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Time-warping transform is often used in underwater acoustics to separate normal mode components
of a broadband signal recorded by a single hydrophone. An important application of time warping is
retrieval of modal dispersion curves for subsequent inversion of the measured mode dispersion for
unknown geoacoustic parameters. The time-warping transform was developed for range-independent
shallow-water waveguides. Physical parameters of the ocean are never quite constant in the horizontal
plane, with bathymetry variations being typically responsible for the bulk of the waveguide’s range
dependence as well as horizontal refraction of sound in the coastal ocean. We use simple, exactly
solvable models of shallow-water waveguides to illustrate the effects that the range dependence and
horizontal refraction have on the performance of the warping transform and the inferred geoacoustic
parameters. Horizontal refraction due to generic bathymetric variations is addressed in the adiabatic
approximation using perturbation techniques. Theoretical predictions are verified using numerical
simulations. It is found that moderate bottom slopes can lead to large errors in retrieved geoacoustic
parameters and cause positive bias in bottom sound speed estimates if horizontal refraction is ignored.
Keywords: underwater acoustics, shallow-water waveguides

1. Introduction

Successful applications of a time-warping transform to retrieve normal mode dispersion curves from
single-hydrophone measurements of the acoustic field due to a broadband compact sound source [1-3]
or from two-point cross-correlation functions of diffuse noise [4] have reinvigorated investigations of
normal mode propagation in the coastal ocean and sensitivity of the dispersion curves to various envi-
ronmental parameters. The time-warping transform was originally developed for range-independent
waveguides, and the retrieved normal mode travel times are usually inverted for unknown geoacoustic
parameters or sound source coordinates assuming a range-independent ocean. This paper investigates
theoretically the effects that seafloor slope has on the normal mode dispersion and time warping, and the
errors that emerge from neglecting horizontal inhomogeneity of the ocean when interpreting time-warp-
ing results.
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2. Theory

2.1 Simple waveguides

Introduce a Cartesian coordinate system with horizontal coordinates x and y and a vertical coordinate
z. A homogeneous fluid layer with sound speed ¢ and density p is located between plane boundaries z =
0 and z = H with normal impedances Zo and Zu, respectively. By imposing the boundary conditions of
impedance continuity at z =0 and z = H on the solution of 1-D wave equation in the homogeneous fluid
layer, we obtain the dispersion relation
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of the acoustic normal modes supported by the waveguide. Here ¢, is the phase speed of n-th normal
mode,n=1,2,....

Let the impedances depend only on the angle of incidence of a plane wave (or, equivalently, on c,)
and be independent of frequency. Then, wave frequency enters the dispersion equation (1) only in com-
bination wH. We will refer to such media as simple waveguides, for brevity. Examples of simple wave-
guides include a layer of fluid with pressure-release and rigid boundaries, a layer with a pressure-release
boundary z = 0 and a homogeneous fluid half-space at z > H (Pekeris waveguide), a fluid layer between
a pressure release or rigid boundary and a homogeneous solid half-space atz > H, etc. Using well-known
input impedances of fluid and solid half-spaces [5], it is straightforward to check that Eq. (1) reduces to
previously established normal mode dispersion relations (see, e.g., [6]) in these special cases.

2.2 Travel times of adiabatic normal modes in range-dependent waveguides

Consider downslope underwater sound propagation in a coastal wedge. Horizontal coordinates x and
y are chosen to be, respectively, perpendicular and parallel to the straight coastline. Water depth H(x)
increases linearly with increasing x. In the adiabatic approximation, travel time of n-th normal mode is

E=Ii—j=cotaf%. )

Here Hi and H- are the water depths at the source and receiver locations, Hi < H>; a is the angle that the
seafloor makes with the horizontal plane; and u.(w, H) is the group speed of the local normal mode. It

can be calculated as
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from the dispersion relation of a corresponding range-independent waveguide. At upslope propagation,
mode travel time is again given by Eq. (2), where Hi and H> are now the receiver and source depths,
respectively.

In the simple waveguides as defined in Section 2.1, mode travel time (2) can be calculated in a closed
form. Since the phase speed ¢, depends on @ and H only via the combination wH, it follows from Eq. (3)

that
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Substitution of the right-most side in Eq. (4) for 1/u, in Eq. (2) gives a remarkably simple result:
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T = 7, 4 )Jcota. (5)
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It is straightforward to extend this result to a more complicated bathymetry, where water depth is
piece-wise linear function of x. Then, mode travel time is given by the sum of contributions Eq. (5) in
each segment with a constant bottom slope, the slope a being different in each segment.

