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Abstract—Automated cough detection has significant appli-
cations for the surveillance of diseases and supports medical
decisions, as cough sounds can be a useful biomarker. However,
the implementation and evaluation of robust cough detection
models can be challenging due to the lack of real-world data.
This paper introduces and makes available a collection of 2,883
coughs and 3,074 non-cough sounds recorded in clinic waiting
rooms that we hope will become a baseline for this task. Using this
dataset, we evaluate different convolutional network architectures
for classifying short audio segments as cough or non-cough. An
ensemble model of convolutional neuronal networks provides the
most robust performance and has a ROC AUC of 98.1%. Equally
important, we construct a cough counter that incorporates the
ensemble model to compute the number of coughs per day. Then,
a simple linear model estimates the number of visits in which
the patients report cough symptoms from the cough counts. This
simple regression model can predict the number of cough visits
in the clinic with an absolute mean error of 4.26 cough visits per
day. Using additional information about when patients are in the
clinic helps a similar regression model reach a mean absolute
error of 3.65 cough visits per day. These results demonstrate the
feasibility of using cough detection as a biomarker for the spread
of respiratory viruses within the community.

Index Terms—Cough detection, Convolutional neural networks

I. INTRODUCTION

Motivation. Coughing is one of the most common causes
of primary healthcare visits. A wide range of diseases is
associated with coughing, including asthma, gastroesophageal
reflux disease, and some types of cancer. However, most new-
onset coughs are caused by respiratory infections, most of
which are easily transmitted to other individuals. Because of
the importance of cough as a symptom of various diseases,
a significant effort has focused on studying cough timing,
intensity, and other aspects [|]. While some approaches in-
volve patients keeping a cough diary, several approaches have
instead performed automated cough counting using a variety
of computational approaches to analyze audio recordings of
coughing. Examples include detecting nighttime coughing as
a marker for uncontrolled asthma and monitoring the success
of tuberculosis treatment over time [2]. Other approaches have
focused on the characteristics of a particular cough as a diag-
nostic aid, for example, using machine learning approaches
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to differentiate croup [3], whooping cough [4], or helping
to diagnose COVID-19 [5], [0]. Indeed, the proliferation of
mobile computing devices has made such analyses easier at
an individual level.

Beyond coughing at an individual level, however, coughing
also plays an essential role at a community or population
level. Because coughing can distribute infectious droplets over
relatively long distances, coughing is an effective mechanism
for accelerating the transmission of respiratory infections.
Thus, several contagious respiratory infections, including tu-
berculosis, pertussis, influenza, and respiratory syncytial virus
(RSV), can spread through coughing. These diseases have
associated morbidity and mortality and are therefore important
from a public health perspective. Indeed, the current COVID-
19 pandemic caused by the SARS-COV?2 virus illustrates how
rapidly infectious diseases can spread and highlights the value
of automated cough detection, especially in indoor settings.

Outpatient clinic waiting rooms are particularly important
environments in which to study coughing. The waiting rooms
of primary or urgent care clinics are where infectious patients
may first mix with those who have non-infectious complaints
(e.g., well-child visits, musculoskeletal complaints, allergies,
or dermatologic issues). Prior work has highlighted the im-
portance of considering such transmission opportunities. For
example, it has been established that the exposure associated
with well-child visits increases infection risk among other
family members [7]. Thus, detecting coughs within waiting
rooms can inform interventions such as the deployment of
universal droplet precautions, including requiring masking or
helping to isolate coughing individuals in separate waiting
rooms.

A second critical need for cough detection in waiting rooms
is the opportunity to do real-time fine-grained syndromic
surveillance. Current influenza and COVID-19 surveillance
rely upon reports from healthcare providers, and in the case of
influenza, reports lag current conditions by two weeks. A wide
range of influenza (and now COVID-19) surveillance data
are becoming available much faster than previously. However,
most of these data are reported at the national, state, or
county level. In addition, surveillance is usually testing-centric
— if tests are not available or ordered, or if home testing is
prevalent, then cases will not be reported. Thus, there is a need
for new disease-agnostic surveillance approaches. Counting



coughs in patient waiting rooms is one such approach that
could work for COVID-19, influenza, RSV, or some new yet
unknown respiratory pathogen. Furthermore, the techniques
developed and validated for outpatient clinic rooms are likely
to generalize to other settings such as schools or workplaces.

