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A B S T R A C T

Numerical solutions of stochastic problems involving random processes 𝑋(𝑡), which constitutes infinite families
of random variables, require to represent these processes by finite dimensional (FD) models 𝑋𝑑 (𝑡), i.e.,
deterministic functions of time depending on finite numbers 𝑑 of random variables. Most available FD models
match the mean, correlation, and other global properties of 𝑋(𝑡). They provide useful information to a broad
range of problems, but cannot be used to estimate extremes or other sample properties of 𝑋(𝑡). We develop FD
models 𝑋𝑑 (𝑡) for processes 𝑋(𝑡) with continuous samples and establish conditions under which these models
converge weakly to 𝑋(𝑡) in the space of continuous functions as 𝑑 → ∞. These theoretical results are illustrated
by numerical examples which show that, under the conditions established in this study, samples and extremes
of 𝑋(𝑡) can be approximated by samples and extremes of 𝑋𝑑 (𝑡) and that the discrepancy between samples and
extremes of these processes decreases with 𝑑.
1. Introduction

Most probabilistic models match only some properties of target
rocesses, e.g., current models for wind pressure time series recorded
n wind tunnels match the mean and correlation functions [1–4] or the
arginal distributions, in addition to and mean and correlation func-
ions, [5–10]. There are no models which match sample properties of
arget processes, although sample properties are critical for estimating
xtremes of random processes and related properties [11].
There are at least three reasons for constructing models which

apture sample properties, rather than just mean, correlations, and
ther low order statistics. First, a random process is defined completely
y its samples. Mean, variances, correlations, polyspectra and other
ow order statistics are insufficient to characterize completely random
rocesses, generate samples and estimate extremes of these processes.
Second, processes with the same mean and correlation functions can

ave very different sample properties and extremes. For example, the
rocesses 𝑋𝐵(𝑡) and 𝑋𝐶 (𝑡) defined by 𝑑𝑋(𝑡) = −𝜌𝑋(𝑡) 𝑑𝑡 +

√

2 𝜌 𝑑𝑌 (𝑡)
with 𝑌 (𝑡) denoting the standard Brownian motion process 𝐵(𝑡) and
compound Poisson process 𝐶(𝑡) have the same mean and correla-
ion functions under proper tuning of the compound Poisson process
(𝑡). Yet, 𝑋𝐵(𝑡) has continuous samples while the samples of 𝑋𝐶 (𝑡)
xhibit jumps at random times. Also, the extremes sup𝑡∈[0,𝜏] |𝑋𝐶 (𝑡)| and
sup𝑡∈[0,𝜏] |𝑋𝐵(𝑡)| of these processes differ significantly, as illustrated
by the histograms of Fig. 1 which are based on 50,000 independent
samples of 𝑋𝐵(𝑡) and 𝑋𝐶 (𝑡). Note that the two histograms have different
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scales and that sup𝑡∈[0,𝜏] |𝑋𝐶 (𝑡)| and sup𝑡∈[0,𝜏] |𝑋𝐵(𝑡)| are in the ranges
[0,14] and [1.5,5.0].

Third, simplified representations of non-Gaussian processes based
on heuristic assumptions may not work for extremes. For example,
Let 𝑋(𝑡) = 𝐺(𝑡)3, where 𝐺(𝑡) = 𝐴 cos(𝜈 𝑡) + 𝐵 sin(𝜈 𝑡), 𝑡 ∈ [0, 𝜏],
𝐴,𝐵 are independent standard Gaussian variables and 𝜈 = 2𝜋∕𝜏.
Hence, 𝑋(𝑡) =

∑𝑑
𝑘=1𝑍𝑘 𝜑𝑘(𝑡), 𝑑 = 4, where {𝑍𝑘} are uncorrelated

but dependent non-Gaussian variables. The solid line in Fig. 2 is an
estimate of the probability 𝑃

(

sup𝑡∈[0,𝜏] |𝑋(𝑡)| > 𝑥
)

. The dotted line
is an estimate of this probability under a common assumption in
applications [12] that the random coefficients {𝑍𝑘} have the correct
distributions but are independent. The plots show that the extremes of
𝑋(𝑡) are underestimated under this heuristic assumption in agreement
with considerations in [13].

Our objective is to develop finite dimensional (FD) models {𝑋𝑑 (𝑡)},
𝑑 = 1, 2,…, for real-valued random processes 𝑋(𝑡), 𝑡 ∈ [0, 𝜏], with
continuous samples, i.e., deterministic functions of time which depend
on 𝑑 random variables, whose samples match in some sense the samples
of the target process 𝑋(𝑡). The stochastic dimension of 𝑋𝑑 (𝑡) is finite
and equal to 𝑑 < ∞. In contrast, the stochastic dimension of 𝑋(𝑡) is
infinity since it consists of an uncountable family of random variables
indexed by 𝑡 ∈ [0, 𝜏]. It is shown that it is possible to construct FD
models such that the discrepancy sup𝑡∈[0,𝜏] |𝑋(𝑡) −𝑋𝑑 (𝑡)| can be made
as small as desired by increasing 𝑑. Specifically, we show that under
some conditions sup𝑡∈[0,𝜏] |𝑋(𝑡) −𝑋𝑑 (𝑡)| → 0 as 𝑑 → ∞ weakly and/or
https://doi.org/10.1016/j.probengmech.2022.103199
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Fig. 1. Histograms of sup𝑡∈[0,𝜏] |𝑋𝐶 (𝑡)| and sup𝑡∈[0,𝜏] |𝑋𝐵 (𝑡)| (left and right panels) for responses 𝑋𝐶 (𝑡) and 𝑋𝐵 (𝑡) with the same mean and correlation functions, where 𝜏 = 50, and
= 1.
Fig. 2. Estimate of 𝑃
(

sup𝑡∈[0,𝜏] |𝑋(𝑡)| > 𝑥
)

and approximation under the assumption
hat {𝑍𝑘} are independent (solid and dotted lines).

.s., which means that samples of 𝑋𝑑 (𝑡) can be used as substitutes for
samples of 𝑋(𝑡) for sufficiently large 𝑑 so that extremes of 𝑋(𝑡) can be
approximated by those of 𝑋𝑑 (𝑡).

The paper is organized as follows. We define finite dimensional
models in Section 2 and give their properties. Conditions under which
𝑋𝑑 (𝑡) converges weakly to arbitrary processes 𝑋(𝑡) in 𝐶[0, 𝜏] are estab-
lished in Section 3, which contains our main result. The special cases of
Gaussian and translation processes 𝑋(𝑡) are also discussed. Numerical
illustrations of our theoretical results are in Section 4. Section 5 sum-
marizes our findings and the Appendix gives computational details for
one of the numerical illustrations.

2. Finite dimensional (FD) models

Consider a real-valued process {𝑋(𝑡), 𝑡 ∈ [0, 𝜏]}, 0 < 𝜏 < ∞, defined
on a probability space (𝛺, , 𝑃 ) with mean 𝜇(𝑡) = 𝐸[𝑋(𝑡)] = 0 and
correlation function 𝑐(𝑠, 𝑡) = 𝐸[𝑋(𝑠)𝑋(𝑡)]. The assumption 𝜇(𝑡) = 0 is
not restrictive since, if 𝜇(𝑡) ≠ 0, the deterministic function 𝜇(𝑡) can
be added to the samples of 𝑋(𝑡). It is assumed that the correlation
function of 𝑋(𝑡) is continuous, so that it is square integrable on 𝐾 =
[0, 𝜏]2, i.e., ∫𝐾 𝑐(𝑠, 𝑡)

2 𝑑𝑠 𝑑𝑡 < ∞. Under this assumption, 𝜑(𝑡) =
∫𝐾 𝑐(𝑠, 𝑡)𝜑(𝑠) 𝑑𝑠 is a compact, self-adjoint operator on 𝐿2(𝐾) so that its
eigenvalues {𝜆𝑘}, 𝑘 = 1, 2.…, are non-negative and its eigenfunctions
{𝜑𝑘(𝑡)}, 𝑘 = 1, 2.… are orthonormal, i.e., ⟨𝜑𝑘, 𝜑𝑙⟩ = ∫ 𝜏0 𝜑𝑘(𝑡)𝜑𝑙(𝑡) 𝑑𝑡 =
𝛿 . According to Mercer’s theorem [14] (Section 6.2) or [15], the series
𝑘𝑙

2

𝑐(𝑠, 𝑡) =
∑∞
𝑘=1 𝜆𝑘 𝜑𝑘(𝑠)𝜑𝑘(𝑡) converges absolutely and uniformly in 𝐾.

Also, 𝑋(𝑡) admits the Karhunen–Loève (KL) representation

𝑋KL(𝑡) =
∞
∑

𝑘=1
𝑌𝑘 𝜑𝑘(𝑡), (2.1)

where {𝑌𝑘} are uncorrelated random variables with 𝐸[𝑌𝑘] = 0 and
𝐸[𝑌𝑘 𝑌𝑙] = 𝜆𝑘𝛿𝑘𝑙. The series in (2.1) converges in mean square (m.s.)
for any 𝑡 ∈ [0, 𝜏]. This follows from the observation that the FD
models

𝑋KL,d(𝑡) =
𝑑
∑

𝑘=1
𝑌𝑘 𝜑𝑘(𝑡), 𝑑 = 1, 2,… , (2.2)

which are truncated versions of 𝑋KL(𝑡), are such that 𝐸
[(

𝑋𝐾𝐿,𝑛(𝑡) −
𝑋𝐾𝐿,𝑚(𝑡)

)2] =
∑𝑛
𝑘=𝑚+1 𝜆𝑘𝜑𝑘(𝑡)2 → 0, as 𝑚, 𝑛 → ∞, by Mercer’s

theorem. This shows that 𝑋𝐾𝐿,𝑑 (𝑡) is Cauchy in 𝐿2[0, 𝜏] and that the
series representation of 𝑋𝐾𝐿(𝑡) is m.s. convergent [14] (Theorem 6.2.1).
Accordingly, 𝑋KL(𝑡) and 𝑋(𝑡) have the same mean and correlation
functions. It can also be shown that 𝐸

[(

𝑋𝐾𝐿(𝑠)−𝑋𝐾𝐿(𝑡)
)2]

→ 0 as 𝑠 → 𝑡,
𝑠, 𝑡 ∈ [0, 𝜏].

The process 𝑋KL,d(𝑡) in (2.2) is partially specified by its mean and
correlation functions which are those of the target process 𝑋(𝑡), unless
𝑋(𝑡) is Gaussian in which case {𝑌𝑘} are independent Gaussian variables
so that 𝑋KL,d(𝑡) is a Gaussian process with the first two moments of 𝑋(𝑡).
If 𝑋(𝑡) is not Gaussian, the random variables {𝑌𝑘} are uncorrelated but
dependent non-Gaussian variables. Since the joint distribution of {𝑌𝑘}
is unknown, it is not possible to generate samples of, e.g., truncated
versions 𝑋𝐾𝐿,𝑑 (𝑡) of 𝑋KL(𝑡).

