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Abstract

Detecting when the underlying distribution changes for the observed time series is a fun-
damental problem arising in a broad spectrum of applications. In this paper, we study
multiple change-point localization in the high-dimensional regression setting, which is par-
ticularly challenging as no direct observations of the parameter of interest is available.
Specifically, we assume we observe {xt, yt}nt=1 where {xt}nt=1 are p-dimensional covariates,
{yt}nt=1 are the univariate responses satisfying E(yt) = x>t β

∗
t for 1 ≤ t ≤ n and {β∗t }nt=1

are the unobserved regression coefficients that change over time in a piecewise constant
manner. We propose a novel projection-based algorithm, Variance Projected Wild Binary
Segmentation (VPWBS), which transforms the original (difficult) problem of change-point
detection in p-dimensional regression to a simpler problem of change-point detection in
mean of a one-dimensional time series. VPWBS is shown to achieve sharp localization
rate Op(1/n) up to a log factor, a significant improvement from the best rate Op(1/

√
n)

known in the existing literature for multiple change-point localization in high-dimensional
regression. Extensive numerical experiments are conducted to demonstrate the robust and
favorable performance of VPWBS over two state-of-the-art algorithms, especially when the
size of change in the regression coefficients {β∗t }nt=1 is small.
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1. Introduction

Change-point detection and localization is a classical problem in time series analysis, in
which we record a series of measurements and wish to determine whether and at what
time(s) the underlying generative model has changed. Due to its flexibility, the model of
a time series with multiple structural changes has a wide range of applications including
econometrics [Bai and Perron (1998)], epidemiology [Jiang et al. (2021)], stock price analysis
[Chen and Gupta (1997)], Internet security monitoring [Peng et al. (2004)], and genetics
[Castro et al. (2018); Zhao and Yau (2021)].

Change-point detection is mostly studied and well understood in the mean change-point
model, where we typically assume we observe a time series {yt}nt=1 ⊂ Rp such that

yt = β∗t + εt, for all 1 ≤ t ≤ n.

Here {εt}nt=1 are independently and identically distributed measurement noise with mean
zero and {β∗t }nt=1 are the population mean vectors that change over time in a piecewise
constant manner. The important task is to determine whether and where the structural
changes of {β∗t }nt=1 take place. There is a vast literature of change-point detection in mean
for both low and high dimensions, see for example Frick et al. (2014), Cho and Fryzlewicz
(2015), Cho et al. (2016), Yau and Zhao (2016) and Wang and Samworth (2018). More
recently, Pein et al. (2017) introduced a method that can handle mean and variance changes
simultaneously. Cribben and Yu (2017), Wang et al. (2021) and Zhao et al. (2019), among
others, investigated the mean change-point problem for the dynamic Bernoulli network
models. Enikeeva and Harchaoui (2019) studied the optimal change point detection bound-
ary in the high-dimensional settings. Xie et al. (2020) considered online monitoring change
point detection for streaming data in high dimensions.

However, in some other practical settings , we can only obtain indirect measurements of
the (potentially high-dimensional) vectors {β∗t }nt=1. Specifically, in this paper, we consider
change-point detection in high-dimensional linear regression. We assume we observe the
time series {xt, yt}nt=1, where {xt}nt=1 are p-dimensional covariates, {yt}nt=1 are the univariate
responses satisfying E(yt|xt) = x>t β

∗
t for all 1 ≤ t ≤ n and {β∗t }nt=1 are the unobserved

regression coefficients that potentially change over time. We formally summarize the model
as follows.

Model 1 (Change-point model in the regression setting) Suppose for 1 ≤ t ≤ n,
the random covariate xt ∈ Rp and response yt ∈ R satisfy

yt = x>t β
∗
t + εt, (1)

where the noise εt
i.i.d.∼ N (0, σ2

ε) and is independent of the covariate xt
i.i.d.∼ N (0,Σ)1. In

addition, there exist K ≥ 0 change-points {ηk}Kk=1 ⊂ {1, . . . , n− 1} such that

β∗t = β∗t′ if ηk−1 + 1 ≤ t ≤ t′ ≤ ηk, for all k = 1, · · · ,K + 1,

where by convention we define η0 = 0 and ηK+1 = n.

1. We assume for convenience that εt and xt are normally distributed. However our results remain valid as
long as εt and xt are i.i.d. sub-Gaussian random variables.
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Notation: Before we proceed, for clarity of presentation, we first introduce necessary
notation used throughout the paper. For two positive sequences {an}∞n=1 and {bn}∞n=1, we
write an = O(bn) if there exists C > 0 such that lim supn→∞ an/bn < C and write an � bn
or an = Θ(bn) if an = O(bn) and bn = O(an). We write an � bn if lim infn→∞ an/bn = ∞.
Let {xn}∞n=1 be a sequence of random variables. We write xn = Op(bn) if xn/bn = Op(1) and
write xn = op(bn) if xn/bn = op(1), where Op(1) and op(1) follow the standard probability
notation of big O (stochastic boundedness) and small o (convergence to zero in probability).

For a vector β ∈ Rp, denote ‖β‖2 =
√∑p

i=1 β
2
i as its l2 norm, denote ‖β‖∞ = max1≤i≤p |βi|

as its l∞ norm, and denote ‖β‖0 =
∑p

i=1 I(βi 6= 0) as its l0 norm, where βi denotes the
ith element of β and I is the indicator function. Given two natural numbers s < e, for
simplicity, with a slight abuse of notation, we denote [s, e] := {t ∈ N|s ≤ t ≤ e} and denote
(s, e] := {t ∈ N|s < t ≤ e}. In other words, [s, e] contains all natural numbers from s to
e (inclusive) and (s, e] contains all natural numbers from s+ 1 to e (inclusive). Throughout
the paper, we use c and C to denote generic absolute constants independent of n and p,
and the value of c and C may vary from place to place.

For change-point detection in Model (1), the key task is to estimate the unknown
{ηk}Kk=1. For any change-point estimator {η̂k}K

′
k=1, we say it is consistent if, with prob-

ability approaching 1, K ′ = K and the sup-norm error satisfies

ε := max
1≤k≤K

|η̂k − ηk|
n

= op(1). (2)

for all sufficiently large n.
In the literature, change-point detection for low-dimensional (p � n) linear regression

models has been extensively studied by many authors including Bai and Perron (1998), Qu
and Perron (2007), and more recently Zhang et al. (2015b). Most of the existing works in
this setting focus on the case where the number of change-points, K, is a fixed constant.

Change-point detection for the high-dimensional linear regression model where p � n,
has also received recent attention. In particular, Lee et al. (2016) extended Lasso to the
high-dimensional single change-point setting and showed that both the change-point and
the regression parameters {β∗t }nt=1 can be consistently estimated. Later, Lee et al. (2018)
extended their results to the high-dimensional quantile regression model. Kaul et al. (2019)
proposed a highly efficient algorithm for the setting of exactly one change-point. Both Lee
et al. (2016) and Kaul et al. (2019) showed that in the single change-point setting, the
change-point can be estimated with sup-norm error satisfying ε = Op(1/n). Zhang et al.
(2015a) studied the Sparse Group Lasso (SGL) algorithm for the multiple change-points
setting. The authors showed that SGL returns consistent change-point estimators with
ε = op(1) when the number of change-points K is bounded. Leonardi and Bühlmann (2016)
showed that, by using a binary search algorithm, consistent estimation can be achieved with
ε = Op(1/

√
n) even when the number of change-points K diverges as n→∞.

In this paper, we focus on the high-dimensional regime (p� n) and propose a compu-
tationally efficient algorithm that can consistently estimate the unknown multiple change-
points at the minimax optimal localization rate Op(1/n) up to a log factor. To the best
of our knowledge, no other method in the literature can achieve this rate for multiple
change-points estimation under such setting. We refer to more detailed discussion of our
contribution at the end of this section.
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We proceed by imposing some mild general assumptions on the high-dimensional regres-
sion setting in Model (1) and define key quantities that are used to quantify the localization
error rate and requirements on the signal-to-noise ratio (SNR) of various change-point es-
timation methods for Model (1).

Assumption 1
a. [Design matrix] There exist absolute positive constants cx and Cx such that the minimal
and maximal eigenvalues of the covariance matrix Σ satisfy Λmin(Σ) ≥ cx and Λmax(Σ) ≤
Cx.
b. [Sparse support] There exist a collection of subsets {Sk}K+1

k=1 ⊂ Rp such that, for all
k = 1, · · · ,K + 1,

β∗t,j = 0 if ηk−1 + 1 ≤ t ≤ ηk+1 and j 6∈ Sk.

In addition, the size of the support satisfies max1≤k≤K+1 |Sk| ≤ s and there exists an absolute
constant Cβ such that max1≤t≤n ‖β∗t ‖∞ ≤ Cβ <∞.

Key quantities: Define N := max1≤t≤n ‖β∗t ‖22. By Assumption 1b, we have N ≤ C2
βs.

Moreover, by Assumption 1a, we have Var(yt) = β∗>t Σβ∗t + σ2
ε > cx‖β∗t ‖22, and thus N <

max1≤t≤n Var(yt)/cx. For k = 1, · · · ,K + 1, denote ∆k = ηk − ηk−1 as the spacing between
two consecutive change-points and define ∆ = min1≤k≤K+1 ∆k as the minimum spacing.
In addition, for k = 1, · · ·K, denote κk =

∥∥β∗ηk+1 − β∗ηk
∥∥

2
as the l2-norm of the change in

regression coefficients and define κ = min1≤k≤K κk as the minimum change size. Intuitively,
the difficulty of change-point detection for Model 1 depends on the interplay among K, κ,
∆, s, the dimension p and the sample size n.

We remark that our later theoretical analysis allows the number of change-points K,
the minimum change size κ, the minimum spacing ∆, the sparsity s and the dimension p
to vary with the sample size n. To our best knowledge, this is among the most flexible
frameworks in the literature.

Our contributions: For change-point estimation in the high-dimensional regression
model, we propose a novel two-stage detection procedure named Variance Projected Wild
Binary Segmentation (VPWBS). Given the observations {xt, yt}nt=1, in Stage 1, VPWBS
estimates the regression coefficients {β∗t }nt=1 using a group Lasso based local screening
algorithm carefully tailored for the high-dimensional regression change-point setting. In
Stage 2, via a novel projection step, VPWBS projects the high-dimensional regression data
{xt, yt}nt=1 into a one-dimensional time series, where the optimal projection direction is de-

rived from the estimated {β̂t}nt=1 in Stage 1. Subsequently, VPWBS achieves change-point
estimation by performing mean change detection via CUSUM statistics on the resulting
one-dimensional time series.

Our theoretical analysis shows that VPWBS can achieve consistent estimation even
when the number of change-points K diverges as n→∞. Furthermore, the sup-norm error
ε (defined in (2)) of the VPWBS change-point estimator is, up to a log factor, of order
Op(1/n), which is the known minimax optimal rate. To the best of our knowledge, this
is a significant improvement for multiple change-point estimation in the high-dimensional
regression setting, as the aforementioned existing literature can only achieve ε = Op(1/

√
n)

at best. A key step of VPWBS is the estimation of an optimal projection direction. In the
theoretical analysis, we establish error bounds on the estimated high-dimensional projection
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direction, which may be of independent interest. VPWBS admits a reasonable computa-
tional cost of order O(n(log(n))2 · GroupLasso(n, p)), which enables its implementation in
the high-dimensional regression setting. Here GroupLasso(n, p) denotes the computational
cost of the group Lasso for a p-dimensional regression with n samples. Similar definition
applies to Lasso(n, p). We summarize the localization error bound and computational cost
of VPWBS and two other state-of-the-art methods in Table 1 and refer more detailed dis-
cussions to Sections 3 and 4.

Localization Error Bound ε SNR Condition Computational Complexity

VPWBS Op
(
N log(n)n−1

)
∆κ2 � s log(pn) O(n(log(n))2 ·GroupLasso (n, p))

EBSA Op
(
s log(p)n−1/2

)
∆κ2 � Ns log(p) O(n log(n) · Lasso (n, p))

SGL op(1) ∆κ2 � n O(Lasso(n, np))

Table 1: SGL (Zhang et al., 2015b) and EBSA (Leonardi and Bühlmann, 2016) are
two state-of-the-art methods developed for change-point estimation in high-
dimensional regression. Recall N ≤ C2

βs and we refer the detailed definition of
notation n, p,∆, κ, s,N to Assumption 1 and the discussion on key quantities.

The rest of the paper is organized as follows. In Section 2, we introduce the projec-
tion based change-point estimation framework and a group Lasso based local screening
algorithm for the estimation of the optimal projection direction. Building upon wild bi-
nary segmentation, Section 3 proposes the VPWBS for multiple change-point estimation
in high-dimensional regression and further establishes its optimal theoretical properties.
Extensive numerical experiments are conducted in Section 4 to demonstrate the promising
performance of VPWBS when compared with state-of-the-art methods in the literature.
Section 5 concludes with a discussion. Technical proofs can be found in the supplementary
material.

2. A General Framework and Group Lasso Based Screening

In this section, we introduce the general framework of the proposed change-point estimation
procedure for the high-dimensional regression problem in Model (1). Specifically, Section
2.1 discusses the essential idea of a projection based change-point detection framework and
Section 2.2 proposes a group Lasso based screening algorithm for estimating the unknown
projection direction.