Technical Challenges. The development of disease surveil-
lance tools based on cough detection from audio recordings
faces several technical challenges. In realistic and open en-
vironments, numerous sounds have similar characteristics to
coughs and may be misclassified as such. Examples of such
confounders include throat clearing, laughing, doors closing,
or background music (these sounds are similar to coughs in
that they include high-energy peaks). Another critical chal-
lenge is that coughs infrequently occur even in outpatient
clinics. Therefore, a cough detector must have very high
specificity to avoid classifying other sounds as coughs. The
detector should also have good sensitivity to recall a majority
of coughs, although we may sacrifice some sensitivity in
exchange for higher specificity. Another consequence of the
low incidence of coughs is that realistic datasets are highly
imbalanced, complicating the construction and training of
accurate cough detectors. Finally, cough detectors must make
robust predictions in a broad range of environments and be
robust to hardware variation. Even microphones from the same
manufacturer have noticeably different recording character-
istics. We would also like our cough detectors to operate
equally well in quick-care clinics, emergency waiting rooms,
and schools despite differences in their acoustic characteristics.
Finally, most coughs occur in the far-field, and, as a result, they
are more prone to degradation due to interference from other
concurrent sounds.

Limitations of Existing Datasets. One major impediment
to progress in automated cough detection is the inadequacy
of public datasets. Much prior work has relied on datasets
that are not publicly available (e.g., [8], [9]). Unfortunately,
publicly available datasets, such as the Augmented Multi-party
Interaction (AMI) corpus [10], Audio Set [I1], and ESC50
[12], are in general quite limited in terms of size and are
sparsely annotated: specifically, they often lack fine-grained
annotations identifying the temporal span of each cough. These
kinds of annotations are essential to building effective cough
detectors, and they are just not available for Audio Set, ESC50,
and AMI, which only provide labels at the granularity of
audio clips, which can range from a few seconds to minutes
in length. Recently, researchers have re-annotated the AMI
corpus with fine-grained annotations for each cough [13].
However, the number of coughs in the public dataset remains
small: the ESC50, Audio Set, and AMI contain only 40, 871,
and 1116 coughs, respectively.

Contributions. This paper makes three specific contribu-
tions. First, we have created and now make publicly (https:
/Imsl.cs.uiowa.edu/project_cough.html) available an annotated
dataset of involuntary coughs recorded in working real-world
outpatient clinical settings. The dataset consists of 5,957 3-
second clips. We have inspected each clip to ensure no person-
ally identifiable information is included. A total of 2,883 clips

contained 3,110 coughs, each annotated with their start and
end times. The remaining 3,074 clips were selected to capture
the challenges of building robust cough predictors. We hope
that releasing the dataset will help advance research on this
topic and become a standard benchmark for the community.

Second, we develop a robust and effective cough detector
that uses deep learning techniques to identify coughs from
audio recordings. The resulting detector is an ensemble of
several deep learning models that use different architectures
and modeling assumptions. We have validated the performance
of our cough detector on a separate and even larger dataset
containing 348 hours of audio collected under similar opera-
tional conditions (i.e., quick care clinics).

Third, we used our cough detector as the basis for a cough
counter, and then used the output of the cough counter as the
input to a linear regression model that estimates the number
of patients who report cough as a symptom during their
clinic visit. A naive model that would estimate the number
of daily cough visits as the average number of days in the
training set has a mean absolute error of 5.3 cough visits per
day. A simple regression model that uses the cough counts
reduces the mean absolute error to 4.26 cough visits per day.
Using additional information about clinic hours and patient
scheduling practices helps a similar regression model further
reduce the mean absolute error to 3.7 cough visits per day.
This result demonstrates the feasibility of building surveillance
tools based on cough detectors and their potential use in
other public settings such as schools or theaters where such
validation data are unavailable.

II. RELATED WORK

This section compares prior work on cough detection
on three dimensions: whether the operating environment is
realistic, which machine learning techniques are used, and
whether/how the resulting cough detectors are useful for
disease surveillance. Table I summarizes prior work across
all three dimensions and includes information about their
performance. Note, however, that direct comparisons between
different approaches based on reported performance may be
misleading, as the performance was not measured on a stan-
dard dataset.

Operating Environment: A significant fraction of prior
work relies on data that does not realistically capture the
challenge of cough detection for disease surveillance. Early
work on cough detection used voluntary coughs produced
deliberately by participants on demand [15], [16]. It is un-
likely that this approach can capture the natural diversity of
real coughs and the significant differences across subjects.
Similarly, many of the collected datasets were recorded in
strictly controlled environments with little background noise.
For example, Barata et al. [15] performed data collection in
a laboratory setting where a microphone was placed 15 cm
from the subject.

