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Z-STABILITY OF TRANSFORMATION GROUP C*-ALGEBRAS

ZHUANG NIU

Abstract. Let (X,Γ) be a free and minimal topological dynamical system,
where X is a separable compact Hausdorff space and Γ is a countable in-
finite discrete amenable group. It is shown that if (X,Γ) has the Uniform
Rokhlin Property (URP) and Cuntz comparison of open sets (COS), then
mdim(X,Γ) = 0 implies that (C(X) ! Γ) ⊗ Z ∼= C(X) ! Γ, where mdim is
the mean dimension of (X,Γ), Z is the Jiang-Su algebra, and C(X) ! Γ is
the transformation group C*-algebra of (X,Γ). In particular, in this case,
mdim(X,Γ) = 0 implies that the C*-algebra C(X) ! Γ is classified by the
Elliott invariant.

1. Introduction

Let Γ be a discrete amenable group, and let (Ω, µ) be a σ-finite standard measure
space. Let (Ω, µ) " Γ be a free and ergodic action with absolutely continuous finite
invariant measure. By the classification of injective von Neumann algebras, it is
well known that the von Neumann II1-factor L∞(Ω, µ) ! Γ is isomorphic to the
unique hyperfinite II1-factor R. Thus, all such crossed products L∞(Ω, µ) ! Γ are
isomorphic.

In the topological setting, consider a compact separable Hausdorff space X, and
consider a minimal and free action X " Γ. Then the transformation group C*-
algebra C(X)!Γ is simple separable unital nuclear and satisfies the UCT. Thus it is
a very natural object for the Elliott’s classification program of nuclear C*-algebras.

Many efforts have been devoted to the classifiability of C(X) ! Γ (in term of
the K-theoretical Elliott invariant); see, for instance, [35], [27] [26], [42], [38], [37],
[45], etc. However, as shown by Giol and Kerr in [11], there exist minimal and
free actions X " Z such that the C*-algebras A = C(X) ! Z are not classified by
the Elliott invariant, and these C*-algebras do not absorb the Jiang-Su algebra Z
tensorially (i.e., A ⊗ Z # A).

The dynamical systems constructed in [11] have non-zero mean (topological)
dimension; and in [9], it is shown that if a minimal and free Z-action has zero mean
dimension (this particularly includes all strictly ergodic systems and all minimal
dynamical systems with finite topological entropy, see [28]), then the C*-algebra
C(X) ! Z must be Z-absorbing and is classifiable (see [10] and [7]).

In this paper, one considers an arbitrary discrete amenable group Γ, and studies
the Z-stability of C(X) ! Γ. Under the assumption that (X,Γ) has the Uniform
Rokhlin Property (URP) and Cuntz comparison of Open Sets (COS), which are

Received by the editors November 17, 2020, and, in revised form, April 6, 2021, and May 5,
2021.

2020 Mathematics Subject Classification. Primary 46L35, 37B99.
The research was supported by an NSF grant (DMS-1800882).

c©2021 American Mathematical Society

7525

https://www.ams.org/tran/
https://www.ams.org/tran/
https://doi.org/10.1090/tran/8477


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7526 ZHUANG NIU

introduced in [33], one has that mdim(X,Γ) = 0 implies that (C(X) ! Γ) ⊗ Z ∼=
C(X) ! Γ, where mdim is the mean dimension. In particular, this implies that
C(X) ! Γ is classified by its Elliott invariant (see, [14], [15], [8], [6], [39], and [3]).

Recall

Definition 1.1 (Definition 3.1 and Definition 4.1 of [33]). A topological dynamical
system (X,Γ), where Γ is a discrete amenable group, is said to have Uniform
Rokhlin Property (URP) if for any ε > 0 and any finite set K ⊆ Γ, there exist
closed sets B1, B2, . . . , BS ⊆ X and (K, ε)-invariant sets Γ1,Γ2, . . . ,ΓS ⊆ Γ such
that

Bsγ, γ ∈ Γs, s = 1, . . . , S,

are mutually disjoint and

ocap(X \
S⊔

s=1

⊔

γ∈Γs

Bsγ) < ε,

where ocap denote the orbit capacity (see, for instance, Definition 5.1 of [29]).
The dynamical system (X,Γ) is said to have (λ, m)-Cuntz-comparison of open

sets, where λ ∈ (0, 1] and m ∈ N, if for any open sets E, F ⊆ X with

µ(E) < λµ(F ), µ ∈ M1(X,Γ),

where M1(X,Γ) is the simplex of all invariant probability measures on X, then

ϕE ! ϕF ⊕ · · · ⊕ ϕF︸ ︷︷ ︸
m

in C(X) ! Γ,

where ϕE and ϕF are continuous functions supporting on E and F respectively.
The dynamical system (X,Γ) is said to have Cuntz comparison of Open Sets

(COS) if it has (λ, m)-Cuntz-comparison on open sets for some λ and m.

Remark 1.2. The ideas of the (URP) have been used in [28], [17], and [18] to study
zero mean dimension and small boundary property for Z or Zk-actions. One should
also compare the (URP) to the almost finiteness of [21] which furthermore requires
that the diameters of all level sets Bsγ, γ ∈ Γs, s = 1, . . . , S, are arbitrarily small;
the almost finiteness in measure is shown to be equivalent to the small boundary
property ([21]).

For the (COS), one should compare it to the (topological) dynamical comparison,
which was introduced by Winter and appears in [20] for general groups. For (Cuntz)
comparison with multiplicities; see, for instance, [44]; dynamical comparison with
multiplicities is also considered in [30]. The ideas of the dynamical comparison
actually have a long history; see, for example, [12] and [13], and it is straightfor-
ward to verify that the dynamical comparison implies the (COS) (but whether the
converse holds is unknown to the author). (A Cuntz subequivalence relation using
only normalizers is considered in [25], and a version of (COS) using this strong
version of Cuntz subequivalence is shown to imply the dynamical comparison.)

The properties of (URP) and (COS) have been verified for the following cases:
any free minimal Zd-action has the (URP) and has ( 1

4 , (2&
√

d( + 1)d + 1)-Cuntz-
comparison of open sets ([32]); any free and minimal Γ-action has the (URP) and
has ( 1

4 , 1)-Cuntz-comparison of open sets if Γ has subexponential growth and (X,Γ)
is an extension of a Cantor system ([33]).
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In [33], it is shown that if (X,Γ) has the (URP) and (COS), then the comparison
radius of the C*-algebra C(X)!Γ is at most half of the mean dimension of (X,Γ).
In particular, if mdim(X,Γ) = 0, then the C*-algebra C(X) ! Γ has the strict
comparison of positive elements (see Definition 2.7), which, as a part of the Toms-
Winter conjecture, should imply the Z-stability (this has been verified in the case
that the C*-algebra has finitely many extreme tracial states in [31], and then been
generalized independently to the case that the set of extreme tracial states is finite
dimensional in [36], [22], and [41], and then to the case that the algebra has Uniform
Property Gamma in [2]) (in the forthcoming paper [24], it is shown that the (URP)
and (COS) imply that the C*-algebra C(X) ! Γ, classifiable or not, always has
stable rank one, and C(X) ! Γ indeed satisfies the Toms-Winter conjecture).

Under the assumption that (X,Γ) has the small boundary property (SBP) (which
implies zero mean dimension, see [29], and is shown in [28] and [18] to be equivalent
to zero mean dimension in the case Γ = Zd), Kerr and Szabo show in [21] (Theorem
9.4) that the C*-algebra C(X) ! Γ has the Uniform Property Gamma, and hence
the strict comparison of positive elements implies Z-stability for C(X) ! Γ.

In this note, one shows the following:

Theorem (Theorem 4.8). Let (X,Γ) be a free and minimal topological dynami-
cal system with the (URP) and (COS). If (X,Γ) has mean dimension zero, then
(C(X) ! Γ) ⊗ Z ∼= C(X) ! Γ, where Z is the Jiang-Su algebra.

In particular, let (X1,Γ1) and (X2,Γ2) be two free minimal dynamical systems
with the (URP) and (COS), and zero mean dimension, then

C(X1) ! Γ1
∼= C(X2) ! Γ2

if and only if
Ell(C(X1) ! Γ1) ∼= Ell(C(X2) ! Γ2),

where Ell(·) = (K0(·), K+
0 (·), [1], T(·), ρ, K1(·)) is the Elliott invariant. Moreover,

these C*-algebras are inductive limits of unital subhomogeneous C*-algebras.

As a consequence, the following crossed-product C*-algebras are Z-stable:

Corollary (Corollary 4.9). Let (X,Γ) be a free and minimal topological dynamical
system with mean dimension zero. Assume that

• either Γ = Zd for some d ≥ 1, or
• (X,Γ) is an extension of a Cantor system and Γ has subexponetial growth.

