https://github.com/elastic/kibana


efficient search when users pose their questions.
We also support extended semantic matching from
the constructed KGs and related texts by accepting
multi-hop queries.

A common category of queries is the connec-
tions between two entities. Given two entities in
a query, we generate a subgraph covering salient
paths between them to show how they are con-
nected through other entities. Figure 3 is an exam-
ple subgraph summarizing the connections between
Losartan and cathepsin L pseudogene 2. The paths
are generated by traversing the constructed KG,
and are ranked by the number of papers covering
the knowledge elements in each path in the KG.
Each edge is assigned a salience score by aggre-
gating the scores of paths passing through it. In
addition to knowledge elements, we also present re-
lated sentences and source information as evidence.
We use BioBert (Lee et al., 2020), a pre-trained
language model to represent each sentence along
with its left and right neighboring sentences as lo-
cal contexts. Using the same architecture computed
on all respective sentences and the user query, we
aggregate the sequence embedding layer, the last
hidden layer in the BERT architecture with average
pooling (Reimers and Gurevych, 2019). We use the
similarity between the embedding representations
of each sentence and each query to identify and
extract the most relevant sentences as evidence.

Another common category of queries includes
entity types, rather than entity instances, and re-
quires extracting evidence sentences based on type
or pattern matching. We have developed EVI-
DENCEMINER (Wang et al., 2020a,b), a web-based
system that allows for the user’s query as a natural
language statement or an inquiry about a relation-
ship at the meta-symbol level (e.g., CHEMICAL,
PROTEIN) and then automatically retrieves textual
evidence from a background corpora of COVID-19.

4 A case study on Drug Repurposing
Report Generation

4.1 Task and Data

A human-written report about drug repurposing
usually answers the following typical questions.

1. Current indication: what is the drug class?
What is it currently approved to treat?

2. Molecular structure (symbols desired, but a
pointer to a reference is also useful)

3. Mechanism of action i.e., inhibits viral entry,
replication, etc. (w/ a pointer to data)

4. Was the drug identified by manual or compu-
tation screen?

5. Who is studying the drug? (Source/lab name)
6. In vitro Data available (cell line used, assays

run, viral strain used, cytopathic effects, toxi-
city, LD50, dosage response curve, etc.)

7. Animal Data Available (what animal model,
LD50, dosage response curve, etc.)

8. Clinical trials on going (what phase, facility,
target population, dosing, intervention etc.)

9. Funding source
10. Has the drug shown evidence of systemic tox-

icity?
11. List of relevant sources to pull data from.

The answers to questions #5 and #11 are ex-
tracted based on the meta-data sections of re-
search papers in scientific literature, including the
author affiliation and acknowledgement sections.
The answers for other questions are all extracted
based on the knowledge graphs constructed and
knowledge-driven question-answering method de-
scribed above.

As in our case studies, DARPA biologists in-
quired about three drugs, Benazepril, Losartan, and
Amodiaquine, and their links to COVID-19 related
chemicals/genes as shown in Figure 8:

BM1_00870 BM1_06175 BM1_16375 BM1_17125 BM1_22385 BM1_30360
BM1_33735 BM1_56245 BM1_56735 BM1_00870 BM1_06175 BM1_16375
BM1_17125 BM1_22385 BM1_30360 BM1_33735 BM1_56245 BM1_56735
CATB-10270 CATB-1418 CATB-1674 CATB-16A CATB-16D2 CATB-1852 CATB-
1874 CATB-2744 CATB-3098 CATB-348 CATB-3483 CATB-5880 CATB-84 CATB-
912 CATD CATHY CATK CATL CATL-LIKE CTS12 CTS3 CTS6 CTS7 CTS7-PS CTS8
CTS8L1 CTS8-PS CTSA CTSA.L CTSB CTSBA CTSBB CTSB.L CTSB-PS CTSB.S
CTSC CTSC.L CTSC.S CTSD CTSD2 CTSD.S CTSE CTSEAL CTSE.L CTSE.S CTSF
CTSF.L CTSG CTSH CTSH.L CTSH-PS CTSJ CTSK CTSK1 CTSK.L CTSL CTSL.1
CTSL3 CTSL3P CTSLA CTSLB CTSLL CTSL.L CTSLL3 CTSLP1 CTSLP2 CTSLP3
CTSLP4 CTSLP6 CTSLP8 CTSM CTSM-PS CTSM-PS2 CTSO CTSO.L CTSQ
CTSQL2 CTSR CTSS CTSS1 CTSS.2 CTSS2.1 CTSS2.2 CTSSL CTSS.L CTSS.S CTSV
CTSV.L CTSW CTSW.L CTSZ CTSZ.L CTSZ.S LOAG_18685 SMP_013040.1
SMP_034410.1 SMP_067050 SMP_067060 SMP_085010 SMP_085180
SMP_103610 SMP_105370 SMP_158410 SMP_158420 SMP_179950
TSP_01409 TSP_02382 TSP_02383 TSP_03306 TSP_07747 TSP_10129
TSP_10493 TSP_11596 LMAN1 LMAN1L LMAN1.L LMAN1.S LMAN2 LMAN2L
MBL1P MBL2 ACE2 FURIN TMPRSS2

Figure 8: COVID-19 related chemicals/genes.

