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Abstract—Automated cough detection has significant appli-
cations for the surveillance of diseases and supports medical
decisions, as cough sounds can be a useful biomarker. However,
the implementation and evaluation of robust cough detection
models can be challenging due to the lack of real-world data.
This paper introduces and makes available a collection of 2,883
coughs and 3,074 non-cough sounds recorded in clinic waiting
rooms that we hope will become a baseline for this task. Using this
dataset, we evaluate different convolutional network architectures
for classifying short audio segments as cough or non-cough. An
ensemble model of convolutional neuronal networks provides the
most robust performance and has a ROC AUC of 98.1%. Equally
important, we construct a cough counter that incorporates the
ensemble model to compute the number of coughs per day. Then,
a simple linear model estimates the number of visits in which
the patients report cough symptoms from the cough counts. This
simple regression model can predict the number of cough visits
in the clinic with an absolute mean error of 4.26 cough visits per
day. Using additional information about when patients are in the
clinic helps a similar regression model reach a mean absolute
error of 3.65 cough visits per day. These results demonstrate the
feasibility of using cough detection as a biomarker for the spread
of respiratory viruses within the community.

Index Terms—Cough detection, Convolutional neural networks

I. INTRODUCTION

Motivation. Coughing is one of the most common causes

of primary healthcare visits. A wide range of diseases is

associated with coughing, including asthma, gastroesophageal

reflux disease, and some types of cancer. However, most new-

onset coughs are caused by respiratory infections, most of

which are easily transmitted to other individuals. Because of

the importance of cough as a symptom of various diseases,

a significant effort has focused on studying cough timing,

intensity, and other aspects [1]. While some approaches in-

volve patients keeping a cough diary, several approaches have

instead performed automated cough counting using a variety

of computational approaches to analyze audio recordings of

coughing. Examples include detecting nighttime coughing as

a marker for uncontrolled asthma and monitoring the success

of tuberculosis treatment over time [2]. Other approaches have

focused on the characteristics of a particular cough as a diag-

nostic aid, for example, using machine learning approaches
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to differentiate croup [3], whooping cough [4], or helping

to diagnose COVID-19 [5], [6]. Indeed, the proliferation of

mobile computing devices has made such analyses easier at

an individual level.

Beyond coughing at an individual level, however, coughing

also plays an essential role at a community or population

level. Because coughing can distribute infectious droplets over

relatively long distances, coughing is an effective mechanism

for accelerating the transmission of respiratory infections.

Thus, several contagious respiratory infections, including tu-

berculosis, pertussis, influenza, and respiratory syncytial virus

(RSV), can spread through coughing. These diseases have

associated morbidity and mortality and are therefore important

from a public health perspective. Indeed, the current COVID-

19 pandemic caused by the SARS-COV2 virus illustrates how

rapidly infectious diseases can spread and highlights the value

of automated cough detection, especially in indoor settings.

Outpatient clinic waiting rooms are particularly important

environments in which to study coughing. The waiting rooms

of primary or urgent care clinics are where infectious patients

may first mix with those who have non-infectious complaints

(e.g., well-child visits, musculoskeletal complaints, allergies,

or dermatologic issues). Prior work has highlighted the im-

portance of considering such transmission opportunities. For

example, it has been established that the exposure associated

with well-child visits increases infection risk among other

family members [7]. Thus, detecting coughs within waiting

rooms can inform interventions such as the deployment of

universal droplet precautions, including requiring masking or

helping to isolate coughing individuals in separate waiting

rooms.

A second critical need for cough detection in waiting rooms

is the opportunity to do real-time fine-grained syndromic

surveillance. Current influenza and COVID-19 surveillance

rely upon reports from healthcare providers, and in the case of

influenza, reports lag current conditions by two weeks. A wide

range of influenza (and now COVID-19) surveillance data

are becoming available much faster than previously. However,

most of these data are reported at the national, state, or

county level. In addition, surveillance is usually testing-centric

– if tests are not available or ordered, or if home testing is

prevalent, then cases will not be reported. Thus, there is a need

for new disease-agnostic surveillance approaches. Counting
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coughs in patient waiting rooms is one such approach that

could work for COVID-19, influenza, RSV, or some new yet

unknown respiratory pathogen. Furthermore, the techniques

developed and validated for outpatient clinic rooms are likely

to generalize to other settings such as schools or workplaces.

Technical Challenges. The development of disease surveil-

lance tools based on cough detection from audio recordings

faces several technical challenges. In realistic and open en-

vironments, numerous sounds have similar characteristics to

coughs and may be misclassified as such. Examples of such

confounders include throat clearing, laughing, doors closing,

or background music (these sounds are similar to coughs in

that they include high-energy peaks). Another critical chal-

lenge is that coughs infrequently occur even in outpatient

clinics. Therefore, a cough detector must have very high

specificity to avoid classifying other sounds as coughs. The

detector should also have good sensitivity to recall a majority

of coughs, although we may sacrifice some sensitivity in

exchange for higher specificity. Another consequence of the

low incidence of coughs is that realistic datasets are highly

imbalanced, complicating the construction and training of

accurate cough detectors. Finally, cough detectors must make

robust predictions in a broad range of environments and be

robust to hardware variation. Even microphones from the same

manufacturer have noticeably different recording character-

istics. We would also like our cough detectors to operate

equally well in quick-care clinics, emergency waiting rooms,

and schools despite differences in their acoustic characteristics.