Then, the C*-algebra C(X) ! Γ is classified by the Elliott invariant and is an in-
ductive limit of unital subhomogeneous C*-algebras.

Two approaches are provided in this paper: The first approach is more self-
contained and more C*-algebra oriented. It is to show that the C*-algebra C(X)!Γ
is tracially Z-stable; since C(X) ! Γ is nuclear, it follows from [31] and [19] that
C(X) ! Γ actually is Z-stable.

In the second approach (Section 5), one proves the following dynamical system
statement:

mdim0 + URP ⇒ SBP,

which might be interesting by itself. If, in addition, the system is assumed to have
the (COS), it follows from [33] that the C*-algebra C(X)!Γ has strict comparison
of positive elements. Hence, with the SBP, the Z-stability of C(X)!Γ also follows
from the Theorem 9.4 and Corollary 9.5 of [21].
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2. Notation and preliminaries

2.1. Topological dynamical systems.

Definition 2.1. A topological dynamical system (X,Γ) consists of a separable com-
pact Hausdorff space X, a discrete group Γ, and a homomorphism Γ → Homeo(X),
where Homeo(X) is the group of homeomorphisms of X, acting on X from the
right. In this paper, we frequently omit the word topological, and just refer it as a
dynamical system.

The dynamical system (X,Γ) is said to be free if xγ = x implies γ = e, where
x ∈ X and γ ∈ Γ.

A closed set Y ⊆ X is said to be invariant if

Y γ = Y, γ ∈ Γ,

and the dynamical system (X,Γ) is said to be minimal if ∅ and X are the only
invariant closed subsets.

Definition 2.2. A Borel measure µ on X is invariant if for any Borel set E ⊆ X,
one has

µ(E) = µ(Eγ), γ ∈ Γ.

Denote by M1(X,Γ) the set of all invariant Borel probability measures on X. It is
a Choquet simplex under the weak* topology.

Definition 2.3. Let Γ be a (countable) discrete group. Let K ⊆ Γ be a finite set
and let δ > 0. Then a finite set F ⊆ Γ is said to be (K, ε)-invariant if

|FK∆F |
|F | < ε.

The group Γ is amenable if there is a sequence (Γn) of finite subsets of Γ such that
for any (K, ε), the set Γn is (K, ε)-invariant if n is sufficiently large. The sequence
(Γn) is called a Følner sequence.

The K-interior of a finite set F ⊆ Γ is defined as

intK(F ) = {γ ∈ F : γK ⊆ F}.

Note that
|F \ intK(F )| ≤ |K| |FK \ F | ≤ |K| |FK∆F | ,

and hence for any ε > 0, if F is (K, ε
|K| )-invariant, then

|F \ intK(F )|
|F | < ε.

Definition 2.4 (see [29]). Consider a topological dynamical system (X,Γ), where
Γ is amenable, and let E ⊆ X. The orbit capacity of E is defined by

ocap(E) := lim
n→∞

1

|Γn| sup
x∈X

∑

γ∈Γn

χE(xγ),

where (Γn) is a Følner sequence, and χE is the characteristic function of E. The
limit always exists and is independent from the choice of the Følner sequence (Γn).

Definition 2.5 (see [16] and [29]). Let U be an open cover of X. Define

D(U) = min{ord(V) : V is an open cover of X and V - U},
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where
ord(V) = −1 + sup

x∈X

∑

V ∈V
χV (x),

and V - U means that, for any V ∈ V , there is U ∈ U with V ⊆ U .
Consider a topological dynamical system (X,Γ), where Γ is a discrete amenable

group. The mean topological dimension is defined by

mdim(X,Γ) := sup
U

lim
n→∞

1

|Γn|D(
∧

γ∈Γn

γ−1(U)),

where U runs over all finite open covers of X, (Γn) is a Følner sequence (the limit
is independent from the choice of (Γn)), and α ∧ β denotes the open cover

{U ∩ V : U ∈ α, V ∈ β}
for any open covers α and β.

2.2. Crossed product C*-algebras. Consider a topological dynamical system
(X,Γ). The (full) crossed product C*-algebra A = C(X) ! Γ is defined to be the
universal C*-algebra

C*{f, uγ ; uγfu∗
γ = f(·γ)=f ◦γ, uγ1u

∗
γ2

=uγ1γ
−1
2

, ue =1, f ∈ C(X), γ, γ1, γ2 ∈ Γ}.

The C*-algebra A is nuclear (Corollary 7.18 of [43]) if Γ is amenable. If, moreover,
(X,Γ) is minimal and topologically free, the C*-algebra A is simple (Theorem 5.16
of [5] and Théorème 5.15 of [47]), i.e., A has no non-trivial two-sided ideals. A is
also called the transformation group C*-algebra of (X,Γ).

2.3. Cuntz semigroups.

Definition 2.6. Let A be a C*-algebra, and let a, b ∈ A+. The element a is said
to be Cuntz sub-equivalent to b, denoted by a ! b, if there are xi, yi, i = 1, 2, . . . ,
such that

lim
i→∞

xibyi = a,

and we say that a is Cuntz equivalent to b, denoted by a ∼ b, if a ! b and b ! a.
Then the Cuntz semigroup of A, denoted by W(A), is defined as

(M∞(A))+/ ∼
with the addition

[a] + [b] =

[(
a

b

)]
,

where (M∞(A))+ :=
⋃∞

n=1 M+
n (A) and [·] denotes the equivalence class.

Definition 2.7. Let A be a C*-algebra, let T(A) denote the set of all tracial states
of A, equipped with the topology of pointwise convergence. Note that if A is unital,
the set T(A) is a Choquet simplex.

Let a be a positive element of M∞(A) and τ ∈ T(A); define

dτ (a) = lim
n→∞

τ (a
1
n ),

where τ is extended naturally to M∞(A). The function

T(A) 2 τ 3→ dτ (a) ∈ R+

is the limit of an increasing sequence of strictly positive affine functions on T(A),
so it is lower semicontinuous.
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It is well known that if a ! b, then

dτ (a) ≤ dτ (b), τ ∈ T(A).

If the C*-algebra A satisfies the property that for any positive elements a, b ∈
M∞(A) with

dτ (a) < dτ (b), τ ∈ T(A),

then a ! b, the C*-algebra A is said to have the strict comparison of positive
elements.

Remark 2.8. Note that if A = Mn(C0(X)), where X is a locally compact Hausdorff
space, and τ be a trace of A. Then, for any positive element a ∈ M∞(A) ∼=
M∞(C0(X)) and any τ ∈ T(A), one has

τ (a) =

∫

X

1

n
Tr(a(x))dµτ and dτ (a) =

∫

X

1

n
rank(a(x))dµτ ,

where µτ is the Borel measure on X induced by τ .

Also recall

Definition 2.9 ([46]). Let A, B be C*-algebras, and let ϕ : A → B be a completely
positive contractive linear map (c.p.c map). Then ϕ is said to be order zero if

a ⊥ b =⇒ ϕ(a) ⊥ ϕ(b), a, b ∈ A.

3. The Cuntz semigroup of C(X) ! Γ

In this section, let us show that C(X)×Γ is tracially 0-divisible whenever (X,Γ)
has the (URP), (COS), and mean dimension zero.

The following is a version of Theorem 3.4 of [40] for the C*-algebra C(X) ! Γ.

Proposition 3.1. Let A = C(X)!Γ, where (X,Γ) is free, minimal, has the (URP)
and zero mean dimension. Then, for any continuous affine function α : T(A) →
(0,∞) and any ε > 0, there is a positive element a ∈ M∞(A) such that

|α(τ ) − dτ (a)| < ε, ∀τ ∈ T(A).

Proof. Without loss of generality, one may assume that |Γ| = ∞, as otherwise, the
crossed product C*-algebra A is isomorphic to a matrix algebra, and the statement
of the proposition clearly holds. One may also assume that

(3.1) ε <
1

4
.

By Corollary 3.10 of [1], there is a positive element a′ ∈ A such that

α(τ ) = τ (a′), ∀τ ∈ T(A).

Since the action is minimal, the algebra A is simple, and hence there is a δ ∈ (0, 1)
such that

(3.2) τ (a′) > δ, ∀τ ∈ T(A).

Also pick M such that

(3.3) τ (a′) ≤ ‖a′‖ < M, ∀τ ∈ T(A).

