
On the Representation of Solutions to Elliptic PDEs

in Barron Spaces

Ziang Chen

Department of Mathematics
Duke University

Box 90320, Durham, NC 27708
ziang@math.duke.edu

Jianfeng Lu

Departments of Mathematics, Physics, and Chemistry
Duke University

Box 90320, Durham, NC 27708
jianfeng@math.duke.edu

Yulong Lu

Department of Mathematics and Statistics
Lederle Graduate Research Tower

University of Massachusetts
710 N. Pleasant Street, Amherst, MA 01003

lu@math.umass.edu

Abstract

Numerical solutions to high-dimensional partial differential equations (PDEs)
based on neural networks have seen exciting developments. This paper derives
complexity estimates of the solutions of d-dimensional second-order elliptic PDEs
in the Barron space, that is a set of functions admitting the integral of certain
parametric ridge function against a probability measure on the parameters. We
prove under some appropriate assumptions that if the coefficients and the source
term of the elliptic PDE lie in Barron spaces, then the solution of the PDE is ✏-close
with respect to the H

1 norm to a Barron function. Moreover, we prove dimension-
explicit bounds for the Barron norm of this approximate solution, depending at
most polynomially on the dimension d of the PDE. As a direct consequence of
the complexity estimates, the solution of the PDE can be approximated on any
bounded domain by a two-layer neural network with respect to the H

1 norm with
a dimension-explicit convergence rate.

1 Introduction

Inspired by the tremendous success of deep learning in diverse machine learning tasks including
image classification, natural language processing, and artificial intelligence, there has been growing
interest in exploring scientific and engineering applications of deep learning [36, 32, 34, 26, 47].
As partial differential equations (PDEs) play a fundamental role in almost all branches of sciences
and engineering, numerical solutions to PDE problems based on neural networks have become an
important research direction in scientific machine learning [25, 6, 23, 17, 7, 10, 22]. Among the
various directions, numerical solutions to high-dimensional PDEs – the unknown function depending
on many variables – are perhaps the most exciting possibility, as solving such PDEs has been a long-

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

standing challenge and breakthrough would lead to tremendous progress in fields such as many-body
physics [4, 11, 18], multiple agent control [35, 17], just to name a few.

Numerical solutions to low-dimensional PDEs, such as Navier-Stokes equation in fluid dynamics,
has become a standard practice after decades of work. However, the computational cost of the
conventional numerical methods for PDEs grows exponentially with the dimension, as a manifestation
of the curse of dimensionality (CoD). Given a target accuracy ✏, conventional methods, such as finite
element or finite difference, would need a mesh size of O(✏), and thus degree of freedom on the order
of O(✏�d), where d is the dimension of the problem. Such complexity severely limits the numerical
solutions to PDEs in high dimension, such as the many-body Schrödinger equations from quantum
mechanics and the high-dimensional Hamilton-Jacobi-Bellman equations from control theory. Neural
networks, in particular deep neural networks, provide a promising way to overcome the CoD in
representing functions in high dimension. It is thus a natural idea to parametrize the solution ansatz to
a PDE as neural networks and to employ variational search for the optimal parameters. Various neural
network methods [25, 6, 7, 10, 33, 17, 41, 46, 16, 5] for PDEs have been proposed recently and some
of them have demonstrated great empirical success in solving PDEs of hundreds and thousands of
dimensions [7, 10, 17], much beyond the capability of conventional approaches. Question remains
though on theoretical analysis of such neural-network based methods for solving high-dimensional
PDEs. While there have been some recent progress on approaches including physics-informed neural
networks [37, 31, 38] and the deep Ritz method [28, 27], many questions still remain open. Among
them, a fundamental question is

Whether the solution of a high-dimensional PDE can be efficiently approximated by a neural network,
and if so, how to quantify the complexity of the neural network representation with respect to the
increasing dimension?

Our contributions The focus of the current study takes a functional-analytic approach to this
question. Namely, we identify a function class suitable for neural network approximations and prove
that the solutions to a class of PDEs can be well approximated by functions in this class. More
specifically, the PDE we consider is a family of second-order elliptic PDEs of the form

Lu = �r · (Aru) + cu = f on Rd
. (1.1)

We choose to work with the Barron class of functions defined in [8] (see also [1]), which is a class of
functions admitting the integral of certain parametric ridge function against a probability measure
on the parameters; see Definition 2.2 for a precise description. This Barron space is inspired by the
pioneering work by Barron [2], where he proved that a class of functions whose Fourier transform
has the first order moment can be approximated by two-layer networks without CoD. The main result
of our work, stated informally, is the following; a more precise statement can be found in Section 2.3.

Main Theorem (informal version) If the coefficients A, c and the source term f of the second-
order elliptic PDE (1.1) are all Barron functions, then the solution u

⇤ can be approximated by another
Barron function u such that ku � u

⇤
kH1 ✏, where the Barron norm of u is upper bounded by

O((d/✏)C log(1/✏)). Moreover, if the Barron space is defined by the cosine activation function, then
the upper bound on the Barron norm can be improved to O(dC log 1/✏).

We note that while the better rate is only obtained for the cosine activation function, such periodic
activation function has indeed been found effective in certain PDE related tasks, see e.g., [42].