2.1 A projection based change-point estimation framework

To ease presentation, we start the discussion with the problem of single change-point
estimation. Specifically, given a sample of high-dimensional regression {xt, yt}nt=1 with
yt = x>t β

∗
t + εt, assume there is a single change-point at an unknown time point η such that

β∗t = β(1) for 1 ≤ t ≤ η and β∗t = β(2) for η + 1 ≤ t ≤ n.
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To detect the existence of η and further estimate its location, we need to measure and test
the difference between the unknown regression coefficients β(1) and β(2).

For two regression coefficients β(1) and β(2), it is natural to directly measure their differ-
ence via the l2-norm ‖β(1)−β(2)‖22. However, under the regression context, an arguably more
relevant alternative is (β(1) − β(2))>Σ(β(1) − β(2)), which equals to Var(x>t (β(1) − β(2))) as
Var(xt) = Σ. Note that under Assumption 1a, we have that

cx‖β(1) − β(2)‖22 ≤ (β(1) − β(2))>Σ(β(1) − β(2)) ≤ Cx‖β(1) − β(2)‖22.

Thus, in terms of theoretical magnitude, ‖β(1) − β(2)‖22 and (β(1) − β(2))>Σ(β(1) − β(2))
are the same and both can capture the change in the regression coefficient. However,
compared to ‖β(1) − β(2)‖22, the quantity (β(1) − β(2))>Σ(β(1) − β(2)) further incorporates
the covariance structure Σ of the covariates and thus can better reflect the difference be-
tween two regression models y = x>β(1) + ε and y = x>β(2) + ε. We therefore prefer
(β(1) − β(2))>Σ(β(1) − β(2)) for change-point estimation. We remark that (β(1) − β(2))>Σ(β(1) − β(2))
is closely related to the explained variance in the regression literature, see for example Cai
and Guo (2020).

For any 1 ≤ m ≤ n − 1, define β
(1)
m =

∑m
t=1 β

∗
t /m and β

(2)
m =

∑n
t=m+1 β

∗
t /(n − m).

Note that β
(1)
m and β

(2)
m are the unique minimizer of the population squared loss func-

tion E(
∑m

t=1(yt − x>t β)2) and E(
∑n

t=m+1(yt − x>t β)2), respectively. As a function of m,

(β
(1)
m − β(2)

m )>Σ(β
(1)
m − β(2)

m ) achieves its maximum at the true change-point m = η due

to the fact that β
(1)
m − β

(2)
m = min( ηm ,

n−η
n−m)(β(1) − β(2)). Thus, the sample estimate of

(β
(1)
m − β(2)

m )>Σ(β
(1)
m − β(2)

m ) can be valuable for the detection and estimation of η.

Given a time point m, to estimate (β
(1)
m − β(2)

m )>Σ(β
(1)
m − β(2)

m ), a natural choice is

the plug-in estimator. Specifically, via a penalized M-estimator, we can obtain β̂
(1)
m from

{xt, yt}mt=1 and β̂
(2)
m from {xt, yt}nt=m+1. Combined with a covariance matrix estimator Σ̂,

the plug-in estimator takes the form (β̂
(1)
m − β̂(2)

m )>Σ̂(β̂
(1)
m − β̂(2)

m ). This in some sense resem-
bles the classical Wald-type statistics used in the change-point literature, see for example
Richard A. Davis (1995) and Hušková et al. (2007). However, the plug-in estimator requires
the estimation of Σ. Without strong structural assumptions on Σ, this is known to be a
difficult task in high dimensions.

To bypass this difficulty, we slightly alter the estimation target and propose an al-
ternative estimator via projection. Specifically, given a p-dimensional unit vector u with
‖u‖2 = 1, we define the one-dimensional variance-projected time series {zt(u)}nt=1 as

zt(u) = u>xtyt, for t = 1, · · · , n.

A key observation is that {zt(u)}nt=1 has a single change-point in mean at time point η as
long as u>Σ(β(1) − β(2)) 6= 0. Importantly, if u = (β(1) − β(2))/‖β(1) − β(2)‖2, we have that

E

(
1

m

m∑
t=1

zt(u)− 1

n−m

n∑
t=m+1

zt(u)

)
= u>Σ(β(1)

m − β(2)
m )

= min(
η

m
,
n− η
n−m

)
(β(1) − β(2))>Σ(β(1) − β(2))

‖β(1) − β(2)‖2
, (3)
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which is proportional to the key quantity (β(1) − β(2))>Σ(β(1) − β(2)) and also achieves its
maximum at m = η. Note that we further have

(3) ≥ min(
η

m
,
n− η
n−m

)cx‖β(1) − β(2)‖2.

Thus, the projection direction u = (β(1) − β(2))/‖β(1) − β(2)‖2 is optimal in the sense that
it preserves the original change size ‖β(1) − β(2)‖2 of the regression coefficients. Therefore,
if the projection direction u is reasonably aligned with β(1) − β(2), we can efficiently detect
and estimate the change-point η by performing change-point estimation in mean on the
univariate time series {zt(u)}nt=1. To estimate the optimal projection direction, in Section
2.2, we propose a group Lasso based local screening (LGS) algorithm which provides an
estimated β̂(1) − β̂(2).

Note that the above projection framework loses its intuition and becomes less effective
when {xt, yt}nt=1 contains multiple change-points. To tackle this issue, in Section 3, we
further combine the projection idea with the wild binary segmentation (WBS) in Fryzlewicz
(2014) and propose a multiple change-point detection algorithm named variance-projected
WBS (VPWBS). Roughly speaking, the strategy is to perform the projection based change-
point detection for {xt, yt}nt=1 on many randomly generated intervals {(am, bm]}Mm=1 with
1 ≤ am + 1 < bm ≤ n, instead of focusing on the whole sample on (0, n]. The hope is that
for a sufficiently large M , some random intervals will contain only one change-point and
the projection based detection method will succeed.

An illustrative example: To facilitate understanding, we provide an illustrative ex-
ample of how VPWBS works in practice. Specifically, we generate the data {xt, yt}nt=1

according to simulation setting (i) in Section 4.2, where we have n = 300, p = 100 and there
are two change-points of {β∗t }nt=1 at η1 = 100 and η2 = 200 with change size κ = 1.6

√
40.

For illustration, we focus on one of the randomly generated intervals (104, 290], which con-
tains a single change-point at η2 = 200. Figure 1(a)-(b) plots the subsample observations
{xt, yt}290

t=105, where no clear pattern of changes can be seen. Based on the above discussion,
the optimal projection direction is

u∗ = (β∗η2 − β
∗
η2+1)/‖β∗η2 − β

∗
η2+1‖2 = (1,−1, 1,−1 . . . ,−1︸ ︷︷ ︸

10

, 0, . . . , 0︸ ︷︷ ︸
90

)/
√

10.

Figure 1(c) plots the projected univariate time series {zt(u∗) = u∗>xtyt}290
t=105 and its one-

dimensional CUSUM statistics (see definition in (5) later). Note that there is a clear pattern
of mean change for {zt(u∗)}290

t=105 around the true change-point η2 = 200 and the CUSUM
statistics is indeed maximized at t = 200. Figure 1(d) plots the projected univariate time
series {zt(û) = û>xtyt}290

t=105 and its CUSUM statistics, where û is estimated by the LGS
algorithm in Section 2.2 using {xt, yt}290

t=105 As can be seen, Figure 1(d) closely resembles
Figure 1(c) and thus confirms the success of the proposed projection based change-point
estimation framework.

Remark 1 Given the estimated p-dimensional vector β̂(1)− β̂(2), an intuitive and tempting
alternative option is to detect change-points directly based on ‖β̂(1) − β̂(2)‖22. However, we
remark that the extra projection step in our proposed framework helps further turn (and
simplify) the p-dimensional problem into one-dimensional change-point detection in mean.
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Figure 1: Plots of (a) {xt}290
t=105 (b) {yt}290

t=105 (c) {zt(u∗)}290
t=105 and its CUSUM statistics

(d) {zt(û)}290
t=105 and its CUSUM statistics.

This projection step acts as a refinement and is essential for the proposed method to achieve
the minimax optimal rate (up to a log factor). In comparison, estimation error may accu-
mulate along the p coordinates for ‖β̂(1)− β̂(2)‖22, making its theoretical analysis much more
challenging. See Wang and Samworth (2018) for a similar observation in change-point
detection for high-dimensional mean.

2.2 Local Group Lasso Screening (LGS)

In this section, we propose a local group Lasso based screening (LGS) algorithm for es-
timating the optimal projection direction given the observed high-dimensional regression
{xt, yt}nt=1.
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Specifically, denote 1 ≤ s+ 1 < e ≤ n as the subsample index, LGS performs a variant
of the group Lasso on the subsample {xt, yt}et=s+1 and computes

(α̂1, α̂2, ν̂)← arg min
ν∈[s′+1,e′−1],
α1,α2∈Rp

{
ν∑

t=s+1

(yt − x>t α1

)2
+

e∑
t=ν+1

(yt − x>t α2)2

+λ

p∑
i=1

√
(ν − s)(α1,i)2 + (e− ν)(α2,i)2

}
,

(4)

where s′ and e′ serve as boundary trimming parameters with s + 1 ≤ s′ + 1 < e′ ≤ e, and
λ is the tuning parameter for the group penalty. In the following, for convenience, we set
s′ = s+ b(e− s)/10c and e′ = e−b(e− s)/10c, and summarize the detailed implementation
of LGS in Algorithm 1.

Algorithm 1 Local group Lasso based Screening. LGS ({xt, yt}nt=1, (s, e], λ).

INPUT: data {xt, yt}nt=1, subsample index (s, e], tuning parameter λ.
Set s′ = s+ b(e− s)/10c and e′ = e− b(e− s)/10c and compute

(α̂1, α̂2, ν̂)← arg min
ν∈[s′+1,e′−1],
α1,α2∈Rp

{
ν∑

t=s+1

(yt − x>t α1

)2
+

e∑
t=ν+1

(yt − x>t α2)2

+λ

p∑
i=1

√
(ν − s)(α1,i)2 + (e− ν)(α2,i)2

}
.

OUTPUT: {α̂1, α̂2, ν̂}.

The proposed LGS algorithm in (4) is different from the classical group Lasso or sparse
group Lasso, as LGS explicitly targets the single change-point alternative in its formu-
lation by incorporating two separate regression coefficients α1 and α2. Intuitively, when
the subsample is sufficiently large w.r.t. the signal-to-noise ratio (SNR) and contains only
one change-point η, the output α̂1 − α̂2 of LGS can estimate the optimal projection di-
rection β∗η − β∗η+1 accurately. Assumption 2 formalizes this intuition and Theorem 2
further establishes the approximation quality of α̂1 − α̂2. Recall the definition in Sec-
tion 1 that κ = min1≤k≤K

∥∥β∗ηk+1 − β∗ηk
∥∥

2
denotes the minimum change size and ∆ =

min1≤k≤K+1(ηk − ηk−1) denotes the minimum spacing between change-points.

Assumption 2
a. There exists an absolute constant Cκ such that

∥∥β∗ηk+1 − β∗ηk
∥∥

2
≤ Cκ for all k = 1, · · · ,K.

b. [SNR] We have ∆κ2 ≥ Csnrs log(pn) where Csnr = Csnr(n) is a diverging sequence as
n→∞.

Assumption 2a is a technical condition needed in the proof, which is also used in Lee
et al. (2016) and Kaul et al. (2019). Assumption 2b implies that ∆ ≥ Csnrκ

−2s log(pn) ≥
CsnrC

−2
κ s log(pn), which is the standard SNR condition in the Lasso literature. Note that

we require Csnr →∞ as n→∞, but the divergence rate can be arbitrarily slow.

9
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Theorem 2 Suppose Assumptions 1-2 hold and λ = Cλ
√

log(pn) for some sufficiently large
constant Cλ. Let (α̂1, α̂2, ν̂) be the output of LGS ({xt, yt}nt=1, (s, e], λ). Suppose that (s, e]
satisfies e− s ≥ ∆/2 and contains exactly one change-point η such that

min{η − s, e− η} ≥ e− s
10

.

Then with probability at least 1− 2(pn)−4, it holds that∥∥(α̂1 − α̂2)− (β∗η − β∗η+1)
∥∥

2
≤ cx

32Cx
‖β∗η − β∗η+1‖2.

Theorem 2 states that when the subsample {xt, yt}et=s+1 contains only one change-point
η and has sufficient number of observations, the proposed LGS algorithm can accurately
estimate the optimal projection direction β∗η − β∗η+1, which serves as the foundation for the
later theoretical analysis of the projection based framework.

3. Variance-Projected Wild Binary Segmentation

In this section, we formalize the discussion in Section 2 and present the variance-projected
wild binary segmentation (VPWBS) algorithm for multiple change-point estimation in high-
dimensional linear regression of Model (1).

Note that the LGS algorithm and the projection framework in Section 2 are discussed
under the single change-point scenario. To further extend to multiple change-point estima-
tion, VPWBS employs the mechanism of wild binary segmentation in Fryzlewicz (2014),
where the essential idea is to perform single change-point estimation on M randomly gen-
erated intervals {(am, bm]}Mm=1 where 1 ≤ am + 1 < bm ≤ n. For a sufficiently large M ,
with high probability, for every true change-point in {ηk}Kk=1, there exists at least one ran-
dom interval (am, bm] such that ηk is the only change-point contained in (am, bm]. More
specifically, the good event

M =

K⋂
k=1

{am ∈ Sk, bm ∈ Ek, for some m ∈ {1, 2, · · · ,M}}

will hold with high probability, where Sk = (ηk− 3∆/4, ηk−∆/2] and Ek = (ηk + ∆/2, ηk +
3∆/4], for k = 1, 2, · · · ,K. It is easy to see that if am ∈ Sk and bm ∈ Ek, we have (am, bm]
only contains a single change-point ηk, as by definition the minimum spacing between
two consecutive change-points is ∆. Theorem 3 later provides a rigorous bound for the
probability that event M holds.