Let ε ∈ (0, 1
4 ) be arbitrary. Let F ⊆ A be an arbitrary finite set, and let

(3.4) 0 < ε′ < min{ε, δ
4
}
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be arbitrary (F and ε′ will be fixed in the next paragraph). Applying Theorem 3.9
of [33] (with m = 1) to {a′} ∪ F (in place of {f1, . . . , fn}), 1 (in place of h), and
min{ ε′

M+1 , ε′δ} (in place of δ), there exist a′′ ∈ A, a finite set F ′ ⊆ A, h ∈ C(X)+

(in place of p), and a sub-C*-algebra C ⊆ A with C ∼=
⊕S

s=1 Mns(C0(Zs)) and
closed sets [Zs] ⊆ Zs such that the following properties hold:

(1) for any f ∈ F , there is f ′ ∈ F ′ such that ‖f − f ′‖ < ε′, (Theorem 3.9 (1)
of [33])

(2) ‖a′ − a′′‖ < ε′, ‖ha′′ − a′′h‖ < ε′, ‖hf ′ − f ′h‖ < ε′, ∀f ′ ∈ F ′, (Theorem
3.9 (1)(2) of [33])

(3) h ∈ C, ha′′h ∈ C, hf ′h ∈ C, ∀f ′ ∈ F ′ (Theorem 3.9 (3) of [33]),
(4) ‖h‖ ≤ 1, τ (1 − h) < ε′, ∀τ ∈ T1(A), (Theorem 3.9 (5) of [33]),
(5) µ(X \ h−1(1)) < ε′

M+1 , ∀µ ∈ M1(X,Γ), (Theorem 3.9 (5) of [33]),

(6) under the isomorphism C ∼=
⊕S

s=1 Mns(C0(Zs)), the element h has the
form

h =
S⊕

s=1

diag{hs,1, . . . , hs,ns},

where hs,i : Zs → [0, 1], and

1

ns
|{1 ≤ i ≤ ns : hs,i(x) = 1}| > 1 − ε′, x ∈ [Zs], s = 1, . . . , S,

(Theorem 3.9 (7) of [33]),
(7)

dim([Zs])

ns
< ε′δ, s = 1, 2, . . . , S,

(Theorem 3.9 (4) of [33]),
(8) each ns, s = 1, . . . , S, is sufficiently large such that the interval (2nsδε′ +

1, 4nsε′−1) contains at least one strictly positive integer (this follows from
the assumption |Γ| = ∞ and the the proof of Theorem 3.9 [33], where
ns = |Γs| for the Rokhlin tower (Bs,Γs), which can be arbitrarily large for
the given (F , ε′)).

Put

a′
1 = h

1
2 a′′h

1
2 .

First, note that, with ε′ sufficiently small, by Properties (4) and (2), for any τ ∈
T(A),

(3.5) τ (a′
1) = τ (h

1
2 a′′h

1
2 ) ≈ε τ ((1 − h)

1
2 a′′(1 − h)

1
2 + h

1
2 a′′h

1
2 ) ≈ε τ (a′′) ≈ε τ (a′).

One asserts that with F sufficiently large and ε′ sufficiently small further, one has

(3.6) M > τ (π(a′
1)) > δ, ∀τ ∈ T(π(C)),

where π is the standard quotient map from

C ∼=
S⊕

s=1

Mns(C0(Zs)) to
S⊕

s=1

Mns(C0([Zs])).

Then, fix the pair (F , ε′).
Indeed, suppose the contrary, there then exists a sequence of finite subsets F ′

i ⊆
A, i = 1, 2, . . . , with dense union and a sequence of positive numbers εi, i = 1, 2, . . . ,
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decreasing to 0, sub-C*-algebras Ci ⊆ A, i = 1, 2, . . . , elements a′′
i ∈ A, i = 1, 2, . . . ,

and positive elements hi ∈ Ci, i = 1, 2, . . . , such that

• ‖a′ − a′′
i ‖ < εi,

•
∥∥∥h

1
4
i f ′ − f ′h

1
4
i

∥∥∥ < εi, ∀f ′ ∈ F ′
i ,

• hia′′
i hi ∈ Ci, hi ∈ Ci, and hif ′hi ∈ Ci, ∀f ′ ∈ F ′

i , so that

h
1
2
i a′′

i h
1
2
i ∈ Ci, h

1
4
i a′′

i h
1
4
i ∈ Ci, h

1
2
i f ′h

1
2
i ∈ Ci, and h

1
4
i f ′h

1
4
i ∈ Ci, ∀f ′ ∈ F ′

i ,

• there exists τi ∈ T(π(Ci)) such that

(3.7) τi(πi(h
1
2
i a′′

i h
1
2
i )) ≤ δ or τi(πi(h

1
2
i a′′

i h
1
2
i )) ≥ M,

where πi is the standard quotient map from Ci
∼=

⊕S
s=1 Mns(C0(Zs)) to⊕S

s=1 Mns(C0([Zs])),
• τ (π(hi)) > 1 − εi, ∀τ ∈ T(π(Ci)) (this follows from Property (6) and

Remark 2.8).

Consider the linear functional

ρi : A 2 a 3→ τi(πi(h
1
2
i ah

1
2
i )) ∈ C,

and note that
‖ρi‖ = ρi(1A) = τi(π(hi)) > 1 − εi.

Also note that for, any a, b ∈ F ′
i ,

ρi(ab) = τi(πi(h
1
2
i abh

1
2
i )) ≈2εi τi(πi(h

1
4
i ah

1
4
i h

1
4
i bh

1
4
i )) = τi(πi(h

1
4
i bh

1
4
i h

1
4
i ah

1
4
i ))

≈2εi τi(πi(h
1
2
i bah

1
2
i )) = ρi(ba).

Thus, any accumulation point of {ρi}, say ρ∞, is actually a tracial state. However,
by (3.7), there exists an accumulation point, still denoted by ρ∞, such that

ρ∞(a′) = lim
i→∞

τi(πi(h
1
2 a′′

i h
1
2
i )) ≤ δ or ρ∞(a′) = lim

i→∞
τi(πi(h

1
2 a′′

i h
1
2
i )) ≥ M,

which contradicts to (3.2) or (3.3). This proves the assertion.
Denote by Z the (abstract) disjoint union of Zs, s = 1, . . . , S, and denote by

[Z] the (abstract) disjoint union of [Zs], s = 1, . . . , S. Consider π(a′
1) ∈ π(C), and

consider the continuous function

[Z] 2 x 3→ Tr(π(a′
1)(x)) ∈ (0, +∞).

For each s = 1, 2, . . . , S, by Property (8), one picks an integer

(3.8) ∆s ∈ (2nsδε
′ + 1, 4nsε

′ − 1).

Define
f : [Z] 2 x 3→ ;Tr(π(a′

1)(x))< + ∆s, if x ∈ [Zs],

and
g : [Z] 2 x 3→ &Tr(π(a′

1)(x))( −∆s, if x ∈ [Zs],

where &t( = max{k ∈ Z : k ≤ t} and ;t< = min{k ∈ Z : k ≥ t}. Note that by (3.1),
(3.4), (3.6), and (3.8), for any x ∈ [Zs], s = 1, . . . , S, one has

&Tr(π(a′
1)(x))( −∆s ≥ &Tr(π(a′

1)(x))( − (4nsε
′ − 1)

≥ Tr(π(a′
1)(x)) − 1 − (4nsε

′ − 1)

= nstr(π(a′
1)(x)) − 4nsε

′

> nsδ − 4nsε
′ = ns(δ − 4ε′) > 0.
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That is, the function g is a positive. Also note that for any x ∈ [Zs], s = 1, . . . , S,
by (3.1), (3.4), (3.6), and (3.8) again,

f(x) ≤ max{;Tr(π(a′
1)(y))< + ∆s : y ∈ [Zs]}

≤ max{Tr(π(a′
1)(y)) + 4nsε

′ : y ∈ [Zs]}
= ns max{tr(π(a′

1)(y)) + 4ε′ : y ∈ [Zs]}
≤ ns(M + 1).

Therefore f and g satisfy

(a) g is positive upper semicontinuous and f is lower semicontinuous,
(b) 0 < g(x) < Tr(π(a′

1)(x)) < f(x) ≤ ns(M + 1), ∀x ∈ [Zs], and
(c) 4dim([Zs]) < 4ε′δns < 2∆s − 2 < f(x)− g(x) ≤ 2∆s +2 < 8ε′ns, ∀x ∈ [Zs]

(by Property (7) and (3.8)).

It then follows from Proposition 2.9 of [40] that there is a positive element
a′′′ ∈ M∞(π(C)) such that

g(x) < rank(a′′′(x)) < f(x), ∀x ∈ [Zs].