In the particular case of a wedge with ideal (pressure release and/or rigid boundaries) the dispersion
relation (1) gives the well-known expressions
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for the phase and group speeds. Here F), is the cutoff frequency of n-th normal mode, f = 0 if both
boundaries are pressure release or rigid and f = 0.5 if one boundary is pressure-release and the other is
rigid. Using Eq. (6), it is easy to integrate over H in Eq. (2) and verify validity of Eq. (5) in this particular
case.

At upslope propagation in a waveguide with ideal boundaries, the group speed (6) turns to zero at the
mode cutoff. Nevertheless, the mode travel time to the mode’s cutoff is finite in the wedge:

T, =H,cota/c,(w,H,) (7)

according to Eq. (5). If a source and a receiver are located at points (x1, v, z1) and (x2, y, z2) and the smaller
of water depths H1 = H(x1) and H> = H(x2) is larger than the depth at the cutoff of n-th normal mode,
there will be two arrivals of the mode. One arrival corresponds to a direct, up- or downslope path. The
travel time for this arrival is given by Eq. (5). On the other path, normal mode first propagates from the
source upslope to its cutoff, is totally reflected there (see, e.g., [6]), and then propagates downslope to
the receiver. According to Egs. (5) and (6), the travel time on the reflected path is
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Up- and downslope propagation in a wedge with either fluid or solid penetrable bottom can be ana-
lysed in a similar fashion. In particular, when the bottom is a fluid with sound speed ¢» > ¢, phase and
group speeds at mode cutoff equal ¢, [6]. Using dispersion relation (1) to determine the water depth at
the n-th mode cutoff and applying Eq. (5), we find mode travel time to its cutoff from a source at (x2, y,
2):
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This result reduces to Eq. (7) in the limit ¢, — oo, as expected.

2.3 Horizontal refraction in an ideal wedge

Consider travel time of an adiabatic normal mode along a horizontal (modal) ray in a wedge with
pressure-release and/or rigid boundaries. Let depth increase with distance x from the coastline x = 0: H(x)
= x cota. In this coordinate system, waveguide parameters are independent of y. Hence, the y-component
of the wave vector (kx, &y, 0) of the mode is constant along the modal ray (see, e.g., [6, 7]). The x-com-
ponent of the wave vector increases with x on the modal ray. If £ > 0 at the source, the mode propagates
towards increasing x, i.e., deeper water. If k. < 0 at the source, the mode propagates towards the coast
line, reaches a turning point, where k. = 0, and then propagates towards deeper water. The turning point
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occurs at such depth H; that k&, = w/c.(w, H;). At upslope propagation, k, = 0, and the turning point
coincides with the mode’s cutoff.
Let / stand for arc length along a modal ray. Then modal travel time along the modal ray is

T = ﬂ:I—V k‘fk+ki ?:cotaJ‘—‘ kjk+ky2 Ci—H (10)
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Taking into account that k, +k, =@ / ¢, and using Eq. (6), from Eq. (10) we find an explicit equation
for the mode travel time:

‘\/(1 —cos’ 7, sin’ l//)Hr2 —H?sin’ y, ¥ H, cosy, |cos 1//|‘
T = .

n

(11)

(1 —cos’ y, sin’ l//)ctana

Here H; and H, are water depths at the source and receiver locations, v is the angle the mode’s wave
vector makes with the positive direction of the x coordinate axis at the source, and
(n—pB)c c

= arcsin ————— = arccos———. 12
z > o (@.H) (12)
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The upper sign in the right side of Eq. (11) corresponds to the direct modal ray, which has no turning
points between the source and receiver, and the lower sign corresponds to a modal ray with a turning
point. In the special case of sound propagation along shore, H; = H, and only rays with turning points
connect such points. In this case, the travel time is twice the time of propagation to the turning point:
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Using Egs. (6) and (12), it is easy to verify that Eq. (11) reduces to Egs. (5) and (8) when siny = 0.

3. Effects of the seafloor slope on normal mode dispersion

In application to shallow-water acoustic waveguides, time-warping transform allows one to separate
contributions of individual normal modes into acoustic field and retrieve modal dispersion curves without
using hydrophone arrays [1-4]. “Warped time,” ¢, and signal frequency in the warped domain, f,, are
given by the equations (e.g., [1, 2])

t, =\ =12, f,=f()1-2/F. (14)

Here ¢ and f(¢) are a reference travel time and the instantaneous frequency of the signal arriving at the
receiver at time ¢. In a range-independent waveguide with a uniform water column, reference travel time
t- = r/c, where r is range, i.e., source-receiver horizontal separation. If the dispersion curve of a normal
mode is found in physical domain, Eq. (14) map the dispersion curve into the warped domain, and vice
versa.