Finally, most coughs occur in the far-field, and, as a result, they

are more prone to degradation due to interference from other

concurrent sounds.

Limitations of Existing Datasets. One major impediment

to progress in automated cough detection is the inadequacy

of public datasets. Much prior work has relied on datasets

that are not publicly available (e.g., [8], [9]). Unfortunately,

publicly available datasets, such as the Augmented Multi-party

Interaction (AMI) corpus [10], Audio Set [11], and ESC50

[12], are in general quite limited in terms of size and are

sparsely annotated: specifically, they often lack fine-grained

annotations identifying the temporal span of each cough. These

kinds of annotations are essential to building effective cough

detectors, and they are just not available for Audio Set, ESC50,

and AMI, which only provide labels at the granularity of

audio clips, which can range from a few seconds to minutes

in length. Recently, researchers have re-annotated the AMI

corpus with fine-grained annotations for each cough [13].

However, the number of coughs in the public dataset remains

small: the ESC50, Audio Set, and AMI contain only 40, 871,

and 1116 coughs, respectively.

Contributions. This paper makes three specific contribu-

tions. First, we have created and now make publicly (https:

//msl.cs.uiowa.edu/project cough.html) available an annotated

dataset of involuntary coughs recorded in working real-world

outpatient clinical settings. The dataset consists of 5,957 3-

second clips. We have inspected each clip to ensure no person-

ally identifiable information is included. A total of 2,883 clips

contained 3,110 coughs, each annotated with their start and

end times. The remaining 3,074 clips were selected to capture

the challenges of building robust cough predictors. We hope

that releasing the dataset will help advance research on this

topic and become a standard benchmark for the community.

Second, we develop a robust and effective cough detector

that uses deep learning techniques to identify coughs from

audio recordings. The resulting detector is an ensemble of

several deep learning models that use different architectures

and modeling assumptions. We have validated the performance

of our cough detector on a separate and even larger dataset

containing 348 hours of audio collected under similar opera-

tional conditions (i.e., quick care clinics).

Third, we used our cough detector as the basis for a cough

counter, and then used the output of the cough counter as the

input to a linear regression model that estimates the number

of patients who report cough as a symptom during their

clinic visit. A naive model that would estimate the number

of daily cough visits as the average number of days in the

training set has a mean absolute error of 5.3 cough visits per

day. A simple regression model that uses the cough counts

reduces the mean absolute error to 4.26 cough visits per day.

Using additional information about clinic hours and patient

scheduling practices helps a similar regression model further

reduce the mean absolute error to 3.7 cough visits per day.

This result demonstrates the feasibility of building surveillance

tools based on cough detectors and their potential use in

other public settings such as schools or theaters where such

validation data are unavailable.

II. RELATED WORK

This section compares prior work on cough detection

on three dimensions: whether the operating environment is

realistic, which machine learning techniques are used, and

whether/how the resulting cough detectors are useful for

disease surveillance. Table I summarizes prior work across

all three dimensions and includes information about their

performance. Note, however, that direct comparisons between

different approaches based on reported performance may be

misleading, as the performance was not measured on a stan-

dard dataset.

Operating Environment: A significant fraction of prior

work relies on data that does not realistically capture the

challenge of cough detection for disease surveillance. Early

work on cough detection used voluntary coughs produced

deliberately by participants on demand [15], [16]. It is un-

likely that this approach can capture the natural diversity of

real coughs and the significant differences across subjects.

Similarly, many of the collected datasets were recorded in

strictly controlled environments with little background noise.

For example, Barata et al. [15] performed data collection in

a laboratory setting where a microphone was placed 15 cm

from the subject.

Other prior work relies on data collected from microphones

worn directly by subjects [14], [16]. An advantage of this

approach is that coughs tend to be louder and less susceptible

2



Data Audio environment Subjects Features Size Approach Sens

(%)

Spec

(%)

PPV

(%)

NPV

(%)

Matos et
al., 2006

[14]

involuntary Microphone on chest
during daily routine
work

19 MFCC 821 min and 2473
cough signals

HMM 82

Barata et

al., 2019
[15]

voluntary Cough, laughter, throat
clearing, speech, forced
expiration gathered in
lab

43 mel-scaled
spectrogram

6737 cough, 3985
laugh, 3695 throat,
731 speech, 443
expiration

CNN 91.7 90.1 92 89.5

Amoh et

al., 2016
[16]

voluntary Cough, breathing,
heartbeats, cracklings
and other from chest
worn sensor

14 STFT 627 cough
instances, of
average 320ms

CNN,
RNN

87.7 92.7

Monge et
al., 2018
[17]

involuntary Cough, and other sounds
from smartphone mic
with participants
performing task
and with different
background noise