Another issue that needs to be addressed is that for the projection idea in (3) to be theo-
retically valid, the projection direction u is required to be independent from the observations
{xt, yt}nt=1. To tackle this issue, we use sample splitting, a commonly used technique in high-
dimensional statistics, see for example Wang and Samworth (2018), Wang et al. (2021) and
Zou et al. (2020). Without loss of generality, we assume the original sample {xt, yt}2nt=1 is
of length 2n (i.e. even) and we estimate the projection direction using LGS on the oddly-

indexed observations {x(1)
t , y

(1)
t }nt=1 and perform change-point estimation on the projected

univariate series based on the evenly-indexed observations {x(2)
t , y

(2)
t }nt=1, where

(x
(1)
t , y

(1)
t ) = (x2t−1, y2t−1) and (x

(2)
t , y

(2)
t ) = (x2t, y2t) for t = 1, · · · , n.

10
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To summarize, VPWBS implements the following two-stage procedure. In the first
stage, given M random intervals {(am, bm]}Mm=1, the LGS in Algorithm 1 is implemented

on {x(1)
t , y

(1)
t }nt=1 for each of the M subsamples indexed by (am, bm] and returns M pro-

jection directions {um}Mm=1. In the second stage, based on {um}Mm=1 and {x(2)
t , y

(2)
t }nt=1,

we conduct mean change-point detection on the projected univariate time series {zt(um) =

u>mx
(2)
t y

(2)
t }

bm
t=am+1 for m = 1, · · · ,M via the classical CUSUM statistics. For a univariate

series {zt(um)}bmt=am+1 and am ≤ sm < ν < em ≤ bm, the CUSUM statistics computed on
{zt(um)}emt=sm+1 is defined as

Z̃sm,emν (um) =

√
em − ν

(em − sm)(ν − sm)

ν∑
t=sm+1

zt(um)−
√

ν − sm
(em − sm)(em − ν)

em∑
t=ν+1

zt(um).

(5)

We summarize the detailed description of VPWBS in Algorithm 2. In total, there are
four tuning parameters (M,λ, τ, ζ) of the algorithm, where M is the number of random
intervals, λ regulates the group Lasso penalty, τ is the threshold level of the maximum
CUSUM statistics and 2ζ is the minimum length required for a subsample (sm, em] to be
considered for change-point detection. Theorem 3 establishes the consistency and localiza-
tion rate of VPWBS and gives the theoretical orders required for the tuning parameters
(M,λ, τ, ζ). We refer more details to the discussion after Theorem 3.

We remark that the sample splitting step of VPWBS in Algorithm 2 is mainly needed
for establishing its theoretical validity in Theorem 3. In practice, we find that VPWBS is

often more efficient without sample splitting. In other words, we can set both {x(1)
t , y

(1)
t }nt=1

and {x(2)
t , y

(2)
t }nt=1 as the original sample in Algorithm 2. See Wang and Samworth (2018)

for similar phenomenon in high-dimensional mean change-point estimation. Recall from
Section 1 that N := max1≤t≤n ‖β∗t ‖22 and by assumption 1, we have N ≤ C2

βs and N <
max1≤t≤n Var(yt)/cx.

Theorem 3 Suppose Assumptions 1-2 hold. Let {(am, bm]}Mm=1 be a collection of inter-
vals whose end points are drawn independently and uniformly from {1, . . . , n} and that
max1≤m≤M (bm − am) ≤ CR∆ for some absolute constant CR > 0.

Let {η̂k}K̂k=1 be the estimated change-points by VPWBS with data {x(1)
t , y

(1)
t }nt=1, {x(2)

t , y
(2)
t }nt=1,

random intervals {(am, bm]}Mm=1, and tuning parameters λ > 0, τ > 0, ζ > 0, where

λ = Cλ
√

log(pn), τ = Cτ
√

(N + 1) log(n), and ζ = Cζ(N + 1) log(n)

for sufficiently large constants Cλ, Cτ and Cζ . Then there exists an absolute constant C
such that

P
{
K̂ = K; |ηk − η̂k| ≤

C(N + 1) log(n)

κ2
k

for all 1 ≤ k ≤ K
}

≥1− n−2 − exp

(
log
( n

∆

)
− M∆2

16n2

)
. (6)

Theorem 3 establishes the consistency of VPWBS and further provides the localization error
rate. Note that since N ≤ C2

βs and N < max1≤t≤n Var(yt)/cx, we have N = O(1) if the

11
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Algorithm 2 Variance-Projected Wild Binary Segmentation. VPWBS
({(am, bm]}Mm=1, λ, τ, ζ)

INPUT: 1st sample {x(1)
t , y

(1)
t }nt=1, 2nd sample {x(2)

t , y
(2)
t }nt=1, random intervals

{(am, bm]}Mm=1, tuning parameters λ > 0, τ > 0, ζ > 0.

Initialize the set of estimated change-points as S = ∅ and set (s, e] = (0, n].

Stage 1: LGS and projection
for m = 1, . . . ,M do

compute {α̂m1 , α̂m2 } ← LGS ({x(1)
t , y

(1)
t }nt=1, (am, bm], λ).

set the projection direction: um ← (α̂m2 − α̂m1 )/‖α̂m2 − α̂m1 ‖2.
set the projected univariate series: zt(um)← u>mx

(2)
t y

(2)
t for t ∈ (am, bm].

end for

Stage 2: WBS((s, e], {(am, bm]}Mm=1, τ, ζ )
for m = 1, . . . ,M do

(sm, em]← (s, e] ∩ (am, bm]
if em − sm ≥ 2ζ then

Dm ← arg maxsm+ζ≤t≤em−ζ |Z̃
sm,em
t (um)| . Recall Equation (5)

Am ← maxsm+ζ≤t≤em−ζ |Z̃
sm,em
t (um)|

else
Am ← −1

end if
end for
m∗ ← arg maxm=1,...,M Am
if Am∗ > τ then

add Dm∗ to the set S
WBS ((s,Dm∗ ], {(am, bm]}Mm=1, τ, ζ)
WBS ((Dm∗ , e], {(am, bm]}Mm=1, τ, ζ)

end if

OUTPUT: The set of estimated change-points S.

sparsity level s is a constant or the maximum variance of the response yt is upper bounded,
which is a rather mild condition. In such case, the localization error bound in Theorem 3
further implies

ε = max
1≤k≤K

|ηk − η̂k|
n

≤ max
1≤k≤K

C
log(n)

nκ2
k

,

where ε is the localization error defined in (2) and κk = ‖βηk −βηk+1‖2 is the change size at
ηk. Up to a log factor, this matches the well-known minimax optimal rate for change-point
estimation, see Wang et al. (2018) and references therein.

Theorem 3 requires max1≤m≤M (bm−am) ≤ CR∆, which essentially implies that the ran-
dom intervals cannot contain too many change-points. See similar assumptions in Kaul et al.
(2019). Note that if ∆ � n, the assumption becomes minimal as we can simply set CR∆ = n.
We remark that Theorem 3 still holds without the assumption max1≤m≤M (bm−am) ≤ CR∆,
however, the localization error rate in (6) will be inflated to (n/∆)2 · (C(N + 1) log(n)/κ2

k)

12
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by a factor (n/∆)2. This is a phenomenon commonly seen in the high-dimensional change-
point literature, see for example Wang and Samworth (2018), Wang et al. (2021) and Li
et al. (2021).

Discussion on tuning parameters (M,λ, τ, ζ): By the probability bound (6) in
Theorem 3, for the consistency of VPWBS, it is necessary to choose the number of random
intervals M � n2log(n)/∆2. In particular, suppose that ∆ � n (i.e. there are finite number
of change-points), it suffices to choose M = (log(n))2. The tuning parameter λ is needed in
the LGS algorithm and assumes the standard order Cλ

√
log(pn) of the group Lasso penalty

in the literature (see also Theorem 2). The parameter τ is commonly seen in the change-
point literature, and is needed to threshold the maximum CUSUM statistics and controls
false positive detection. To derive τ , we need to study the order of the maximum CUSUM
statistics under the no change-point scenario. As for the tuning parameter ζ, intuitively, for
small subsamples, the estimation error of LGS and the CUSUM statistics become difficult
to control. The parameter ζ is designed to handle such scenario and regulates the minimum
length required for a subsample (s, e] to be considered for change-point detection. See
similar tuning parameters in Leonardi and Bühlmann (2016) and Kaul et al. (2019). Note
that simple algebra gives that ∆ � ζ. In practice, it suffices to set ζ = log(n).

In general, VPWBS is highly robust to the choices of M and ζ, and the key tuning
parameters affecting the performance of VPWBS are λ and τ . In Section 4, we propose a
cross-validation procedure to select λ and τ in a fully data-driven fashion.

4. Simulations

In this section, we conduct extensive numerical experiments to examine the performance
of VPWBS under various simulation settings and further compare it with two other state-
of-the-art methods in the literature, specifically, EBSA in Leonardi and Bühlmann (2016)
and SGL in Zhang et al. (2015b). Implementations of the numerical experiments can be
found at the GitHub link here. We discuss the implementation details such as settings for
each algorithm and estimation accuracy metrics in Section 4.1 and present the simulation
results in Section 4.2.

4.1 Implementation details

Given estimated change-point estimators {η̂k}K̂k=1, we measure the estimation accuracy
via the scaled Hausdorff distance, a popular metric used in the change-point literature.
Specifically, denoting the true change-points as {ηk}Kk=1, the scaled Hausdorff distance is
defined as

D({η̂k}K̂k=1, {ηk}Kk=1) = d({η̂k}K̂k=1, {ηk}Kk=1)/n,

where d(·, ·) denotes the Hausdorff distance between two compacts sets A,B in R, given by

d(A,B) = max

{
max
a∈A

min
b∈B
|a− b|, max

b∈B
min
a∈A
|a− b|

}
.

Note that D({η̂k}K̂k=1, {ηk}Kk=1) ≤ 1 when both K, K̂ ≥ 1. Therefore, following the conven-
tion in the change-point literature, we set D(∅, {ηk}Kk=1) = 1.
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Implementation of VPWBS: As discussed in Section 3, there are four tuning pa-
rameters (M,λ, τ, ζ) in VPWBS. Throughout the simulation section, we set M = 40 and
set ζ = 5, which roughly corresponds to M = (log(n))2 and ζ = log(n) across all simulation
settings in Section 4.2. We remark that the performance of VPWBS is robust to the choices
of (M, ζ), and the key tuning parameters are (λ, τ).

In the following, we provide a sample splitting based cross-validation procedure that
selects (λ, τ) in a fully data-driven fashion. Specifically, given the original sample {xt, yt}nt=1,

we set the training data to be the oddly-indexed observations {x2t−1, y2t−1}n/2t=1 and the test

data to be the evenly-indexed observations {x2t, y2t}n/2t=1, where we assume, without loss of
generality, n is even. Note that the training data and test data share the same number and
locations of change-points (up to one time point difference).

Denote the candidate sets of λ, τ as Λ, T ⊂ R+. For each pair of (λ, τ) ∈ Λ×T , using the
training data, we compute the estimated change-points via VPWBS and further estimate

the (piecewise constant) regression coefficients {β̂t}n/2t=1 conditional on the estimated change-

points as in Model (1). We then compute the prediction error of {β̂t}n/2t=1 using the test data
via

et = y2t − x>2tβ̂t, t = 1, 2, · · · , n/2.

The tuning parameters (λ, τ) are then selected as the pair of (λ, τ) ∈ Λ × T that achieves

the minimum squared prediction error
∑n/2

t=1 e
2
t on the test data. Note that in the cross-

validation procedure, the random intervals {(am, bm]}Mm=1 and the minimum length ζ are
kept the same across all pairs of (λ, τ). For all simulation experiments in Section 4.2, we
set Λ = {0.5, 1, 1.5, 2} and T = {1, 4, 7, 10, · · · , 49}.

Implementation of competing methods: The EBSA algorithm is proposed in
Leonardi and Bühlmann (2016), which performs change-point detection for high-dimensional
regression via a model selection point of view. Specifically, a dynamic programming algo-
rithm is proposed to directly estimate the unknown change-points by minimizing an l0-
penalized goodness of fit function. In contrast, VPWBS utilizes a group Lasso based local
screening (LGS) algorithm for estimating an optimal projection direction and uses CUSUM
statistics for change-point estimation, where the LGS is an l1-penalized M-estimator. For
computational efficiency, a binary segmentation based algorithm is further proposed in
Leonardi and Bühlmann (2016) to find an approximate minimizer of the penalized function
with strong theoretical guarantees. We choose the tuning parameters of EBSA using its
default settings as specified in Leonardi and Bühlmann (2016). We note that EBSA gives
slightly worse performance when its tuning parameters are selected via the sample splitting
based cross-validation.

The sparse group Lasso (SGL) is first introduced by Simon et al. (2013) and is later
used by Zhang et al. (2015b) for change-point detection in the high-dimensional regression
setting. See also Harchaoui and Lévy-Leduc (2007, 2010), Bleakley and Vert (2011) and
references therein for earlier work along this line of research, where the classical fused Lasso
is used for change-point detection in mean for low-dimensional time series.