Extend a′′′ to an element of M∞(C) ⊆ M∞(A) and denote it by a. One then has
that for any x ∈ [Z], with n(x) := ns if x ∈ [Zs],

∣∣∣∣
1

n(x)
rank(a(x)) − tr(a′

1(x))

∣∣∣∣(3.9)

=

∣∣∣∣
1

n(x)
rank(a′′′(x)) − tr(a′

1(x))

∣∣∣∣

≤
∣∣∣∣

1

n(x)
Tr(a′

1(x)) − tr(a′
1(x))

∣∣∣∣ +
1

n(x)
(f(x) − g(x))

< 8ε′ < 8ε.

Note that the element a can be chosen so that for any x ∈ Zs \ [Zs], s = 1, . . . , S,

rank(a(x)) ≤ max{f(x) : x ∈ [Zs]} ≤ ns(M + 1).

Now, let τ ∈ T(A) be arbitrary, and let µτ denote the Borel measure on Z
induced by the restriction of τ to C. Note that 1 − ε < ‖µτ‖ ≤ 1 (since τ (h) ≥
1 − ε′ > 1 − ε, by Property (4)), and also note that, by Property (5),

µτ (Z \ [Z]) ≤ dτ (c̃ − h) ≤ dτ (1A − h) < µ(X \ h−1(1)) <
ε′

M + 1
<

ε

M + 1
,

where c̃ ≥ h is some strict positive element of C ⊆ A, and µ is the invariant measure
on X corresponding to τ (µ is not µτ ). Therefore,

∫

Z\[Z]

1

n(x)
rank(a(x))dµτ ≤

∫

Z\[Z]
(M + 1)dµτ < ε,

where n(x) = ns if x ∈ Zs, and (by (3.3) and Property (2))
∫

Z\[Z]
tr(a′

1(x))dµτ ≤
∫

Z\[Z]
‖a′

1‖ dµτ ≤
∫

Z\[Z]
‖a′′‖ dµτ ≤

∫

Z\[Z]
(M + ε′)dµτ < ε.

In particular
∣∣∣∣∣

∫

Z\[Z]

1

n(x)
rank(a(x))dµτ −

∫

Z\[Z]
tr(a′

1(x))dµτ

∣∣∣∣∣ < 2ε.
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Together with (3.5) and (3.9), one has

dτ (a) =

∫

Z

1

n(x)
rank(a(x))dµτ

=

∫

[Z]

1

n(x)
rank(a(x))dµτ +

∫

Z\[Z]

1

n(x)
rank(a(x))dµτ

≈2ε

∫

[Z]

1

n(x)
rank(a(x))dµτ +

∫

Z\[Z]
tr(a′

1(x))dµτ

≈8ε

∫

[Z]
tr(a′

1(x))dµτ +

∫

Z\[Z]
tr(a′

1(x))dµτ

=

∫

Z
tr(a′

1(x))dµτ = τ (a′
1)

≈3ε τ (a′).

Since ε is arbitrary, this proves the desired conclusion. "
Corollary 3.2. Let (X,Γ) be a free and minimal dynamical system with the (URP)
and (COS). If (X,Γ) has mean dimension zero, then, for any positive contraction
a ∈ M∞(A), any k ∈ N, and any ε > 0, there is an order zero map

φ : Mk(C) → Her(a),

where Her(a) is the hereditary sub-C*-algebra generated by a, such that

τ (φ(1k)) > τ (a) − ε, ∀τ ∈ T(A).

That is, A is tracially 0-divisible in the sense of Definition 3.5(ii) of [44].

Proof. Since (X,Γ) has mean dimension zero, by Theorem 4.8 of [33], the C*-
algebra A has strict comparison of positive elements.

Let a ∈ M∞(A) be a positive contraction, and consider the lower semicontinuous
affine function

T(A) 2 τ 3→ 1

k
dτ (a) ∈ (0,∞).

Then, by Proposition 3.1 and the proof of Theorem 5.3 of [1] that there is a positive
element x ∈ A ⊗ K such that

dτ (x) =
1

k
dτ (a), ∀τ ∈ T(A).

Indeed, pick a sequence (αn) of strictly positive continuous affine maps on T(A)
such that

(1) αn(τ ) < αn+1(τ ), n = 1, 2, . . . , τ ∈ T(A), and
(2) limn→∞ αn(τ ) = 1

kdτ (a), τ ∈ T(A).

Since T(A) is compact, for each n, there is εn such that

αn+1(τ ) − αn(τ ) > εn, ∀τ ∈ T(A).

Then, for each αn, n = 1, 2, . . . , by Proposition 3.1, there is an ∈ M∞(A) such that

|αn(τ ) − dτ (an)| <
1

2
min{εn−1, εn},

where ε0 = 1. Then

(1) dτ (an) < dτ (an+1), n = 1, 2, . . . , τ ∈ T(A), and
(2) limn→∞ dτ (an) = 1

kdτ (a), τ ∈ T(A).
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Since A has strict comparison of positive elements, one has an ! an+1, n = 1, 2, . . . .
By [4] (Theorem 1(i) and Appendix 6), supremum of every increasing sequence

of W(A ⊗ K) exists, and hence there is a positive element x ∈ A ⊗ K such that

dτ (x) =
1

k
dτ (a), ∀τ ∈ T(A).

For each pair of positive numbers δ1 < δ2, define the continuous function

fδ1,δ2(t) =






0, t ≤ δ1,
t−δ1
δ2−δ1

, δ1 < t < δ2,
1, t ≥ δ2.

Also consider the continuous function

fε(t) := max{t − ε, 0}, t ∈ R.

Then, since A is simple, with a sufficiently small δ > 0 (see, Remark 2.7 of [44]),
one has

τ (f2δ,3δ(x)) >
1

k
τ (fε(a)) >

1

k
(τ (a) − ε), ∀τ ∈ T(A)

and use the simplicity again, there is δ′ > 0 such that

τ (fδ/2,δ(x)) < dτ (x) − δ′ =
1

k
(dτ (a)) − δ′, ∀τ ∈ T(A).

Thus, with a perturbation of x, there is a positive element x′ ∈ M∞(A) such that,

(3.10) τ (f2δ,3δ(x
′)) >

1

k
(τ (a) − ε), ∀τ ∈ T(A)

and

τ (fδ/2,δ(x
′)) <

1

k
dτ (a) − δ′, ∀τ ∈ T(A).

Note that

kdτ (fδ,2δ(x
′)) < kτ (fδ/2,δ(x

′)) < dτ (a), ∀τ ∈ T(A).

Since A has strict comparison, one has k[fδ/2,δ(x
′)] < [a] in W(A). By Proposition

2.12 of [44], there is an order zero map φ : Mk(C) → Her(a) such that

φ(e1,1) ≈ f2δ,3δ(x
′),

where a ≈ b denotes the relation a = vv∗, b = v∗v for some v. In particular, by
(3.10),

τ (φ(1k)) = kτ (φ(e1,1)) = kτ (f2δ,3δ(x
′)) > τ (a) − ε, ∀τ ∈ T(A),

as desired. "

Remark 3.3. Note that a straightforward argument shows that there is m such that
for any k ∈ N, there is x ∈ W(A) such that

kx ≤ [1A] ≤ m(k + 1)x,

whenever (X,Γ) has the (URP) and (COS), even without mean dimension zero.
Then, as a natural question, is the C*-algebra A = C(X) ! Γ always tracially m-
divisible for some m ∈ N if (X,Γ) has the (URP) and (COS), but without any
assumptions on mean dimension?
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4. Approximate central order zero maps from Mk(C) to C(X) ! Γ and
the Z-stability of C(X) ! Γ

One considers the Z-stability of C(X) ! Γ in this section. First, one has the
following lemma which essentially is Theorem 3.9 of [33], stating that the C*-algebra
A = C(X)!Γ can be (weakly) tracially approximated by homogeneous C*-algebras,
but with an extra conclusion that there is an element h in the homogeneous sub-
C*-algebra, which is approximately central in A, large in trace, and is orthogonal
to the elements with smaller trace in the decomposition obtained from the tracial
approximation.

Lemma 4.1. Let (X,Γ) be a free topological dynamical system with the (URP).
Then, for any finite set {f1, f2, . . . , fn} ⊆ C(X) ! Γ and any ε > 0, there exist a

C*-algebra C ⊆ C(X)!Γ with C ∼=
⊕S

s=1 Mks(C0(Us)) for some ks ∈ N and locally
compact Hausdorff spaces Us, s = 1, . . . , S, a positive contraction h ∈ C(X) ∩ C,

and f (0)
1 , f (1)

1 , f (0)
2 , f (1)

2 , . . . , f (0)
n , f (1)

n ∈ C(X) ! Γ such that

(1)
∥∥∥fi − (f (0)

i + f (1)
i )

∥∥∥ < ε, 1 ≤ i ≤ n,

(2) f (1)
i ∈ C, 1 ≤ i ≤ n,

(3)
∥∥∥f (0)

i h
∥∥∥ = 0, 1 ≤ i ≤ n,

(4)
∥∥∥[f (1)

i , h]
∥∥∥ < ε, 1 ≤ i ≤ n, and

(5) τ (1 − h2) < ε, ∀τ ∈ T(C(X) ! Γ).