We construct an alternative sequence {𝑋𝑑 (𝑡)} of finite dimensional
(FD) processes which is closely related to that in (2.2) in the sense that
it shares the same basis functions, i.e., the eigenfunctions {𝜑𝑘} of the
correlation function of 𝑋(𝑡). It has the expression

𝑋𝑑 (𝑡) =
𝑑
∑

𝑘=1
𝑍𝑘 𝜑𝑘(𝑡), 𝑑 = 1, 2,… , (2.3)

where the random coefficients {𝑍𝑘} are defined sample-by-sample from
samples of 𝑋(𝑡) by projection, i.e.,

𝑍𝑘(𝜔) = ∫

𝜏

0
𝑋(𝑡, 𝜔)𝜑𝑘(𝑡)𝑑𝑡, 𝑘 ≥ 1, 𝜔 ∈ 𝛺, (2.4)

where 𝑋(𝑡, 𝜔) denotes a sample of 𝑋(𝑡). We note that (1) the processes
{𝑋𝑑 (𝑡)} are completely defined, (2) samples 𝑋𝑑 (𝑡, 𝜔) and 𝑋(𝑡, 𝜔) of
𝑋𝑑 (𝑡) and 𝑋(𝑡) are paired by construction and (3) the processes 𝑋𝑑 (𝑡)
and 𝑋KL,d(𝑡) have the same mean and correlation functions. The latter
statement follows from the observations that

𝐸[𝑍𝑘] = 𝐸
[ 𝜏

𝑋(𝑡)𝜑𝑘(𝑡) 𝑑𝑡
]

=
𝜏
𝐸[𝑋(𝑡)]𝜑𝑘(𝑡) 𝑑𝑡 = 0
∫0 ∫0
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and

𝐸[𝑍𝑘𝑍𝑙] = 𝐸
[

∫[0,𝜏]2
𝑋(𝑠)𝑋(𝑡)𝜑𝑘(𝑠)𝜑𝑙(𝑡) 𝑑𝑠 𝑑𝑡

]

= ∫[0,𝜏]2
𝐸[𝑋(𝑠)𝑋(𝑡)]𝜑𝑘(𝑠)𝜑𝑙(𝑡) 𝑑𝑠 𝑑𝑡

= ∫

𝜏

0

[

∫

𝜏

0
𝑐(𝑠, 𝑡)𝜑𝑙(𝑡) 𝑑𝑡

]

𝜑𝑘(𝑠) 𝑑𝑠 = 𝜆𝑙 ∫

𝜏

0
𝜑𝑙(𝑠)𝜑𝑘(𝑠) 𝑑𝑠

= 𝜆𝑙 𝛿𝑘𝑙 ,

where the change of order of integration holds by Fubini’s theorem. It
also shows that, like 𝑋KL,d(𝑡), 𝑋𝑑 (𝑡) converges in m.s. to 𝑋(𝑡) as 𝑑 → ∞.

Consider an arbitrary set of times (𝑡1,… , 𝑡𝑚). Since the random
vectors

(

𝑋KL,d(𝑡1),… , 𝑋KL,d(𝑡𝑚)
)

and
(

𝑋𝑑 (𝑡1),… , 𝑋𝑑 (𝑡𝑚)
)

converge in
m.s. to

(

𝑋(𝑡1),… , 𝑋(𝑡𝑚)
)

if their components converge in m.s., then
their convergence also hold in probability by Chebyshev’s inequality.
This implies the convergence of the finite dimensional distributions of
𝑋𝑑 (𝑡) to those of 𝑋(𝑡) as 𝑑 → ∞ [16] (Theorem 18.10).

We note that FD processes of the type in (2.3) can be constructed
by using other basis functions, e.g., trigonometric polynomials or other
sets of orthogonal functions. We use mainly the eigenfunctions of the
correlation functions of 𝑋(𝑡), since they minimize the mean square error
and are delivered by available numerical algorithms.

The subsequent section considers processes 𝑋(𝑡) with continuous
samples and shows that the sequence of processes {𝑋𝑑 (𝑡)} converges
weakly to 𝑋(𝑡) in the space of continuous functions 𝐶[0, 𝜏] under some
conditions. The processes {𝑋KL,d(𝑡)} do not have this property since
their samples are available only for Gaussian target processes 𝑋(𝑡)
and, if available, cannot be paired with sample of 𝑋(𝑡) so that the
discrepancy between samples of {𝑋KL,d(𝑡)} and 𝑋(𝑡) cannot be assessed.

3. Main results

We follow the approach of Theorems 8.1 and 8.2 or 8.3 in [17]
to show that 𝑋𝑑 (𝑡) converges weakly to 𝑋(𝑡) in 𝐶[0, 𝜏], a convergence
which is denoted by 𝑋𝑑 (𝑡)

𝑤
→ 𝑋(𝑡). Let 𝑋𝑑 (𝑡), 𝑋(𝑡) ∶ (𝛺, , 𝑃 ) →

(𝐶[0, 𝜏],) be real-valued processes with continuous samples, where
 denotes the Borel 𝜎-algebra on the space of real-valued continuous
functions 𝐶[0, 𝜏]. According to Theorem 8.1, the family of processes
{𝑋𝑑 (𝑡)} converges weakly to 𝑋(𝑡) in 𝐶[0, 𝜏] if (1) the finite dimensional
distributions of 𝑋𝑑 (𝑡) converge to those of 𝑋(𝑡) and (2) the family of
processes {𝑋𝑑 (𝑡)} is tight in 𝐶[0, 𝜏]. We say that the family {𝑋𝑑 (𝑡)} is
tight if for any 𝜀 > 0, there exists a compact set 𝐾 ⊂ 𝐶[0, 𝜏] such that
𝑃 (𝑋𝑑 (𝑡) ∈ 𝐾) > 1 − 𝜀 for all 𝑑. Theorems 8.2 and 8.3 provide criteria
for checking whether a sequence of probability measures is tight, and
we use the conditions of these theorems to determine whether the
family {𝑋𝑑 (𝑡)} of processes is tight. Since we already have shown the
convergence of the finite dimensional distributions of 𝑋𝑑 (𝑡) to those
of 𝑋(𝑡), we only need to show the tightness of the family {𝑋𝑑 (𝑡)} of
processes to prove that 𝑋𝑑 (𝑡) converges weakly to 𝑋(𝑡) in 𝐶[0, 𝜏]. The
following theorem is our main result.

Theorem 3.1. If the finite dimensional distributions of 𝑋𝑑 (𝑡) converge
to those of 𝑋(𝑡), 𝑋(𝑡) has continuous samples and continuous correlation
function and either (𝑖) or (𝑖𝑖) holds, then

sup
𝑡∈[0,𝜏]

|𝑋𝑑 (𝑡) −𝑋(𝑡)|
𝑤
→ 0, 𝑑 → ∞, (3.1)

where 𝑋𝑑 (𝑡) is given by (2.3).
(i) ∑∞

𝑘=1

√

𝐸[𝑍2
𝑘 ]𝐿𝑘(𝜏) < ∞, where 𝐿𝑘(𝛿) = sup

|𝑠−𝑡|≤𝛿 |𝜑𝑘(𝑡) − 𝜑𝑘(𝑠)|,
𝛿 ∈ [0, 𝜏].

(ii) There is 𝑀 > 0 such that 𝐸[ sup𝑡∈[0,𝜏] |𝑋̇𝑑 (𝑡)| ] ≤ 𝑀 for all 𝑑 ≥ 1
and {𝜑𝑘(𝑡)}, 𝑘 ≥ 1, are continuously differentiable functions.

Proof. Following Theorem 8.2 in [17], we first show the tightness of
the family of random variables {𝑋𝑑 (0)}. Note that

𝐸[𝑋𝑑 (0)2] =
𝑑
∑

𝜆𝑘𝜑𝑘(0)2 ≤
∞
∑

𝜆𝑘𝜑𝑘(0)2 = 𝐸[𝑋(0)2] <∞, ∀ 𝑑 ≥ 1,

𝑘=1 𝑘=1

3

by Mercer’s theorem and 𝐸𝑋(0)2 is finite by assumption. Then for any
𝜀 > 0 there exists 𝐿 > 0 such that

𝑃 (|𝑋𝑑 (0)| > 𝐿) ≤
1
𝐿2
𝐸[𝑋𝑑 (0)2] ≤

1
𝐿2
𝐸[𝑋(0)2] ≤ 𝜀, ∀𝑑 ≥ 1

by Chebyshev’s inequality. Therefore {𝑋𝑑 (0)} is tight.
Consider now the second condition of Theorem 8.2, which requires

to show that, for given 𝜀, 𝜂 > 0, there exists 𝛿0 > 0 such that 𝑃
(

𝑊 (𝛿0) ≥
)

≤ 𝜂 for 𝑑 ≥ 𝑑0, where 𝑊 (𝛿0) = sup
|𝑠−𝑡|≤𝛿0 |𝑋𝑑 (𝑡) −𝑋𝑑 (𝑠)| denotes the

odulus of continuity of 𝑋𝑑 (𝑡). We show that the sequence {𝑋𝑑 (𝑡)} of
rocesses satisfies this condition provided that (𝑖) or (𝑖𝑖) holds.
Case one (𝑖) holds: for given 𝜀 > 0, we have

(

sup
|𝑠−𝑡|≤𝛿

|𝑋𝑑 (𝑡) −𝑋𝑑 (𝑠)| ≥ 𝜀
)

≤ 𝑃
(

sup
|𝑠−𝑡|≤𝛿

|

|

|

|

𝑑
∑

𝑘=1
𝑍𝑘(𝜑𝑘(𝑡) − 𝜑𝑘(𝑠))

|

|

|

|

≥ 𝜀
)

≤ 𝑃
( 𝑑
∑

𝑘=1
|𝑍𝑘| sup

|𝑠−𝑡|≤𝛿
|𝜑𝑘(𝑡) − 𝜑𝑘(𝑠)| ≥ 𝜀

)

≤ 1
𝜀

𝑑
∑

𝑘=1
𝐸|𝑍𝑘| sup

|𝑠−𝑡|≤𝛿
|𝜑𝑘(𝑡) − 𝜑𝑘(𝑠)|

= 1
𝜀

∞
∑

𝑘=1
𝐸|𝑍𝑘|𝐿𝑘(𝛿).