Given {xt, yt}nt=1, SGL computes

{β̂t}nt=1 = arg min
(β1,...,βn)

n∑
t=1

(yt −Xtβt)
2
2 + λ

n−1∑
t=1

‖βt+1 − βt‖2 + γ

n−1∑
t=1

‖βt+1 − βt‖1, (7)
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which can be seen as a variant of the classical fused Lasso with an extra group sparsity
penalty. Note that SGL is a global method as it estimates {β̂t}nt=1 (and thus multiple
change-points) based on the entire sample. In comparison, the local group Lasso based
screening (LGS) algorithm in Stage 1 of the proposed VPWBS is a local method and is
designed to directly target single change-points.

Define the function f : {1, 2, · · · , n − 1} → R where f(t) := ‖β̂t − β̂t−1‖2. Note that
{β̂t}nt=1 estimated by SGL in (7) may not directly lead to accurate change-point estimation
as
∑n−1

t=1 I(f(t) > 0) is generally a large number and leads to uncontrollable false positives,

where I denotes the indicator function. In practice, the SGL estimator {β̂t}nt=1 typically
exhibits the so-called staircase pattern, a pattern commonly seen in fused Lasso based es-
timation (e.g. Rojas and Wahlberg, 2014; Owrang et al., 2017), where {β̂t}nt=1 contains
large-scale changes accompanied by many small-scale jumps. See Figure 5 of the supple-
mentary material for an illustration of such phenomenon. To avoid false positive estimation,
given knowledge of the true number of change-points K, a common practice in the liter-
ature, see e.g. Harchaoui and Lévy-Leduc (2010), is to estimate the change-points as the
locations where the function f achieves its K largest values.

However, in practice, K is typically unknown. Thus, to further improve the applicability
of SGL, in our experiments we consider a variant of the SGL algorithm combined with wild
binary segmentation in Fryzlewicz (2014), which we refer to as Wild Binary Segmentation
via SGL (WBSSGL). Specifically, WBSSGL further post-processes the estimated {β̂t}nt=1

by SGL on M random intervals {(am, bm]}Mm=1. For a subsample {β̂t}bmt=am+1 and am ≤
sm < ν < em ≤ bm, WBSSGL computes the (p-dimensional) subsample CUSUM statistics
for {β̂t}emt=sm+1 defined as

B̂sm,emν =

√
(em − ν)

(em − sm)(ν − sm)

ν∑
t=sm+1

β̂t −

√
(ν − sm)

(em − sm)(em − ν)

em∑
t=ν+1

β̂t, (8)

and further compares it with a suitable threshold. The detailed implementation of WBSSGL
is given in Algorithm 3. For all simulation experiments in Section 4.2, numerical results
indicate that WBSSGL outperforms the original SGL algorithm by a wide margin. Thus,
in the following we only present the results for WBSSGL.

There are five tuning parameters (M,λ, γ, τ, ζ) of WBSSGL, which are selected in the
same way as VPWBS. Specifically, we set the random intervals {(am, bm]}Mm=1 and the
minimum length ζ of WBSSGL to be the same as VPWBS. The key tuning parameters
(λ, γ, τ) of WBSSGL are selected using the same cross-validation procedure as the one
implemented for VPWBS. For each combination of (λ, γ), we solve the original SGL in (7)
via the R package SGL.

4.2 Simulation results

In this section, we conduct extensive numerical experiments to examine the performance
of VPWBS, EBSA and WBSSGL in terms of estimation accuracy and computational cost.
We design a wide range of simulation settings by varying change size κ, spacing between
change-points ∆, number of change-points K, sparsity level s, sample size n and dimension
p. The variance of noise σ2

ε is set at 1 for all settings. For each simulation setting, we repeat
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Algorithm 3 Wild Binary Segmentation via SGL. WBSSGL({(am, bm]}Mm=1, λ, γ, τ, ζ)

INPUT: data {xt, yt}nt=1, random intervals {(am, bm]}Mm=1,
tuning parameters λ > 0, γ > 0, τ > 0, ζ > 0.

Initialize the set of estimated change-points as S = ∅ and set (s, e] = (0, n].

Stage 1: SGL
Compute {β̂t}nt=1 via (7) with tuning parameters λ, γ.

Stage 2: WBS((s, e], {(am, bm]}Mm=1, τ, ζ )
for m = 1, . . . ,M do

(sm, em]← (s, e] ∩ (am, bm]
if em − sm ≥ 2ζ then

Dm ← arg maxsm+ζ≤t≤em−ζ ‖B̂
sm,em
t ‖2 . Recall Equation (8)

Am ← maxsm+ζ≤t≤em−ζ ‖B̂
sm,em
t ‖2

else
Am ← −1

end if
end for
m∗ ← arg maxm=1,...,M Am
if Am∗ > τ then

add Dm∗ to the set S
WBS ((s,Dm∗ ], {(am, bm]}Mm=1, τ, ζ)
WBS ((Dm∗ , e], {(am, bm]}Mm=1, τ, ζ)

end if

OUTPUT: The set of estimated change-points S.

the experiments 100 times. The detailed simulation setting is as follows. We further plot
typical realizations of {yt}nt=1 for each setting in Figure 2, where it can be seen clearly that
information contained in {yt}nt=1 is not sufficient for change-point estimation.

Setting (i): two change-points with varying change size κ. In this setting, we
fix n = 300, p = 100, K = 2 and set the covariance matrix Σ of xt to be the Toeplitz matrix
with Σi,j = 0.6|i−j| for i, j = 1, · · · , p. The two change-points occur at η1 = n/3 = 100 and
η2 = 2n/3 = 200. The regression coefficients {β∗t }nt=1 take the form

β∗t =


κ · α/

√
40, for 1 ≤ t ≤ n/3,

−κ · α/
√

40, for n/3 + 1 ≤ t ≤ 2n/3,

κ · α/
√

40, for 2n/3 + 1 ≤ t ≤ n,

where α = (1,−1, 1,−1 . . . ,−1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
p−10

) and we vary κ ∈
√

40 · {1, 1.2, 1.4, 1.6}. Simple

calculation shows that the change size of β∗t at both change-points equals κ.

Setting (ii): three change-points with varying sample size n. In this setting,
we vary n ∈ {480, 560, 640, 720, 800}, fix p = 100, K = 3 and set the covariance matrix Σ
of xt to be the identity matrix Ip. The three change-points occur evenly at ηi = in/4 for
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i = 1, 2, 3. The regression coefficients {β∗t }nt=1 take the form

β∗t =


2/5α, for 1 ≤ t ≤ n/4,
−2/5α, for n/4 + 1 ≤ t ≤ n/2,
2/5α, for n/2 + 1 ≤ t ≤ 3n/4,

−2/5α, for 3n/4 + 1 ≤ t ≤ n,

where α = (1,−1, 1,−1, 0, · · · , 0). The change size of β∗t at each change-point equals 8/5.
Setting (iii): two change-points with varying p and varying support of βt. In

this setting, we fix n = 320, K = 2, vary p ∈ {90, 100, 110, 120} and set the covariance
matrix Σ of xt to be Ip. The two change-points occur unevenly at η1 = 120 and η2 = 220.
The regression coefficients {β∗t }nt=1 take the form

β∗t =



2/3 · (1, . . . , 1︸ ︷︷ ︸
8

, 0, . . . , 0), for 1 ≤ t ≤ 120,

2/3 · (0, . . . , 0︸ ︷︷ ︸
8

, 1, . . . , 1︸ ︷︷ ︸
8

, 0, . . . , 0), for 121 ≤ t ≤ 220,

2/3 · (0, . . . , 0︸ ︷︷ ︸
16

, 1, . . . , 1︸ ︷︷ ︸
8

, 0, . . . , 0), for 221 ≤ t ≤ 320.

Simple calculation shows the change size of β∗t at each change-point equals 8/3.
Setting (iv): two change-points with uneven spacing and varying support

size s. In this setting, we fix n = 520, K = 2, p = 100 and set the covariance matrix of
xt to be Σ = Ip. The two change-points occur unevenly at η1 = 160 and η2 = 360. The
regression coefficients {β∗t }nt=1 take the form

β∗t =



√
2/s · (1, . . . , 1︸ ︷︷ ︸

s/2

, 3, . . . , 3︸ ︷︷ ︸
s/2

, 0, . . . , 0), for 1 ≤ t ≤ 160,

√
2/s · (2, . . . , 2︸ ︷︷ ︸

s/2

, 1, . . . , 1︸ ︷︷ ︸
s/2

, 0, . . . , 0), for 161 ≤ t ≤ 360,

√
2/s · (1, . . . , 1︸ ︷︷ ︸

s/2

, 3, . . . , 3︸ ︷︷ ︸
s/2

, 0, . . . , 0), for 361 ≤ t ≤ 520,

and we vary s ∈ {16, 20, 24, 28}. Simple calculation shows that the change sizes of β∗t at
both change-points equal κ =

√
5.

Estimation accuracy: Table 2 reports the scaled Hausdorff distance (averaged over
100 repetitions) achieved by VPWBS, EBSA and WBSSGL across all simulation settings.
For better visualization, Figure 3 further provides the bar plots based on the results reported
in Table 2. First, as expected, the performance of all three algorithms improve with larger
sample size n (setting (ii)) and with larger change size κ (setting (i)), and worsen with
higher dimension p (setting (iii)) and with higher sparsity (setting (iv)).

Overall, VPWBS offers robust and competitive performance for change-point estimation
across all simulation settings, and consistently outperforms its competitors under the low
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Figure 2: Typical realizations of {yt}nt=1 for Setting (i) with κ =
√

40, Setting (ii) with
n = 480, Setting (iii) with p = 90 and Setting (iv) with κ = 0.35

√
40.

SNR scenario where the sample size n or the change size κ is small. Compared to WBSSGL,
which conducts change-point estimation directly on the estimated {β̂t}nt=1 by a penalized
M-estimator (i.e. SGL), VPWBS in general gives more favorable performance, which could
be seen as numerical evidence confirming the importance of the projection step in VPWBS.
It is worth noting that when the SNR is large, EBSA becomes highly competitive. We
conjecture that EBSA is also minimax optimal when the signal strength ∆κ2 is sufficiently
large, though rigorous proof of such result seems challenging.

Computational cost: It is straightforward to derive that the computational cost of
VPWBS is O(Mn · GroupLasso(n, p)), where M is the number of random intervals used
and recall that GroupLasso(n, p) denotes the computational cost of the group Lasso for a
p-dimensional regression with n samples. Since we set M = (log(n))2, the computational
complexity of VPWBS equals O(n(log(n))2 ·GroupLasso(n, p)). On the other hand, refer-
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VPWBS EBSA WBSSGL

Setting (i)

κ =
√

40 0.011 (0.015) 0.090 (0.055) 0.151 (0.094)

κ = 1.2
√

40 0.009 (0.017) 0.060 (0.052) 0.118 (0.069)

κ = 1.4
√

40 0.010 (0.024) 0.033 (0.044) 0.101 (0.058)

κ = 1.6
√

40 0.009 (0.016) 0.025 (0.039) 0.098 (0.061)

Setting (ii)

n = 480 0.062 (0.080) 0.128 (0.177) 0.101 (0.052)

n = 560 0.044 (0.042) 0.064 (0.112) 0.098 (0.053)

n = 640 0.034 (0.060) 0.034 (0.084) 0.094 (0.055)

n = 720 0.026 (0.054) 0.015 (0.023) 0.093 (0.075)

n = 800 0.022 (0.046) 0.009 (0.010) 0.091 (0.072)

Setting (iii)

p = 80 0.025 (0.047) 0.052 (0.047) 0.103 (0.065)

p = 90 0.039 (0.068) 0.068 (0.051) 0.109 (0.068)

p = 100 0.033 (0.056) 0.056 (0.050) 0.120 (0.072)

p = 110 0.041 (0.063) 0.055 (0.046) 0.125 (0.072)

p = 120 0.049 (0.078) 0.061 (0.048) 0.140 (0.079)

Setting (iv)

s = 16 0.027 (0.072) 0.055 (0.023) 0.116 (0.059)

s = 20 0.024 (0.060) 0.059 (0.024) 0.141 (0.033)

s = 24 0.043 (0.089) 0.057 (0.020) 0.141 (0.032)

s = 28 0.057 (0.106) 0.063 (0.022) 0.144 (0.023)

Table 2: Scaled Hausdorff distance for VPWBS, EBSA (Leonardi and Bühlmann (2016))
and WBSSGL (Zhang et al. (2015b)). For each cell, the experiment is repeated
100 times. The numbers in the brackets indicate the sample standard errors of
the scaled Hausdorff distance. Each highlighted number indicates the best perfor-
mance in the corresponding setting.

ring to Table 1, the complexity of EBSA and WBSSGL are O(n log(n) · Lasso(n, p)) and
O(Lasso(n, np)) respectively.

Note that the computational cost of solving Lasso and group Lasso for a p-dimensional
linear regression with n observations is both O(np2), see for example Efron et al. (2004)
and Wright et al. (2009). Thus, it is easy to see that in terms of computational efficiency,
ESBA is the best, VPWBS comes second, and WBSSGL comes last. In practice, popular
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R packages typically implement gradient or coordinate descent to obtain an approximate
solution of Lasso and group Lasso and the computation can be much faster than O(np2).

We conduct further numerical experiments to exam the computational performance of
each algorithm in practice. Specifically, given (n, p), we generate the regression coefficients
{β∗t }nt=1 and observations {xt, yt}nt=1 using Setting (i) with κ = 1.6

√
40. In the first set of

experiments, we fix n = 450 and vary p ∈ {80, 100, 120, 140, 160, 180, 200, 220}; in the second
set of experiments, we fix p = 100 and vary n ∈ {240, 300, 360, 420, 480, 540, 600, 660}.
For each simulation setting, we repeat the experiments 100 times and report the average
execution time of VPWBS, EBSA and WBSSGL in Figure 4.