Since the Barron functions can be approximated on a finite domain ⌦ w.r.t. H
1 norm by two-

layer neural networks with a rate O(1/
p
k) where k is the network width (see Theorem 2.5),

the theorem above directly implies that there exists a two-layer network uk with the number of
widths k = O((d/✏)C log(1/✏)), or k = O(dC log 1/✏) if the activation function is cosine, such that
kuk �u

⇤
kH1(⌦) ✏. Therefore in our setting the solution can be approximated by a two-layer neural

network without CoD, namely the complexity depends at most polynomially on the dimension d

for fixed ✏. Alternatively, we can rewrite the rates as O((1/✏)C(log d+log 1/✏)) and O((1/✏)C log d)
to contrast with that of conventional grid-based numerical methods for PDEs, which scales as
O((1/✏)d). We observe that the dependence on d is replaced with log d in the complexity bound for
neural network approximations.

We emphasize that such approximation result does not follow directly from the universal approxima-
tion property of neural networks for Barron functions since it is not a priori known that the solution to

2

the PDE is a Barron function. In fact, directly imposing regularity or complexity assumption on the
solution itself is unreasonable since the solution is unknown and its fine properties are generally inac-
cessible. Our main contribution is to establish the fact that the solution can be indeed approximated
by a Barron function, under the assumption that coefficients and the right hand term of the PDE are
Barron. From a mathematical point of view, our main theorem is in the same spirit as regularity
estimates of PDEs, which are of crucial importance in the study of PDEs. While such regularity
estimates are well developed in low dimension, the extension to results in high dimension is highly
non-trivial and is the main focus of our work.

Related works Several theoretical work have been devoted to the above representation question. It
has been established in [15, 20, 14] that deep neural networks can approximate solutions to certain
class of parabolic equations and Poisson equation without CoD. The major limitation of those work
lies in that the PDEs considered in those work must admit certain stochastic representation such as
the Feymann-Kac formula and it seems difficult to generalize the proof techniques to broader classes
of PDEs with no probabilistic interpretation. The work [28, 27] analyzed a priori generalization
error of two-layer networks for solving elliptic PDEs and the Schrödinger eigenvalue problem on
a bounded domain with Neumann boundary condition by assuming that the exact solutions lie in
certain spectral Barron space, where the later was rigorously justified with a new regularity theory
of the PDE solutions in the spectral Barron space. Similar generalization analysis was carried
out in [29] for second-order PDEs and in [19] for general even-order elliptic PDEs, but without
justifying the Barron assumption on the solution. Compared to those work, our work focuses on
deriving complexity estimates of the solution in the integral-representation-based Barron space,
which is more flexible and arguably more suitable for high-dimensional settings, see e.g., discussion
in [8]. The work [9] established such estimates in the Barron space for certain specific PDEs that
essentially admit explicit solution, whereas we aim to prove such estimates for general elliptic PDEs
for which the analytical ansatz is not available. The work [30] is closest to ours where the authors
proved that the solution of the same type of elliptic PDE with a Dirichlet boundary condition can be
approximated by a (deep) neural networks with at most O(poly(d)N) parameters if the coefficients
of the PDE are approximable by neural networks with at most N parameters. While our overall
approach based on iterative scheme borrows idea from [30], our result differs and improves theirs in
many aspects: (1) Our result shows that the solution can be well approximated without CoD by a
two-layer neural network with a single activation whereas the result in [30] requires a deep network
which uses a mixure of at least two activation functions; (2) Our PDE is set up on the whole space
rather than a compact domain, so our setting covers some important PDEs in physics, such as the
stationary Schrödinger equation; (3) The result in [30] relies on another key assumption that the
source term lies within the span of finitely many eigenfunctions of the elliptic operator whereas our
result completely removes such assumption. This is achieved by utilizing a novel preconditioning
technique to uniformly control the condition number of the iterative scheme that underpins the proof
of our main theorem.

Organization The rest of this paper will be organized as follows. In Section 2.1 we set up the PDE
problem on the whole space and in Section 2.2 we introduce the definition of Barron functions and
discuss their H1-approximation by two-layer networks (see Theorem 2.5). Our main theorems are
stated in Section 2.3. We present the sketch proofs of the main theorems in Section 3 and defer the
complete proof to Appendix. The paper is concluded with discussions on some future directions.

2 Problem setup and main results

2.1 Problem description

Notations Throughout this paper, we use kvk to denote the Euclidean norm of a vector v 2 Rd.
For a matrix A 2 Rd⇥d, we denote its operator norm by kAk = sup

v2Rd\{0}
kAvk
kvk . For R > 0, we

denote by B
d

R
the closed ball in Rd centered at 0 with radius R, i.e., B

d

R
= {x 2 Rd : kxk R}.

Recall that we consider the d-dimensional second-order elliptic PDE (1.1). To guarantee the existence
and uniqueness of the weak solution in H

1(Rd), we make the following minimum assumptions on
coefficients A, c and right-hand side f ; this assumption will be strengthened in our main representation
theorem.

3

Assumption 2.1. A(x) = (Aij(x))1i,jd is symmetric with kA(x)k amax < 1 and uniformly
elliptic, that is for some amin > 0, it satisfies

⇠
>
A(x)⇠ � amin k⇠k

2
, 8 x, ⇠ 2 Rd

.

We also assume that 0 < cmin c(x) cmax < 1 and f 2 L
2(Rd).