Our KG results for many other drugs are visual-
ized at our website8. We download new COVID-19
papers from three Application Programming Inter-
faces (APIs): NCBI PMC API, NCBI Pubtator API,
and CORD-19 archive. We provide incremental up-
dates including new papers, removed papers and
updated papers, and their metadata information at
our website9.

8http://blender.cs.illinois.edu/
covid19/visualization.html

9http://blender.cs.illinois.edu/
covid19/

http://blender.cs.illinois.edu/covid19/visualization.html
http://blender.cs.illinois.edu/covid19/visualization.html
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4.2 Results

As of June 14, 2020 we collected 140K papers.
We selected 25,534 peer-reviewed papers and con-
structed the KG that includes 7,230 Diseases,
9,123 Chemicals and 50,864 Genes, with 1,725,518
Chemical-Gene links, 5,556,670 Chemical-Disease
links, and 7,7844,574 Gene-Disease links. The
KG has received more than 1,000+ downloads.
Our final generated reports10 are shared publicly.
For each question, our framework provides an-
swers along with detailed evidence, knowledge sub-
graphs, image segmentation and analysis results.
Table 1 shows some example answers.

Several clinicians and medical school students
in our team have manually reviewed the drug re-
purposing reports for three drugs, and also the KGs
connecting 41 drugs and COVID-19 related chemi-
cals/genes. In checking the evidence sentences and
reading the original articles, they reported that most
of our output is informative and valid. For instance,
after the coronavirus enters the cell in the lungs,
it can cause a severe disease called Acute Respi-
ratory Distress Syndrome. This condition causes
the release of inflammatory molecules in the body
named cytokines such as Interleukin-2, Interleukin-
6, Tumor Necrosis Factor, and Interleukin-10. We
see all of these connections in our results, such as
the examples shown in Figure 3 and Figure 9. With
further checks on these results, the scientists also
indicated that many results were worth further in-
vestigation. For example, in Figure 3 we can see
that Lusartan is connected to tumor protein p53
which is related to lung cancer.

lopinavir-ritonavir
drug combination

cathepsin D

COVID-19

Coronavirus
Infections

Severe
Acute

Respiratory
Syndrome

Figure 9: Connections Involving Coronavirus Related
Diseases

5 Related Work

Extensive prior research work has focused on ex-
tracting biomedical entities (Zheng et al., 2014;
Habibi et al., 2017; Crichton et al., 2017; Wang
et al., 2018; Beltagy et al., 2019; Alsentzer et al.,
2019; Wei et al., 2019; Wang et al., 2020c), rela-
tions (Uzuner et al., 2011; Krallinger et al., 2011;

10http://blender.cs.illinois.edu/
covid19/DrugRe-purposingReport_V2.0.docx

Question Example Answers

Q1

Drug Class angiotensin-converting enzyme (ACE) inhibitors
Disease hypertension

Evidence

[PMID:32314699 (PMC7253125)] Past medical his-
tory was significant for hypertension, treated with
amlodipine and benazepril, and chronic back pain.

Sentences [PMID:32081428 (PMC7092824)] On the other
hand, many ACE inhibitors are currently used to
treat hypertension and other cardiovascular diseases.
Among them are captopril, perindopril, ramipril,
lisinopril, benazepril, and moexipril.

Q4

Disease COVID-19

Evidence

[PMID:32081428 (PMC7092824)] By using a
molecular docking approach, an earlier study iden-
tified N-(2-aminoethyl)-1 aziridine-ethanamine as a
novel ACE2 inhibitor that effectively blocks the
SARS-CoV RBD-mediated cell fusion.

Sentences This has provided a potential candidate and lead
compound for further therapeutic drug development.
Meanwhile, biochemical and cell-based assays can
be established to screen chemical compound libraries
to identify novel inhibitors.

Q6

Disease cardiovascular disease

Evidence

[PMID:22800722 (PMC7102827)] The in vitro half-
maximal inhibitory concentration (IC50) values of
food-derived ACE inhibitory peptides are about 1000

Sentences fold higher than that of synthetic captopril but they
have higher in vivo activities than would be expected
from their in vitro activities.....

Q8

Disease COVID-19

Evidence

[PMID:32336612 (PMC7167588)] Two trials of
losartan as additional treatment for SARS-CoV-2 in-
fection in hospitalized (NCT04312009) or not hos-
pitalized (NCT04311177) patients have been an-
nounced, supported by the background of the huge
adverse impact of the ACE Angiotensin II AT1 re-
ceptor axis over-activity in these patients.