Proof. The proof is similar to that of Theorem 3.9 of [33], but without dealing with
mean dimension.

Denote by A the crossed product C*-algebra C(X) ! Γ. Without loss of gener-
ality, one may assume

fi =
∑

γ∈N
fi,γuγ

for some finite set N ⊆ Γ with e ∈ N = N−1, and some fi,γ ∈ C(X). Denote by

M = max{1, ‖fi,γ‖ : i = 1, . . . , n, γ ∈ N}.

For the given ε > 0, choose ε1 ∈ (0, ε) such that if a positive element a ∈ A with
‖a‖ ≤ 1 satisfies

‖afi − fia‖ < ε1, 1 ≤ i ≤ n,

then ∥∥∥a
1
2 fi − fia

1
2

∥∥∥ <
ε

2
, 1 ≤ i ≤ n.

Pick a natural number

L >
M |N |
ε1

,

and pick a sufficiently large finite set K ⊆ Γ and a sufficiently small positive number
δ so that if a finite set Γ0 ⊆ Γ is (K, δ)-invariant, then

(4.1)
|Γ0 \ intN L+1(Γ0)|

|Γ0|
<

ε

2
.

Since (X,Γ) has the (URP), there exist closed sets B1, B2, . . . , BS ⊆ X and
(K, δ)-invariant sets Γ1,Γ2, . . . ,ΓS ⊆ Γ such that

Bsγ, γ ∈ Γs, s = 1, . . . , S,
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are mutually disjoint and

ocap(X \
S⊔

s=1

⊔

γ∈Γs

Bsγ) <
ε

2
.

Pick two open sets Us, Vs ⊆ X, s = 1, 2, . . . , S, satisfying

Us ⊇ Vs ⊇ Bs, Us ⊇ Vs,

and
Usγ, γ ∈ Γs, s = 1, . . . , S,

are mutually disjoint.
Consider the sub-C*-algebra

(4.2) C := C∗{u∗
γf : f ∈ C0(Us), γ ∈ Γs, s = 1, 2, . . . , S} ⊆ C(X) ! Γ,

which, by Lemma 3.12 of [33], is isomorphic to

S⊕

s=1

M|Γs|(C0(Us)).

For each s = 1, 2, . . . , S, pick continuous functions χUs ,χVs : X → [0, 1] such that

(4.3) χUs |Vs = 1, χVs |Bs = 1, χUs |X\Us
= 0, and χVs |X\Vs

= 0.

Note that χUs ,χVs ∈ C, and

(4.4) χUsf, χVsf ∈ C, f ∈ C(X).

For each Γs, s = 1, 2, . . . , S, define the subsets





Γs,L+1 = intN L+1(Γs),
Γs,L = intN L(Γs) \ intN L+1(Γs),
Γs,L−1 = intN L−1(Γs) \ intN L(Γs),
...

...
...

Γs,0 = Γs \ intN (Γs).

Then, for any γ ∈ N , one has

(4.5) Γs,lγ ⊆ Γs,l−1 ∪ Γs,l ∪ Γs,l+1, 1 ≤ l ≤ L.

Indeed, pick an arbitrary γ′ ∈ Γs,l. By the construction, one has

(4.6) γ′N l ⊆ Γs but γ′N l+1 % Γs.

Therefore
γ′γN l−1 ⊆ γ′N l ⊆ Γs

and hence γ′γ ∈ intN l−1Γs (since e ∈ N l−1).
Thus, to show (4.5), one only has to show that γ′γ /∈ intN l+2Γs. Suppose

γ′γN l+2 ⊆ Γs. Since N is symmetric, one has γ−1 ∈ N ; hence N l+1 ⊆ γN l+2 and

γ′N l+1 ⊆ γ′γN l+2 ⊆ Γs,

which contradicts (4.6).
Also note that

(4.7) Γs,L+1γ ⊆ Γs,L+1 ∪ Γs,L.

For each γ ∈ Γs, define
.(γ) = l, if γ ∈ Γs,l.
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By (4.5) and (4.7), the function . satisfies

(4.8) |.(γ′γ) − .(γ)| ≤ 1, γ′ ∈ N , γ ∈ Γs,1 ∪ · · · ∪ Γs,L+1.

Define

hU =
S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
(χUs ◦ γ−1) =

S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχUsuγ ∈ C(X) ∩ C,

and

hV =
S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
(χVs ◦ γ−1) =

S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχVsuγ ∈ C(X) ∩ C.

Note that, by (4.3),

hUhV = (
S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχUsuγ)(

S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχVsuγ)

=
S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχUsχVsuγ

=
S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχVsuγ = hV ,

and hence

(4.9) (1 − hU )hV = 0.

By (4.3) (and (4.1)),

ocap(X \ h−1
V (1)) ≤ max{ |Γs \ intN L+1(Γs)|

|Γs|
: s = 1, . . . , S}

+ocap(X \
S⊔

s=1

⊔

γ∈Γs

Bsγ) ≤ ε

2
+

ε

2

< ε,

and therefore
τ (1 − h2

V ) < ε, τ ∈ T(A).

Note that, by the construction of C (see (4.2)),

χ
1
2
Us

uγ ∈ C, γ ∈ Γs.

Hence, for each γ′ ∈ N , since γγ′ ∈ Γs, γ ∈ Γs,l, l = 1, 2, . . . , L + 1, one has

hUuγ′ =
S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχUsuγγ′ =

S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
(u∗

γχ
1
2
Us

)(χ
1
2
Us

uγγ′) ∈ C,

and therefore,
hUuγhU ∈ C, γ ∈ N .

For any f ∈ C(X), by (4.4), one has

hUf =
S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχUsuγf =

S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
u∗
γχUs(uγfu∗

γ)uγ ∈ C,
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and therefore
hUfihU ∈ C, 1 ≤ i ≤ n.

Note that, for each γ′ ∈ N , by (4.8),
∥∥u∗

γ′hUuγ′ − hU

∥∥

=

∥∥∥∥∥∥

S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
χUs ◦ (γ′γ)−1 −

S∑

s=1

L+1∑

l=1

∑

γ∈Γs,l

l − 1

L
χUs ◦ γ−1

∥∥∥∥∥∥

= max{
∣∣∣∣
.(γ′γ) − 1

L
− .(γ) − 1

L

∣∣∣∣ : γ ∈ Γs \ Γs,0, s = 1, 2, . . . , S}

<
1

L
<

ε1

M |N | ,

and hence

(4.10) ‖hUfi − fihU‖ < ε1, i = 1, 2, . . . , n.

The same argument also shows that

(4.11) ‖hV fi − fihV ‖ < ε1 < ε, i = 1, 2, . . . , n.

It follows from (4.10) and the choice of ε1 that
∥∥∥h

1
2
Ufi − fih

1
2
U

∥∥∥ <
ε

2
and

∥∥∥(1 − hU )
1
2 fi − fi(1 − hU )

1
2

∥∥∥ <
ε

2
, i = 1, 2, . . . , n,

and hence ∥∥∥fi − ((1 − hU )
1
2 fi(1 − hU )

1
2 + h

1
2
Ufih

1
2
U )

∥∥∥ < ε, 1 ≤ i ≤ n.

Put
f (0)

i = (1 − hU )
1
2 fi(1 − hU )

1
2 and f (1)

i = h
1
2
Ufih

1
2
U .

By (4.9),

f (0)
i hV = 0, i = 1, . . . , n.

One also has, by (4.11),

f (1)
i hV = h

1
2
Ufih

1
2
UhV = h

1
2
UfihV h

1
2
U ≈ε h

1
2
UhV fih

1
2
U = hV h

1
2
Ufih

1
2
U = hV f (1)

i .

Thus ∥∥∥f (1)
i hV − hV f (1)

i

∥∥∥ < ε, i = 1, . . . , n.

Then the element h := hV satisfies the lemma. "
Definition 4.2 ([19]). A unital C*-algebra A is said to be tracially Z-stable if for
any finite set F ⊆ A, any ε > 0, and any non-zero positive element a ∈ A, there is
a c.p.c. order zero map ϕ : M2(C) → A such that

(1) ‖[ϕ(x), f ]‖ < ε, ∀x ∈ M2(C), ‖x‖ ≤ 1, f ∈ F ,
(2) 1A − ϕ(12) ! a.