Since 𝐿𝑘(𝛿) is monotonically increasing,
∑∞
𝑘=1 𝐸|𝑍𝑘|𝐿𝑘(𝜏) < ∞ and

each 𝜑𝑘(𝑡) is continuous so that 𝐿𝑘(𝛿) is bounded, then by dominated
convergence theorem [18] (Theorem 1.34), we know that for any 𝜀, 𝜂 >
0, there exists 𝛿0 such that

𝑃
(

sup
|𝑠−𝑡|≤𝛿0

|𝑋𝑑 (𝑡) −𝑋𝑑 (𝑠)| ≥ 𝜀
)

≤ 𝜂, ∀𝑑 ≥ 1,

which implies 𝑋𝑑 (𝑡) is tight in 𝐶[0, 𝜏]. Since we assume the weak
convergence of finite dimensions of 𝑋𝑑 (𝑡), we conclude by Theorem 8.1
in [17] that 𝑋𝑑 (𝑡)

𝑤
→ 𝑋(𝑡) in the space 𝐶[0, 𝜏] as 𝑑 → ∞.

Case two (𝑖𝑖) holds: we have for any 𝑘 ≥ 1,

𝑃
(

sup
|𝑠−𝑡|≤𝛿

|𝑋𝑑 (𝑡) −𝑋𝑑 (𝑠)| ≥ 𝜀
)

= 𝑃
(

sup
|𝑠−𝑡|≤𝛿

|

|

|

𝑑
∑

𝑘=1
𝑍𝑘(𝜑𝑘(𝑡) − 𝜑𝑘(𝑠))

|

|

|

≥ 𝜀
)

∫R𝑑
𝑃
(

sup
|𝑠−𝑡|≤𝛿

|

|

|

𝑑
∑

𝑘=1
𝑍𝑘(𝜑𝑘(𝑡) − 𝜑𝑘(𝑠))

|

|

|

𝜀|𝑍1 = 𝑧1,… , 𝑍𝑑 = 𝑧𝑑

)

𝐹 (𝑑𝑧1 ⋯ 𝑑𝑧𝑑 )

∫R𝑑
𝟏
(

sup
|𝑠−𝑡|≤𝛿

|

|

|

𝑑
∑

𝑘=1
𝑧𝑘(𝜑𝑘(𝑡) − 𝜑𝑘(𝑠))

|

|

|

≥ 𝜀
)

𝐹 (𝑑𝑧1 ⋯ 𝑑𝑧𝑑 ),

here 𝐹 is the joint distribution function of (𝑍1,… , 𝑍𝑑 ). Let ℎ𝑑 (𝑡; 𝑧1,
, 𝑧𝑑 ) =

∑𝑑
𝑘=1 𝑧𝑘𝜑𝑘(𝑡) for fixed 𝑧1,… , 𝑧𝑑 , since 𝑧1,… , 𝑧𝑑 are bounded

lmost surely, then by mean value theorem there exists 𝜉 between 𝑠
nd 𝑡 such that

𝑑 (𝑡; 𝑧1,… , 𝑧𝑑 ) − ℎ𝑑 (𝑠; 𝑧1,… , 𝑧𝑑 ) = (𝑡 − 𝑠)ℎ′𝑑 (𝜉; 𝑧1,… , 𝑧𝑑 ),

ince 𝜑𝑘(𝑡) is assumed to be continuously differentiable, which implies

sup
𝑠−𝑡|≤𝛿

|

|

|

𝑑
∑

𝑘=1
𝑧𝑘(𝜑𝑘(𝑡) − 𝜑𝑘(𝑠))

|

|

|

= sup
𝑡∈[𝑠−𝛿,𝑠+𝛿]

|ℎ𝑑 (𝑡; 𝑧1,… , 𝑧𝑑 ) − ℎ𝑑 (𝑠; 𝑧1,… , 𝑧𝑑 )|

= sup
𝑡∈[𝑠−𝛿,𝑠+𝛿]

|(𝑡 − 𝑠)ℎ′𝑑 (𝜉; 𝑧1,… , 𝑧𝑑 )|.
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Note that 𝜉 is between 𝑠 and 𝑡 and 𝑡 ∈ [𝑠 − 𝛿, 𝑠 + 𝛿], then

sup
𝑠−𝑡|≤𝛿

|

|

|

𝑑
∑

𝑘=1
𝑧𝑘(𝜑𝑘(𝑡) − 𝜑𝑘(𝑠))

|

|

|

≤ 𝛿 sup
𝑡∈[𝑠−𝛿,𝑠+𝛿]

|ℎ′𝑑 (𝜉; 𝑧1,… , 𝑧𝑑 )|

≤ 𝛿 sup
𝜉∈[𝑠−𝛿,𝑠+𝛿]

|ℎ′𝑑 (𝜉; 𝑧1,… , 𝑧𝑑 )|,

which implies

𝑃
(

sup
|𝑠−𝑡|≤𝛿

|𝑋𝑑 (𝑡) −𝑋𝑑 (𝑠)| ≥ 𝜀
)

≤ ∫R𝑑
𝟏
(

𝛿 sup
𝜉∈[𝑠−𝛿,𝑠+𝛿]

|ℎ′𝑑 (𝜉; 𝑧1,… , 𝑧𝑑 )| ≥ 𝜀
)

𝐹 (𝑑𝑧1 ⋯ 𝑑𝑧𝑑 )

= 𝑃
(

sup
𝜉∈[𝑠−𝛿,𝑠+𝛿]

|𝑋̇𝑑 (𝜉)| ≥
𝜀
𝛿

)

By Markov inequality and 𝐸[ sup𝑡∈[0,𝜏] |𝑋̇𝑑 (𝑡)| ] ≤ 𝑀 for all 𝑑 ≥ 1, take
𝛿 = 𝜀𝜂∕𝑀 , we have

𝑃
(

sup
|𝑠−𝑡|≤𝛿

|𝑋𝑑 (𝑡) −𝑋𝑑 (𝑠)| ≥ 𝜀
)

≤ 𝛿
𝜀
𝐸
[

sup
𝜉∈[𝑠−𝛿,𝑠+𝛿]

|𝑋̇𝑑 (𝜉)|
]

≤ 𝑀𝛿
𝜀

= 𝜂.

Hence 𝑋𝑑 (𝑡) is tight in 𝐶[0, 𝜏]. This property and the convergence of
he finite dimensional distributions of 𝑋𝑑 (𝑡) to those of 𝑋(𝑡) imply

sup
𝑡∈[0,𝜏]

|𝑋𝑑 (𝑡) −𝑋(𝑡)|
𝑤
→ 0, 𝑑 → ∞. □

In applications, we can use the condition (𝑖) or (𝑖𝑖) depending
on properties of 𝑋(𝑡). For example, the condition (𝑖𝑖) holds for m.s.
differentiable processes, see Theorem 3.2 and Corollary 3.1. Otherwise,
we can use the condition (𝑖) as illustrated in Corollaries 3.2 and 3.3.

emark 3.1. The Brownian motion process 𝐵(𝑡), 0 ≤ 𝑡 ≤ 1, does
ot satisfy the conditions of the previous theorem. Yet, the family of
D models {𝐵𝑑 (𝑡)} of this process constructed as in (2.3) is tight and
onverges weakly and almost surely to 𝐵(𝑡) in the space of continuous
unctions.

roof. The sequence {𝐵𝑑 (0)} of random variables is tight, since 𝐵𝑑 (0) =
(0) = 0 for any 𝑑 ≥ 1. The difference 𝐵𝑑 (𝑠)−𝐵𝑑 (𝑡) =

∑𝑑
𝑘=1𝑍𝑘 𝜓𝑘(𝑠, 𝑡) is

zero-mean Gaussian random variable with variance ∑𝑑
𝑘=1 𝜆𝑘𝜓𝑘(𝑠, 𝑡)

2,
here 𝜓𝑘(𝑠, 𝑡) = 𝜑𝑘(𝑠) − 𝜑𝑘(𝑡) = 23∕2 sin((𝑘 − 1∕2)𝜋(𝑠 − 𝑡)∕2) cos((𝑘 −
∕2)𝜋(𝑠 + 𝑡)∕2), 𝑘 = 1, 2,…, and 𝑠, 𝑡 ∈ [0, 1]. Then,

[

|𝐵𝑑 (𝑠) − 𝐵𝑑 (𝑡)|
4] = 3

( 𝑑
∑

𝑘=1
𝜆𝑘 𝜓(𝑠, 𝑡)2

)2
≤ 3

( ∞
∑

𝑘=1
𝜆𝑘 𝜓(𝑠, 𝑡)2

)2

= 𝐸
[

|𝐵(𝑠) − 𝐵(𝑡)|4
]

= 3(𝑠 − 𝑡)2

y properties of the Gaussian variables and the fact that∑𝑑
𝑘=1 𝜆𝑘 𝜓𝑘(𝑠, 𝑡)

2

ncreases with 𝑑 and is bounded. This shows that the second condition
f the Theorem 12.3 in [17] is satisfied for 𝛾 = 4, 𝛼 = 2 and the
onotonically increasing and continuous function ℎ(𝑡) =

√

3𝑡, so that
𝐵𝑑 converges weakly to 𝐵 in 𝐶[0, 1]. This also implies the convergence
𝑑

𝑎.𝑠.
⟶ 𝐵 in 𝐶[0, 1] as 𝑑 → ∞ by the Itô-Nisio theorem in [19]. □

It is not surprising that the Brownian motion process 𝐵(𝑡) does not
atisfy the conditions of our main result although the family {𝐵𝑑 (𝑡)} of
ts FD models converges weakly to 𝐵(𝑡) in 𝐶[0, 1] since the statement
f the theorem does not make any assumption on the distribution of
he target process 𝑋(𝑡). In contrast, the above proof of the remark uses
xplicitly the fact that 𝐵(𝑡) is a Gaussian process with independent
ncrements.
We now develop conditions for the weak convergence of FD models

𝑋𝑑 (𝑡)} for Gaussian processes 𝑋(𝑡) with smooth samples based on the
ondition (ii) of Theorem 3.1.

heorem 3.2. Let 𝐺(𝑡) be a zero-mean Gaussian process with continuous
amples and continuous correlation function and let 𝐺𝑑 (𝑡) defined by (2.3)
e a finite dimensional model of 𝐺(𝑡). Then

sup |𝐺𝑑 (𝑡) − 𝐺(𝑡)|
𝑎.𝑠.
→ 0, 𝑑 → ∞. (3.2)
𝑡∈[0,𝜏]

4

roof. Following Theorem 8.3 in [17], we first show that the sequence
𝐺𝑑 (0)} of random variables is tight. This follows from the observation
hat for any 𝜀 > 0, there exists 𝐿 such that

(|𝐺𝑑 (0)| > 𝐿) ≤ 1
𝐿2
𝐸[𝐺𝑑 (0)2] =

1
𝐿2
𝐸
[ 𝑑
∑

𝑘=1
𝑍𝑘𝜑𝑘(0)

]2

= 1
𝐿2

𝑑
∑

𝑘=1
𝐸[𝑍2

𝑘 ]𝜑𝑘(0)
2 ≤ 1

𝐿2

∞
∑

𝑘=1
𝐸[𝑍2

𝑘 ]𝜑𝑘(0)
2

= 1
𝐿2
𝐸[𝐺(0)2] ≤ 𝜀, ∀𝑑 ≥ 1.