As can be seen in Figure 4, the computational costs of VPWBS and EBSA increase
linearly with both the dimension p and the sample size n. On the other hand, while the
computational cost of WBSSGL grows linearly with p, it does not scale well with n. This
is not surprising, as the SGL approach (7) is essentially solving a Lasso with n samples and
np covariates.

Figure 4: Average execution time of VPWBS, EBSA and WBSSGL across different simple
sizes n and dimensions p.

5. Discussion

In this paper, we study the problem of multiple change-point estimation in high-dimensional
linear regression model. We propose a novel projection-based algorithm, VPWBS, which
performs change-point detection from a dimension reduction angle. Based on an esti-
mated (optimal) projection direction, VPWBS transforms the original (difficult) problem of
change-point detection in p-dimensional regression to a simpler problem of change-point de-
tection in mean of a one-dimensional time series. VPWBS is shown to achieve the minimax
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optimal localization rate Op(1/n) up to a log factor, a significant improvement from the best
rate Op(1/

√
n) known in the existing literature. In addition, VPWBS is computationally

efficient with a complexity of O(n(log(n))2 ·GroupLasso(n, p)). Extensive numerical experi-
ments are conducted to demonstrate the robust and favorable performance of VPWBS over
two state-of-the-art algorithms in a wide range of simulation settings.

Besides the high-dimensional regression problem, we believe the projection based change-
point estimation framework can be useful under other important contexts as well, such as
change in covariance matrices and tensors. The key is to design an algorithm that utilizes
the structure of the specific problem (such as sparsity or low rank) and provides a provably
accurate estimation of the (optimal) projection direction.
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Appendix A. Proofs Related to Theorem 2

In this section, we provide all the technical details for the proof of Theorem 2

Proof [Proof of Theorem 2 ] Denote

κ′ = ‖β∗η − β∗η+1‖2.

Since (α̂1, α̂2, ν̂) be the output of LGS ({yi, xi}ni=1, (s, e], λ), it holds that

(α̂1, α̂2) = arg min
α1,α2∈Rp

{
ν̂∑

i=s+1

(yi − x>i α1

)2
+

e∑
i=ν̂+1

(yi − x>i α2)2

+λ

p∑
j=1

√
(ν̂ − s)(α1,j)2 + (e− ν̂)(α2,j)2

}
,

and that by Theorem 4,

|η − ν̂| ≤ C s log(pn)

(κ′)2
.

Without loss of generality, assume that s < η < ν̂ ≤ e. Then by Theorem 5,

∥∥α̂1 − β∗(s,ν̂]

∥∥2

2
≤ C s log(pn)

∆
≤ Cs log(pn)

Csnrs log(pn)κ−2
≤ Cκ2

Csnr
≤ C(κ′)2

Csnr
,

For sufficient large constant Csnr, it holds that∥∥α̂1 − β∗(s,ν̂]

∥∥
2
≤ cx

128Cx
κ′ and

∥∥α̂2 − β∗(ν̂,e]
∥∥

2
≤ cx

128Cx
κ′.

Since β∗(ν̂,e] = β∗η+1, it follows that

∥∥α̂2 − β∗η+1

∥∥
2
≤ cx

128Cx
κ′. (9)
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Note that ∥∥α̂1 − β∗(s,ν̂]

∥∥
2

=

∥∥∥∥α̂1 −
(s− η)β∗η + (ν̂ − η)β∗η+1

ν̂ − s

∥∥∥∥
2

≥‖α̂1 − β∗η‖2 −
∥∥∥∥β∗η − (s− η)β∗η + (ν̂ − η)β∗η+1

ν̂ − s

∥∥∥∥
2

≥‖α̂1 − β∗η‖2 −
ν̂ − η
ν̂ − s

‖β∗η − β∗η+1‖2

≥‖α̂1 − β∗η‖2 −
Cs log(pn)/(κ

′
)2

1
20Csnrs log(pn)/κ2

(κ′)

≥‖α̂1 − β∗η‖2 −
cx

128Cx

κ2

κ′

≥‖α̂1 − β∗η‖2 −
cx

128Cx
κ′,

where the third inequality follows from the fact that ν̂−s ≥ e−s
10 ≥

∆
20 ≥

1
20Csnrκ

−2s log(pn)
and the fourth inequality holds if Csnr is sufficiently large. As a result

‖α̂1 − β∗η‖2 ≤
cx

64Cx
κ′. (10)

The desired result is an immediate consequence of Equation (9) and Equation (10).

Lemma 4 Suppose that [s + 1, e] ⊂ [1, n] is any interval such that e − s ≥ ∆
2 and that

[s+ 1, e] contains exactly one change point η which satisfies

min{η − s, e− η} ≥ e− s
10

.

Suppose Assumptions 1-2 hold and λ = Cλ
√

log(pn) for a sufficiently large constant Cλ.
Let (α̂1, α̂2, ν̂) be the output of LGS ({yi, xi}ni=1, (s, e], λ). Denote

κ′ = ‖β∗η − β∗η+1‖2.

Then with probability at least 1− (pn)−4, it holds that

|η − ν̂| ≤ C s log(pn)

(κ′)2
.

Proof [Proof of Theorem 4] Let S1 be the support of β∗i when i ∈ (s, η] and S2 be the
support of β∗i when i ∈ (η, e]. Denote

S = S1 ∪ S2.

Note that |S| ≤ 2s and that S is the common support for β∗i for i ∈ (s, e]. Without loss of
generality, we assume that s < η < ν̂ < e. Denote

β̂i =

{
α̂1, i ∈ (s, ν̂],

α̂2, i ∈ (ν̂, e].

25



Wang, Zhao, Lin and Willett

If ν̂ − η < C1
s log(pn)

κ2
for some sufficiently large constant C1, then the desired result holds.

So suppose that

ν̂ − η ≥ C1
s log(pn)

κ2
. (11)

Note that since κ < Cκ <∞, Equation (11) implies that

ν̂ − η ≥ C1C
−2
κ s log(pn). (12)

By assumption,

min{η − s, e− ν̂} ≥ e− s
10
≥ ∆

20
≥ 1

20
CsnrC

−2
κ s log(pn). (13)

Step 1. In this step, it is shown that with probability at least 1 − C(np)−5,

e∑
i=s+1

‖β̂i − β∗i ‖22 ≤ C3sλ
2.

From Equation (4), it holds that

e∑
i=s+1

(yi − x>i β̂i)2 + λ

p∑
j=1

√√√√ e∑
i=s+1

(
β̂i,j
)2 ≤ e∑

i=s+1

(yi − x>i β∗i )2 + λ

p∑
j=1

√√√√ e∑
i=s+1

(
β∗i,j
)2
. (14)

Let δi = β̂i − β∗i . It holds that

e−1∑
i=s+1

1 {δi 6= δi+1} = 2.

Equation (14) implies that

e∑
i=s+1

‖δ>i xi‖22 + λ

p∑
j=1

√√√√ e∑
i=s+1

(
β̂i,j
)2 ≤ 2

e∑
i=s+1

(yi − x>i β∗i )δ>i xi + λ

p∑
j=1

√√√√ e∑
i=s+1

(
β∗i,j
)2
. (15)

Note that since S is the common support for β∗i for i ∈ (s, e], it holds that

p∑
j=1

√√√√ e∑
i=s+1

(
β∗i,j
)2 − p∑

j=1

√√√√ e∑
i=s+1

(
β̂i,j
)2

=
∑
j∈S

√√√√ e∑
i=s+1

(
β∗i,j
)2 −∑

j∈S

√√√√ e∑
i=s+1

(
β̂i,j
)2 −∑

j∈Sc

√√√√ e∑
i=s+1

(
β̂i,j
)2
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≤
∑
j∈S

√√√√ e∑
i=s+1

(
δi,j
)2 −∑

j∈Sc

√√√√ e∑
i=s+1

(
δi,j
)2
. (16)

Note that for any j ∈ [1, . . . , p], from Equation (12), Equation (13) and Theorem 8, it holds
that

sup
s<i≤e

δi,j√∑e
i=s+1 (δi,j)

2
≤ C4

1√
s log(pn)

. (17)

As a result, with probability at least 1 − (np)−5∣∣∣∣∣
e∑

i=s+1

(yi − x>i β∗i )δ>i xi

∣∣∣∣∣ =

∣∣∣∣∣
e∑

i=s+1

εiδ
>
i xi

∣∣∣∣∣ =

∣∣∣∣ p∑
j=1


∑e

i=s+1 εiδi,jxi,j√∑e
i=s+1 (δi,j)

2

√√√√ e∑
i=s+1

(δi,j)
2


∣∣∣∣

≤ sup
j=1,...,p

∣∣∣∣∣∣
∑e

i=s+1 εiδi,jxi,j√∑e
i=s+1 (δi,j)

2

∣∣∣∣∣∣
p∑
j=1

√√√√ e∑
i=s+1

(δi,j)
2 ≤ C5

√
log(pn)

p∑
j=1

√√√√ e∑
i=s+1

(δi,j)
2

≤(λ/4)

p∑
j=1

√√√√ e∑
i=s+1

(δi,j)
2, (18)

where the second inequality follows from Theorem 7 and Equation (17) if C5 is a sufficiently
large constant, and the last inequality follows from λ = Cλ

√
log(pn).

Combining (14), (15), (16) and (18) yields

e∑
i=s+1

(δ>i xi)
2 +

λ

2

∑
j∈Sc

√√√√ e∑
i=s+1

(
δi,j
)2 ≤ 3λ

2

∑
j∈S

√√√√ e∑
i=s+1

(
δi,j
)2
. (19)

Step 2. To apply restricted eigenvalue conditions, let

I = (s, e], I1 = (s, η], I2 = (η, ν̂], I3 = (ν̂, e].

Denote

EI :=

{
v>
(

1

|I|
∑
i∈I

xix
>
i

)
v ≥ 1

16
v>Σv − Cr

log(p)

|I|
‖v‖21

}
.

If C1 in Equation (12) and Csnr in Equation (13) are sufficiently large constants, it holds
that

min{|I1|, |I2|, |I3|} ≥ C6s log(np) (20)

for some sufficiently large C6. For h = 1, 2, 3, denote EIh the same way as EI . So by
Theorem 9, P (EIh) ≥ 1 − (np)−5 for h = 1, 2, 3. Denote δIh = δi for any i ∈ Ih. With
probability at least 1− 3(np)−5, on the event

⋂
h=1,2,3 EIh ,

e∑
i=s+1

(δ>i xi)
2 =

∑
h=1,2,3

∑
i∈Ih

(δ>Ihxi)
2
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≥
∑

h=1,2,3

|Ih|
16

δ>IhΣδIh − Cr log(p)‖δIh‖
2
1

=
∑

h=1,2,3

|Ih|
16

δ>IhΣδIh − Cr log(p)
(
‖δIh(S)‖1 + ‖δIh(Sc)‖1

)2
≥
∑

h=1,2,3

cx|Ih|
16
‖δIh‖

2
2 − 2Cr|S| log(p)‖δIh‖

2
2 − 2Cr log(p)‖δIh(Sc)‖21

≥
∑

h=1,2,3

cx|Ih|
20
‖δIh‖

2
2 − 2Cr log(p)‖δIh(Sc)‖21, (21)

where the last inequality follows from (20) and |S| ≤ 2s and ‖δIh(S)‖1 =
∑

j∈S |δIh,j |.

Step 3. Note that

√ ∑
h=1,2,3

‖δIh(Sc)‖21 =

√√√√√ ∑
h=1,2,3

∑
j∈Sc

|δIh,j |

2

=

√√√√√ ∑
h=1,2,3

√ |Ih|
|Ih|

∑
j∈Sc

|δIh,j |

2

≤min{|I1|, |I2|, |I3|}−1/2

√√√√√ e∑
i=s+1

∑
j∈Sc

|δi,j |

2

≤min{|I1|, |I2|, |I3|}−1/2
∑
j∈Sc

√√√√ e∑
i=s+1

(δi,j)2

≤3 min{|I1|, |I2|, |I3|}−1/2
∑
j∈S

√√√√ e∑
i=s+1

(δi,j)2

≤3 min{|I1|, |I2|, |I3|}−1/2

√√√√|S|∑
j∈S

e∑
i=s+1

(δi,j)2

≤
√

cx
200Cr log(p)

√√√√ e∑
i=s+1

‖δi‖22 ,

where the second inequality follows from the generalized Minkowski’s inequality, the third
inequality follows from Equation (19), which implies that

∑
j∈Sc

√√√√ e∑
i=s+1

(
δi,j
)2 ≤ 3

∑
j∈S

√√√√ e∑
i=s+1

(
δi,j
)2
,

and the last inequality follows from Equation (20) for sufficiently large C6. So√ ∑
i=1,2,3

‖δIh(Sc)‖21 ≤
√

cx
200Cr log(p)

√√√√ e∑
i=s+1

‖δi‖22 . (22)
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Therefore, for any

(21) =
∑

h=1,2,3

cx|Ih|
20
‖δIh‖

2
2 − 2Cr log(p)‖δIh(Sc)‖21

=
e∑

i=s+1

cx
20
‖δi‖22 − 2Cr log(p)‖δIh(Sc)‖21

≥
e∑

i=s+1

cx
20
‖δi‖22 − 2Cr log(p)

cx
200Cr log(p)

e∑
i=s+1

‖δi‖22

≥
e∑

i=s+1

cx
25
‖δi‖22 ,

where the second last inequality follows from Equation (22).