Other prior work relies on data collected from microphones
worn directly by subjects [14], [16]. An advantage of this
approach is that coughs tend to be louder and less susceptible



Data Audio environment Subjects Features Size Approach  Sens Spec PPV NPV
(%) (%) (%) (%)
Matos et involuntary Microphone on chest 19 MFCC 821 min and 2473 HMM 82
al.,, 2006 during daily routine cough signals
[14] work
Barata et  voluntary Cough, laughter, throat 43 mel-scaled 6737 cough, 3985 CNN 91.7 90.1 92 89.5
al., 2019 clearing, speech, forced spectrogram laugh, 3695 throat,
[15] expiration gathered in 731 speech, 443
lab expiration
Amoh et voluntary Cough, breathing, 14 STFT 627 cough CNN, 87.7 927
al.,, 2016 heartbeats,  cracklings instances, of RNN
[16] and other from chest average 320ms
worn sensor
Monge et involuntary Cough, and other sounds 13 MFCC and Database of 1560  KNN*, 88.5 99.77
al,, 2018 from smartphone mic local Hu  minutes with  SVM
[17] with participants moments 5-18% cough
performing task samples
and  with  different
background noise
Imran et involuntary ESC-50 dataset and self - MFCC 1838 cough sounds  CNN 96.01 95.19
al.,, 2020 recorded sounds and 3597 non-
[6] cough
Hossain involuntary Cough and other natu- - MFCC and 462220 seconds CNN 854 845
et al,, ral noises from public Spectrogram  of audio samples.
2020 [8] datasets. Evaluated on Evaluated on 2500
audio data from hospital seconds  samples
waiting rooms from hospital
waiting

TABLE I: Overview of the related literature on audio based automated cough detection models

to interference from other sounds due to the microphone’s
proximity to the subject. On the other hand, subjects must be
willing to wear the devices consistently, which, in our experi-
ence, may engender compliance issues. Other researchers used
mobile apps to collect sound recordings of coughs to identify
whether a subject has COVID-19 (e.g., covid-19-sounds.org,
[18]). However, these recordings also have different audio
characteristics than those encountered in more passive disease
surveillance contexts: the coughs are primarily voluntary and
subject to less interference since subjects cough in proximity
to their device. In contrast, FluSense [8] relies on recordings
made in hospital waiting rooms to create a realistic dataset, but
these data are not publicly available. The work reported here,
like FluSense, relies on data collected by recording devices
placed in real-world contexts: unlike FluSense, however, our
extensive, annotated dataset is now available to all.

Machine Learning Techniques: All existing cough pre-
dictors tend to build models using similar features extracted
from an audio signal, including Mel-Frequency Cepstral Co-
efficients (MFCC), Mel-scaled spectrogram, and Short-Time
Fourier Transform (STFT). The cough detection problem is
easily modeled as a binary classification problem, where the
system is trained to label a window of audio data as either
including a cough or not including a cough. Prior work has
applied various traditional machine learning algorithms, in-
cluding, for example, K-Nearest Neighbor and Support Vector
Machines (SVM) [17] as well as Hidden Markov Models
(HMMs) [14]. More recently, deep neuronal architectures such
as convolutional neuronal networks (CNNs) [6], [8], [15]
and recurrent neuronal networks (RNNs) [16] have also been

applied to this problem. In this work, we apply various CNN
architectures (e.g., CNNs, residual CNNs, depth-wise CNNs)
as well as ensembles of these methods and also explore
different training techniques (e.g., transfer learning) to build
an effective cough detector.

Applications: The closest related effort to our work is
FluSense [8]. FluSense is a platform for disease surveillance
that combines data from microphones and thermal imaging
captured in waiting areas of a university hospital. To the best
of our understanding, FluSense uses a CNN architecture to
perform cough detection, and uses the output of its detector
to predict the results of influenza laboratory tests. The cough
detector relies on data from an array of microphones as well
as data from thermal imaging sensors deployed in the same
space. In contrast, we demonstrate that daily cough counts
computed solely from audio data captured by a single waiting
room microphone are correlated with the number of patients in
the clinic that day who report cough as a medical complaint.

III. DEPLOYMENT IN CLINICS

To evaluate the feasibility of using cough as a biomarker
for disease surveillance, we have deployed our system in
outpatient clinics in the Iowa City area from January Ist to
March 31st, 2017. This period includes the preponderance of
the 2017 flu season. Additionally, we obtained anonymized
patient records detailing each visit to the outpatient clinic. The
records include information regarding the diagnoses, symp-
toms reported by patients, and the start time and estimated
duration of each visit.



Name

| File duration | Total coughs events | Total files (duration in minutes) | Released |

public 3 seconds 3,110
downtown 3 minutes 3,123
downtown” 3 minutes unannotated

5,957 (297.85 minutes) Yes
6,979 (20,937 minutes) No
27,366 (82,098 minutes) No

TABLE II: Summary of considered datasets. Note that a file may include several cough events.

Fig. 1: Recording device that integrates a Raspberry Pi, Blue
Snowball USB microphone, and a real-time clock.