Then, we show that the sequence of processes {𝐺𝑑 (𝑡)} is tight in 𝐶[0, 𝜏]
by showing that the second condition of Theorem 8.3 holds. Note that
for any fixed 𝑠 ∈ [0, 𝜏] and 𝛿 > 0, [𝑠, 𝑠 + 𝛿] is a closed interval of R,
so that there exists constant 𝐾 for 𝜀 = 1∕2 such that [20] lemma 3.1
or [21]

𝑃
(

sup
𝑡∈[𝑠,𝑠+𝛿]

(𝐺𝑑 (𝑡) − 𝐺𝑑 (𝑠)) > 𝜆
)

≤ 𝐾𝑒−(1−𝜀)𝜆
2∕2𝜎2𝑑 , 𝜆 > 0.

which implies

𝑃
(

sup
𝑡∈[𝑠,𝑠+𝛿]

|𝐺𝑑 (𝑡) − 𝐺𝑑 (𝑠)| > 𝜆
)

𝑃
(

{

sup
𝑡∈[𝑠,𝑠+𝛿]

(𝐺𝑑 (𝑡) − 𝐺𝑑 (𝑠)) > 𝜆
}

⋃

{

sup
𝑡∈[𝑠,𝑠+𝛿]

(𝐺𝑑 (𝑠) − 𝐺𝑑 (𝑡)) > 𝜆
}

)

𝑃
(

sup
𝑡∈[𝑠,𝑠+𝛿]

(𝐺𝑑 (𝑡) − 𝐺𝑑 (𝑠)) > 𝜆
)

+ 𝑃
(

sup
𝑡∈[𝑠,𝑠+𝛿]

(𝐺𝑑 (𝑠) − 𝐺𝑑 (𝑡)) > 𝜆
)

2𝐾𝑒−𝜆
2∕4𝜎2𝑑 ,

here 𝜎2𝑑 = sup𝑡∈[𝑠,𝑠+𝛿] Var[𝐺𝑑 (𝑡) − 𝐺𝑑 (𝑠)] is finite, since 𝐸[(𝐺𝑑 (𝑡) −
𝑑 (𝑠))2] ≤ 𝐸[(𝐺(𝑡)−𝐺(𝑠))2] and 𝐸[(𝐺(𝑡)−𝐺(𝑠))2] <∞ for all 𝑡, 𝑠 ∈ [0, 𝜏] by
ssumption that the correlation function is continuous. Moreover, we
an find 𝛿 such that sup𝑡∈[𝑠,𝑠+𝛿] 𝐸[(𝐺(𝑡) − 𝐺(𝑠))2] is as small as desired.
hen for any 𝜀, 𝜂 > 0, there exists 𝛿0 such that sup𝑡∈[𝑠,𝑠+𝛿0] 𝐸[(𝐺(𝑡) −
(𝑠))2] ≤ 𝜀2∕(4 log(2𝐾∕𝜂)). Further, for any 𝑑 ≥ 1, we have
(

sup
𝑡∈[𝑠,𝑠+𝛿0]

|𝐺𝑑 (𝑡) − 𝐺𝑑 (𝑠)| > 𝜀
)

≤ 2𝐾 exp
{

− 𝜀2

4 sup𝑡∈[𝑠,𝑠+𝛿0] Var[𝐺𝑑 (𝑡) − 𝐺𝑑 (𝑠)]

}

≤ 2𝐾 exp
{

− 𝜀2

4 sup𝑡∈[𝑠,𝑠+𝛿0] 𝐸[(𝐺(𝑡) − 𝐺(𝑠))
2]

}

≤ 𝜂.

Therefore the second condition of Theorem 8.3 in [17] holds, which
means that sup𝑡∈[0,𝜏] |𝐺𝑑 (𝑡) − 𝐺(𝑡)|

𝑤
→ 0, 𝑑 → ∞. Since 𝐺𝑑 (𝑡) is the sum

f independent normal random variables for fixed 𝑡, i.e., the random
variables 𝑍𝑘𝜑𝑘(𝑡), then 𝐺𝑑 converges a.s to 𝐺 in 𝐶[0, 𝜏] by Itô-Nisio
theorem [19]. □

We extend the above result to a class of non-Gaussian processes,
referred to as translation processes, which are monotonically increasing
mappings of Gaussian processes. Let 𝑋(𝑡) be a translation process
defined by

𝑋(𝑡) = 𝐹−1◦𝛷(𝐺(𝑡)), (3.3)

where 𝐺(𝑡) is a stationary Gaussian process with zero mean and unit
variance, 𝛷 denotes the distribution of the standard normal vari-
able and 𝐹 is the marginal distribution of 𝑋(𝑡). The translation pro-
cesses {𝑋(𝑡)} are completely defined by the marginal distribution 𝐹
and the correlation function of 𝐺(𝑡). Translation processes exist if the
selected marginal distributions and the correlation functions satisfy
some compatibility conditions [22]. Generally, these conditions are
mild, since the correlation functions of the translation processes and
their Gaussian images are similar. Translation processes match ex-
actly/approximately specified distribution/correlation functions [8,9].
They have been used extensively in applications, e.g., to characterize
wind pressure coefficients in Wind Engineering [7,23].
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Theorem 3.3. Let 𝑋(𝑡) be defined in (3.3) and 𝑋𝑑 (𝑡) = 𝐹−1◦𝛷(𝐺𝑑 (𝑡)),
∈ [0, 𝜏], where 𝐺𝑑 (𝑡) is a finite dimensional model of a Gaussian process
(𝑡), see (2.3). If 𝐺(𝑡) satisfies the conditions of Theorem 3.2 and 𝐹 is

continuous and strictly monotonically increasing, then

sup
𝑡∈[0,𝜏]

|𝑋𝑑 (𝑡) −𝑋(𝑡)|
𝑎.𝑠.
→ 0, 𝑑 → ∞.

Proof. Let 𝑈𝑑 (𝑡) = 𝛷(𝐺𝑑 (𝑡)) and 𝑈 (𝑡) = 𝛷(𝐺(𝑡)). According to Theo-
rem 3.2 and mean value theorem, we have

sup
𝑡∈[0,𝜏]

|𝑈𝑑 (𝑡) − 𝑈 (𝑡)| ≤ 1
√

2𝜋
sup
𝑡∈[0,𝜏]

|𝐺𝑑 (𝑡) − 𝐺(𝑡)|
𝑎.𝑠.
→ 0, 𝑑 → ∞.

Since 𝐹−1 is continuous, then 𝐹−1 is uniformly continuous on [0, 1],
which leads to sup𝑡∈[0,𝜏]

|𝑋𝑑 (𝑡) −𝑋(𝑡)|
𝑎.𝑠.
→ 0, 𝑑 → ∞. □

As previously stated, there are other FD models in addition to
hose in (2.3). The following theorem considers FD models 𝑋(𝑁)(𝑡)
hose samples interpolate linearly between values of 𝑋(𝑡) at the times
0, 𝛥𝑡,… , 𝑁 𝛥𝑡), where 𝛥𝑡 = 𝜏∕𝑁 . The samples of these FD models
re continuous functions so that they are elements of 𝐶[0, 𝜏]. Under
the conditions of the following theorem, the discrepancy between the
samples of 𝑋(𝑁)(𝑡) and those of 𝑋(𝑡) measured by the metric of 𝐶[0, 𝜏]
can be made as small as desired by increasing 𝑁 . Generally, the
stochastic dimension 𝑁 + 1 of 𝑋(𝑁)(𝑡) is much larger than that of 𝑋𝑑 (𝑡)
n (2.3) so that they are less useful in applications.

heorem 3.4. If 𝐸[𝑋(𝑡)] = 0, 𝑟(𝑠, 𝑡) = 𝐸[𝑋(𝑡)𝑋(𝑠)] is continuous in 𝑡
nd 𝑠 and

sup
𝑠−𝑡|≤𝛿

|𝑋(𝑡) −𝑋(𝑠)|
𝑤
→ 0, 𝛿 → 0,

hen

sup
𝑡∈[0,𝜏]

|𝑋(𝑁)(𝑡) −𝑋(𝑡)|
𝑤
→ 0, 𝑁 → ∞. (3.4)

roof. As previously, we show that the finite dimensional distributions
f 𝑋(𝑁)(𝑡) converge to those of 𝑋(𝑡), the sequence of random variables
𝑋(𝑁)(0)} is tight and the sequence of processes {𝑋(𝑁)(𝑡)} is tight in
[0, 𝜏].
For any 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), 1 ≤ 𝑖 ≤ 𝑁 , let 𝑡 = 𝑡𝑖−1 + 𝜉, where 𝜉 ∈ [0, 𝛥𝑡).

Since 𝑟(𝑡, 𝑠) is continuous, 𝑋 is m.s. continuous so that 𝑋(𝑁)(𝑡)
𝑚.𝑠.
→ 𝑋(𝑡)

results from

𝐸
[

𝑋(𝑁)(𝑡) −𝑋(𝑡)
]2

= 𝐸
[

𝑋(𝑡𝑖−1) +
1
𝛥𝑡

(

𝑋(𝑡𝑖) −𝑋(𝑡𝑖−1)
)

(𝑡 − 𝑡𝑖−1) −𝑋(𝑡)
]2

= 𝐸
[

(

1 −
𝜉
𝛥𝑡

)(

𝑋(𝑡𝑖−1) −𝑋(𝑡𝑖−1 + 𝜉)
)

+
𝜉
𝛥𝑡

(

𝑋(𝑡𝑖) −𝑋(𝑡𝑖−1 + 𝜉)
)

]2

≤ 2
(

1 −
𝜉
𝛥𝑡

)2
𝐸
[

𝑋(𝑡𝑖−1) −𝑋(𝑡𝑖−1 + 𝜉)
]2

+
2𝜉2

𝛥𝑡2
𝐸
[

𝑋(𝑡𝑖) −𝑋(𝑡𝑖−1 + 𝜉)
]2

≤ 2𝑟(𝑡𝑖−1, 𝑡𝑖−1) − 4𝑟(𝑡𝑖−1, 𝑡𝑖−1 + 𝜉) + 2𝑟(𝑡𝑖−1 + 𝜉, 𝑡𝑖−1 + 𝜉)

+ 2𝑟(𝑡𝑖, 𝑡𝑖) − 4𝑟(𝑡𝑖, 𝑡𝑖−1 + 𝜉) + 2𝑟(𝑡𝑖−1 + 𝜉, 𝑡𝑖−1 + 𝜉) → 0, 𝑁 → ∞.