Under Assumption 2.1, a standard argument using the Lax-Milgram theorem implies that there exists
a unique weak solution u

⇤
2 H

1(Rd), such that Lu⇤ = f in H
�1(Rd) which is the dual space of

H
1(Rd), i.e.,

Z

Rd

Aru
⇤
·rvdx+

Z

Rd

cu
⇤
vdx =

Z

Rd

fvdx, 8v 2 H
1(Rd).

Our ultimate goal is to show that the solution can be approximated by a two-layer neural network
on any bounded subset of Rd with respect to the H

1 norm with a rate scaling at most polynomially
in the dimension. Notice that in general one cannot hope to obtain an approximation result on the
whole space Rd because the asymptotic behavior of a neural network function (determined by the
activation) at infinity may mismatch that of the target function u

⇤. On the other hand, it is well-known
that the convergence rate of neural networks for approximating functions in standard Sobolev or
Hölder spaces still suffers from the CoD [44, 45]. Therefore to obtain a rate without CoD for the
neural networks approximation to the solution u

⇤, we need to argue that u⇤ lies in a suitable smaller
function space which has low complexity compared to Sobolev or Hölder spaces. We will work with
the Barron space and show that u⇤ is arbitrarily close to a Barron function which can be approximated
by a two-layer neural network without CoD.

2.2 Barron spaces

The definition of Barron space is strongly motivated by the two-layer neural networks. Recall that a
two-layer neural network with k hidden neurons is a function of the form

uk(x) =
1

k

kX

i=1

ai�(w
>
i
x+ bi), x 2 Rd

. (2.1)

Here � : R ! R is some activation function and (ai, wi, bi) 2 R ⇥ Rd
⇥ R, i = 1, 2, . . . , k are

the network parameters. If the parameters are randomly chosen accordingly to some probability
distribution, then in the infinite width limit the averaged sum in (2.1) formally converges to the
following probability integral

u⇢(x) :=

Z
a�(w>

x+ b)⇢(da, dw, db), x 2 Rd
, (2.2)

where ⇢ is a probability measure on the parameter space R⇥ Rd
⇥ R. Observe that (2.1) is a special

instance of (2.2) if we take ⇢(a,w, b) = 1
k

P
k

i=1 �(a� ai, w � wi, b� bi).

The Barron norms and Barron spaces are then defined as follows, where we require the marginal
measure in w to have compact support. This is because that the (formal) first-order and second-order
partial derivatives of u⇢(x) would involve with components of w by chain rule. By adding some
uniform bounds on w, we can to control the Barron norms after taking derivatives. In the subsequent
discussion, we may also need to restrict our attention on functions defined on a bounded set. Therefore
we present below the formal definition of a Barron function defined any domain ⌦ ⇢ Rd.
Definition 2.2. Fix ⌦ ⇢ Rd and R 2 [0,+1]. For a function g = u⇢ with some probability measure
⇢, we define the Barron norm of g on ⌦ with index p 2 [1,+1] and support radius R by

kgkBp

R
(⌦) = inf

⇢

⇢✓Z
|a|

p
⇢(da, dw, db)

◆1/p

: g =

Z
a�(w>

x+ b)⇢(da, dw, db) on ⌦,

⇢ is supported on R⇥B
d

R
⇥ R

�
,

where B
d

R
= {x 2 Rd : kxk R}. The corresponding Barron space is then defined as

B
p

R
(⌦) =

n
g : kgkBp

R
(⌦) < 1

o
.

4

It is worth making some comments on the definition above. Our definition of Barron space adapts a
similar definition in [8] (see also [1]) with several important modifications for the purpose of PDE
analysis. First we require that the w-marginal of the probability measure ⇢ has compact support in
order to control the derivatives of a Barron function defined in (2.2); in fact differentiating the integral
of (2.2) leads to an integral of the product of the ridge function with w (or its powers) and enforcing
⇢ has a compact w-marginal thus controls the Barron norm of the derivatives of u⇢. In addition, our
definition of Barron norm only involves the p-th moment of ⇢ with respect to a parameter whereas
the Barron norm in [8] takes the moments in all parameters into account. This is because [8] uses
the unbounded ReLU activation function, which requires the moment condition in all parameters to
make the integral in (2.2) well-defined; whereas we will only consider bounded � (see Assumption
2.3) and the integral is guaranteed to be finite under such assumption.

Both our notion of Barron space and the one in [8] are motivated by the seminal work of Barron [2]
where he proved that if the Fourier transform F(f) of a function f satisfies that

Z

Rd

|F(f)(⇠)||⇠|d⇠ < 1,

then there exists a two-layer network uk with k hidden neurons such that kf � ukkL2(⌦) Ck
� 1

2 .
Since Barron’s original function class is defined via the Fourier transform, we call such function class
the spectral Barron space to distinguish it from our Barron space based on the probability integral.
We refer to [24, 3, 39, 40, 28] for recent developments on the spectral Barron space.

As we investigate the solution theory of the second-order PDE in the Barron space, we expect to
differentiate the integral representation (2.2) up to the second order. Therefore, we assume that the
activation function � as well as its first-order and second-order derivatives are all bounded in R.
Assumption 2.3. � : R ! R is smooth with C0 := sup

y2R |�(y)| < 1, C1 := sup
y2R |�

0(y)| <
1, and sup

y2R |�
00(y)| < 1.