Based on [31], for nuclear C*-algebras, the tracial Z-stability is shown to be
equivalent to the Z-stability in [19]:

Theorem 4.3. Let A be a simple separable unital nuclear C*-algebra. Then A ∼=
A ⊗ Z if and only if A is tracially Z-stable, where Z is the Jiang-Su algebra.

Remark 4.4. In general, there are non-nuclear C*-algebras which are tracially Z-
stable but not Z-stable (see [34]).
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The following two lemmas are simple observations.

Lemma 4.5. Let A be a unital C*-algebra, and let τ be a tracial state of A. Assume
a, b ∈ A are positive elements with norm at most 1 and

τ (1 − a) < ε and τ (1 − b) < ε,

then
τ (ab) > 1 − 2ε.

Proof. It follows from the assumption that

1 − ε < τ (a) and − ε < τ (b − 1).

Also note that

0 ≤ τ ((1 − a)
1
2 (1 − b)(1 − a)

1
2 ) = τ ((1 − a)(1 − b)) = τ (1 − a − b + ab),

and so
τ (a + b − 1) ≤ τ (ab).

Then
1 − 2ε = (1 − ε) − ε < τ (a) + τ (b − 1) = τ (a + b − 1) ≤ τ (ab),

as desired. "

Lemma 4.6. Let A be a C*-algebra, and let ϕ : Mk(C) → A be a c.p.c. order zero
map with

τ (1A − ϕ(1k)) < ε, ∀τ ∈ T(A),

for some ε > 0. Then there is a c.p.c. order zero map ϕ′ : Mk(C) → A such that

‖ϕ′ − ϕ‖ <
√
ε

and
dτ (1A − ϕ′(1k)) <

√
ε, ∀τ ∈ T(A).

Proof. Since ϕ has order zero, it follows from Theorem 1.2 of [46] that there is

h ∈ M(C*(ϕ(Mk))) ∩ (C*(ϕ(Mk)))′

and a unital homomorphism

ϕ̃ : Mk(C) → M(C*(ϕ(Mk))) ∩ (h)′

such that
ϕ(a) = ϕ̃(a)h, ∀a ∈ Mk(C).

Note that h = ϕ(1k).
Let τ ∈ T(A) be arbitrary, and denote by µτ the probability measure induced

by τ on sp(h) ⊆ [0, 1]. Since τ (1A − h) < ε, one has

1 − ε <

∫

[0,1]
tdµτ =

∫

[0,1−
√
ε]

tdµτ +

∫

(1−
√
ε,1]

tdµτ

≤ (1 −
√
ε)µτ ([0, 1 −

√
ε]) + (1 − µτ ([0, 1 −

√
ε])),

and hence
µτ ([0, 1 −

√
ε]) <

√
ε.

Set f(t) = min{ t
1−

√
ε
, 1}. Consider f(h) and the c.p.c. order zero map

ϕ′ := ϕ̃(a)f(h), ∀a ∈ Mk(C).
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Note that ‖h − f(h)‖ <
√
ε; one has that

‖ϕ− ϕ′‖ <
√
ε.

On the other hand, for any τ ∈ T(A), one has

dτ (1 − ϕ′(1k)) = dτ (1 − f(h)) = µτ ([0, 1 −
√
ε)) <

√
ε,

as desired. "

Proposition 4.7. Let (X,Γ) be a free and minimal topological dynamical system
with the (URP), and assume C(X)!Γ is tracially m-almost divisible for some m ∈
N (see Definition 3.5(ii) of [44]). For any finite set {f1, f2, . . . , fn} ⊆ C(X)!Γ, any
ε > 0, and any k ∈ N, then there is a c.p.c. order zero map φ : Mk(C) → C(X)!Γ
such that

(1) ‖[φ(a), fi]‖ < ε, ∀a ∈ Mk(C) with ‖a‖ = 1 and 1 ≤ i ≤ n, and
(2) dτ (1A − φ(1k)) < ε, ∀τ ∈ T(A).

Proof. Denote by A = C(X)!Γ. By Lemma 4.6, it is enough to show that for any
given ε > 0 and any finite set {f1, f2, . . . , fn} ⊆ A, there is a c.p.c. order-zero map
φ : Mk(C) → A such that

(1) ‖[φ(a), fi]‖ < ε, ∀a ∈ Mk(C) with ‖a‖ = 1 and 1 ≤ i ≤ n, and
(2) τ (1A − φ(1k)) < ε, ∀τ ∈ T(A).

Since order zero maps from Mk(C) are weakly stable (see Proposition 2.5 of [23]),
one is able to pick δ > 0 sufficiently small such that if a c.p.c. map ρ : Mk(C) → A
satisfies

a ⊥ b ⇒ ‖ρ(a)ρ(b)‖ < δ, ∀a, b ∈ Mk(C), ‖a‖ = ‖b‖ = 1,

there is a c.p.c order zero map θ : Mk(C) → A such that

‖ρ(a) − θ(a)‖ <
ε

4
, ∀a ∈ Mk(C), ‖a‖ = 1.

By Lemma 4.1, there are f0
1 , f (1)

1 , f0
2 , f (1)

2 , . . . , f0
n, f (1)

n ∈ A, a C*-algebra C ⊆ A

with C ∼=
⊕S

s=1 Mks(C0(Us)) for some locally compact Hausdorff spaces Us, s =
1, . . . , S, a positive contraction h ∈ A such that

(4.12)
∥∥∥fi − (f0

i + f (1)
i )

∥∥∥ <
ε

8
, 1 ≤ i ≤ n,

(4.13) h ∈ C and f (1)
i ∈ C, 1 ≤ i ≤ n,

(4.14)
∥∥∥f (0)

i h
1
2

∥∥∥ <
ε

16
, 1 ≤ i ≤ n,

(4.15)
∥∥∥[f (1)

i , h
1
2 ]
∥∥∥ <

ε

24
, 1 ≤ i ≤ n,

and

(4.16) τ (1 − h) <
ε

4
, ∀τ ∈ T(A).

Consider the unitization C̃ = C + C1A, and note that

C̃ ∼= {f ∈ C({∞} ∪
S⊔

s=1

Us,
S⊕

s=1

Mks(C)) : f(∞) ∈ C1}.
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Since the compact Hausdorff space {∞} ∪
⊔S

s=1 Us is an inverse limit of finite

dimensional CW-complexes, with a small perturbation of f (1)
1 , f (1)

2 , . . . , f (1)
n , and

h, one may assume that C̃ (and C) has finite nuclear dimension and Equations

(4.12)–(4.16) still hold (this is the reason that f (0)
i h

1
2 in (4.14) is not required to

be 0, such as in Lemma 4.1).
Since A is assumed to be tracially m-divisible, applying Lemma 5.11 of [44] to

B̃ and using (4.13), one obtains a c.p.c. order zero map ϕ : Mk(C) → A such that

(4.17)
∥∥∥[ϕ(a), f (1)

i ]
∥∥∥ <

ε

24
, ∀a ∈ Mk(C), ‖a‖ = 1, 1 ≤ i ≤ n,

(4.18) ‖[ϕ(a), h]‖ < δ, ∀a ∈ Mk(C), ‖a‖ = 1,

and

(4.19) τ (1A − ϕ(1k)) <
ε

4
, ∀τ ∈ T(A).

Consider the c.p.c. map

Mk(C) 2 a 3→ h
1
2ϕ(a)h

1
2 ∈ A.

Then, for any elements a, b ∈ Mk(C) with a ⊥ b and ‖a‖ = ‖b‖ = 1, one has (by
(4.18))

(h
1
2ϕ(a)h

1
2 )(h

1
2ϕ(b)h

1
2 ) = h

1
2ϕ(a)hϕ(b)h

1
2 ≈δ h

3
2ϕ(a)ϕ(b)h

1
2 = 0,

and hence, by the choice of δ, there exists a c.p.c order zero map φ : Mk(C) → A
such that

(4.20)
∥∥∥φ(a) − h

1
2ϕ(a)h

1
2

∥∥∥ <
ε

4
, ∀a ∈ Mk(C), ‖a‖ = 1.

Then, for any a ∈ Mk(C) with ‖a‖ = 1 and any 1 ≤ i ≤ n, one has

‖[φ(a), fi]‖ <
∥∥∥[h

1
2ϕ(a)h

1
2 , fi]

∥∥∥ +
ε

2
(by (4.20))

<
∥∥∥[h

1
2ϕ(a)h

1
2 , f (0)

i + f (1)
i ]

∥∥∥ +
3ε

4
(by (4.12))

=
∥∥∥[h

1
2ϕ(a)h

1
2 , f (0)

i ]
∥∥∥ +

∥∥∥[h
1
2ϕ(a)h

1
2 , f (1)

i ]
∥∥∥ +

3ε

4

<
ε

8
+

ε

8
+

3ε

4
= ε (by (4.14), (4.15) and (4.17)).