According to Eq. (6), application of the transform (14) to range-independent waveguides with ideal
(i.e., pressure-release and rigid) boundaries gives f,, = F), for all values of #,, 0 <, < co, where F, is the
cut-off frequency of the normal mode. Hence, spectrograms of all normal modes are straight lines f,, =
F, in the warped domain.
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3.1 Time-warping in range-dependent waveguides

Range-dependence of a waveguide has an effect on dispersion curves in the warped domain. In geo-
acoustic inversions, this effect can be misinterpreted as the effect of ocean bottom stratification. As a
first step towards understanding and quantifying the manifestations of the range-dependence in the
warped domain, here we illustrate the effect of bottom slope for the simple case of an ideal wedge.

When source-receiver horizontal separation is 7, the minimum travel time in the ideal wedge equals
r/c, see Eq. (6). We choose the minimum travel time, 7/c, as the reference travel time ¢ in Eq. (14) in
applications of the warping transform to the ideal wedge. Then, the warped travel time #, and warped
frequency f,, are always real and non-negative.

Figure 1 illustrates the dependence between frequency and travel time at up- and downslope propaga-
tion in an ideal wedge. In this example, water depths at the source and receiver points differ by the factor
of 2 (strong range dependence). The figure clearly shows systematic deviations of the dispersion curves
from those in a range-independent waveguide with the same average depth. The warped frequencies of
individual normal modes are no longer constant and steadily increase with the warped travel time. The
warped frequencies are higher than in a range-independent waveguide with the same average depth. Note
that wave frequency and warped frequency scale with depth. Mode travel times and warped travel times
scale as cota; other than that, the graphs shown in Fig. 1 are unaffected by the bottom slope. This is also
the case at sound propagation in the penetrable wedge (Fig. 2).
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Figure 1: Adiabatic normal mode travel times in a coastal wedge with pressure-release surface and rigid bottom.
Dispersion curves of the first four normal modes are shown in the physical (a) and warped (b) domains. Source
and receiver are located at depths 100 m and 50 m on a line perpendicular to the coastline. Sound speed in water
is 1500 m/s, seafloor slope is 0.05 rad = 2.86°. Solid and dashed lines refer, respectively, to direct up- or
downslope propagation between the source and receiver and to modes propagating downslope after reflection
from their respective mode cut-offs at shallower depths. Mode travel times over the same range in a range-inde-
pendent waveguide with the same average depth of 75 m are shown by dotted lines.

Under conditions of applicability of the adiabatic approximation, a normal mode propagating upslope
radiates all its energy into the bottom in the vicinity of the mode’s cutoff in the penetrable wedge [6]. In
contrast to the ideal wedge, there is no reflection from the cutoff. For any normal mode, travel times
between depths Hi < H> are, of course, the same, whether the mode propagates up- or downslope. The
dependence of mode travel time on the mode order n and wave frequency is given by Egs. (1) and (5)
and is illustrated in Fig. 2 for a waveguide with a fluid bottom. In Fig. 2, we assume that the source
radiates sound in the 10-150 Hz frequency band.
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The most apparent difference between the dispersion curves in the penetrable wedge and in a range-
independent waveguide with the same average depth (dashed lines) is the disappearance (for modes n =
2, 3, 4) or contraction (for mode 1) of the anomalous dispersion part of the curves (Fig. 2). In addition,
at normal dispersion, instantaneous frequencies tend to be higher, at a given travel time, in the wedge
than in the Pekeris waveguide. Another notable difference from the range-independent case is the de-
crease in the maximum travel time (Fig. 2a). This can be attributed to the minimum group speed occurring
at different frequencies at different depths, so that at all frequencies only a small portion of the entire up-
or downslope propagation path is covered at near-minimum group speeds. In the warped domain, con-
traction of the frequency range or complete disappearance of the anomalous dispersion gives the warping
results in the penetrable wedge (Fig. 2b) a much closer resemblance of the results in the range-independ-
ent ideal waveguide than in the case of the Pekeris waveguide.

Frequency, Hz
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Figure 2: Dispersion curves of the first four adiabatic normal modes in the physical (a) and warped (b) domains
at upslope or downslope propagation in a penetrable wedge with a fluid bottom. Source and receiver depths are
50 m and 100 m. Sound speeds in the water column and bottom are ¢ =1500 m/s and ¢, =1800 m/s, respectively;
the ratio of bottom and water densities m = 2.2. Dashed lines show dispersion curves of normal modes in a
range-independent waveguide with the same water and bottom parameters and depth of 75 m, at the same propa-
gation range of 999.167 m.

3.2 Manifestations of horizontal refraction in the warped domain

Seafloor slope has a significant effect on mode dispersion in a penetrable wedge even when the water
depths at the source and receiver locations are the same. In this case of cross-slope propagation the effect
is due to horizontal refraction [6, 7]. Unlike the perfect wedge (Section 2.3), no closed-form analytical
solutions are available for horizontal (modal) eigenrays in a penetrable wedge. The right-most hand side
in Eq. (10) gives a convenient expression for calculating the travel time on a modal ray.