Thanks to the Hölder inequality, it is clear that Bp

R
(⌦) ⇢ B

q

R
(⌦) when p q. The following useful

proposition (see also [8, Proposition 1]) shows that the reverse is also true and that the Barron norms
and the Barron spaces are in fact independent of p.
Proposition 2.4. For any function g 2 B

1
R
(⌦), it holds that kgkB1

R
(⌦) = kgkBp

R
(⌦) = kgkB1

R
(⌦) for

any 1 p 1. As a consequence, B1
R
(⌦) = B

p

R
(⌦) = B

1
R
(⌦) for 1 p 1.

The proof of Proposition 2.4 can be found in Appendix B.

The most important property that makes Barron functions distinct from Sobolev or Hölder functions
is that they can be approximated by two-layer neural networks with a dimension-independent
approximation rate in H

1 norm as shown in Theorem 2.5.
Theorem 2.5 (Approximation theorem in H

1 norm). Suppose that Assumption 2.3 holds and that g 2

B
1
R
(⌦). Then for any open bounded subset ⌦0 ⇢ ⌦ and any k 2 N+, there exists {(ai, wi, bi)}ki=1

satisfying
�����
1

k

kX

i=1

ai�(w
>
i
x+ bi)� g(x)

�����

2

H1(⌦0)

2(C2
0 +R

2
C

2
1)m(⌦0) kgk

2
B1

R
(⌦)

k
, (2.3)

where C0 and C1 are the constants in Assumption 2.3, and m(⌦0) is the Lebesgue measure of ⌦0.

Theorem 2.5 provides an H
1-approximation rate for Barron functions defined by the integral rep-

resentation (2.2). The proof is deferred to Appendix B. Similar approximation results in the sense
of L2 for Barron functions (including formulations based on spectrum and integral representation)
have been proved in [2, 24, 3, 39, 8]. H1-approximation results for spectral Barron functions were
previously obtained in [40] and [28].

2.3 Main theorems

To state our main theorems, we need to make some additional complexity assumption on the
coefficients A, c and the source term f of the PDE (1.1), which is reasonable as otherwise there is no
hope that the solution would lie in a smaller function class.

5

Assumption 2.6. For some RA, Rc, Rf 2 (0,+1), we have `A := max1i,jd kAijkB1
RA

(Rd) <

1, `c := kckB1
Rc

(Rd) < 1, and `f := kfkB1
R

f
(Rd) < 1.

We remark that Assumption 2.6 is compatible with our earlier Assumption 2.1 on the coefficients
A, c and the source f . In fact, it is easy to see that constant coefficients A, c satisfy both assumptions
if im(�) 6= {0}, i.e., � is not constantly zero. As for f , we provide in Proposition A.1 of Appendix A
a concrete class of f that satisfies both assumptions.

We also need two additional technical assumptions on the activation function.

Assumption 2.7. The function h : R2
! R, (y1, y2) 7! �(y1)�(y2) satisfies that `m :=

khkB1
Rm

(R2) < 1, for some Rm 2 (0,+1).

Assumption 2.8. It holds that `d,1 := k�
0
kB1

R
d,1

(R) < 1 and `d,2 := k�
00
kB1

R
d,2

(R) < 1, for some

Rd,1, Rd,2 2 (0,+1).

Assumption 2.7 and Assumption 2.8 guarantee that Barron spaces are closed under multiplication and
differentiations (up to the second order) respectively; see Lemma 3.3 (iii)-(iv) for a precise statement.
These operations and the associated closeness will be useful for constructing approximation to the
exact solution u

⇤ of the PDE (1.1) in Barron spaces. Proposition A.2 shows that Assumption 2.7 and
Assumption 2.8 hold for a relatively large class of activation functions including cosine.

With the preparations above, we are ready to state our main theorems below. The first main theorem
concerns the complexity estimate of the exact solution u

⇤ in the Barron space.

Theorem 2.9. Suppose that Assumption 2.1, 2.3, 2.6, 2.7, and 2.8 hold. For any ✏ 2 (0, 1/2), there
exists u 2 B

1
R
(Rd) with R �1

�
1
✏

��2 and kukB1
R
(Rd) �1

�
d

✏

��2|ln ✏|
, such that ku� u

⇤
k
H1(Rd)

✏. Here �1, �2, �1, and �2 only depend on kfk
H�1(Rd) and constants in Assumptions 2.1, 2.6, 2.7,

and 2.8.

Furthermore, if � = cos, then ku� u
⇤
k
H1(Rd) ✏ can be achieved with R �

0
1|ln ✏| and

kukB1
R
(Rd) �

0
1d

�
0
2|ln ✏|, where �0

1, �0
1, and �

0
2 only depend on kfk

H�1(Rd) and constants in Assump-
tion 2.1 and 2.6.

Theorem 2.9 shows that the exact solution u
⇤ is ✏-close (in the sense of H1) to a Barron function

u 2 B
1
R
(Rd). In addition, the Barron norm of u grows at most polynomially in d, indicating that

the complexity of u dose not suffer from the CoD. Also the complexity estimate gets substantially
improved when the activation function is cosine. In fact, advantages of periodic activation functions
have been empirically observed in some earlier works, see e.g., [42]. It remains an open question
whether results similar to Theorem 2.9 can be established for activation functions that do not satisfy
Assumption 2.7 and Assumption 2.8. This will be investigated in future works.