A. Methodology

Recording System. We have developed a system to record
audio that incorporates a Raspberry Pi with an extemal
Blue Snowball microphone (see Figure 1). In addition, we
have integrated the Raspberry Pi with a real-time clock to
obtain accurate timing information without requiring WiFi
connectivity. The LED integrated into the power button was
illuminated while recording audio. The recorded sounds are
saved locally on a flashcard and downloaded periodically for
archival and analysis. The audio was recorded at 44 KHz and
saved uncompressed in WAV format.

Deployment. We deployed our system in four outpatient
clinics in Towa City, but in this paper, we focus on the data
collected from one of these clinics that we will refer to as
downtown”. We record the sounds from the waiting rooms
from 8 AM to 6 PM. Patients who arrive at a clinic wait in a
waiting room until medical personnel sees themn. The acoustic
environment of waiting areas is dynamic. It is common for
music o be played in the background. Furthermore, patients
speak with the nursing staff, the clerk, and esach other. As
the clerk manages the intake and discharge of patients, they
cormmonly use staplers which can be a confounder. Other
potential confounders include laughing, throat clearing, music,
people talking, door slamming, and kids crying. Each clinic
has unique acoustic characteristics. When a patient coughs,
they are usually located several meters away from the mi-
crophone and at varying angles. Most of the coughs occur
in the microphone’s far-field. Consequently, they are soft and
subject to interference from background music, speech, and
other concurrent sounds.

Annotations. An involuntary cough starts with an inspi-
ration, followed by a forced expiratory effort against the
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Fig. 2: Sample “hc/sample_hc_7484_74660_1.wav” from the
public dataset. The highlighted green segments are the
cough annotations. The first segment includes two plosives,
while the second includes three plosives.

closed glouis, and ends with the glowis opening and rapid
expiratory airflow [12]. The most notable aspect of coughing
is its plosive phase, during which air is expelled. A common
approach to counting coughs involves identifying each plosive
cough sound. Unforwmately, labeling plosives is tedious when
a subject coughs several times in quick succession. Sequences
of coughs in quick succession are common in the data we
captured in outpatient clinics. Instead of labeling plosives, we
label coughs occurring in quick succession as a contiguous
segment. An advantage of this approach is that it lowers the
annotation burden as it is not necessary to make fine-grained
judgments of when each plosive occurs. We instructed the
annotators to label coughs as a contiguous segment when they
are separated by less than 300 milliseconds. To illustrate these
challenges, in Figure 2, we plot the waveform of a file from
the public database. In this example, we label two segments
as “coughs.” The first segment invoelves two plosives in quick
succession, while the second involves three. Figure 3 plots the
distribution of cough annotation duration in seconds for all
the annotated coughs in the dataset. The length of the coughs
ranged from 0.1 seconds to 2.6 seconds. Segments exceeding
300 ms involve multiple coughs occurring in quick succession.
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Fig. 3: Distribution of annotated cough duration in the
public dataset

Datasets. We consider the following datasets: downtown®,
downtown, and public (see Table II). The downtown®
includes all the audio data captured in one of the clinics. A
subset of the downtown® data was annotated, and we will
refer to it as downt own. The audio files in downtown® and
downtown are 3 minutes long. We used downt own data to
train an initial CNN architecture similar o the one described in
Section IV-B. The trained model was used to predict the like-
lihood that a sound segment included a cough. We computed
the difference between the true and predicted labels for each
segment. The public dataset was generated by sampling
uniformly to extract 2,883 files that included coughs and 3,074
files that included non-coughs. The segments included in the
public dataset are 3 seconds long. The sampling process
ensured that the public dataset includes diverse sound seg-
ments, including some that are difficult to classify. We initially
copied the labels from the downt own dataset to the public
dataset. We then performed another round of annotation o
ensure the correction of annotations and excluded any sound
files that included personal information. The public dataset
is available at hteps://msl.cs.uiowa.edu/project_cough himl.

IV. CNN MODELS

We model the problem of cough detection as a binary
classification problem where an audio segment is classified
as “cough” or “non-cough”. We will consider different convo-
lutional network architectures to identify which one performs
the best for this problemn. Our focus on CNNs is motivated
by their state-of-the-art performance in many computer vision
and audio processing tasks.

A. Feature extraction

The steps of our data processing pipeline are shown in
Figure 4. Each audio file is divided into non-overlapping
windows of one second in preparation for classification. Each
window’s label is computed by considering the maximum
overlap between the window and all annotations. If the overlap
exceeds a threshold value (which we set to 0.1), the window
is labeled as “cough” Otherwise, windows are labeled as
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Fig. 4: Data processing pipeline

“non-cough.” We can improve the classification accuracy by
providing a classifier with a slightly larger wider window for
classification. To this end, each prediction window is enlarged
by €, whose value is configured during hyperparameter search.