Figure 3 illustrates modal dispersion at cross-range propagation. Normal modes in a wedge experience
stronger dispersion than at propagation over the same range in the range-independent (Pekeris) wave-
guide with the same physical parameters (Fig. 3a). This leads to an increase of the received signal dura-
tion. In particular, for a fixed frequency range in the normal dispersion band, the maximum travel time
is greatly increased compared to the Pekeris waveguide. Lower frequencies are responsible for later ar-
rivals and are more sensitive to the seafloor slope (Fig. 3a). In contrast, travel times at higher frequencies,
where the value of the group speed approaches the sound speed in water, are insensitive to the slope.
Figure 3a indicates that the minimum effective group speed occurs (i.e., the adiabatic mode travel time
reaches its maximum as a function of frequency) at a higher frequency at cross-slope propagation than
in the Pekeris waveguide. At all frequencies considered, sound propagates slower in the wedge than in
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the Pekeris waveguide. This should be contrasted with the decrease in mode phase @, due to horizontal
refraction [8].

In the warped domain, horizontal refraction manifests itself in increasing modal travel time and values
of the warped frequency (Fig. 3b). There is also a qualitative change in the dispersion curves of modes
2—4 in the warped domain. Unlike the Pekeris waveguide and the case of upslope/downslope propagation
(Fig. 2b), warped frequency increases with increasing warped time. As a result, the dispersion curves in
the warped domain start to resemble the dispersion curves in the ideal waveguide rather than in the
Pekeris waveguide.
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Figure 3: Dispersion curves of the first four adiabatic normal modes in the physical (a) and warped (b) domains
at cross-slope propagation in a penetrable wedge with a fluid bottom. Source and receiver depths are 100 m.
Sound speeds in the water column and bottom are ¢ =1500 m/s and ¢, =1800 m/s, respectively; density ratio m =
2.2. Dashed lines show dispersion curves of normal modes in a range-independent Pekeris waveguide with the
same water and bottom parameters and depth of 75 m, at the same propagation range of 5000 m. The dispersion
curves are shown in the frequency bands 10-120, 35-120, 58—120, and 80—120 Hz for modes 1, 2, 3, and 4, re-
spectively.
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Figure 4: Comparison of the effects of cross-slope propagation and bottom sound speed on mode dispersion
curves. Solid line shows the travel time of mode 1 at cross-slope propagation in a penetrable wedge with seafloor
slope of 0.05 rad and bottom sound speed ¢, = 1800 m/s. Dashed lines show travel times of mode 1 in Pekeris
waveguides with three different bottom sound speed values: ¢, = 1900 m/s (1), 2000 m/s (2), and 2200 m/s (3).

ICSV26, Montreal, 7-11 July 2019 7



ICSV26, Montreal, 7-11 July 2019

Propagation range » = 5000 m, water depth /= 100 m, sound speed in water ¢ = 1500 m/s; the ratio of bottom
and water densities m = 2.2. The travel time of mode 1 in the Pekeris waveguide with ¢, = 1800 m/s is subtracted
from the mode travel times in the figure.

The increase in the mode dispersion and maximum modal travel time due to horizontal refraction may
have important implications for geoacoustic inversions. Although analysis of any inverse problems is
beyond the scope of this paper, we emphasize that disregard of horizontal refraction due to bottom slopes
of'a few degrees can lead to a positive bias in the inverted bottom sound speed. The errors in the inversion
results for the bottom sound speed can easily reach hundreds of meters per second. This is illustrated in
Fig. 4, where mode 1 travel time at cross-slope propagation is compared to travel times in the Pekeris
waveguides with different bottom sound speeds. In this example, ¢, = 1800 m/s in the penetrable wedge
but one needs bottom sound speeds between 1900 and 2200 m/s to match long travel times at low fre-
quencies, where horizontal refraction is most pronounced. Due to bottom slope, the travel times increase
by up to 45 ms and 85 ms for modes 1 and 4, respectively (Fig. 3a). The best match by a range-independ-
ent geoacoustic model exaggerates the actual ¢, by ~200 m/s (Fig. 4).

4. Conclusion

Using simple models of the coastal ocean, we have found that the seafloor slope changes mode dis-
persion in a way conducive to mode separation by application of the time-warping transform. However,
ignoring even moderate seafloor slopes in geoacoustic inversions can lead to unexpectedly large errors
in the estimates of sound speed in the bottom.

Analysis presented in the paper will be extended in the conference presentation to more general envi-
ronments using a perturbation theory and numerical techniques.

This work has been supported by NSF, grant OCE1657430; BSF, grant 2016545; and ONR, award
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