Thanks to Theorem 2.5 and Theorem 2.9, it is easy to conclude that the PDE solution u
⇤ can be

approximated on any bounded subset ⌦ ⇢ Rd using two-layer neural networks with the number of
hidden neurons k scaling at most polynomially in d.

Theorem 2.10. Under the same assumptions as in Theorem 2.9, given any ✏ 2 (0, 1/2) and any open
bounded subset ⌦ ⇢ Rd, there exists a two-layer neural network uk(x) with k �m(⌦)

�
d

✏

��|ln ✏|

such that kuk � u
⇤
k
H1(⌦) ✏, where � and � only depend on kfk

H�1(Rd) and constants in
Assumptions 2.1, 2.3, 2.6, 2.7, and 2.8.

Furthermore, if � = cos, then kuk � u
⇤
k
H1(⌦) ✏ can be achieved with k �

0
m(⌦)d�

0|ln ✏|, where
�
0 and �

0 only depend on kfk
H�1(Rd) and constants in Assumptions 2.1, 2.3, and 2.6.

3 Proofs of the main results

We sketch the proof ideas in this section and present the full details in the Appendix.

6

3.1 Preconditioned functional iterative scheme

The key ingredient of our proof of Theorem 2.9 is a functional iterative scheme for solving the elliptic
PDE, which can be viewed as an infinite dimensional analog of the preconditioned steepest descent
algorithm to solve linear algebra equations. Recall when solving the linear equation Ax = b with
A 2 Rn⇥n and x, b 2 Rn, the preconditioned steepest descent algorithm [13] runs the iteration

xt+1 = xt � ↵P (Axt � b),

where P is a preconditioning matrix, ↵ is the step size, and t = 0, 1, 2, · · · indicates the iteration
index. The purpose of the preconditioned iteration is to reduce the condition number of the iteration
(PA) by choosing a suitable P and hence accelerate the convergence of the iterative algorithm.

In the case of solving the elliptic PDE (1.1), we generalize the preconditioned steepest descent
iteration to the functional setting by considering the following iteration scheme in H

1(Rd):

ut+1 = ut � ↵(I ��)�1(Lut � f), (3.1)

where the inverse operator (I � �)�1 plays the role of preconditioner. As a matter of fact, we
will show that the condition number of (I ��)�1

L is bounded and this directly implies that the
iterative scheme (3.1) converges exponentially to the exact solution u

⇤. Indeed, we have the following
contraction estimate for the iteration (3.1), whose proof can be found in Appendix C.

Proposition 3.1. Recall the constants amin, amax, cmin, cmax defined in Assumption 2.1. For any
↵ > 0 and any u 2 H

1(Rd),
��(I � ↵(I ��)�1

L)u
��
H1(Rd)

 ⇤(↵)kukH1(Rd), (3.2)

where the contraction factor ⇤(↵) = sup
�2[�min,�max] |1� ↵�| with �min = min{amin, cmin} and

�max = max{amax, cmax}.

In particular, minimizing ⇤(↵) with respect to the step size ↵ yields an optimal choice of step size

↵⇤ :=
2

�min + �max
.

With ↵ = ↵⇤ in (3.2), we obtain that
����
⇣
I �

2

�min + �max
(I ��)�1

L

⌘
u

����
H1(Rd)

�max � �min

�max + �min
kukH1(Rd). (3.3)

As a direct consequence, we obtain the following estimate for the number of iterations required to
achieve a given error tolerance.

Corollary 3.2. Let u⇤ be the exact solution of the PDE (1.1). Under Assumption 2.1, consider the
iteration scheme (3.1) with ↵ = ↵⇤ = 2

�min+�max
. Then for any

T �

✓
ln

�max + �min

�max � �min

◆�1

ln
ku0 � u

⇤
k
H1(Rd)

✏
,

the iterate uT satisfies kuT � u
⇤
k
H1(Rn) ✏.

Let us remark that the idea of using iterative scheme to establish neural network representation results
of solutions to PDEs is not new, see e.g., [23, 30], similar ideas have been also used to construct neural
network architectures inspired from iterative schemes, see e.g., [43, 12]. Closely related to our setting,
the work [30] uses a steepest descent iteration with the right hand side of the equation assumed to
be in the span of first several eigenfunctions of the elliptic operator, while [23] considered general
right hand side, but only after discretization which also effectively truncates the problem onto a finite
dimensional subspace. These restrictions were made to limit the condition number of the iteration.
Unlike those works using standard steepest descent iterations, by using the preconditioning technique,
we can deal with general right hand side without restricting to a finite-dimensional subspace.

7

3.2 Algebra of Barron functions and representation of the solution

Corollary 3.2 in the previous subsection shows that we can obtain an approximate solution by running
the iteration (3.1). To complete the proof of Theorem 2.9, we show in this subsection that the iteration
(3.1) can be carried out in the Barron space B

1
R
(Rd), i.e. each iteration ut 2 B

1
R
(Rd) (with the

support radius R potentially depending on t). To this end, we first need to establish the closeness of
Barron space under function operations involved in the iteration. In fact, by decomposing each of the
iteration step in (3.1) into two steps, we can write

(
vt = Lut � f = �

P
i,j
(@iAij@jut +Aij@ijut) + cut � f,

ut+1 = ut � ↵(I ��)�1
vt.