Step 4. Putting the previous steps together, it holds that

e∑
i=s+1

cx
25
‖δi‖22 +

λ

2

∑
j∈Sc

√√√√ e∑
i=s+1

(
δi,j
)2

≤
e∑

i=s+1

(δ>i xi)
2 +

λ

2

∑
j∈Sc

√√√√ e∑
i=s+1

(
δi,j
)2

≤3λ

2

∑
j∈S

√√√√ e∑
i=s+1

(
δi,j
)2

≤3λ

2

√√√√|S|∑
j∈S

e∑
i=s+1

(
δi,j
)2

≤3λ
√
s

√√√√ e∑
i=s+1

‖δi‖22 .

Therefore,

e∑
i=s+1

‖β̂i − β∗i ‖22 =

e∑
i=s+1

‖δi‖22 ≤C7λ
2s . (23)

Step 5. From Equation (23) and the definition of β̂i, it holds that

e∑
i=s+1

‖β̂i − β∗i ‖22 = |I1|‖β∗η − α̂1‖22 + |I2|‖β∗η+1 − α̂1‖22 + |I3|‖β∗η+1 − α̂2‖22 ≤ C7λ
2s. (24)

Let
κ′ = ‖β∗η − β∗η+1‖2.
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By Equation (13)

min{|I1|, |I3|} ≥
∆

20
.

Therefore it holds that

‖β∗η − α̂1‖22 ≤
C7λ

2s

|I1|
≤ C7λ

2s
1
20∆

≤
C7C

2
λ log(pn)s

1
20Csnr log(pn)s/κ2

≤ 1

16
κ2,

where the first inequality follows from Equation (24), the third inequality follows from
Assumption 2 b and the last inequality holds for sufficiently large Csnr. Similarly

‖β∗η+1 − α̂2‖22 ≤
1

16
κ2.

So

‖β∗η+1 − α̂1‖2 ≥ ‖β∗η+1 − β∗η‖2 − ‖β∗η − α̂1‖2 ≥ κ′ −
1

4
κ ≥ κ′/2.

Equation (24) further implies that

(ν̂ − η)(κ′)2/4 ≤ |I2|‖β∗η − α̂1‖22 ≤ C7λ
2s,

which implies that

ν̂ − η ≤ 4C7λ
2s

(κ′)2
,

as desired.

Lemma 5 Suppose that [s + 1, e] ⊂ [1, n] is any interval such that e − s ≥ ∆
2 and that

[s+ 1, e] contains exactly one change point η which satisfies

min{η − s, e− η} ≥ e− s
10

.

Suppose

(α̂1, α̂2) = arg min
α1,α2∈Rp

{
ν∑

i=s+1

(yi − x>i α1

)2
+

e∑
i=ν+1

(yi − x>i α2)2

+λ

p∑
j=1

√
(ν − s)(α1,j)2 + (e− ν)(α2,j)2

}
.

If in addition, Assumptions 1-2 hold and that λ = Cλ
√

log(pn) for sufficiently large Cλ,
then with probability at least 1− (pn)−4, it holds that∥∥α̂1 − β∗(s,ν]

∥∥2

2
≤ C s log(pn)

∆
and

∥∥α̂2 − β∗(ν,e]
∥∥2

2
≤ C s log(pn)

∆
,

where

β∗(a,b] =
1

b− a

b∑
i=a+1

β∗i .
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Proof [Proof of Theorem 5] Let S1 be the support of β∗η and S2 be the support of β∗η+1.
Denote

S = S1 ∪ S2.

Note that |S| ≤ 2s and that S is the common support for β∗i for i ∈ (s, e]. Without loss of
generality, assume that s < η < ν < e. Note that

min{ν − s, e− ν} > ∆

20
≥ 1

20
CsnrC

−2
κ s log(pn). (25)

For brevity, denote

I1 = (s, ν], I2 = (ν, e], α∗1 = β∗(s,ν] and α∗2 = β∗(ν,e] .

Step 1. From Equation (4), it holds that

∑
i∈I1

(yi − x>i α̂1

)2
+
∑
i∈I2

(yi − x>i α̂2)2 + λ

p∑
j=1

√
|I1|(α̂1,j)2 + |I2|(α̂2,j)2

≤
∑
i∈I1

(yi − x>i α∗1
)2

+
∑
i∈I2

(yi − x>i α∗2)2 + λ

p∑
j=1

√
|I1|(α∗1,j)2 + |I2|(α∗2,j)2.

(26)

Let φi = α̂i − α∗i . Equation (26) implies that

∑
i∈I1

(x>i φ1

)2
+
∑
i∈I2

(x>i φ2

)2
+ λ

p∑
j=1

√
|I1|(α̂1,j)2 + |I2|(α̂2,j)2

≤2
∑
i∈I1

(yi − x>i α∗1)x>i φ1 + 2
∑
i∈I2

(yi − x>i α∗2)x>i φ2 + λ

p∑
j=1

√
|I1|(α∗1,j)2 + |I2|(α∗2,j)2

=2
∑
i∈I1

(β∗i − α∗1)xix
>
i φ1 + 2

∑
i∈I2

(β∗i − α∗2)xix
>
i φ2 (27)

+2
∑
i∈I1

εix
>
i φ1 + 2

∑
i∈I2

εix
>
i φ2 (28)

+λ

p∑
j=1

√
|I1|(α∗1,j)2 + |I2|(α∗2,j)2.

Note that S is the common support for α∗1 and α∗2 for i ∈ (s, e]. So

p∑
j=1

√
|I1|(α∗1,j)2 + |I2|(α∗2,j)2 −

p∑
j=1

√
|I1|(α̂1,j)2 + |I2|(α̂2,j)2

=
∑
j∈S

√
|I1|(α∗1,j)2 + |I2|(α∗2,j)2 −

∑
j∈S

√
|I1|(α̂1,j)2 + |I2|(α̂2,j)2 −

∑
j∈Sc

√
|I1|(α̂1,j)2 + |I2|(α̂2,j)2

≤
∑
j∈S

√
|I1|(φ1,j)2 + |I2|(φ2,j)2 −

∑
j∈Sc

√
|I1|(α̂1,j)2 + |I2|(α̂2,j)2
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=
∑
j∈S

√
|I1|(φ1,j)2 + |I2|(φ2,j)2 −

∑
j∈Sc

√
|I1|(φ1,j)2 + |I2|(φ2,j)2.

Step 2. Note that for any h = 1, 2 and j ∈ [1, p], from Equation (25), it holds that

φh,j√
|I1|(φ1,j)2 + |I2|(φ2,j)2

≤ 1√
|Ih|
≤ C4

1√
s log(pn)

. (29)

As a result, with probability at least 1 − C(np)−5

|(28)| =

∣∣∣∣∣
p∑
j=1

{∑
i∈I1 εiφ1,jxi,j +

∑
i∈I2 εiφ2,jxi,j√

|I1|(φ1,j)2 + |I2|(φ2,j)2

}√
|I1|(φ1,j)2 + |I2|(φ2,j)2

∣∣∣∣∣
≤ sup
j=1,...,p

∣∣∣∣∣
∑

i∈I1 εiφ1,jxi,j +
∑

i∈I2 εiφ2,jxi,j√
|I1|(φ1,j)2 + |I2|(φ2,j)2

∣∣∣∣∣
p∑
j=1

√
|I1|(φ1,j)2 + |I2|(φ2,j)2

≤C5

√
log(pn)

p∑
j=1

√
|I1|(φ1,j)2 + |I2|(φ2,j)2 ≤ (λ/8)

p∑
j=1

√
|I1|(φ1,j)2 + |I2|(φ2,j)2,

where the second inequality follows from Theorem 7 and Equation (29), and the last in-
equality follows from λ = Cλ

√
log(pn).

In addition, since s < η < ν < e, it holds that

α∗2 =
1

(e− ν)

e∑
i=ν+1

β∗i = β∗η+1.

As a result

(27) =
∑
i∈I1

(β∗i − α∗1)>xix
>
i φ1 +

∑
i∈I2

(β∗i − α∗2)>xix
>
i φ2

=
∑
i∈I1

(
β∗i −

1

|I1|
∑
i′∈I1

β∗i′

)>
xix
>
i φ1

≤ sup
1≤j≤p

∣∣∣∣∣∑
i∈I1

(
β∗i −

1

|I1|
∑
i′∈I1

β∗i′

)>
xixi,j

∣∣∣∣∣‖φ1‖1

= sup
1≤j≤p

∣∣∣∣∣ 1√
|I1|

∑
i∈I1

(
β∗i −

1

|I1|
∑
i′∈I1

β∗i′

)>
xixi,j

∣∣∣∣∣√|I1|‖φ1‖1

≤ sup
1≤j≤p

∣∣∣∣∣ 1√
|I1|

∑
i∈I1

(
β∗i −

1

|I1|
∑
i′∈I1

β∗i′

)>
xixi,j

∣∣∣∣∣
p∑
j=1

√
|I1|(φ1,j)2 + |I2|(φ2,j)2 . (30)

For any j ∈ [1, p], denote Σ[, j] to be the j-th column of Σ. Then

∑
i∈I1

(
β∗i −

1

|I1|
∑
i′∈I1

β∗i′

)>
Σ[, j] = 0.
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In addition, it is straightforward to see that

sup
i∈I1

∥∥∥∥β∗i − 1

|I1|
∑
i′∈I1

β∗i′

∥∥∥∥ ≤ Cκ.
So

(
β∗i − 1

|I1|
∑

i′∈I1 β
∗
i′

)>
xixi,j is a sub-exponential random variable with parameter C2

xCκ

for any i ∈ I1. As a result

P

(∣∣∣∣∣ 1√
|I1|

∑
i∈I1

(
β∗i −

1

|I1|
∑
i′∈I1

β∗i′

)>
xixi,j

∣∣∣∣∣ ≥ δ for all 1 ≤ j ≤ p

)

=P

(∣∣∣∣∣∑
i∈I1

(
β∗i −

1

|I1|
∑
i′∈I1

β∗i′

)>{
xixi,j − Σ[, j]

}∣∣∣∣∣ ≥ δ√|I1| for all 1 ≤ j ≤ p

)

≤p exp

(
− cmin{ δ2

4C2
xCκ

,
δ
√
|I1|

2Cx
√
Cκ
}
)
≤ p exp

(
− c′min{δ2, δ

√
|I1|}

)
,

where the second to the last inequality follows from standard sub-exponential tail bounds.
Since |I1| ≥ ∆

20 ≥
1
20CsnrC

−2
κ s log(pn), letting δ = Cδ

√
log(p) for sufficiently large constant

Cδ, it holds that with probability at least 1 − (pn)−5,

sup
1≤i≤p

∣∣∣∣∣ 1√
|I1|

∑
i∈I1

(
β∗i −

1

|I1|
∑
i′∈I1

β∗i′

)>
xixi,j

∣∣∣∣∣ ≤ Cδ√log(p) ≤ 1

8
λ.

Therefore (30) gives

(27) ≤ (λ/8)

p∑
j=1

√
|I1|(φ1,j)2 + |I2|(φ2,j)2.

Step 3. Combing the previous two steps gives∑
i∈I1

(x>i φ1

)2
+
∑
i∈I2

(x>i φ2

)2
+ λ

∑
j∈Sc

√
|I1|(φ1,j)2 + |I2|(φ2,j)2

≤λ
∑
j∈S

√
|I1|(φ1,j)2 + |I2|(φ2,j)2 +

λ

4

p∑
j=1

√
|I1|(φ1,j)2 + |I2|(φ2,j)2.

This gives∑
i∈I1

(x>i φ1

)2
+
∑
i∈I2

(x>i φ2

)2
+
λ

2

∑
j∈Sc

√
|I1|(φ1,j)2 + |I2|(φ2,j)2 ≤ 3λ

2

∑
j∈S

√
|I1|(φ1,j)2 + |I2|(φ2,j)2.

(31)

Using exactly the same argument as in Step 4 and Step 5 in the proof of Theorem 4, it
can be shown that∑

i∈I1

(x>i φ1

)2
+
∑
i∈I2

(x>i φ2

)2 ≥ cx
25

(
|I1|‖φ1‖22 + |I2|‖φ2‖22

)
. (32)
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Therefore

|I1|‖φ1‖22 + |I2|‖φ2‖22 ≤C6λ
∑
j∈S

√
|I1|(φ1,j)2 + |I2|(φ2,j)2

≤C6λ

√
|S|
∑
j∈S

{
|I1|(φ1,j)2 + |I2|(φ2,j)2

}
≤C6λ

√
|S||I1|‖φ1‖22 + |I2|‖φ2‖22

≤2C6λ
√
s
√
|I1|‖φ1‖22 + |I2|‖φ2‖22 ,

where the first inequality follows from (31) and (32). This directly gives

|I1|‖φ1‖22 + |I2|‖φ2‖22 ≤ 8C2
6λ

2s.

The desired result follows from the assumption that

min{|I1|, |I2|} >
1

20
∆.

A.1 Additional Technical Lemmas

Lemma 6 Let R be any linear subspace in Rn and N1/4 be a 1/4-net of R∩B(0, 1), where
B(0, 1) is the unit ball in Rn. For any u ∈ Rn, it holds that

sup
v∈R∩B(0,1)

〈v, u〉 ≤ 2 sup
v∈N1/4

〈v, u〉,

where 〈·, ·〉 denotes the inner product in Rn.