This implies (𝑋(𝑁)(𝑡1),… , 𝑋(𝑁)(𝑡𝑛))
𝑚.𝑠.
→ (𝑋(𝑡1),… , 𝑋(𝑡𝑛)) for any 𝑛 ≥ 1

and 𝑡1,… , 𝑡𝑛 ∈ [0, 𝜏] which extends to convergence in probability by
Chebyshev’s inequality. The latter yields the convergence of the finite
dimensional distributions of 𝑋(𝑁)(𝑡) to those of 𝑋(𝑡) as 𝑁 → ∞ by
Theorem 18.10 in [16].

Note that the sequence {𝑋(𝑁)(0)} of random variables is tight, since
for any 𝜀 > 0, there exists 𝐿 such that

𝑃 (|𝑋(𝑁)(0)| > 𝐿) = 𝑃 (|𝑋(0)| > 𝐿) ≤ 1
𝐿
𝐸|𝑋(0)| ≤ 𝜀, ∀𝑁 ≥ 1.

We now show the tightness of 𝑋(𝑁)(𝑡) in 𝐶[0, 𝜏] which, according to the
econd condition of Theorem 8.2, requires to show that, for any 𝜀, 𝜂 > 0,
5

there exists 𝛿 > 0 such that 𝑃 (𝑊 (𝑁)(𝛿) > 𝜀) < 𝜂 for all 𝑁 starting from a
inite value, where 𝑊 (𝑁)(𝛿) = sup

|𝑠−𝑡|≤𝛿 |𝑋(𝑁)(𝑡) −𝑋(𝑁)(𝑠)|. Given 𝜀 > 0,
e have

𝑃
(

max
1≤𝑖≤𝑁

sup
𝑡∈[𝑡𝑖−1 ,𝑡𝑖)

|𝑋(𝑁)(𝑡) −𝑋(𝑡)| ≥ 𝜀
3

)

= 𝑃
(

max
1≤𝑖≤𝑁

sup
𝜉∈[0,𝛥𝑡)

|

|

|

|

(

1 −
𝜉
𝛥𝑡

)(

𝑋(𝑡𝑖−1) −𝑋(𝑡𝑖−1 + 𝜉)
)

+
𝜉
𝛥𝑡

(

𝑋(𝑡𝑖) −𝑋(𝑡𝑖−1 + 𝜉)
)

|

|

|

|

≥ 𝜀
3

)

≤ 𝑃
(

max
1≤𝑖≤𝑁

sup
𝜉∈[0,𝛥𝑡)

(

1 −
𝜉
𝛥𝑡

)

|𝑋(𝑡𝑖−1) −𝑋(𝑡𝑖−1 + 𝜉)| ≥
𝜀
6

)

+𝑃
(

max
1≤𝑖≤𝑁

sup
𝜉∈[0,𝛥𝑡)

𝜉
𝛥𝑡

|𝑋(𝑡𝑖) −𝑋(𝑡𝑖−1 + 𝜉)| ≥
𝜀
6

)

≤ 2𝑃
(

sup
|𝑠−𝑡|≤𝛥𝑡

|𝑋(𝑡) −𝑋(𝑠)| ≥ 𝜀
6

)

.

This inequality implies

𝑃
(

sup
|𝑠−𝑡|≤𝛿

|𝑋(𝑁)(𝑡) −𝑋(𝑁)(𝑠)| ≥ 𝜀
)

𝑃
(

sup
|𝑠−𝑡|≤𝛿

|𝑋(𝑁)(𝑡) −𝑋(𝑡) +𝑋(𝑡) −𝑋(𝑠) +𝑋(𝑠) −𝑋(𝑁)(𝑠)| ≥ 𝜀
)

𝑃
(

sup
|𝑠−𝑡|≤𝛿

|𝑋(𝑁)(𝑡) −𝑋(𝑡)| + sup
|𝑠−𝑡|≤𝛿

|𝑋(𝑡) −𝑋(𝑠)|

+ sup
|𝑠−𝑡|≤𝛿

|𝑋(𝑠) −𝑋(𝑁)(𝑠)| ≥ 𝜀
)

𝑃
(

max
1≤𝑖≤𝑁

sup
𝑡∈[𝑡𝑖−1 ,𝑡𝑖)

|𝑋(𝑁)(𝑡) −𝑋(𝑡)| ≥ 𝜀
3

)

+ 𝑃
(

sup
|𝑠−𝑡|≤𝛿

|𝑋(𝑡) −𝑋(𝑠)| ≥ 𝜀
3

)

+𝑃
(

max
1≤𝑗≤𝑁

sup
𝑠∈[𝑡𝑗−1 ,𝑡𝑗 )

|𝑋(𝑁)(𝑠) −𝑋(𝑠)| ≥ 𝜀
3

)

≤ 4𝑃
(

sup
|𝑠−𝑡|≤𝛥𝑡

|𝑋(𝑡) −𝑋(𝑠)| ≥ 𝜀
6

)

+ 𝑃
(

sup
|𝑠−𝑡|≤𝛿

|𝑋(𝑡) −𝑋(𝑠)| ≥ 𝜀
3

)

,

then if sup
|𝑠−𝑡|≤𝛿 |𝑋(𝑡) −𝑋(𝑠)|

𝑤
→ 0, 𝛿 → 0, we have 𝑃 (sup

|𝑠−𝑡|≤𝛿
|𝑋(𝑁)(𝑡) −𝑋(𝑁)(𝑠)| ≥ 𝜀) → 0, 𝑁 → ∞, 𝛿 → 0. Therefore 𝑋(𝑁)(𝑡)
s tight on 𝐶[0, 𝜏] by Theorem 8.2 in [17]. Further, combining with
𝑋(𝑁)(𝑡1),… , 𝑋(𝑁)(𝑡𝑛))

𝑤
→ (𝑋(𝑡1),… , 𝑋(𝑡𝑛)), from Theorem 8.1 in [17],

e get sup𝑡∈[0,𝜏] |𝑋(𝑁)(𝑡) −𝑋(𝑡)|
𝑤
→ 0, 𝑁 → ∞. □

The following corollaries describe several special models that con-
erge weakly in the continuous space 𝐶[0, 𝜏] under some conditions.
e define the finite dimensional models 𝑋𝑑 (𝑡) and apply Theorem 3.1
o determine whether sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡) −𝑋(𝑡)|

𝑤
→ 0 or not.

orollary 3.1. Let 𝑔(𝜈), 𝜈 ≥ 0, denote the one-sided spectral density of a
ero-mean weakly stationary process 𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝜏. Consider the sequence
f processes {𝑋𝑑 (𝑡)}, 0 ≤ 𝑡 ≤ 𝜏, which are obtained from 𝑋(𝑡) by truncating
ts spectral density to 𝑔𝑑 (𝜈) = 𝑔(𝜈) 1(𝜈 ≤ 𝜈𝑑 ), where 𝜈𝑑 ≥ 0, 𝑑 = 1, 2,…, is
ncreasing with 𝑑 such that 𝜈𝑑 → 𝜈̄ as 𝑑 → ∞. If 𝜈̄ < ∞, then

sup
∈[0,𝜏]

|𝑋𝑑 (𝑡) −𝑋(𝑡)|
𝑤
→ 0, 𝑑 → ∞.

roof. The FD processes {𝑋𝑑 (𝑡)} admit the spectral representations

𝑑 (𝑡) = ∫

𝜈𝑑

0

[

cos(𝜈 𝑡) 𝑑𝑈 (𝜈) + sin(𝜈 𝑡) 𝑑𝑉 (𝜈)
]

, 0 ≤ 𝑡 ≤ 𝜏, 𝑑 = 1, 2,… ,

(3.5)

here 𝐸[𝑑𝑈 (𝜈)] = 𝐸[𝑑𝑉 (𝜈)] = 0, 𝐸[𝑑𝑈 (𝜈) 𝑑𝑈 (𝜈′)] = 𝐸[𝑑𝑉 (𝜈) 𝑑𝑉 (𝜈′)] =
𝑔(𝜈) 𝛿(𝜈 − 𝜈′) 𝑑𝜈 and 𝐸[𝑑𝑈 (𝜈) 𝑑𝑉 (𝜈′)] = 0 for all 𝜈, 𝜈′ ≥ 0. The mean and
variance of the uncorrelated random variables 𝑈 (𝜈) and 𝑉 (𝜈) are zero
and 𝐺(𝜈) = ∫ 𝜈0 𝑔(𝛼) 𝛼, 𝜈 ≥ 0. Since 𝑋𝑑 (𝑡) is m.s differentiable and for all
𝑑 ≥ 1,

𝐸
[

sup |𝑋̇𝑑 (𝑡)|
]

= 𝐸
[

sup
|

|

|

𝜈𝑑
−𝜈 sin(𝜈 𝑡)𝑑𝑈 (𝜈) + 𝜈 cos(𝜈 𝑡)𝑑𝑉 (𝜈)

|

|

|

]

,

𝑡∈[0,𝜏] 𝑡∈[0,𝜏] |∫0 |
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which takes the form

𝐸
[

sup
𝑡∈[0,𝜏]

|𝑋̇𝑑 (𝑡)|
]

= 𝐸
[

sup
𝑡∈[0,𝜏]

|

|

|

|

− 𝜈𝑑 sin(𝜈𝑑 𝑡)𝑈 (𝜈𝑑 ) + ∫

𝜈𝑑

0

(

sin(𝜈 𝑡) + 𝜈𝑡 cos(𝜈 𝑡)
)

𝑈 (𝜈)𝑑𝜈

+ 𝜈𝑑 cos(𝜈𝑑 𝑡)𝑉 (𝜈𝑑 ) − ∫

𝜈𝑑

0

(

cos(𝜈 𝑡) − 𝜈𝑡 sin(𝜈 𝑡)
)

𝑉 (𝜈)𝑑𝜈
|

|

|

|

]

≤ 𝐸
[

sup
𝑡∈[0,𝜏]

(

𝜈𝑑 |𝑈 (𝜈𝑑 )| + ∫

𝜈𝑑

0
(1 + 𝜈𝑡)|𝑈 (𝜈)|𝑑𝜈 + 𝜈𝑑 |𝑉 (𝜈𝑑 )|

+ ∫

𝜈𝑑

0
(1 + 𝜈𝑡)|𝑉 (𝜈)|𝑑𝜈

)]

≤ 𝜈𝑑𝐸|𝑈 (𝜈𝑑 )| + ∫

𝜈𝑑

0
(1 + 𝜏𝜈)𝐸|𝑈 (𝜈)|𝑑𝜈 + 𝜈𝑑𝐸|𝑉 (𝜈𝑑 )|

+ ∫

𝜈𝑑

0
(1 + 𝜏𝜈)𝐸|𝑉 (𝜈)|𝑑𝜈 <∞,

by integration by parts. Then, we conclude by Theorem 3.1 that
sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡) −𝑋(𝑡)|

𝑤
→ 0 holds. □

Suppose that the correlation function 𝑐(𝑢) = 𝐸[𝑋(𝑡 + 𝑢)𝑋(𝑡)] of 𝑋(𝑡)
is periodic with period 𝑇 > 0. Then the correlation and two-/one-sided
spectral density functions of 𝑋(𝑡) have the expressions