Sentences [PMID:32350632 (PMC7189178)] To address the
role of angiotensin in lung injury, there is an ongoing
clinical trial to examine whether losartan treatment
affects outcomes in COVID-19 associated ARDS
(NCT04312009).
[PMID:32439915 (PMC7242178)] Losartan was
also the molecule chosen in two trials recently started
in the United States by the University of Minnesota
to treat patients with COVID-19 (clinical trials.gov
NCT04311177 and NCT 104312009).

Table 1: Example Answers for Questions in Drug Re-
purposing Reports

Manandhar and Yuret, 2013; Bui et al., 2014; Peng
et al., 2016; Wei et al., 2015; Peng et al., 2017;
Luo et al., 2017; Wei et al., 2019; Li and Ji, 2019;
Peng et al., 2019, 2020), and events (Ananiadou
et al., 2010; Van Landeghem et al., 2013; Nédellec
et al., 2013; Deléger et al., 2016; Wei et al., 2019;
Li et al., 2019; ShafieiBavani et al., 2020) from
biomedical literature, with the most recent work
focused on COVID-19 literature (Hope et al., 2020;
Ilievski et al., 2020; Wolinski, 2020; Ahamed and
Samad, 2020).

Most of the recent biomedical QA work (Yang
et al., 2015, 2016; Chandu et al., 2017; Kraus et al.,
2017) is driven by the BioASQ initiative (Tsatsa-
ronis et al., 2015), and many live QA systems, in-
cluding COVIDASK11 and AUEB12, and search en-

11https://covidask.korea.ac.kr/
12http://cslab241.cs.aueb.gr:5000/

http://blender.cs.illinois.edu/covid19/DrugRe-purposingReport_V2.0.docx
http://blender.cs.illinois.edu/covid19/DrugRe-purposingReport_V2.0.docx
https://covidask.korea.ac.kr/
http://cslab241.cs.aueb.gr:5000/


gines (Kricka et al., 2020; Esteva et al., 2020; Hope
et al., 2020; Taub Tabib et al., 2020) have been de-
veloped. Our work is an application and extension
of our recently developed multimedia knowledge
extraction system for the news domain (Li et al.,
2020a,b). Similar to the news domain, the knowl-
edge elements extracted from text and images in
literature are complementary. Our framework ad-
vances state-of-the-art by extending the knowledge
elements to more fine-grained types, incorporating
image analysis and cross-media knowledge ground-
ing, and KG matching into QA.

6 Conclusions and Future Work

We have developed a novel framework, COVID-
KG, that automatically transforms a massive sci-
entific literature corpus into organized, structured,
and actionable KGs, and uses it to answer questions
in drug repurposing reporting. With COVID-KG,
researchers and clinicians are able to obtain infor-
mative answers from scientific literature, and thus
focus on more important hypothesis testing, and pri-
oritize the analysis efforts for candidate exploration
directions. In our ongoing work, we have created a
new ontology that includes 77 entity subtypes and
58 event subtypes, and we are building a neural IE
system following this new ontology. In the future,
we plan to extend COVID-KG to automate the cre-
ation of new hypotheses by predicting new links.
We will also create a multimedia common semantic
space (Li et al., 2020a,b) for literature and apply it
to improve cross-media knowledge grounding and
inference.

Ethical Considerations

Required Workflow for Using Our System
Human review required. Our knowledge discov-
ery tool provides investigative leads for pre-clinical
research, not final results for clinical use. Cur-
rently, biomedical researchers scour the literature
to identify candidate drugs, then follow a standard
research methodology to investigate their actual
utility (involving literature reviews, computer sim-
ulations of drug mechanisms and effectiveness, in-
vitro studies, cellular in-vivo studies, etc. before
moving to clinical studies.). Our tool COVID-KG
(and all knowledge discovery tools for biomedical
applications) is not meant to be used for direct clin-
ical applications on any human subjects. Rather,
our tool aims to highlight unseen relations and pat-
terns in large amounts of scientific textual data that

would be too time-consuming for manual human
effort. Accordingly, the tool would be useful for
stakeholders (e.g., biomedical scientists) to iden-
tify specific drug candidates and molecular targets
that are relevant in their biomedical and clinical
research aims. The use of our knowledge discovery
tool allows the researcher to narrow down the set
of candidate drugs to investigate rapidly, but then
proceed with the usual sequence of steps before
kicking off expensive and time-consuming clinical
tests. Failure to follow this sequence of events, and
use of the system without the required human re-
view, could lead to misguided experimental design
wasting time and resources.