For each window, we perform the following feature extrac-
tion steps. First, we downsample the files from 44KHz o
16KHz. Next, the short-termn Fourier transform is computed
over windows of 512 samples with an increment of 256 sam-
ples and uses a Hann window. We then compute several Mel-
scale spectrograms and Mel-Frequency Cepstral Coefficients.
Finally, the computed features of each file are normalized
to improve generalizability. The input to all the CNN net-
works has three dimensions: time, features extracted from the
frequency domain, and two channels (i.e., MFCCs and Mel-
scale spectrogram). We wned the input size to maximize the
performance for each network.

B. Convolutional Neural Networks (CNNs)

020 Cenvolulion Layer
B Masimum Pocling
O Fully - Conrecled Layer

Fig. 5: CNN archiecture based on by FluSense [8]

A waditional convolutional network consists of convolu-
tional layers, pooling layers, and fully connected layers.
FluSense [8] proposes a CNN architecture for classifying
coughs (see Figure 5). The proposed architecture includes
three convolution layers with kemel sizes of 20 x 48, 10 x 24,
and 5 x 12. The number of channels at each layer is maintained
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Fig. 6: CNN architecture whose depth and size of fully
connected layers was optimized.

to be 16. A 22 max-pooling layer follows each convolutional
layer. After the last convolutional layer, the output is flattened
and fed into a fully connected layer. Group normalization is
applied o improve performance. Finally, a dropout layer is
applied afier the final dense layer o prevent overfitting.

Inspired by more recent network designs, we experimented
with a CNN architecture that uses smaller kemels and is
deeper. We considered an architecture search where we started
with an initial layer with a 3 x 3 convolutional kemnel and 32
channels. Like ResNet and other CNNs, the subsequent layers
include a pair of convolutional blocks that double the nurmber
of channels from the previous layer and reduce the spatial
resolution in half. The output of the last convolutional layer
is flacened and fed through two fully comnected layers. We
optimized the depth of the network and the size of the fully
connected layer. The best-identified architecture is shown in
Figure 6.

C. Transfer learning

We also used — YAMNet and ResNet [20] — two widely
used architectures in sound classification. YAMNet trains the
Mobilenet architecture [21] using the Audio Set corpus. The
unique feature of Mobilenet is its use of depth-wise separable
convolutions, which can be more computationally efficient
than standard convolutions. ResNet is a residual neuronal
network designed to address the challenge of training deeper
networks. The critical insight idea is to reformulate the training
problem to allow networks o skip layers via skip connections.
We have adapted both network architectures to our design
by adding two fully connected layers at the end (see Figure
7). A drop layer follows each fully connected layer o avoid
overfitting.

We considered two approaches to training the networks.
First, we used transfer learning by downloading the pre-trained
models and training only the parameters of the newly added
fully connected layers. Alternatively, we retrained the models
from scratch. We have optimized the network architecture o
detenmine the size of the fully connected layers. Additonally,
we have also optimized the depth of the YAMNet network.

D. Model Ensembles

A common technique to improve the performance of a
classifier is to create an ensemble of several models. We have
created an ensemble that incorporates the best trained CNN
and the retrained YAMNet and ResNet models. Each model’s
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Fig. 7: Architecture based on YAMNet and ResNet

independent predictions were fed into a single fully connected
layer whose size was configured during training. The output
of the fully connected layer is a weighted combination of the
outputs of each model.

V. EVALUATING COUGH PREDICTION ACCURACY

This section evaluates the performance of the considered
CNN architectures. Using these data, we would like to answer
the following questions:

1) Can we develop a cough classifier that predicts whether
short real-world audio segments contain coughs with high
specificity and good sensitivity?

2) If so, what CNN architectures are most effective?

3) Can the number of visits during which patients report
cough as a symptom be estimated from cough predic-
tions?

To this end, we divide the publ ic dataset into five folds o
perform cross-validation. We observed a significant variation
in the sound characteristics of different days, even in the same
clinic. Accordingly, we stratified the samples to ensure that the
same-day recordings were either in training or the testing set
{but not in both). Additionally, construct the five folds to have
a simnilar number of coughs. All models were trained using the
Adam optimizer and a cosine-decay learning schedule. We use
the binary cross-entropy as a loss function. ReL.U is used as
the activation function in all but the final layer. The final layer
uses a softinax activation function to output the probability of
the binary class (cough and not cough).

We use Optuna [22] to optimize hyperparameters and
network architectures. Table TV summarizes the configured
parameters. Optuna uses a Tree-structured Parzen Estimator
to search this large parameter space efficiently. We also use
early stopping o terminate the training process when the error
rates do not improve for several epochs.