𝑐(𝑢) =
∞
∑

𝑘=−∞, 𝑘≠0

𝑐𝑘
2
𝑒𝑖 𝜈𝑘 𝑢 =

∞
∑

𝑘=1
𝑐𝑘 cos

(

𝜈𝑘 𝑢
)

and

(𝜈) =
∞
∑

𝑘=−∞

𝑐𝑘
2
𝛿(𝜈 − 𝜈𝑘), 𝑔(𝜈) =

∞
∑

𝑘=1
𝑐𝑘 𝛿(𝜈 − 𝜈𝑘) (3.6)

where 𝑐𝑘 ≥ 0, 𝑐𝑘 = 𝑐−𝑘, 𝜈1 = 2𝜋∕𝑇 and 𝜈𝑘 = 𝑘 𝜈1, 𝜈𝑘 = −𝜈−𝑘. The series
∞
𝑘=1 𝑐𝑘 is convergent since 𝑋(𝑡) has finite variance by assumption.
rocesses with the second moment properties in (3.6) are referred to
s mean square periodic. The spectral representation of 𝑋(𝑡) has the
orm [24] (Section 3.9.4)

(𝑡) =
∞
∑

𝑘=−∞
𝑘 𝑒𝑖 𝜈𝑘 𝑡 =

∞
∑

𝑘=1

[

𝐴𝑘 cos(𝜈𝑘 𝑡) + 𝐵𝑘 sin(𝜈𝑘 𝑡)
]

, (3.7)

here

𝑘 =
1
𝑇 ∫

𝑇

0
𝑋(𝑡) 𝑒−𝑖 𝜈𝑘 𝑡 𝑑𝑡,

𝑘 =
2
𝑇 ∫

𝑇

0
𝑋(𝑡) cos(𝜈𝑘 𝑡) 𝑑𝑡,

𝐵𝑘 =
2
𝑇 ∫

𝑇

0
𝑋(𝑡) sin(𝜈𝑘 𝑡) 𝑑𝑡, (3.8)

and the equality in (3.7) is in the m.s. sense. The random variables in
(3.8) are zero-mean, e.g.,

𝐸[𝐴𝑘] = 𝐸
[

(2∕𝑇 ) ∫

𝑇

0
𝑋(𝑡) cos(𝜈𝑘 𝑡) 𝑑𝑡

]

= (2∕𝑇 ) ∫

𝑇

0
𝐸[𝑋(𝑡)] cos(𝜈𝑘 𝑡) 𝑑𝑡 = 0,

and are uncorrelated, i.e., 𝐸[𝐴𝑘 𝐴𝑙] = 𝑐𝑘 𝛿𝑘𝑙, 𝐸[𝐵𝑘 𝐵𝑙] = 𝑐𝑘 𝛿𝑘𝑙 and
𝐸[𝐴𝑘 𝐵𝑙] = 0.

The equality ∫ 𝑇0 𝑐(𝑠 − 𝑡) cos(𝜈𝑙 𝑡) 𝑑𝑡 = (𝑇 ∕2) 𝑐𝑙 cos(𝜈𝑙 𝑠), 𝑠 ∈ [0, 𝑇 ],
hich results by calculations as those above, shows that cos(𝜈𝑙 𝑡) is an

eigenfunction of the correlation function 𝑐(𝑢). Similar considerations
how that sin(𝜈𝑙 𝑡) is also an eigenfunction of 𝑐(𝑢). The uncorrelated coef-
icients {𝐴𝑘} and {𝐵𝑘} are independent Gaussian variables for Gaussian
rocesses but dependent for non-Gaussian processes. We define 𝑋𝑑 (𝑡) by
runcating the spectral representation of 𝑋(𝑡),

𝑑 (𝑡) =
𝑑
∑

𝑘=1

[

𝐴𝑘 cos(𝜈𝑘 𝑡) + 𝐵𝑘 sin(𝜈𝑘 𝑡)
]

, 𝑑 = 1, 2… . (3.9)

Corollary 3.2. If ∑∞
𝑘=1 𝑐

1∕2
𝑘 < ∞, then

sup |𝑋𝑑 (𝑡) −𝑋(𝑡)|
𝑤
→ 0, 𝑑 → ∞.
𝑡∈[0,𝜏]

6

roof. Note that the condition ∑∞
𝑘=1 𝑐

1∕2
𝑘 < ∞ is not related to the

requency 𝜈𝑘. The eigenfunctions cos(𝜈𝑘 𝑡) and sin(𝜈𝑘 𝑡) lead to 𝐿𝑘(𝛿) =
up

|𝑠−𝑡|≤𝛿 |𝜑𝑘(𝑡) − 𝜑𝑘(𝑠)| ≤ 2 for all 𝛿 > 0. Since 𝐸[𝐴2
𝑘] = 𝐸[𝐵2

𝑘] = 𝑐𝑘
and ∑∞

𝑘=1 𝑐
1∕2
𝑘 <∞ by assumption, the conditions (𝑖) of Theorem 3.1 is

satisfied so that sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡) −𝑋(𝑡)|
𝑤
→ 0. □

We now consider an extension of the previous corollary to a real-
valued process 𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝑇 , whose correlation function is not
eriodic. Let
∗(𝑡) = 𝑋(𝑡) 1(0 ≤ 𝑡 ≤ 𝑇 ) +

[

𝑋(0) 𝛼(𝑡) +𝑋(𝑇 ) 𝛽(𝑡)
]

1(𝑇 < 𝑡 ≤ 𝑇 ∗),

0 ≤ 𝑡 ≤ 𝑇 ∗, (3.10)

be a extension of 𝑋(𝑡) to the time interval [0, 𝑇 ∗], where 𝑇 ∗ = 𝑇 + 𝛥,
> 0 is arbitrary, 𝛼(𝑡) = (𝑡 − 𝑇 )∕𝛥 and 𝛽(𝑡) = 1 − 𝛼(𝑡). The periodic
xtension of 𝑋∗(𝑡) to the real line is also denoted by 𝑋∗(𝑡) for simplicity.
his extension has periodic samples with period 𝑇 ∗ = 𝑇 +𝛥 and 𝑋∗(0) =
∗(𝑇 ∗) a.s. It is not weakly stationary even if 𝑋(𝑡) is weakly stationary
ince its correlation function 𝑐∗(𝑠, 𝑡) = 𝐸

[

𝑋∗(𝑠)𝑋∗(𝑡)
]

depends on the
imes 𝑠 and 𝑡, e.g., 𝑐∗(𝑠, 𝑡) = 𝐸

[(

𝑋(0) 𝛼(𝑠) +𝑋(𝑇 ) 𝛽(𝑠)
)

𝑋(𝑡)
]

= 𝛼(𝑠) 𝑐(𝑡) +
(𝑠) 𝑐(𝑡 − 𝑇 ) for 𝑠 ∈ [𝑇 , 𝑇 ∗] and 𝑡 ∈ [0, 𝑇 ]. We note that any other
ontinuous extension of the samples of 𝑋(𝑡) on [0, 𝑇 ] to samples of 𝑋∗(𝑡)
n [0, 𝑇 ∗] can be used provided it is periodic with period 𝑇 ∗. Since
lmost all samples of 𝑋(𝑡) are continuous on [0, 𝑇 ] by assumption and
he samples of 𝑋∗(𝑡) are continuous and periodic with period 𝑇 ∗ by
onstruction, the Fourier series representations of the samples of 𝑋∗(𝑡)
onverge absolutely and uniformly [25] (Section 1.10). These series
ave the form

∗(𝑡) = 𝐴∗
0∕2 +

∞
∑

𝑘=1

[

𝐴∗
𝑘 cos(𝜈𝑘 𝑡) + 𝐵∗

𝑘 sin(𝜈𝑘 𝑡)
]

, 𝑡 ∈ [0, 𝑇 ∗], (3.11)

here 𝜈1 = 2𝜋∕𝑇 ∗, 𝜈𝑘 = 𝑘 𝜈1 and

𝐴∗
𝑘 =

2
𝑇 ∗ ∫

𝑇 ∗

0
𝑋∗(𝑡) cos(𝜈𝑘 𝑡) 𝑑𝑡, 𝑘 = 0, 1, 2,… ,

∗
𝑘 = 2

𝑇 ∗ ∫

𝑇 ∗

0
𝑋∗(𝑡) sin(𝜈𝑘 𝑡) 𝑑𝑡, 𝑘 = 1, 2,… . (3.12)

e define 𝑋∗
𝑑 (𝑡) by truncating the spectral representation of 𝑋

∗(𝑡),

∗
𝑑 (𝑡) = 𝐴∗

0∕2 +
𝑑
∑

𝑘=1

[

𝐴∗
𝑘 cos(𝜈𝑘 𝑡) + 𝐵∗

𝑘 sin(𝜈𝑘 𝑡)
]

, 𝑑 = 1, 2,… . (3.13)

orollary 3.3. If ∑∞
𝑘=1

(

𝐸
[

(𝐴∗
𝑘)

2]1∕2 + 𝐸
[

(𝐵∗
𝑘)

2]1∕2) <∞, then

sup
∈[0,𝜏]

|𝑋∗
𝑑 (𝑡) −𝑋

∗(𝑡)|
𝑤
→ 0, 𝑑 → ∞.

roof. We cannot apply Corollary 3.2, because the models in (3.7)
nd (3.10) differ, e.g., 𝑋∗(𝑡) is not stationary. We first show that 𝑋∗

𝑑 (𝑡)
onverges to 𝑋∗(𝑡) in mean square sense. For any 𝑚 > 𝑛, we have

𝐸
[

𝑋∗
𝑛 (𝑡) −𝑋

∗
𝑚(𝑡)

]2
= 𝐸

[ 𝑚
∑

𝑘=𝑛+1
[𝐴∗

𝑘 cos(𝜈𝑘𝑡) + 𝐵
∗
𝑘 sin(𝜈𝑘𝑡)]

]2

2𝐸
[ 𝑚
∑

𝑘=𝑛+1
𝐴∗
𝑘 cos(𝜈𝑘𝑡)

]2
+ 2𝐸

[ 𝑚
∑

𝑘=𝑛+1
𝐵∗
𝑘 sin(𝜈𝑘𝑡)

]2

2
𝑚
∑

𝑘=𝑛+1

(

𝐸
[

(𝐴∗
𝑘)

2] + 𝐸
[

(𝐵∗
𝑘)

2]
)

+4
∑

𝑛+1≤𝑖<𝑗≤𝑚

(

𝐸[𝐴∗
𝑖 𝐴

∗
𝑗 ] cos(𝜈𝑖𝑡) cos(𝜈𝑗 𝑡) + 𝐸[𝐵

∗
𝑖 𝐵

∗
𝑗 ] sin(𝜈𝑖𝑡) sin(𝜈𝑗 𝑡)

)

≤ 2
𝑚
∑

𝑘=𝑛+1

(

𝐸
[

(𝐴∗
𝑘)

2] + 𝐸
[

(𝐵∗
𝑘)

2]
)

+4
∑

𝑛+1≤𝑖<𝑗≤𝑚

(

𝐸
[

(𝐴∗
𝑖 )

2]1∕2𝐸
[

(𝐴∗
𝑗 )

2]1∕2 + 𝐸
[

(𝐵∗
𝑖 )

2]1∕2𝐸
[

(𝐵∗
𝑗 )

2]1∕2
)

= 2
( 𝑚

∑

𝐸
[

(𝐵∗
𝑘)

2]1∕2
)2

+ 2
( 𝑚

∑

𝐸
[

(𝐵∗
𝑘)

2]1∕2
)2
.