Check evidence and source before using our
system results. In addition, our tool provides
source, confidence values and rich evidence sen-
tences for each node and link in the KG. To curtail
potential harms caused by extraction errors, users
of the knowledge graphs should double-check the
source information and verify the accuracy of the
discovered leads before launching expensive ex-
perimental studies. We spell out here the positive
values, as well as the limitations and possible so-
lutions to address these issues for future improve-
ment. Moreover, any planned investigations involv-
ing human subjects should first be approved by
the stakeholder’s IRB (Institutional Review Board)
who will oversee the safety of the proposed studies
and the role of COVID-KG before any experimen-
tal studies are conducted. COVID-KG is a tool to
enhance biomedical and clinical research; it is not
a tool for direct clinical application with human
subjects.

Limitations of System Performance and Data
Collection

System errors. Our system can effectively convert
a large amount of scientific papers into knowledge
graphs, and can scale as literature volume increases.
However, none of our extraction components is
perfect, they produce about 6%-22% false alarms
and misses as reported in section 2. But as we
described in the workflow, all of the connections
and answers will be validated by domain experts
by checking their corresponding sources before
they are included in the drug repurposing report.
COVID-KG is developed for pre-clinical research
to target down drugs of interest for biomedical
scientists. Therefore, no human subjects or spe-
cific populations are directly subjected to COVID-



KG unless approved by the stakeholder’s IRB
who oversees the safety and ethical aspects of the
clinical studies in accordance with the Belmont
report (https://www.hhs.gov/ohrp/regulations-and-
policy/belmont-report/index.html). Accordingly,
COVID-KG will not impose direct harm to vulner-
able human cohorts or populations, unless misused
by the stakeholders without IRB approval. With re-
gards to potential harm in preclinical studies, users
of COVID-KG are advised to verify the accuracy
of the discovered leads in the source information
before conducting expensive experimental studies.

Bias in training data. Proper use of the technol-
ogy requires that input documents are legally and
ethically obtained. Regulation and standards (e.g.
GDPR13) provide a legal framework for ensuring
that such data is properly used and that any individ-
ual whose data is used has the right to request its
removal. In the absence of such regulation, society
relies on those who apply technology to ensure that
data is used in an ethical way. The input data to our
system is peer-reviewed publicly available scien-
tific articles. Additional potential harm could come
from the output of the system being used in ways
that magnify the system errors or bias in its train-
ing data. The various components in our system
rely on weak distant supervision based on large-
scale external knowledge bases and ontologies that
cover a wide range of topics in the biomedical do-
main. Nevertheless, our system output is intended
for human interpretation. We do not endorse in-
corporating the system’s output into an automatic
decision-making system without human validation;
this fails to meet our recommendations and could
yield harmful results. In the cited technical reports
for each component in our framework, we have
reported detailed error rates for each type of knowl-
edge element from system evaluations and provide
detailed qualitative analysis and explanations.

Bias in development data. We also note that
the performance of our system components as re-
ported is based on the specific benchmark datasets,
which could be affected by such data biases. Thus
questions concerning generalizability and fairness
should be carefully considered. Within the research
community, addressing data bias requires a combi-
nation of new data sources, research that mitigates
the impact of bias, and, as done in (Mitchell et al.,
2019), auditing data and models. Sections 2 and 4.1

13The General Data Protection Regulation of the European
Union https://gdpr.eu/what-is-gdpr/.

cite data sources used for training to support future
auditing. A general approach to properly use our
system should incorporate ethics considerations as
the first-order principles in every step of the sys-
tem design, maintain a high degree of transparency
and interpretability of data, algorithms, models,
and functionality throughout the system, make soft-
ware available as open-source for public verifica-
tion and auditing, and explore countermeasures to
protect vulnerable groups. In our ongoing and fu-
ture work, we will keep increasing the annotated
dataset size, add more rounds of user correction
and validation, and iteratively incorporate feedback
from domain experts who have used the tool, to
create new benchmarks for retraining model and
conducting more systematic evaluations. We rec-
ommend caution of using our system output until a
more complete expert evaluation has occurred.

Bias in source. Furthermore, our system out-
put may include some biases from the sources, by
way of biases in the peer-reviewing process. In our
previous work (Yu et al., 2014; Ma et al., 2015;
Zhi et al., 2015; Zhang et al., 2019), we have ag-
gregated source profile, knowledge graphs, and
evidence for fact-checking across sources. We plan
to extend our framework to include fact-checking
to enable practitioners and researchers to access
up-to-the-minute information.

Bias in test queries. Finally, the queries (i.e.,
the lists of candidate drugs and proteins/genes) are
provided by the users who might have biases in
their selection. Addressing the user’s own biases
falls outside the scope of our project, but as we
have stated in the previous subsection, we direct
users to carefully examine source information (au-
thor, publication date, etc.) and detailed evidence
(contextual sentences and documents) associated
with the extracted connections.
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