Moreover, applying Lemma 4.5 with (4.16) and (4.19), together with (4.20), one
has

τ (φ(1k)) ≈ ε
4
τ (h

1
2ϕ(1k)h

1
2 ) = τ (hϕ(1k)) > 1 − ε

2
, ∀τ ∈ T(A),

as desired. "
Theorem 4.8. Let (X,Γ) be a free and minimal topological dynamical system with
the (URP) and (COS). If (X,Γ) has mean dimension zero, then (C(X)!Γ)⊗Z ∼=
C(X) ! Γ.

In particular, let (X1,Γ1) and (X2,Γ2) be two free minimal topological dynamical
systems with the (URP) and (COS), and zero mean dimension, then

C(X1) ! Γ1
∼= C(X2) ! Γ2

if, and only if,
Ell(C(X1) ! Γ1) ∼= Ell(C(X2) ! Γ2),
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where Ell(·) = (K0(·), K+
0 (·), [1], T(·), ρ, K1(·)) is the Elliott invariant. Moreover,

these C*-algebras are inductive limits of unital subhomogeneous C*-algebras.

Proof. It follows from Corollary 3.2 that C(X)!Γ is tracially 0-divisible. It follows
from Theorem 4.8 of [33] that C(X)!Γ has strict comparison of positive elements.
Together with Proposition 4.7 and the simplicity of C(X)!Γ, one has that C(X)!Γ
is tracially Z-stable. Since C(X) ! Γ is nuclear, it is Z-stable, as desired. "

Corollary 4.9. Let (X,Γ) be a free and minimal topological dynamical system with
mean dimension zero. Assume that

• either Γ = Zd for some d ≥ 1, or
• (X,Γ) is an extension of a Cantor system and Γ has subexponetial growth.

Then, the C*-algebra C(X) ! Γ is classified by the Elliott invariant and is an in-
ductive limit of unital subhomogeneous C*-algebras.

Proof. It follows from [33] and [32] that the dynamical systems being considered
have the (URP) and (COS). The statement then follows from Theorem 4.8. "

5. An alternative approach: mdim0 + URP ⇒ SBP

In this section, one considers the zero mean dimension together with the (URP),
and shows that these two conditions actually implies that the dynamical system
has the small boundary property (SBP). Together with [21] and [33], this gives
another proof of Theorem 4.8. One should note that the ideas of the (URP) have
been used in [28], [17], and [18] to show that zero mean dimension implies small
boundary property for Z or Zk-actions, and the proof of the following theorem
actually depends on [18].

Theorem 5.1. Let (X,Γ) be a free topological dynamical system with the (URP).
If

mdim(X,Γ) = 0,

then (X,Γ) has the (SBP).

Proof. It follows from Lemma 5.5 and Corollary 5.4 of [18] that, in order to show
that (X,Γ) has the (SBP), it is enough to show that for any continuous function
f : X → R and any ε > 0, there is a continuous function g : X → R such that

(1) ‖f − g‖ < ε, and
(2) ocap({x ∈ X : g(x) = 0}) < ε.

Let f : X → R and ε > 0 be given. Pick U to be a finite open cover of X such
that

(5.1) |f(x) − f(y)| <
ε

3
, ∀x, y ∈ U, ∀U ∈ U .

Since mdim(X,Γ) = 0, there is (K, ε′), where K ⊆ Γ is a finite set and ε′ > 0,
such that if Γ0 ⊆ Γ is (K, ε′)-invariant, there is an open cover V such that

(1) V refines
∧

γ∈Γ0
Uγ, and

(2) ord(V) < ε
3 |Γ0|.

Since (X,Γ) has the (URP), there are closed sets B1, B2, . . . , BS and (K, ε′)-
invariant sets Γ1,Γ2, . . . ,ΓS ⊆ Γ such that

Bsγ, ∀γ ∈ Γs, 1 ≤ s ≤ S
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are mutually disjoint and

(5.2) ocap(X \
S⊔

s=1

⊔

γ∈Γs

Bsγ) <
ε

3
.

Pick a small neighborhood Us of each Bs, s = 1, 2, . . . , S, such that

Usγ, ∀γ ∈ Γs, 1 ≤ s ≤ S,

are still mutually disjoint.
For each s = 1, 2, . . . , S, since Γs is (K, ε′)-invariant, there is an open cover V of

X such that

(1) V refines
∧

γ∈Γ0
Uγ, and

(2) ord(V) < ε
3 |Γs|.

Then, consider the collection of open sets

Vs := {V ∩ Us : V ∈ V}.

Note that Vs covers Bs and for any V ∈ Vs and any γ ∈ Γs, there is U ∈ U such
that

V γ ⊆ U.

For each Vs, s = 1, 2, . . . , S, pick continuous functions

φ(s)
V : X → [0, 1], V ∈ Vs

such that

(φ(s)
V )−1((0, 1]) ⊆ V, ∀V ∈ Vs,

∑

V ∈Vs

φ(s)
V (x) ≤ 1, ∀x ∈ X, and

∑

V ∈Vs

φ(s)
V (x) = 1, ∀x ∈ Bs.

Also define

Ws = {x ∈ X :
∑

V ∈Vs

φ(s)
V (x) > 0} ⊆ Us.

For each Vs, s = 1, 2, . . . , S, also consider the simplicial complex ∆s spanned by
[V ], V ∈ Vs, with

[V0], [V1], . . . , [Vd]

span a simplex if and only if

V0 ∩ V1 ∩ · · · ∩ Vd >= ∅.

Note that

(5.3) dim(∆s) = ord(Vs) ≤ ord(V) ≤ ε

3
|Γs| .

Define the map

(5.4) ηs : X 2 x 3→
∑

V ∈Vs

φ(s)
V (x)[V ] ∈ C∆s,
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where C∆s is the cone over ∆s, i.e., C∆s consists of

t0[V0] + · · · + td[Vd],
d∑

i=0

ti ≤ 1, ti ∈ [0, 1], i = 0, 1, . . . , d,

whenever V0, V1, . . . , Vd ∈ Vs satisfy

V0 ∩ · · · ∩ Vd >= ∅.

Assume all of the cones C∆s, s = 1, 2, . . . , S, share the same zero vertex, which is
denoted by 0. Note that

ηs(Bs) ⊆ ∆s.

For each V ∈ Vs, pick a point x∗
V ∈ V , and define

f̃ = f · (1 −
S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

(φ(s)
V ◦ γ−1)) +

S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

f(x∗
V γ)(φ(s)

V ◦ γ−1) ∈ C(X).

Then, using (5.1) in the last step, one has that, for any x ∈ X,
∣∣∣f(x) − f̃(x)

∣∣∣

=

∣∣∣∣∣∣
f(x)−(f(x)(1 −

S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

φ(s)
V (xγ−1))+

S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

f(x∗
V γ)φ(s)

V (xγ−1))

∣∣∣∣∣∣

=

∣∣∣∣∣∣
f(x)(1 −

S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

φ(s)
V (xγ−1) +

S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

φ(s)
V (xγ−1))

−(f(x)(1 −
S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

φ(s)
V (xγ−1)) +

S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

f(x∗
V γ)φ(s)

V (xγ−1))

∣∣∣∣∣∣

=

∣∣∣∣∣∣

S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

(f(x) − f(x∗
V γ))φ(s)

V (xγ−1))

∣∣∣∣∣∣

≤
S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

|f(x) − f(x∗
V γ)|φ(s)

V (xγ−1))

<
ε

3
.

That is,

(5.5)
∥∥∥f − f̃

∥∥∥ <
ε

3
.

Define the linear function Fs : C∆s → R|Γs| by

Fs([V ]) =
⊕

γ∈Γs

f(x∗
V γ) ∈ R|Γs|;

that is

Fs(t0[V0] + t1[V1] + · · · + td[Vd]) =
⊕

γ∈Γs

(
d∑

i=0

tif(x∗
Vi
γ)) ∈ R|Γs|,

whenever V0 ∩ V1 ∩ · · · ∩ Vd >= ∅. (In particular, Fs(0) = 0.)
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Then, together with (5.4), one has

f̃ = f(1 −
S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

(φ(s)
V ◦ γ−1)) +

S∑

s=1

∑

γ∈Γs

πs,γ ◦ Fs ◦ ηs ◦ γ−1,

where πs,γ is the projection of R|Γs| to the γ-coordinate.
Consider the restriction Fs|∆s , and apply Lemma 5.7 of [18] to ∆s; there is a

linear map F̃s : ∆s → R|Γs| such that

(5.6)
∥∥∥Fs(x) − F̃s(x)

∥∥∥
∞

<
ε

3
, x ∈ ∆s,

and

(5.7)
∣∣∣{γ ∈ Γs : πs,γ(F̃s(x)) = 0}

∣∣∣ ≤ dim∆s, x ∈ ∆s.