We evaluate the performance of the models according to
the following metrics. AUC is the area under the Receiver
Operating Characteristic (ROC) curve. An AUC of 50% can
be achieved by random guessing, while an AUC of 100% is
achieved by a perfect classifier. Since the public dataset
is balanced, we focus on maximizing the area under the
ROC curve on this dataset. Our primary method for handling



Specificity
Model ROC-AUC MCC 97 (%) 95(%) 900 %) 87 (%)
SEN SEN SEN SEN
mean o mean o mean o mean o mean o mean o
CNN 96.99 + 0.37 0.84 £0.02 72.57T £ 3.06 83.57+£3.401 | 93.81 £2.28 95.89 £ 1.81
FluSense 95.51 £ 0.70 0.78 £0.01 62.05 £ 6.66 76,43+ 3.13 88.02 £2.33 91.87 £ 2.05
YAMNet (frozen) 95.52 £+ 0.63 0.78 £0.02 682.75 £ 3.36 74.82 £+ 3.89 R7T.88 £2.47 91.48 £ 2.69
YAMNet (retrained) 9742 + 0.39 0.54 + 0.01 79.22 + 3.54 8729 + 135 2417 £ 1.07 2642 + 0.49
ResNet (frozen) 73.81 £5.90 0.37T+0.04 17.06 £ 8.24 23.75+9.49 33.55+£10.27 | 3787+ 10.89
ResNet (retrained) 96.91 £ 0.55 0.84 £0.01 70.48 £ 6.85 84.00£2.72 93.56 £1.01 9557 £ 1.07
Aggregate 98.02+ 0.38 08T £0.01 83.29 £ 3.80 90.94 £ 2.57 98.48 £ 0.54 97.82 £ 0.37
Ensemble 98.11 £ 0.38 08T £0.01 85.11 £ 377 91.67+ 2.64 98.79 £ 0.82 97.79 £ 0.59

TABLE III: Prediction results on the public dataset. The results of the best individual model is highlighted in bold. The
aggregate model is the mean predicted probability of CNN, YAMNet (retrained) and ResNet (retrained) for each audio segment.
The Ensemble model is a single dense layer trained on the predicted probabilities of CNN, YAMNet (retrained) and ResNet

(retrained).

label imbalance was to downsample the non-cough class
while creating the public dataset from downtown. We
also report the Matthews correlation coefficient (MCC) and
the specificity at different sensitivity levels. This reflects the
relative importance placed on minimizing false positives, i.e.,
incorrectly predicting a cough. We report the average and
standard deviation across the five folds for all metrics.

Tuned parameters Model
Prediction window overlap (e} | All models except ensemble
Imitial learning rate All models
Baich size All models
Weight of positive class All models
Drop probabilities All models except ensemble
Nurmber of dense units All models

TABLE IV: Tuned parameters
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Fig. 8: AUC over the five folds.

A. Results on the publ ic dataset

Table TII includes the results of the best model found
during hyperparameter search for each model architecture.
The following discussion will focus on ROC AUC (or AUC,
henceforth), but sirnilar trends can be observed for the other

metrics. Figure 8 plots the AUC for each model and validation
fold.

The FluSense model performs relatively poorly on our
dataset. The worse perforrnance of FluSense can be attributed
to the fact that the number of channels in its convolutional
layers rernains fixed as the spatial dimension is reduced. In
contrast, our CNN architecture which increases the number
of channels with the depth of the network, consistently has
beuer performance than FluSense. Using the pre-trained YAM-
Net and ResNet50 also typically led to lower AUC values,
particularly in the case of ResNet30. A possible explanation
is that the final features produced by ResNet30 (optimized
for image classification) are not effective in distinguishing
between coughs and other sounds.

Retraining the YAMNet and ResNet50 produces better
performance. Two factors contribute o these improvernents.
First, during the retraining, we optimize the depth of each of
the networks, tailoring each architecture better to the amount
of available data. Second, the parameters are trained using our
data rather than another proxy dataset or tasks. As a result, the
retrained YAMNet has the best average perforrmance across all
the considered metrics.

The best perforrnance is obtained by combining the per-
formance of different models. We consider two approaches
to combine the predictions of models. The Aggregate model
averages the predictions of the CNN, retrained ResNet, and
retrained YAMNet. Tt achieves an average AUC of 98.02%,
which improves over YAMNet's 87.42% average AUC. The
Ensemble model includes a fully connected layer that outputs
a weighted combination of the predictions of the individual
models as the final prediction. Due to this additional flex-
ibility, the Ensemble model further boosts the performance
to an 98.11% AUC. As shown in Figure 8, the Ensemble
model provides the best performance for all folds with slight
variations across the folds. It is important to note that even
though the AUC improvements may seem minor, they have
a significant cummulative effect for a cough predictor. Since
each model makes one prediction for each second during the
working day, there are a total 32,400 of predictions per day.