Proof Due to the definition of N1/4, it holds that for any v ∈ R ∩ B(0, 1), there exists a
vk ∈ N1/4, such that ‖v − vk‖2 < 1/4. Therefore,

〈v, u〉 = 〈v − vk + vk, u〉 = 〈xk, u〉+ 〈vk, u〉 ≤
1

4
〈v, u〉+

1

4
〈v⊥, u〉+ 〈vk, u〉,

where the inequality follows from xk = v − vk = 〈xk, v〉v + 〈xk, v⊥〉v⊥. Then we have

3

4
〈v, u〉 ≤ 1

4
〈v⊥, u〉+ 〈vk, u〉.

It follows from the same argument that

3

4
〈v⊥, u〉 ≤ 1

4
〈v, u〉+ 〈vl, u〉,

where vl ∈ N1/4 satisfies ‖v⊥ − vl‖2 < 1/4. Combining the previous two equation displays
yields

〈v, u〉 ≤ 2 sup
v∈N1/4

〈v, u〉.
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For any vector v ∈ Rm, denote D(v) to be the number of change point of v. That is,

D(v) =
m∑
i=1

1{vi 6= vi+1}.

Lemma 7 For data generated according to Model 1, for any interval I = (s, e] ⊂ {1, . . . , n},
it holds that for any δ > 0 and any j ∈ {1, . . . , p},

P

 sup
v∈R(e−s)

‖v‖2=1,D(v)=2

∣∣∣∣∣
e∑

i=s+1

viεixi[j]

∣∣∣∣∣ > δ

 ≤ Cn exp

{
−cmin

{
δ2,

δ

‖v‖∞

}}
.

Proof This is a standard covering lemma. We provide a proof for completeness. For any
v ∈ R(e−s) satisfying D(v) = 2 and ‖v‖2 = 1, let η < η′ be the change points of v. Then
there are (e− s)(e− s− 1)/2 possible choice of η, η′. For any η, η′, denote

R(η, η′) = {w ∈ R(e−s), w1 = . . . = wη 6= wη+1 = . . . = wη′ 6= wη′+1 = . . . = w(e−s)}

Then R(η, η′) is a 3-dimensional subspace. Denote N1/4(η, η′) to be the covering number a
the unit ball in R(η, η′). Then N1/4(η, η′) ≤ 92. Therefore we have,

P

 sup
v∈R(e−s)

‖v‖2=1,D(v)=2

∣∣∣∣∣
e∑

i=s+1

viεixi[j]

∣∣∣∣∣ > δ


≤(e− s)(e− s− 1)

2
92 sup

η∈(s,e], v∈N1/4(η,η′)
P

{∣∣∣∣∣
e∑

i=s+1

viεixi[j]

∣∣∣∣∣ > δ/2

}

≤Cn2 exp

{
−c′min

{
δ2

4C2
x

,
δ

2Cx‖v‖∞

}}
≤Cn2 exp

{
−cmin

{
δ2,

δ

‖v‖∞

}}
,

where the first inequality follows from Theorem 6 and union bounds, the second last in-
equality holds because for any fixed v, viεixi,j is a sub-Exponential random variable with
parameter bounded by Cx.

Lemma 8 Suppose
v = (a, . . . , a︸ ︷︷ ︸

K1

, b, . . . , b︸ ︷︷ ︸
K2

, c, . . . , c︸ ︷︷ ︸
K3

)

and that v 6= 0. Then ∥∥∥∥ v

‖v‖2

∥∥∥∥
∞
≤ 1√

min{K1,K2,K3}
.
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Proof It suffices to show a/‖v‖2 ≤ 1√
min{K1,K2,K3}

. If a = 0, then this trivially holds.

Otherwise
a

‖v‖2
=

a√
a2K1 + b2K2 + c2K3

≤ 1√
K1

.

Theorem 9 Suppose {xi}1≤i≤n
i.i.d.∼ Np(0,Σ). Let Σ̂ = 1

n

∑n
i=1 xix

>
i . Then there exists

constants c and C such that for all v ∈ Rp,

v>Σ̂v ≥ 1

16
v>Σv − Cr

log(p)

n
‖v‖21

with probability at least 1− exp(−cn).

Proof This is the well known restricted eigenvalue condition. The proof cam be found in
Raskutti et al. (2010).

Appendix B. Proofs Related to Theorem 3

For any univariate time series {zi}ni=1 and any 1 ≤ s < t < e < n, denote the CUSUM
statistics as

Z̃s,et =

√
e− t

(e− s)(t− s)

t∑
i=s+1

zi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

zi.

Proof [Proof of Theorem 3] Throughout the proof, assume that event A({y(2)
i , x

(2)
i }ni=1, {um}Mm=1, ξ =

C1

√
(N + 1) log(n)) in Equation (44), event B({y(2)

i , x
(2)
i }ni=1, {um}Mm=1, ξ = C1

√
(N + 1) log(n))

in Equation (45), event M in Equation (39) and the good event in Theorem 2 (with data

{y(1)
i , x

(1)
i }ni=1) hold. Denote

δk =
C(N + 1) log(n)

κ2
k

and δmax =
C(N + 1) log(n)

κ2
.

Since δk is the desired localization rate, by induction, it suffices to consider any generic
(s, e] ⊂ (0, n] that satisfies the following three conditions:

ηr−1 ≤ s ≤ ηr ≤ . . . ≤ ηr+q ≤ e ≤ ηr+q+1, q ≥ −1;

either ηr − s ≤ δr or s− ηr−1 ≤ δr−1;

either ηr+q+1 − e ≤ δr+q+1 or e− ηr+q ≤ δr+q.

Here q = −1 indicates that there is no change point contained in (s, e].
Observe that under Assumption 2, for sufficiently large constant Csnr, it holds that

δmax < ∆/4. Therefore, it has to be the case that for any true change point ηr ∈ (0, n],
either |ηr−s| ≤ δr or |ηr−s| ≥ ∆−δmax ≥ ∆/4. This means that min{|ηr−e|, |ηr−s|} ≤ δr
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indicates that ηr is a detected change point in the previous induction step, even if ηr ∈ (s, e].
We refer to ηr ∈ (s, e] as an undetected change point if min{ηr − s, ηr − e} ≥ ∆/4.

To complete the induction step, it suffices to show that VPWBS((s, e], {(am, bm)}Mm=1, λ, τ, ζ)
(i) will not detect any new change point in (s, e] if all the change points in that interval
have been previous detected, and
(ii) will find a point Dm∗ in (s, e] such that |ηr − Dm∗| ≤ δr if there exists at least one
undetected change point in (s, e).

Let {α̂m1 , α̂m2 , ν̂m} be the output of LGS ({y(1)
i , x

(1)
i }ni=1, (am, bm), λ), and

um =
α̂m2 − α̂m1
‖α̂m2 − α̂m1 ‖2

∈ Rp

for all 1 ≤ m ≤M . Since the intervals {(am, bm)}Mm=1 are sampled independently from the
data, the rest of the argument is made on the event M, which is defined in Equation (39)
and this event has no effects on the distribution of the data.

Step 1. Denote

fi(um) = E{zi(um)} and f̃ sm,emt (um) = E{Z̃am,bmt (um)}.

Note that
fi(um) = umΣβi.

On the event M, for any ηk ∈ (0, n], without loss of generality, there exists

ak ∈ [ηk − 3∆/4, ηk −∆/2] and bk ∈ [ηk + ∆/2, ηk + 3∆/4]. (33)

In this step, it is shown that for each k ∈ [1, . . . ,K], it holds that

max
ak+ζ≤t≤bk−ζ

|f̃ak,bkt (uk)| ≥
7cx
32

√
∆κk, (34)

where

uk =
α̂k2 − α̂k1
‖α̂k2 − α̂k1‖2

,

and
{α̂k1 , α̂k2 , ν̂k} = LGS ({y(1)

i , x
(1)
i }

n
i=1, (ak, bk), λ).

By Equation (33), [ak, bk] contains exactly one change point ηk. Since fi(uk) is a one
dimensional population time series, it holds that

f̃ak,bkt (uk) =


√

t−ak
(bk−ak)(bk−t)(bk − ηk)u>k Σ(β∗ηk − β

∗
ηk−1

), am < t ≤ ηk,√
bk−t

(bk−ak)(t−ak)(ηk − ak)u>k Σ(β∗ηk − β
∗
ηk−1

), ηk < t ≤ bm.
(35)

Let
{α̂k1 , α̂k2 , ν̂k} ← LGS ({y(1)

i , x
(1)
i }

n
i=1, (ak, bk), λ).
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From Theorem 2, with probability at least 1 − n−5, it holds that∥∥(α̂k1 − α̂k2)− (β∗ηk − β
∗
ηk−1

)
∥∥

2
≤ cx

32Cx
‖β∗ηk − β

∗
ηk−1
‖2.

Since cx < Cx by definition, it holds that

32

33
≤
‖β∗ηk − β

∗
ηk−1
‖2

‖α̂1 − α̂2‖2
≤ 32

31
.

As a result,

u>k Σ(β∗ηk − β
∗
ηk−1

)

=
(α̂1 − α̂2)>

‖α̂1 − α̂2‖2
Σ(β∗ηk − β

∗
ηk−1

)

=
(β∗ηk − β

∗
ηk−1

)>

‖β∗ηk − β∗ηk−1
‖2

Σ(β∗ηk − β
∗
ηk−1

) +

(
(α̂1 − α̂2)>

‖α̂1 − α̂2‖2
−

(β∗ηk − β
∗
ηk−1

)>

‖β∗ηk − β∗ηk−1
‖2

)
Σ(β∗ηk − β

∗
ηk−1

)

≥
(β∗ηk − β

∗
ηk−1

)>

‖β∗ηk − β∗ηk−1
‖2

Σ(β∗ηk − β
∗
ηk−1

)− 2
‖α̂1 − α̂2 − (β∗ηk − β

∗
ηk−1

)‖‖Σ‖op‖β∗ηk − β
∗
ηk−1
‖22

‖α̂1 − α̂2‖2‖β∗ηk − β∗ηk−1
‖2

≥cx‖β∗ηk − β
∗
ηk−1
‖2 − 3Cx

cx
32Cx

‖β∗ηk − β
∗
ηk−1
‖2 ≥

7

8
cx‖β∗ηk − β

∗
ηk−1
‖2. (36)

Therefore Equation (35) gives

|f̃ak,bkηk
(uk)| =

√
(ηk − ak)(bk − ηk)

bk − ak

∣∣∣∣u>k Σ(β∗ηk − β
∗
ηk−1

)

∣∣∣∣ ≥ 1

4

√
∆

7

8
cx‖β∗ηk − β

∗
ηk−1
‖2 =

7cx
32

√
∆κk,

where the last inequality follows from Equation (33) and Equation (36). Under Assumption
1 and Assumption 2, for sufficiently large constant Csnr, it holds that ζ ≤ ∆/4. Therefore
Equation (33) also implies that ηk ∈ [ak + ζ, bk − ζ]

max
ak+ζ≤t≤bk−ζ

|f̃ak,bkt (uk)| ≥ |f̃ak,bkηk
(uk)| ≥

7cx
32

√
∆κk.

This directly gives Equation (34).
Step 2. In this step, we will show that VPWBS((s, e], {(am, bm)}Mm=1, λ, τ, ζ) consistently
detect or reject the existence of undetected change points within (s, e].

Let am, bm and m∗ be defined as in VPWBS((s, e], {(am, bm)}Mm=1, λ, τ, ζ). Denote zi(um) =

(um)>x
(2)
i y

(2)
i and fi(um) = E{zi(um)} = umΣβ∗i . Let Z̃s,et (um) and f̃ s,et (um) be the

CUSUM statistics of the time series zi(um) and fi(um), respectively.

Suppose there exists a change point ηr ∈ (s, e] such that min{ηr − s, e − ηr} ≥ 3∆/4.
Then, on the event M, there exists an interval (ak, bk] selected by VPWBS such that
ak ∈ [ηr − 3∆/4, ηr −∆/2] and bk ∈ [ηr + ∆/2, ηr + 3∆/4]. Then [ak, bk] ⊂ [s, e] and so

(sk, ek] = (ak, bk] ∩ (s, e] = (ak, bk].
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Since Equation (34) in Step 1 holds for (ak, bk], we have that

Ak = max
ak+ζ≤t≤bk−ζ

|Z̃ak,bkt (uk)|

≥ max
ak+ζ≤t≤bk−ζ

|f̃ak,bkt (uk)| − C1

√
(N + 1) log(n)

≥ 7cx
32

√
∆κr − C1

√
(N + 1) log(n)

≥ 7cx
64

√
∆κr ,

where the first inequality holds on the event A({y(2)
i , x

(2)
i }ni=1, {um}Mm=1, ξ = C1

√
(N + 1) log(n)),

the second inequality follows from Equation (34), and the last inequality follows from As-
sumption 2 with sufficiently large constant Csnr. Thus for any undetected change point ηr
within (s, e], it holds that

Am∗ = sup
1≤m≤M

Am ≥ Ak ≥ c′
√

∆κr. (37)

By Assumption 2 with sufficiently large constant Csnr, Equation (37) gives

Am∗ ≥ c′
√

∆κr > Cτ
√

(N + 1) log(n) = τ.

As a result, VPWBS((s, e], {(am, bm)}Mm=1, λ, τ, ζ) correctly accepts the existence of unde-
tected change points.

Suppose there does not exist any undetected change points in (s, e]. Then for any (sm, em] =
(am, bm] ∩ (s, e], one of the following situations must hold.