𝑘=𝑛+1 𝑘=𝑛+1
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This shows that {𝑋∗
𝑑 (𝑡)} is Cauchy, since

∑∞
𝑘=1 𝐸

[

(𝐴∗
𝑘)

2]1∕2 < ∞ and
∞
𝑘=1 𝐸

[

(𝐵∗
𝑘)

2]1∕2 < ∞ so that 𝑋∗
𝑑 (𝑡)

𝑚.𝑠.
→ 𝑋∗(𝑡), which implies the

onvergence of the finite dimensional distributions of 𝑋∗
𝑑 (𝑡) to those

f 𝑋∗(𝑡). Further, by Theorem 3.1 the sequence of processes {𝑋∗
𝑑 (𝑡)}

has the property sup𝑡∈[0,𝜏] |𝑋∗
𝑑 (𝑡) −𝑋

∗(𝑡)|
𝑤
→ 0, since ∑∞

𝑘=1
(

𝐸
[

(𝐴∗
𝑘)

2]1∕2 +
𝐸
[

(𝐵∗
𝑘)

2]1∕2) <∞. □

4. Examples

We illustrate numerically that samples and extremes of real-valued
continuous processes 𝑋(𝑡) can be approximated by samples of FD
odels {𝑋𝑑 (𝑡)}, 𝑑 = 1, 2,…, of these processes for sufficiently large 𝑑

provided that they satisfy the conditions of Theorem 3.1 and related
esults. The discrepancy between samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡) is mea-
ured by the metric sup0≤𝑡≤𝜏 |𝑋(𝑡, 𝜔) −𝑋𝑑 (𝑡, 𝜔)| of the space 𝐶[0, 𝜏] of
ontinuous samples. This discrepancy cannot be obtained exactly since
he samples of these processes can only be recorded at finite numbers
f times, e.g., the times {𝑡𝑘}, 𝑘 = 0, 1,… , 𝑁 , where 𝑡𝑘 = 𝑡𝑘−1 + 𝛥𝑡
nd 𝛥𝑡 = 𝜏∕𝑁 . The numerical value, max𝑘=0,1,…,𝑁 |𝑋(𝑡𝑘, 𝜔) −𝑋𝑑 (𝑡𝑘, 𝜔)|,
f the discrepancy between 𝑋(𝑡) and 𝑋𝑑 (𝑡) provides a lower bound
n sup0≤𝑡≤𝜏 |𝑋(𝑡, 𝜔) −𝑋𝑑 (𝑡, 𝜔)|. Since 𝑋(𝑡) and 𝑋𝑑 (𝑡) have continuous
amples, it is expected that the lower bound is tight for sufficiently large
.
Accordingly, we approximate the samples of 𝑋(𝑡) by those of ran-

om vectors
(

𝑋(𝑡0), 𝑋(𝑡1)… , 𝑋(𝑡𝑁 )
)

, and the actual discrepancy
up0≤𝑡≤𝜏 |𝑋(𝑡, 𝜔) −𝑋𝑑 (𝑡, 𝜔)| between samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡) by its
umerical values max𝑘=0,1,…,𝑁 |𝑋(𝑡𝑘, 𝜔) −𝑋𝑑 (𝑡𝑘, 𝜔)| for large𝑁 . In some
f examples, we only prove the weak convergence of 𝑋𝑑 to 𝑋 in 𝐶[0, 𝜏].
nder this convergence, the measure of the set

𝑑 (𝜀) = {𝜔 ∶ sup
0≤𝑡≤𝜏

|𝑋(𝑡, 𝜔) −𝑋𝑑 (𝑡, 𝜔)| > 𝜀}

an be made as small as desired for any 𝜀 > 0 by increasing 𝑑.
enerally, the sets 𝛺𝑑 (𝜀) differ for 𝑑 ≠ 𝑑′ but have small measures for
ufficiently large 𝑑 and 𝑑′. Therefore, although we may not have almost
ure convergence, we can still use the samples of 𝑋𝑑 (𝑡) as substitutes
or samples of 𝑋(𝑡) for sufficiently large 𝑑, since the probability that
amples of 𝑋𝑑 (𝑡) may misrepresent samples of 𝑋(𝑡) is 𝑃 (𝛺𝑑 (𝜀)).
This section illustrates the construction of FD models 𝑋𝑑 (𝑡) for

hree real-valued processes 𝑋(𝑡), a stationary Gaussian process, a non-
tationary Gaussian process and a non-Gaussian translation process,
nd (2) quantifies the performance of the resulting FD models 𝑋𝑑 (𝑡)
y two metrics, the norm sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)| and the discrepancy
etween extremes sup0≤𝑡≤𝜏 |𝑋(𝑡)| and sup0≤𝑡≤𝜏 |𝑋𝑑 (𝑡)| of 𝑋(𝑡) and 𝑋𝑑 (𝑡).
he examples show that under the conditions of our theoretical results,
amples and extremes of 𝑋𝑑 (𝑡) can be used as substitutes for samples
nd extremes of 𝑋(𝑡) provided that the stochastic dimension 𝑑 is
ufficiently large.

xample 4.1. Let 𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝜏, be a real-valued process defined by
he differential equation

̈ (𝑡) + 𝛼𝑋̇(𝑡) + 𝛽𝑋(𝑡) = 𝑌 (𝑡), 0 ≤ 𝑡 ≤ 𝜏, (4.1)

with the initial conditions 𝑋(0) = 0 and 𝑋̇(0) = 0, where 𝛼, 𝛽 > 0 are
constants, 𝑌 is the stationary solution of 𝑑𝑌 (𝑡) = −𝜌 𝑌 (𝑡) 𝑑𝑡+

√

2 𝜌 𝑑𝐵(𝑡),
> 0, and 𝐵 denotes the standard Brownian motion.

The mean and correlation functions of 𝑌 (𝑡) are 𝐸[𝑌 (𝑡)] = 0 and
[𝑌 (𝑠) 𝑌 (𝑡)] = exp(−𝜌 |𝑠 − 𝑡|) for any 𝜌 > 0. Since the Brownian
otion has continuous samples, the processes 𝑋(𝑡), 𝑋̇(𝑡) and 𝑌 (𝑡) also
ave continuous samples as they are obtained from samples of 𝐵(𝑡)
y integration. These processes are Gaussian as linear transformations
f 𝐵(𝑡). The target process is the solution 𝑋(𝑡) of (4.1) which is a
on-stationary Gaussian process with continuous samples.
The basis functions {𝜑𝑘(𝑡)} for the FD models 𝑋𝑑 (𝑡) of 𝑋(𝑡) in

(4.1) are the top eigenfunctions of the correlation function 𝑐(𝑠, 𝑡) =
7

𝐸[𝑋(𝑠)𝑋(𝑡)] of 𝑋(𝑡), i.e., the eigenfunctions corresponding to the
argest 𝑑 eigenvalues of 𝑐(𝑠, 𝑡), 0 ≤ 𝑠, 𝑡 ≤ 𝜏. The correlation func-
ion of 𝑋(𝑡) can be obtained by solving the differential equations for
he correlation function of the vector-valued process

(

𝑋(𝑡), 𝑋̇(𝑡), 𝑌 (𝑡)
)

,
ee [24], Section 7.2.1.1, or by estimation from samples of 𝑋(𝑡). The
asis functions {𝜑𝑘(𝑡)} were obtained by (A.1) in Appendix. FD models
of 𝑋(𝑡) can also be obtained from FD models 𝐵𝑑 (𝑡) of the Brownian
motion 𝐵(𝑡) and the defining equation of 𝑋(𝑡) but this approach was
not followed.

We first show that samples of 𝑋(𝑡) can be approximated by samples
of 𝑋𝑑 (𝑡) for sufficiently large 𝑑, then present numerical estimates for the
discrepancy between samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡). The mean square (m.s.)
convergence 𝑋𝑑 (𝑡)

m.s.
→ 𝑋(𝑡) for a fixed time 𝑡 follows from Mercer’s

theorem. This also implies the m.s. convergence of
(

𝑋𝑑 (𝑠1),… , 𝑋𝑑 (𝑠𝑚)
)

to
(

𝑋(𝑠1),… , 𝑋(𝑠𝑚)
)

as 𝑑 → ∞ for arbitrary 0 ≤ 𝑠1 < ⋯ < 𝑠𝑚 ≤ 𝜏 and
𝑚 ≥ 1, then their convergence also hold in probability by Chebyshev’s
inequality, which leads to the convergence of the finite dimensional
distributions of 𝑋𝑑 (𝑡) to those of 𝑋(𝑡), see [16], Theorem 18.10. Since
the process 𝑋(𝑡) is Gaussian with zero mean and finite variance, we
also have the a.s. convergence of 𝑋𝑑 to 𝑋 in 𝐶[0, 𝜏], see Theorem 3.2.
Accordingly, we can substitute samples of 𝑋(𝑡) with samples of 𝑋𝑑 (𝑡)
for sufficiently large 𝑑.

The following numerical results are for 𝛼 = 0.1, 𝛽 = 25, 𝜌 = 5,
𝜏 = 10 and the time step 𝛥𝑡 = 𝜏∕𝑁 = 0.01 with 𝑁 = 1000. The solid and
dotted lines of Fig. 3 show five samples of 𝑋(𝑡) and the corresponding
samples of 𝑋𝑑 (𝑡) for 𝑑 = 5, 15 and 25 (left, middle and right panels).
Histograms of the first metric sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)| are in Fig. 4 for
the same values of 𝑑. Figs. 5 and 6 focus on the second metric. They
show scatter plots of

(

sup0≤𝑡≤𝜏 |𝑋(𝑡)|, sup0≤𝑡≤𝜏 |𝑋𝑑 (𝑡)|
)

and histograms
of sup0≤𝑡≤𝜏 |𝑋(𝑡)| − sup0≤𝑡≤𝜏 |𝑋𝑑 (𝑡)| for 𝑑 = 5, 15 and 25 (left, middle
and right panels). The plots in Figs. 4–6 show, in agreement with our
theoretical results, that the discrepancy between samples and extremes
of 𝑋(𝑡) and 𝑋𝑑 (𝑡) can be made as small as desired by increasing the
stochastic dimension 𝑑. The plots in these figures are based on 1000
samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡).