Given the large number of predictions required, even small
changes in AUC can lead to significant changes in the number
of false positives and negatives.

B. Results on the downrown dataset

In the following, we evaluate how well the models trained
on the public generalize on the larger downtown dataset.
The downtown and public datasets share most of the
same cough data. However, the downtown data includes a
significant fraction of non-cough sounds from the downt own
clinics'. The balance of labels in the downtown dataset is
representative of a clinic’s waiting room.

Due to the overlap in data between the public and
downtown, we need to avoid making predictions on parts of
files that were used during training, which would overestirnate
the performance of the models. We constructed five evaluation
sets using the downtown data to avoid this situation. Each
evaluation set e; (¢ = {1,2,3,4,5}) is initialized to include
all the files in downtown. Then, we consider iteratively the
i-th folds of the public dataset that were used to train the
models and remove from the evaluation set e; all files that
included data used for training in public. The statistics
reported below are computed over the five evaluation sets.

Table ¥V shows the performance of the best-performing
models on the downtown dataset. The AUC results on the
downtown dataset are slightly worse than those on the
public dataset. The YAMNet remains the best performing
single model, followed by our optimized, and ResNet, sach
providing average AUCs of 97.40%, 97.01%, and 96.95%,
respectively. The Ensemble model achieved the best perfor-
mance with an AUC of 97.81%. The reduction in the AUC
can be attributed o a higher false-positive rate, which is
partly expected given the significantly larger number of non-
cough files considered. The increase in the false positive
rate is responsible for reductions in Matthews Correlation
Coefficients (MCCs). These results give us confidence that
despite the significant variations in the audio environment of
clinic rooms, it is possible to build an accurate cough detector.
The Ensemble provides a specificity of nearly 80% with a
sensitivity of 97%. Alternatively, a specificity of 88% may
be achieved for a slightly lower sensitivity of 95%. In the
remaining section, we will configure the cough classifier to
maximize the specificity at 95%-sensitivity.

C. Predicting Cough Visits Per Day from Audio Recordings

Having demonstrated that a cough detector can make accu-
rate predictions, we evaluate whether these cough predictions
can be related to the clinic visits during which patients report
having a cough. We have obtained a deidentified record of
the patient visits from the clinic where we deployed the
recording systemn. A visit record includes several valuable
pieces of information: the chief complaint reported by the
patient, provider commments, the start time of the visit, and an
estimnated duration for a visit. We define a visit as a “cough

"We do not make the downtown dataset publicly available to the signifi-
cant effort required to ensure that no personal information is exposed.

visit” if the word cough appears either in the chief complaint
or the notes fields. Our goal is to predict the number of cough
visits per day in the clinic solely from the audio recordings.
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Fig. 9: The distribution of daily visits, cough visits, and their
relationship.

We use the Ensemble model trained using the first fold to
estitnate the number of coughs daily. We have performed the
following analysis with the other folds and obtained similar
results. From all the available recordings, we consider the days
that (1) have complete audio for the entire 10 hours workday
and (2) were not used for training in the first fold. A total of 37
days between January lst and March 31st meet this constraint.
There were 2560 visits at the clinic, including 856 cough visits.
There are an average of 39 visits per day (range 12 — 66) and
an average of 13.06 cough visits per day (range 0 — 33). Figure
9 shows the distribution of total visits, cough visits, and their
relationship. The algorithm to estimate the number of coughs
per day depends on a prediction threshold # and minimum
time between predictions A and works as follows. First, we
use the Ensemble model o the likelihood of a cough for each
second (of the ten hours) during which the clinic is open. If the
predicted likelihood exceeds #, then the considered window is
labeled as having a cough; otherwise, it is labeled as non-
cough. When considering a current window labeled as cough,
the counter is incremented if the time between the previous
window and the current window exceeds A seconds.

The parameter # controls the classifier’s trade-off between
sensitivity and specificity. As expected, increasing € results
in increases in sensitivity but reductions in specificity. It is
common for a cough to result in several one-second windows
to be marked as a cough. This is due to a patient coughing
several timnes in a row. Such events are a common occurrence,



Specificity
Model AUC MCC 97 (%) 95(%) 900 %) 87 (%)
SEN SEN SEN SEN
mean o mean o mean o mean o mean o mean o
CNN 97.01 £ 0.22 038 £0.12 60.37 + 31.21 | 85.89 + 4.21 96.07 + 0.29 97.97 £ 0.12
YAMNet (retrained) 9740 + 0.52 0.51 £+ 0.11 5503 £ 3046 | 86.78 + 6.26 9716 £ 1.26 98.58 + 0.64
ResNet (retrained) 96.95 + 0.30 0.34 £ 0.92 63.63 + 6.07 84.36 + 3.56 96.26 + 0.90 98.11 + 0.58
Ensemble 97.81 £ 0.21 0.52 £ 0.07 T9.97 £ 7.64 88.82 + 2.40 98.35 + 0.60 99,19 + 0.34