(3.4)

Thus, to show that the iterate ut remains in Barron space, it suffices to establish that addition, scalar
multiplication, product, differentiation, and action of (I � �)�1 are closed in the Barron space.
The closedness of Barron functions under those operations are not only useful for proving our main
results, but also of its own interest. The next two lemmas summarize the algebras and the stability
estimate of the inverse (I ��)�1 in the Barron space. Their proofs can be found in Appendix D.
Lemma 3.3 (Algebras in Barron spaces). The followings hold:

(i) (Addition) Suppose that kgikB1
Ri

(Rd) < 1, i = 1, 2, . . . , k. Then kg1 + · · ·+ gkkB1
R
(Rd) P

1ik
kgikB1

Ri
(Rd), where R = max1ik Ri.

(ii) (Scalar multiplication) Suppose that kgkB1
R
(Rd) < 1 and that � 2 R. Then k�gkB1

R
(Rd) =

|�| kgkB1
R
(Rd).

(iii) (Product) Suppose that Assumption 2.3 and Assumption 2.7 hold and that kgikB1
Ri

(Rd) < 1

for i = 1, 2. Then kg1g2kB1
R
(Rd) `m kgkB1

R1
(Rd) kgkB1

R2
(Rd), where R = Rm(R1 +R2)

with Rm and `m being constants in Assumption 2.7.

(iv) (Derivatives) Suppose that Assumption 2.3 and Assumption 2.8 hold and that kgkB1
R
(Rd) <

1 with R < 1. Then k@igkB1
R

d,1R
(Rd) `d,1R kgkB1

R
(Rd) and k@ijgkB1

R
d,2R

(Rd)

`d,2R
2
kgkB1

R
(Rd) for any i, j 2 {1, 2, . . . , d}, where Rd,1, Rd,2, `d,1, and `d,2 are constants

in Assumption 2.8.
Lemma 3.4 (Applying (I � �)�1 on Barron functions). Suppose that kgkB1

R
(Rd) < 1. Then��(I ��)�1

g
��
B1

R
(Rd)

 kgkB1
R
(Rd).

we include a proof for Lemma 3.4 in Appendix D that uses similar arguments from [9], though the
analysis in [9] is for d � 3. The lemmas above lead to the following recursive estimate on the Barron
norm of ut.
Lemma 3.5. Suppose that Assumption 2.3, Assumption 2.7, and Assumption 2.8 hold. If kukB1

Ru,t

<

1 with Ru,t < 1, then ut+1 defined in (3.1) or (3.4) satisfies that

kut+1kB1
Ru,t+1

(Rd)
�
↵`m`A(`

2
d,1RARu,t + `d,2R

2
u,t

)d2 + ↵`m`c + 1
�
kutkB1

Ru,t
(Rd) + ↵`f ,

(3.5)
for any
Ru,t+1 � max{RmRd,1(Ru,t +RA), Rm(Rd,2Ru,t +RA), Rm(Ru,t +Rc), Ru,t, Rf}. (3.6)

The proof of Lemma 3.5 is deferred to Appendix D. One observation is that the amplification factor
of the Barron norm in Lemma 3.5 increases as the support radius R increases. The reason is that
differentiating the function would introduce components of w and hence the amplification depends
on how large kwk can be and thus the support of the measure.

One possible direction to improve the estimate is to realize that the preconditioner (I ��)�1 can
counteract the action of taking derivatives. It is indeed possible to to remove the R dependence
from the amplification factor, at least for some specific activation functions, through a more careful
analysis. In particular, we have the following lemma for the cosine activation function, the proof of
which can also be found in Appendix D.

8

Lemma 3.6. Suppose that Assumption 2.6 holds. If � = cos and kukB1
Ru,t

(Rd) < 1 with Ru,t < 1,
then ut+1 defined in (3.1) or (3.4) satisfies

kut+1kB1
Rt+1

(Rd)
�
6↵`A max{R2

A
, 1}d2 + ↵`c + 1

�
kutkB1

Ru,t
(Rd) + ↵`f , (3.7)

for any
Ru,t+1 � Ru,t +max{RA, Rc, Rf}. (3.8)

Lemma 3.5 and Lemma 3.6 estimate the amplification of the Barron norm in each iteration of (3.1).
Combining them with the control of number of iterations, Corollary 3.2, we are ready to finish the
proof of Theorem 2.9.

Proof of Theorem 2.9. Fix u0 = 0 and ↵ = 2
�min+�max

. According to Corollary 3.2, it holds that
kuT � u

⇤
k
H1(Rn) ✏ for any

T �

✓
ln

�max + �min

�max � �min

◆�1

ln
ku

⇤
k
H1(Rn)

✏
.

Moreover, thanks to the estimate

�min ku
⇤
k
2
H1(Rd)

Z
Aru

⇤
·ru

⇤
dx+

Z
c|u

⇤
|
2
dx =

Z
fu

⇤
dx kfk

H�1(Rd) ku
⇤
k
H1(Rd) ,

we have ku
⇤
k
H1(Rd)

1
�min

kfk
H�1(Rd). Therefore, it suffices to take

T =

&✓
ln

�max + �min

�max � �min

◆�1

ln
1

✏
+

✓
ln

�max + �min

�max � �min

◆�1

ln
kfk

H�1(Rd)

�min

'
.