(a) There is no change point within (sm, em];

(b) there exists only one change point ηr within (sm, em] and min{ηr− sm, em− ηr} ≤ δr;

(c) there exist two change points ηr, ηr+1 within (sm, em] and

ηr − sm ≤ δr and em − ηr+1 ≤ δr+1.

The calculations of (c) is provided as the other two cases are similar and simpler. Note that
for any ‖um‖2 = 1, it holds that

|fηr+1(um)−fηr+1+1(um)| = |u>mΣ(β∗ηr+1
−β∗ηr+1+1)| ≤ ‖um‖2‖Σ‖op‖β∗ηr+1

−β∗ηr+1+1‖ ≤ Cxκr+1

and similarly
|fηr(um)− fηr+1(um)| ≤ Cxκr.

By Theorem 12 and the assumption that (sm, em] contains only two change points, it holds
that

max
sm≤t≤em

|f̃ sm,emt (um)| ≤
√
em − ηr+1|fηr+1(um)− fηr+1+1(um)|+

√
ηr − sm|fηr(um)− fηr+1(um)|
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≤C2

√
δr+1κr+1 + C2

√
δrκr ≤ C3

√
(N + 1) log(n).

Therefore under event A({yi, xi}ni=1, {um}Mm=1, ξ = C1

√
(N + 1) log(n)),

Am := max
sm+ζ≤t≤em−ζ

|Z̃sm,emt (um)| ≤ max
sm+ζ≤t≤em−ζ

|f̃ sm,emt (um)|+C1

√
(N + 1) log(n) ≤ C4

√
(N + 1) log(n).

So if τ = Cτ
√

(N + 1) log(n) for sufficiently large Cτ , it holds that

Am ≤ τ for all 1 ≤ m ≤M.

As a result, VPWBS((s, e], {(am, bm)}Mm=1, λ, τ, ζ) correctly reject if (s, e] contains no unde-
tected change points.
Step 3. Assume that there exists a change point ηr ∈ (s, e] such that

min{ηr − s, ηr − e} ≥ 3∆/4.

Let am, bm and m∗ be defined as in VPWBS((s, e], {(am, bm)}Mm=1, λ, τ, ζ).

To complete the induction, it suffices to show that, there exists a change point ηk ∈
(sm∗, em∗] such that min{ηk − s, ηk − e} ≥ 3∆/4 and |Dm∗ − ηk| ≤ δk.

Consider the univariate time series

zi(um∗) = (u>mx
(2)
i )y

(2)
i , fi(um∗) = E{zi(um∗)} for all 1 ≤ i ≤ n.

Since the collection of the change points of the time series {fi(um∗)}em∗i=sm∗+1 is a subset of

that of {ηk}K+1
k=0 ∩ [s, e], we may apply Theorem 11 to the time series {zi(um∗)}em∗i=sm∗+1 and

{fi(um∗)}em∗i=sm∗+1. Therefore, it suffices to justify that all the assumptions of Theorem 11
hold.

Let ζ = Cζ(N + 1) log(n) and ξ = C1

√
(N + 1) log(n). Observe that from Step 2 Equa-

tion (37), it holds that

Am∗ ≥ c′
√

∆κr.

for all r such that min{ηr − s, e− ηr} ≥ 3∆/4. So Equation (40) holds. Equation (41) and

Equation (42) are direct consequences of A({y(2)
i , x

(2)
i }ni=1, {um}Mm=1, ξ = C1

√
(N + 1) log(n))

and B({y(2)
i , x

(2)
i }ni=1, {um}Mm=1, ξ = C1

√
(N + 1) log(n)). Equation (43) is a direct conse-

quence of Assumptions 1 and 2.

Thus, all the conditions in Theorem 11 are met, and we therefore conclude that there
exists a change point ηk of {fi(um∗)}em∗i=sm∗+1, satisfying

min{em∗ − ηk, ηk − sm∗} > ∆/4, (38)

and
|Dm∗ − ηk| ≤ max{C3ξ

2κ−2
k , ζ} ≤ C(N + 1) log(n)κ−2

k ,
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where the last inequality holds because

C(N + 1) log(n)κ−2
k ≥ C(N + 1) log(n)C−2

κ ≥ Cζ(N + 1) log(n) = ζ

for sufficiently large C. Observe that
i) The change points of {fi(um∗)}ei=s+1 belong to (s, e] ∩ {ηk}Kk=1; and
ii) Equation (38) and (sm∗ , em∗ ] ⊂ (s, e] imply that

min{e− ηk, ηk − s} > ∆/4 >
C(N + 1) log(n)

κ2
= δmax.

As discussed in the argument before Step 1, this implies that ηk must be an undetected
change point of {β∗i }ni=1.

B.1 Additional Technical Lemmas

Let {am}Mm=1, {bm}Mm=1 be two sequences independently selected at random from {1, . . . , n},
and

M =
{

For each k ∈ {1, . . . ,K}, there exist one m ∈ {1, . . . ,M} such that am ∈ Sk, bm ∈ Ek
}
,

(39)
where Sk = [ηk − 3∆/4, ηk −∆/2] and Ek = [ηk + ∆/2, ηk + 3∆/4]. In the following lemma
below, we give a lower bound on the probability of M.

Lemma 10 For the event M defined in (39), we have

P(M) ≥ 1− exp

{
log
( n

∆

)
− M∆2

16n2

}
.

Proof Since the number of change points are bounded by n/∆,

P
(
Mc

)
≤

K∑
k=1

M∏
m=1

{
1− P

(
am ∈ Sk, bm ∈ Ek

)}
≤K(1−∆2/(16n2))M ≤ (n/∆)(1−∆2/(16n2))M

≤ exp

{
log
( n

∆

)
− M∆2

16n2

}
.

B.1.1 Univariate CUSUM Statistics

We introduce some notations for one dimensional change point detection and the corre-
sponding CUSUM statistics. Let {zi}ni=1, {fi}ni=1 ⊂ R be two univariate sequences. We will
make the following assumptions.
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Assumption 3 (Univariate mean change points) Let {ηk}K+1
k=0 ⊂ {0, . . . , n}, where

η0 = 0 and ηK+1 = n, and

fηk−1+1 = fηk−1+2 = . . . = fηk for all 1 ≤ k ≤ K + 1,

Assume

min
k=1,...,K+1

(ηk − ηk−1) ≥ ∆ > 0,

0 < |fηk+1
− fηk | := κk for all k = 1, . . . ,K.

We also have the corresponding CUSUM statistics over any generic interval [s, e] ⊂ [1, T ]
defined as

Z̃s,et =

√
e− t

(e− s)(t− s)

t∑
i=s+1

zi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

zi,

f̃ s,et =

√
e− t

(e− s)(t− s)

t∑
i=s+1

fi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

fi.

Throughout this section, all of our results are proven by regarding {Zi}Ti=1 and {fi}Ti=1 as

two deterministic sequences. We will frequently assume that f̃ s,et is a good approximation
of Z̃s,et in ways that we will specify through appropriate assumptions.

Lemma 11 Suppose Assumption 3 holds. Let [s0, e0] be an interval with e0 − s0 ≤ CR∆
and contain at lest one change point ηr such that

ηr−1 ≤ s0 ≤ ηr ≤ . . . ≤ ηr+q ≤ e0 ≤ ηr+q+1, q ≥ 0.

Suppose that min{ηp′ − s0, e0− ηp′} ≥ ∆/16 for some p′ and let κs,emax = max{κp : min{ηp−
s0, e0 − ηp} ≥ ∆/16}. Let [s, e] ⊂ [s0, e0] be any generic intervals. and

b ∈ arg max
s<t<e

|Z̃s,et |.

For some c1 > 0, λ > 0 and δ > 0, suppose that

|Z̃s,eb | ≥ c1κ
s,e
max

√
∆, (40)

sup
s+ζ≤t≤e−ζ

|Z̃s,et − f̃
s,e
t | ≤ ξ, and (41)

sup
s1<t<e1

1√
e1 − s1

∣∣∣∣∣
e1∑

t=s1+1

(zt − ft)

∣∣∣∣∣ ≤ ξ for every e1 − s1 ≥ ζ. (42)

If there exists a sufficiently small c2 > 0 such that

ξ ≤ c2κ
s,e
max

√
∆ and ζ ≤ c2∆, (43)

then there exists a change point ηk ∈ (s, e) such that

min{e− ηk, ηk − s} > ∆/4 and |ηk − b| ≤ min{C3ξ
2κ−2
k , ζ}.
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Proof This is Lemma 22 in Wang et al. (2017).

Lemma 12 If [s, e] contain two and only two change points ηr and ηr+1, then

sup
s≤t≤e

∣∣∣f̃ s,et ∣∣∣ ≤ √e− ηr+1κr+1 +
√
ηr − sκr.

Proof This is Lemma 24 in Wang et al. (2021).

B.1.2 Projected CUSUM Statistics

Given a collection of deterministic vectors {um}Mm=1 ∈ Rp, denote

zi(um) = u>mxiyi ∈ R for 1 ≤ m ≤M and 1 ≤ i ≤ n.

Let Z̃s,et (um) denote the corresponding one-dimensional CUSUM statistics. That is

Z̃s,et (um) =

√
e− t

(e− s)(t− s)

t∑
i=s+1

zi(um)−

√
t− s

(e− s)(e− t)

e∑
i=t+1

zi(um).

Consider the following events

A({yi, xi}ni=1,{um}Mm=1, ξ) (44)

=

{
sup

1≤m≤M
sup

0≤s<t<e≤n
|Z̃s,et (um)− E(Z̃s,et (um))| ≥ ξ,min{t− s, e− t} ≥ (N + 1) log(n)

}
;

B({yi, xi}ni=1,{um}Mm=1, ξ) (45)

=

{
sup

1≤m≤M
sup

0≤s<t<e≤n

∣∣∣∣∑e
i=s+1{zi(um)− E(zi(um))}

√
e− s

∣∣∣∣ ≥ ξ,min{e− s} ≥ (N + 1) log(n)

}
.

Lemma 13 (Deviation Bounds for Variance-Projected CUSUM statistics) Suppose
Assumption 1 a holds. Let {um}Mm=1 be a collection of vectors in Rp such that ‖um‖2 = 1
for all m. Then there exists an absolute constants C1 and C2 such that

P
[
A({yi, xi}ni=1, {um}Mm=1, C1

√
(N + 1) log(n))

]
≥ 1− CMn−3, and

P
[
B({yi, xi}ni=1, {um}Mm=1, C1

√
(N + 1) log(n))

]
≥ 1− CMn−3.

Proof The deviation bounds can be established by standard sub-Exponential tail bounds.
The analysis for the event A will be provided, as the analysis for event B is exactly the same.

Step 1. Note that

Z̃s,et (um)− E(Z̃s,et (um) =

e∑
i=s+1

bi

[
u>mxiyi − E{u>mxiyi}

]
,
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where

bi =


√

e−t
(e−s)(t−s) whens+ 1 ≤ i ≤ t,

−
√

t−s
(e−s)(e−t) whent+ 1 ≤ i ≤ e.

Note that u>mxiyi = u>mxi(x
>
i β
∗
i + εi) where x>i β

∗
i + εi is centered Gaussian with

V ar(x>i β
∗
i + εi) = (β∗i )>Σβ∗i + σ2

ε ≤ NCx + σ2
ε ,

and umxi is centered Gaussian with with

V ar(u>mxi) = u>mΣum ≤ Cx,

where ‖um‖22 = 1 is used in the last inequality. So u>mxiyi is sub-Exponential with parameter
NC2

x + σ2
εCx. In addition, note that

e∑
i=s+1

b2i = 1 and |bi| ≤ (N log(n))−1/2.

So by sub-Exponential tail bound, it holds that

P

(∣∣∣∣ e∑
i=s+1

bi

[
u>mxiyi−E{u>mxiyi}

]∣∣∣∣ ≥ δ) ≤ 2 exp

(
−cmin

{
δ2

NC2
x + Cxσ2

ε

,
δ
√

(N + 1) log(n)√
NC2

x + Cxσ2
ε

})
.

So by picking δ = Cδ
√

(N + 1) log(n) for sufficiently large constant Cδ, it holds that with
probability at most 1− n−6,∣∣∣∣Z̃s,et (um)− E(Z̃s,et (um)

∣∣∣∣ =

∣∣∣∣ e∑
i=s+1

bi

[
u>mxiyi − E{u>mxiyi}

]∣∣∣∣ ≥ Cδ√(N + 1) log(n).

Since there are at most n2 possible choice for (s, e] ⊂ (0, n], a straightforward union bound
argument shows that

P
[
A({yi, xi}ni=1, {um}Mm=1, C1

√
(N + 1) log(n))

]
≥ 1− CMn−3.
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Figure 3: Bar plots for estimation results reported in Table 2. Plots 1-4 correspond to
Setting (i) with κ ∈

√
40 · {1, 1.2, 1.4, 1.6}. Plots 5-9 correspond to Setting

(ii) with n ∈ {480, 560, 640, 720, 800}. Plots 10-14 correspond to Setting (iii)
with p ∈ {80, 90, 100, 110, 120}. Plots 15-18 correspond to Setting (iv) with
s ∈ {16, 20, 24, 28}.
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Figure 5: Plots of SGL estimator {β̂t}nt=1 in (7). The data {xt, yt}nt=1 is the same as the
one used to generate the illustration of VPWBS in Figure 1, where we have
n = 300, p = 100 and that two change-points are at η1 = 100 and η2 = 200
with change size κ = 1.6

√
40. For better comparison with Figure 1, we plot the

estimated β̂t for t = 105, · · · , 290. The true coefficient {β∗t }290
t=105 contains a single

change-point at η2 = 200.
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