13 MFCC and
local Hu
moments

Database of 1560
minutes with
5-18% cough
samples

KNN*,
SVM

88.5 99.77

Imran et

al., 2020
[6]

involuntary ESC-50 dataset and self
recorded sounds

- MFCC 1838 cough sounds
and 3597 non-
cough

CNN 96.01 95.19

Hossain
et al.,
2020 [8]

involuntary Cough and other natu-
ral noises from public
datasets. Evaluated on
audio data from hospital
waiting rooms

- MFCC and
Spectrogram

462220 seconds
of audio samples.
Evaluated on 2500
seconds samples
from hospital
waiting

CNN 85.4 84.5

TABLE I: Overview of the related literature on audio based automated cough detection models

to interference from other sounds due to the microphone’s

proximity to the subject. On the other hand, subjects must be

willing to wear the devices consistently, which, in our experi-

ence, may engender compliance issues. Other researchers used

mobile apps to collect sound recordings of coughs to identify

whether a subject has COVID-19 (e.g., covid-19-sounds.org,

[18]). However, these recordings also have different audio

characteristics than those encountered in more passive disease

surveillance contexts: the coughs are primarily voluntary and

subject to less interference since subjects cough in proximity

to their device. In contrast, FluSense [8] relies on recordings

made in hospital waiting rooms to create a realistic dataset, but

these data are not publicly available. The work reported here,

like FluSense, relies on data collected by recording devices

placed in real-world contexts: unlike FluSense, however, our

extensive, annotated dataset is now available to all.

Machine Learning Techniques: All existing cough pre-

dictors tend to build models using similar features extracted

from an audio signal, including Mel-Frequency Cepstral Co-

efficients (MFCC), Mel-scaled spectrogram, and Short-Time

Fourier Transform (STFT). The cough detection problem is

easily modeled as a binary classification problem, where the

system is trained to label a window of audio data as either

including a cough or not including a cough. Prior work has

applied various traditional machine learning algorithms, in-

cluding, for example, K-Nearest Neighbor and Support Vector

Machines (SVM) [17] as well as Hidden Markov Models

(HMMs) [14]. More recently, deep neuronal architectures such

as convolutional neuronal networks (CNNs) [6], [8], [15]

and recurrent neuronal networks (RNNs) [16] have also been

applied to this problem. In this work, we apply various CNN

architectures (e.g., CNNs, residual CNNs, depth-wise CNNs)

as well as ensembles of these methods and also explore

different training techniques (e.g., transfer learning) to build

an effective cough detector.

Applications: The closest related effort to our work is

FluSense [8]. FluSense is a platform for disease surveillance

that combines data from microphones and thermal imaging

captured in waiting areas of a university hospital. To the best

of our understanding, FluSense uses a CNN architecture to

perform cough detection, and uses the output of its detector

to predict the results of influenza laboratory tests. The cough

detector relies on data from an array of microphones as well

as data from thermal imaging sensors deployed in the same

space. In contrast, we demonstrate that daily cough counts

computed solely from audio data captured by a single waiting

room microphone are correlated with the number of patients in

the clinic that day who report cough as a medical complaint.

III. DEPLOYMENT IN CLINICS

To evaluate the feasibility of using cough as a biomarker

for disease surveillance, we have deployed our system in

outpatient clinics in the Iowa City area from January 1st to

March 31st, 2017. This period includes the preponderance of

the 2017 flu season. Additionally, we obtained anonymized

patient records detailing each visit to the outpatient clinic. The

records include information regarding the diagnoses, symp-

toms reported by patients, and the start time and estimated

duration of each visit.
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models due to the large number of records involved (over 2,560

records).

A limitation of the simple regression models is that they

do not discriminate between coughs produced by different

individuals. For example, consider the case when three coughs

are produced within five minutes. The three coughs could be

have been from one, two, or three individuals. The models

considered in this paper do not discriminate between these

cases; they estimate the average number of cough visits when

observing a given number of coughs. Based on their sound

characteristics, we could improve these models by estimating

the likelihood that coughs come from the same or different

individuals. We will investigate such models as part of future

work.

VII. CONCLUSION

The ability to count coughs accurately is an essential

element of several key medical applications. This paper con-

siders the challenge of building an effective cough counting

application that relies only on real-world audio data. We make

three contributions: (1) We will open-source our public

dataset, which includes carefully annotated cough and non-

cough sounds captured in clinic waiting rooms. We hope

that our dataset will become a useful standard benchmark

dataset for the cough detection community and lead to further

advancements in the state-of-the-art. (2) We have evaluated

several different convolutional network architectures trained

and tested on our large cough dataset. A model based on

the YAMNet architecture has the best results with an average

AUC of 97.42% as measured by five-fold cross-validation.

Combining different YAMNet with ResNet and an optimized

CNN to create an Ensemble provides the best overall per-

formance with an AUC of 98.11%. (3) We created a cough

counter that incorporates the Ensemble model. Our findings

show that a simple linear model can predict the number of

cough visits from daily cough counts extracted from audio.

Over a dataset that includes 37 days of clinic data and audio,

the model predicts the number of cough visits with a mean

absolute error of 4.17 cough visits per day. Furthermore, using

additional information about clinic and patient scheduling

practices further reduce the mean absolute error to 3.65 cough

visits per day.
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