Set Ru,0 = max{RA, Rc, Rf , 1} and Ru,t+1 = max{2RmRd,1, 2RmRd,2, 2Rm, 1} ·Ru,t � Ru,t.
Then (3.6) is satisfied for any t. Let us define a sequence {Xt}t�0 via X0 = 1 and Xt+1 =⇣
↵`m`A(`2d,1 + `d,2) +

↵(`m`c+`f)+1
d2

⌘
R

2
u,t

d
2
·Xt. By (3.5), we have kutkB1

Ru,t
(Rd) Xt for any

t. Therefore, it holds that
Ru,T = max{RA, Rc, Rf , 1} ·max{2RmRd,1, 2RmRd,2, 2Rm, 1}T ,

and that
kuT kB1

Ru,T
(Rd) XT

=

✓
↵`m`A(`

2
d,1 + `d,2) +

↵(`m`c + `f) + 1

d2

◆T

d
2T (Ru,0 · · ·Ru,T�1)

2

✓
↵`m`A(`

2
d,1 + `d,2) +

↵(`m`c + `f) + 1

d2

◆T

d
2T

· (max{RA, Rc, Rf , 1})
T
·max{2RmRd,1, 2RmRd,2, 2Rm, 1}T

2

.

The first part of Theorem 2.9 is established by setting u = uT and R = Ru,T .

If � = cos, (3.8) is satisfied by setting
Ru,t = max{RA, Rc, Rf} · t.

Define Y0 = 0 and Yt+1 =
�
6↵`A max{R2

A
, 1}d2 + ↵`c + 1

�
Yt + ↵`f . By (3.7), we obtain that

kutkB1
Ru,t

(Rd) Yt for any t, and in particular that

kuT kB1
Ru,T

(Rd) YT =
↵`f

⇣�
6↵`A max{R2

A
, 1}d2 + ↵`c + 1

�T
� 1

⌘

6↵`A max{R2
A
, 1}d2 + ↵`c

,

which finishes the proof by setting u = uT and R = Ru,T .

Theorem 2.10 is then a corollary of Theorem 2.9 and Theorem 2.5 (the approximation theorem).

Proof of Theorem 2.10. Theorem 2.10 follows directly from applying Theorem 2.5 with error toler-
ance ✏/2 and applying Theorem 2.9 with error tolerance ✏/2.

9

4 Conclusion

In this work, we establish the approximation rate for the solution of a second-order elliptic PDE by
a Barron function and by a two-layer neural network. Under the assumption that the coefficients
and the source of the PDE are all in the Barron spaces with some compact support property on the
underlying probability measure, the approximation rate is shown to depend at most polynomially on
the dimension. Therefore, our results indicate that even a neural network as simple as a two-layer
network with a single activation function can have adequate representation ability to encode the
solution of an elliptic PDE, without incurring the CoD. Our result provides theoretical guarantee for
numerical methods for solving high-dimensional PDEs using neural networks.

For future directions, it is of interest to extend the functional analysis framework to more general
activation functions (such as unbounded ones) and more general neural network architectures. One
interesting direction is to establish depth separation result for representing PDE solutions. Our
analysis also indicates some potential benefit of using periodic activation function such as cosine in
terms of approximation, further studies and understanding of the choice of activation function and
architecture are crucial. Moreover, while we focus on approximation error, generalization error and
analysis of training should also be considered in future works.

It is possible to extend the approximation results to a wider range of high-dimensional PDEs such as
parabolic PDEs, PDE eigenvalue problems, and nonlinear equations such as those arise from control
theory. The analysis tools and characterization of Barron space we establish in this work would be
useful for these future studies.

Acknowledgments and Disclosure of Funding

The work of Z.C. and J.L. is supported in part by the National Science Foundation via grants DMS-
2012286 and CCF-1934964. Y.L. thanks the National Science foundation for its support through the
award DMS-2107934.

References

[1] F. Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

[2] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

[3] G. Bresler and D. Nagaraj. Sharp representation theorems for ReLU networks with precise
dependence on depth. arXiv preprint arXiv:2006.04048, 2020.

[4] G. Carleo and M. Troyer. Solving the quantum many-body problem with artificial neural
networks. Science, 355(6325):602–606, 2017.

[5] F. Chen, J. Huang, C. Wang, and H. Yang. Friedrichs learning: Weak solutions of partial
differential equations via deep learning. arXiv preprint arXiv:2012.08023, 2020.

[6] M. W. M. G. Dissanayake and N. Phan-Thien. Neural-network-based approximations for
solving partial differential equations. Communications in Numerical Methods in Engineering,
10(3):195–201, 1994.

[7] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Commu-
nications in Mathematics and Statistics, 5(4):349–380, 2017.

[8] W. E, C. Ma, and L. Wu. The Barron space and the flow-induced function spaces for neural
network models. Constructive Approximation, pages 1–38, 2021.

[9] W. E and S. Wojtowytsch. Some observations on high-dimensional partial differential equations
with Barron data. arXiv preprint arXiv:2012.01484, 2020.

10

[10] W. E and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[11] X. Gao and L.-M. Duan. Efficient representation of quantum many-body states with deep neural
networks. Nature Communications, 8(1):1–6, 2017.

[12] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International Conference on Machine Learning, pages 1263–1272.
PMLR, 2017.