Extend F̃s to C∆s linearly by assigning F̃s(0) = 0, and still denote it by F̃s.
Since the map Fs is linear on C∆s and Fs(0) = 0, by (5.6) and (5.7), one has

(5.8)
∥∥∥Fs(x) − F̃s(x)

∥∥∥
∞

<
ε

3
, x ∈ C∆s,

and

(5.9)
∣∣∣{γ ∈ Γs : πs,γ(F̃s(x)) = 0}

∣∣∣ ≤ dim∆s, x ∈ C∆s \ {0}.

Put

(5.10) g = f(1 −
S∑

s=1

∑

γ∈Γs

∑

V ∈Vs

(φ(s)
V ◦ γ−1)) +

S∑

s=1

∑

γ∈Γs

πs,γ ◦ F̃s ◦ ηs ◦ γ−1,

and then, for any x ∈ X,
∣∣∣f̃(x) − g(x)

∣∣∣

=

∣∣∣∣∣∣

S∑

s=1

∑

γ∈Γs

πs,γ ◦ Fs ◦ ηs(xγ
−1) −

S∑

s=1

∑

γ∈Γs

πs,γ ◦ F̃s ◦ ηs(xγ
−1)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

S∑

s=1

∑

γ∈Γs

(πs,γ ◦ Fs ◦ ηs(xγ
−1) − πs,γ ◦ F̃s ◦ ηs(xγ

−1))

∣∣∣∣∣∣
.

If x /∈
⊔S

s=1

⊔
γ∈Γs

Wsγ, then

ηs(xγ
−1) = 0, γ ∈ Γs, s = 1, . . . , S.

Hence

πs,γ ◦ Fs ◦ ηs(xγ
−1) = πs,γ ◦ F̃s ◦ ηs(xγ

−1) = 0, γ ∈ Γs, s = 1, . . . , S,

and

(5.11) f̃(x) = g(x).

If x ∈
⊔S

s=1

⊔
γ∈Γs

Wsγ ⊆
⊔S

s=1

⊔
γ∈Γs

Usγ, then there exist s0 ∈ {1, . . . , S} and
γ0 ∈ Γs0 such that

x is only in Us0γ0.

Then
ηs(xγ

−1) = 0, γ ∈ Γs, s >= s0,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Z-STABILITY OF TRANSFORMATION GROUP C*-ALGEBRAS 7547

and
ηs0(xγ

−1) = 0, γ >= γ0.

Hence, by (5.8),
∣∣∣∣∣∣

S∑

s=1

∑

γ∈Γs

(πs,γ ◦ Fs ◦ ηs(xγ
−1) − πs,γ ◦ F̃s ◦ ηs(xγ

−1))

∣∣∣∣∣∣

=
∣∣∣πs0,γ0 ◦ Fs0 ◦ ηs0(xγ

−1
0 ) − πs0,γ0 ◦ F̃s0 ◦ ηs0(xγ

−1
0 )

∣∣∣

<
ε

3
,

and ∣∣∣f̃(x) − g(x)
∣∣∣ <

ε

3
.

Together with (5.11), one has ∥∥∥f̃ − g
∥∥∥ <

ε

3
;

and together with (5.5), one has

‖f − g‖ <
2ε

3
< ε.

Let us estimate
ocap({x ∈ X : g(x) = 0}).

First, note that for an arbitrary x ∈ Bs, where s ∈ {1, 2, . . . , S}, one has that
ηs(x) >= 0, and hence by (5.9),

(5.12) |{γ ∈ Γs : g(xγ) = 0}| =
∣∣∣{γ ∈ Γs : πs,γ(F̃s(ηs(x))) = 0}

∣∣∣ ≤ dim∆s.

Let Γ0 ⊆ Γ be a finite set which is sufficiently invariant such that

(5.13)

∣∣∣int⋃S
s=1(Γ

2
s)−1Γ0

∣∣∣
|Γ0|

> 1 − ε

3
,

and (by (5.2)),

(5.14)
1

|Γ0|

∣∣∣∣∣∣
{γ ∈ Γ0 : xγ ∈ X \

S⊔

s=1

⊔

γ∈Γs

Bsγ}

∣∣∣∣∣∣
<

ε

3
, x ∈ X.

Let x ∈ X be arbitrary, and consider the orbit xΓ. The partition

X = (X \
S⊔

c=1

⊔

γ∈Γs

Bsγ) ?
S⊔

c=1

⊔

γ∈Γs

Bsγ

induces a partition of xΓ; since the action is free, this induces a partition of Γ:

Γ = Λ ?
∞⊔

i=1

ciΓs(i),

where

Λ = {γ ∈ Γ : xγ ∈ X \
S⊔

s=1

⊔

γ∈Γs

Bsγ},

s(i) ∈ {1, 2, . . . , S} and ci ∈ Γ, i = 1, 2, . . . ,
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satisfy

(5.15) xci ∈ Bs(i).

Restrict this partition to Γ0, one has

(5.16) Γ0 = (Γ0 ∩ Λ) ∪
⊔

ciΓs(i)!Γ0

(Γ0 ∩ (ciΓs(i))) ∪
⊔

ciΓs(i)⊆Γ0

ciΓs(i).

A straightforward calculation shows that if γ ∈ Γ0 ∩ (ciΓs(i)) and ciΓs(i) % Γ0,
then γ /∈ int(Γ2

s(i)
)−1Γ0. Therefore

⊔

ciΓs(i)!Γ0

(Γ0 ∩ ciΓs(i)) ⊆ Γ0 \ int⋃S
s=1(Γ

2
s(i)

)−1(Γ0) =: ∂⋃S
s=1(Γ

2
s(i)

)−1Γ0,

and, by (5.16), (5.15), (5.12), (5.14), (5.13), and (5.3),

1

Γ0
|{γ ∈ Γ0 : g(xγ) = 0}|

=
|Γ0 ∩ Λ|

|Γ0|
+

∣∣∣
⊔

ciΓs(i)!Γ0
(Γ0 ∩ ciΓs(i))

∣∣∣
|Γ0|

+
1

|Γ0|
∑

ciΓs(i)⊆Γ0

∣∣{γ∈ciΓs(i) : g(xγ)=0}
∣∣

=
|Γ0 ∩ Λ|

|Γ0|
+

∣∣∣
⊔

ciΓs(i)!Γ0
(Γ0 ∩ ciΓs(i))

∣∣∣
|Γ0|

+
1

|Γ0|
∑

ciΓs(i)⊆Γ0

∣∣{γ∈Γs(i) : g((xci)γ)=0}
∣∣

≤ |Γ0 ∩ Λ|
|Γ0|

+

∣∣∣∂⋃S
s=1(Γ

2
s(i)

)−1Γ0

∣∣∣
|Γ0|

+
1

|Γ0|
∑

ciΓs(i)⊆Γ0

dim∆s(i)

≤ ε

3
+

ε

3
+

∑
ciΓs(i)⊆Γ0

dim∆s(i)
∑

ciΓs(i)⊆Γ0

∣∣Γs(i)

∣∣

<
2ε

3
+

ε

3
= ε.

Since x is arbitrary, this implies

ocap({x ∈ X : g(x) = 0}) < ε,

as desired. "

Remark 5.2. Note that if Γ = Zd, it follows from Theorem 1.10.1 and Theorem
1.10.3 of [17] that

TRP + mdim0 ⇔ SBP,

where TRP stands for the Topological Rokhlin Property in the sense of 1.9 of [17]
(edim(X, Zd) ≤ l densely for some l ∈ N is actually not needed in Theorem 1.10.3).
It is easy to see that URP implies TRP. Therefore, in this case, the statement of
Theorem 5.1 is covered by Theorem 1.10.3 of [17]. It was also proved later in [18]
(Corollary 5.4) that

mdim0 ⇔ SBP

for any Zd-actions with marker property.

With the Uniform Property Gamma and [2], Kerr and Szabo has the following:
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Theorem 5.3 (Corollary 9.5 of [21]). Assume that (X,Γ) has the (SBP). Then,
C(X) ! Γ has the strict comparison if and only if it is Z-stable.

Thus, together with Theorem 5.1 and Theorem 4.8 of [33], one has the following:

Alternative proof of Theorem 4.8. Since (X,Γ) is assumed to have the (URP) and
mdim0, by Theorem 5.1, it has the (SBP). Therefore, by Theorem 5.3, in order to
prove the theorem, it is enough to show that C(X)!Γ has the strict comparison of
positive elements. But since (X,Γ) has the (COS) and mdim0, the strict comparison
property follows from Theorem 4.8 of [33]. "
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