TABLE V: Performance results on the downtown dataset

as previously shown in Figure 3. Ideally, we would like a
cough counter to increase by one after each coughing episode.
Increasing A can prevent counting a coughing episode mult-
ple times. However, larger values of A would merge multiple
cough episodes.
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Fig. 10: Linear regression is used to predict the number of
cough visits from the cough counts. We evaluate the impact
of # and A on predicting the number of cough visits per day.

We use linear regression and leave-one-out cross-validation
to predict the number of cough visits per day from the
predicted given a pair of 4 and A values. Figure 10a plots
the nean absolute difference between the actual and predicted

number of coughs per day. We selected the best values for
# and A by minimizing the mean absolute difference on the
training data. The best configuration is when 4 = 0.5 and
A = 120 seconds and the same as the best configuration
shown in the figure. As a general trend, for a fixed value of
#, increasing the A reduces the mean absolute error untl a
minimum is reached. Beyond this point, further increasing A
will increase the mean absolute error.

Figure 10a also plots a simple baseline that predicts the
number of coughs per day as the average number of coughs
computed over the training data. Against this baseline, the
cough detector reduces the means absolute error from about
5.3 to4.17, a reduction of 21.3%. This result dernonstrates that
we can predict the number of cough visits to the considered
clinic with an absolute error of 4.17 visits. By analyzing
the record of patient visits to the clinic, we observed that
there are timnes when no patients are in the clinic, particularly
during weekends when significantly fewer patients are seen
in the clinic. During these periods, the cough detector may
make incorrect predictions that coughs occur (e.g., due to
background music or discussions among staff). Using the
information about the start tivne of patient visits and the visit's
estimated duration, we performed the same analysis as above
but limiting predictions to only when one or more patients
are in the clinic. The mean absolute error is shown in Figure
10b. The accuracy of the baseline is most unchanged by this
additional information. In contrast, the regressors based on the
cough counts significantly reduce the error. We can predict the
number of cough visits per day with an accuracy of 3.65 visits
per day when 8 = 0.5 and A = 60 seconds.

VI. DISCUSSION

The cough counter presented in Section V-C incorporates
simple regression models that predict the number of cough
visits from a single variable — the cough count. Such models
are attractive due to their simnplicity and are useful baselines
for future work. In the following, we describe some of the
potential sources of error for this model and ways to build
beuer cough prediction models. Inaccuracies in the obtained
records may nmpact our results. For example, a visit may
not be labeled as cough (even though it should be) when
the provider did not use the word “cough” in their notes
or diagnostic code. Furthermore, our results also depend on
correct start and end times. Nevertheless, we do not expect
these possible sources of error to significantly impact our



models due to the large number of records involved (over 2,560
records).

A limitation of the simple regression models is that they
do not discriminate between coughs produced by different
individuals. For example, consider the case when three coughs
are produced within five minutes. The three coughs could be
have been from one, two, or three individuals. The models
considered in this paper do not discriminate between these
cases; they estimate the average number of cough visits when
observing a given number of coughs. Based on their sound
characteristics, we could improve these models by estimating
the likelihood that coughs come from the same or different
individuals. We will investigate such models as part of future
work.

VII. CONCLUSION

The ability to count coughs accurately is an essential
element of several key medical applications. This paper con-
siders the challenge of building an effective cough counting
application that relies only on real-world audio data. We make
three contributions: (1) We will open-source our public
dataset, which includes carefully annotated cough and non-
cough sounds captured in clinic waiting rooms. We hope
that our dataset will become a useful standard benchmark
dataset for the cough detection community and lead to further
advancements in the state-of-the-art. (2) We have evaluated
several different convolutional network architectures trained
and tested on our large cough dataset. A model based on
the YAMNet architecture has the best results with an average
AUC of 97.42% as measured by five-fold cross-validation.
Combining different YAMNet with ResNet and an optimized
CNN to create an Ensemble provides the best overall per-
formance with an AUC of 98.11%. (3) We created a cough
counter that incorporates the Ensemble model. Our findings
show that a simple linear model can predict the number of
cough visits from daily cough counts extracted from audio.
Over a dataset that includes 37 days of clinic data and audio,
the model predicts the number of cough visits with a mean
absolute error of 4.17 cough visits per day. Furthermore, using
additional information about clinic and patient scheduling
practices further reduce the mean absolute error to 3.65 cough
visits per day.
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