[13] G. H. Golub and C. F. Van Loan. Matrix Computations. JHU Press, 4th edition, 2013.

[14] P. Grohs and L. Herrmann. Deep neural network approximation for high-dimensional elliptic
PDEs with boundary conditions. arXiv preprint arXiv:2007.05384, 2020.

[15] P. Grohs, F. Hornung, A. Jentzen, and P. Von Wurstemberger. A proof that artificial neural
networks overcome the curse of dimensionality in the numerical approximation of black-scholes
partial differential equations. arXiv preprint arXiv:1809.02362, 2018.

[16] Y. Gu, H. Yang, and C. Zhou. Selectnet: Self-paced learning for high-dimensional partial
differential equations. Journal of Computational Physics, 441:110444, 2021.

[17] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[18] J. Hermann, Z. Schätzle, and F. Noé. Deep-neural-network solution of the electronic Schrödinger
equation. Nature Chemistry, 12(10):891–897, 2020.

[19] Q. Hong, J. W. Siegel, and J. Xu. A priori analysis of stable neural network solutions to
numerical PDEs. arXiv preprint arXiv:2104.02903, 2021.

[20] M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen. A proof that rectified deep neural
networks overcome the curse of dimensionality in the numerical approximation of semilinear
heat equations. SN Partial Differential Equations and Applications, 1(2):1–34, 2020.

[21] V. I. Istratescu. Introduction to Linear Operator Theory. CRC Press, 2020.

[22] Y. Khoo, J. Lu, and L. Ying. Solving for high-dimensional committor functions using artificial
neural networks. Research in the Mathematical Sciences, 6(1):1–13, 2019.

[23] Y. Khoo, J. Lu, and L. Ying. Solving parametric PDE problems with artificial neural networks.
European Journal of Applied Mathematics, 32(3):421–435, 2021.

[24] J. M. Klusowski and A. R. Barron. Approximation by combinations of ReLU and squared
ReLU ridge functions with `

1 and `
0 controls. IEEE Transactions on Information Theory,

64(12):7649–7656, 2018.

[25] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998.

[26] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Fourier neural operator for parametric partial differential equations. In International Conference
on Learning Representations, 2021.

[27] J. Lu and Y. Lu. A priori generalization error analysis of two-layer neural networks for solving
high dimensional Schrödinger eigenvalue problems. arXiv preprint arXiv:2105.01228, 2021.

[28] Y. Lu, J. Lu, and M. Wang. A priori generalization analysis of the deep Ritz method for solving
high dimensional elliptic partial differential equations. In Conference on Learning Theory,
pages 3196–3241. PMLR, 2021.

[29] T. Luo and H. Yang. Two-layer neural networks for partial differential equations: Optimization
and generalization theory. arXiv preprint arXiv:2006.15733, 2020.

11

[30] T. Marwah, Z. C. Lipton, and A. Risteski. Parametric complexity bounds for approximating
PDEs with neural networks. In Advances in Neural Information Processing Systems, volume 34,
2021.

[31] S. Mishra and R. Molinaro. Estimates on the generalization error of physics informed neural
networks (PINNs) for approximating PDEs. arXiv preprint arXiv:2006.16144, 2020.

[32] F. Noé, S. Olsson, J. Köhler, and H. Wu. Boltzmann generators: Sampling equilibrium states of
many-body systems with deep learning. Science, 365(6457), 2019.

[33] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[34] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: Learning velocity and
pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

[35] L. Ruthotto, S. J. Osher, W. Li, L. Nurbekyan, and S. W. Fung. A machine learning framework
for solving high-dimensional mean field game and mean field control problems. Proceedings of
the National Academy of Sciences, 117(17):9183–9193, 2020.

[36] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W.
Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T.
Jones, D. Silver, K. Kavukcuoglu, and D. Hassabis. Improved protein structure prediction using
potentials from deep learning. Nature, 577(7792):706–710, 2020.

[37] Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence and generalization of physics
informed neural networks. arXiv preprint arXiv:2004.01806, 2020.

[38] Y. Shin, Z. Zhang, and G. E. Karniadakis. Error estimates of residual minimization using neural
networks for linear PDEs. arXiv preprint arXiv:2010.08019, 2020.

[39] J. W. Siegel and J. Xu. Approximation rates for neural networks with general activation
functions. Neural Networks, 128:313–321, 2020.

[40] J. W. Siegel and J. Xu. High-order approximation rates for shallow neural networks with cosine
and ReLUk activation functions. arXiv preprint arXiv:2012.07205, 2020.

[41] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339–1364, 2018.

[42] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representations
with periodic activation functions. In Advances in Neural Information Processing Systems,
volume 33, pages 7462–7473, 2020.

[43] Y. Yang, J. Sun, H. Li, and Z. Xu. Deep ADMM-net for compressive sensing MRI. In Advances
in Neural Information Processing Systems, volume 29, 2016.

[44] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks,
94:103–114, 2017.

[45] D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks. In
Conference on Learning Theory, pages 639–649. PMLR, 2018.

[46] Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional partial
differential equations. Journal of Computational Physics, 411:109409, 2020.

[47] L. Zhang, J. Han, H. Wang, R. Car, and W. E. Deep potential molecular dynamics: a scalable
model with the accuracy of quantum mechanics. Physical Review Letters, 120(14):143001,
2018.

12

	NeurIPS2021