Example 4.2. Let 𝑋(𝑡) be a zero-mean stationary Gaussian process
with spectral density 𝑔(𝜈) =

∑∞
𝑘=1 𝑐𝑘 𝛿(𝜈 − 𝜈𝑘), where 𝑐𝑘 = 𝛼 ∫𝐼𝑘 (𝜈

2 +
𝜌2)−1−𝜅 𝑑𝜈, 𝐼𝑘 = [𝜈𝑘 − 𝛥𝜈∕2, 𝜈𝑘 + 𝛥𝜈∕2], 𝜈𝑘 = (𝑘 − 1∕2)𝛥𝜈, 𝑘 = 1, 2,…,
𝛥𝜈 > 0 denotes the frequency increment, 𝜅 > 0, 𝜌 ≥ 0 and 𝛼 = 2(2𝜅)!!𝜌1+2𝜅

(2𝜅−1)!!𝜋
such that ∑∞

𝑘=1 𝑐𝑘 = 1.

The sequence of processes 𝑋𝑑 (𝑡) has the form in (3.9) so that
sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡) −𝑋(𝑡)|

𝑤
→ 0, since

∞
∑

=2
𝑐1∕2𝑘 =

∞
∑

𝑘=2

(

∫

𝜈𝑘+𝛥𝜈∕2

𝜈𝑘−𝛥𝜈∕2

𝛼
(𝜈2 + 𝜌2)1+𝜅

𝑑𝜈
)1∕2

≤
∞
∑

𝑘=2

𝛼1∕2𝛥𝜈1∕2

(𝜈𝑘 − 𝛥𝜈∕2)1+𝜅

≤
∞
∑

𝑘=2

𝛥𝜈−1∕2−𝜅𝛼1∕2

(𝑘 − 1)1+𝜅
<∞.

This implies sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡) −𝑋(𝑡)|
𝑎.𝑠.
→ 0 by Theorem 3.2 since 𝑋𝑑 (𝑡) and

𝑋(𝑡) are Gaussian processes. Hence, samples of 𝑋(𝑡) can be substituted
ith samples of 𝑋𝑑 (𝑡) for sufficiently large 𝑑.
As previously stated, since it is not possible to generate the samples

f target process 𝑋(𝑡), we approximate this process by 𝑋𝑛̄(𝑡), which is
et equal to 𝑋𝑑 (𝑡) in (3.9) with 𝑑 replaced by 𝑛̄ ≫ 𝑑. The following
umerical results are for 𝜌 = 5, 𝜏 = 10, 𝜅 = 2, 𝑛̄ = 1000, the
requency increments 𝛥𝜈 = 0.1 and the time step 𝛥𝑡 = 𝜏∕𝑁 = 0.01
ith 𝑁 = 1000. The plots in Figs. 7, 8, 9 and 10 are similar to those
n Figs. 3, 4, 5 and 6 of the previous example. The solid and dotted
lines of Fig. 7 show five samples of 𝑋(𝑡) and the corresponding samples
of 𝑋𝑑 (𝑡) for 𝑑 = 50, 100 and 150 (left, middle and right panels).
Histograms of the first metric sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)| are in Fig. 8 for
the same values of 𝑑. Figs. 9 and 10 focus on the second metric. They
show scatter plots of

(

sup0≤𝑡≤𝜏 |𝑋(𝑡)|, sup0≤𝑡≤𝜏 |𝑋𝑑 (𝑡)|
)

and histograms of

sup0≤𝑡≤𝜏 |𝑋(𝑡)| − sup0≤𝑡≤𝜏 |𝑋𝑑 (𝑡)| for 𝑑 = 50, 100 and 150 (left, middle
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Fig. 3. Five samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡) (solid and dotted line) for 𝑑 = 5, 15, 25 (left, middle and right panels).
Fig. 4. Histograms of sup𝑡∈[0,𝜏] |𝑋(𝑡) −𝑋𝑑 (𝑡)| for 𝑑 = 5, 15, 25 (left, middle and right panels) based on 1000 samples.
Fig. 5. Scatter plots of sup𝑡∈[0,𝜏] |𝑋(𝑡)| and sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡)| for 𝑑 = 5, 15, 25 (left, middle and right panels).
Fig. 6. Histograms of sup𝑡∈[0,𝜏] |𝑋(𝑡)| − sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡)| for 𝑑 = 5, 15, 25 (left, middle and right panels) based on 1000 samples.
O
e
w
c
e
s
o

nd right panels). The plots in Figs. 8–10 show, in agreement with our
heoretical results, that the discrepancy between samples and extremes
f 𝑋(𝑡) and 𝑋𝑑 (𝑡) can be made as small as desired by increasing the
tochastic dimension 𝑑. The plots in these figures are based on 1000
amples of 𝑋(𝑡) and 𝑋𝑑 (𝑡).

xample 4.3. Suppose a sample
(

𝑋(𝑡0), 𝑋(𝑡1),… , 𝑋(𝑡𝑁 )
)

of a real-
alued process 𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝜏, with continuous samples is available.
 o

8

ur objectives are to construct the law of 𝑋(𝑡), develop FD mod-
ls {𝑋𝑑 (𝑡)} for this process, and determine whether 𝑋𝑑 converges
eakly/a.s. to 𝑋 in the space of continuous functions. These objectives
an be achieved under the assumptions that (1) the target 𝑋(𝑡) is an
rgodic translation process and (2) the available sample of 𝑋(𝑡) is
ufficiently long such it is possible to construct accurate estimates 𝐹
f the marginal distribution 𝐹 of 𝑋(𝑡) and of the correlation function

f the Gaussian image 𝐺(𝑡) of 𝑋(𝑡).
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Fig. 7. Five samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡) (solid and dotted line) for 𝑑 = 50, 100, 150 (left, middle and right panels).
Fig. 8. Histograms of sup𝑡∈[0,𝜏] |𝑋(𝑡) −𝑋𝑑 (𝑡)| for 𝑑 = 50, 100, 150 (left, middle and right panels) based on 1000 samples.
Fig. 9. Scatter plots of sup𝑡∈[0,𝜏] |𝑋(𝑡)| and sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡)| for 𝑑 = 50, 100, 150 (left, middle and right panels).
Fig. 10. Histograms of sup𝑡∈[0,𝜏] |𝑋(𝑡)| − sup𝑡∈[0,𝜏] |𝑋𝑑 (𝑡)| for 𝑑 = 50, 100, 150 (left, middle and right panels) based on 1000 samples.
i
We proceed as follows. First, the sample of 𝑋(𝑡) is used to estimate
he marginal distribution 𝐹 of 𝑋(𝑡) and, then, construct the corre-
ponding samples of its Gaussian image by 𝐺̂(𝑡) = 𝛷−1◦𝐹

(

𝑋(𝑡)
)

, where
̂ is an estimate of 𝐹 delivered by the MATLAB function ksdensity.
econd, the resulting sample of 𝐺̂(𝑡) is used to estimate its correlation
unction 𝑐(𝑢) = 𝐸[𝐺̂(𝑡+𝑢) 𝐺̂(𝑡)]. This estimate and the standard Gaussian
istribution 𝛷 define completely the law of 𝐺̂(𝑡). Third, the law of 𝐺̂(𝑡)
9

s used to construct FD models {𝐺̂𝑑 (𝑡)} of the type in (2.3), i.e.,

𝐺̂𝑑 (𝑡, 𝜔) =
𝑑
∑

𝑘=1
𝜆̂1∕2𝑘 𝑍̂𝑘(𝜔)𝜑̂𝑘(𝑡), (4.2)

where {𝜆̂𝑘, 𝜑̂𝑘} denote the eigenvalues and the eigenfunctions of the
correlation function of 𝐺̂(𝑡) and the samples 𝑍̂𝑘(𝜔) of 𝑍̂𝑘 are obtained
by projecting the samples 𝐺̂(𝑡, 𝜔) on the eigenfunctions 𝜑̂ in [0, 𝜏]. The
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Fig. 11. Distributions 𝐹 and 𝐹 of 𝑋(𝑡) (left panel) and correlation functions 𝑐 and 𝑐 of 𝐺(𝑡) (right panel). The heavy solid lines are the target distribution and correlation function.
The thin solid and heavy dotted lines are corresponding estimates based on samples of length 𝑁 = 1000 and 𝑁 = 4000.
Fig. 12. Histograms of sup𝑡∈[0,𝜏] |𝐺(𝑡) − 𝐺̂𝑑 (𝑡)| for 𝑁 = 1000 and 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
Fig. 13. Scatter plots of sup𝑡∈[0,𝜏] |𝐺(𝑡)| and sup𝑡∈[0,𝜏] |𝐺̂𝑑 (𝑡)| for 𝑁 = 1000 and 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
𝑐

corresponding FD model of 𝑋̂(𝑡) is the same as in Theorem 3.3, i.e.,

𝑋̂𝑑 (𝑡, 𝜔) = 𝐹−1◦𝛷
(

𝐺̂𝑑 (𝑡, 𝜔)
)

.

Note that 𝐺(𝑡) has zero mean. If 𝐺(𝑡) has continuous samples and
continuous correlation function, then (Theorem 3.2)

sup
𝑡∈[0,𝜏]

|𝐺̂𝑑 (𝑡) − 𝐺̂(𝑡)|
𝑎.𝑠.
→ 0 and sup

𝑡∈[0,𝜏]
|𝑋̂𝑑 (𝑡) − 𝑋̂(𝑡)|

𝑎.𝑠.
→ 0, 𝑑 → ∞,

where the latter statement follows by Theorem 3.3 provided that 𝐹 is
continuous and strictly monotonically increasing.

In fact, 𝐺(𝑡) is a zero-mean, unit-variance stationary Gaussian pro-
cess with one-sided spectral density 𝑔(𝜈) = 𝛼 (4𝜌3∕𝜋)∕(𝜈2+𝜌2)2 truncated
at 𝜈̄ = 5, where 𝛼 = 1.0232. The following numerical results are for
𝜏 = 100, 𝛥𝜈 = 0.025, 𝛥𝑡 = 0.025, 𝜌 = 2 and a Gamma distribution
𝐹 (𝑥) = 𝛾(𝑘, 𝑥∕𝜃)∕𝛤 (𝑘) with 𝑘 = 3 and 𝜃 = 2, where 𝛾(⋅, ⋅) is the lower
incomplete gamma function. We consider two samples of 𝑋(𝑡) with
length 𝑁 , where 𝑁 = 1000 and 𝑁 = 4000.

The heavy solid line in the left panel of Fig. 11 is the actual

distribution 𝐹 of 𝑋(𝑡). The thin solid and dashed lines are the estimates

10
𝐹 of 𝐹 based on the samples of this process of length 𝑁 = 1000
and 𝑁 = 4000. The right panel of the figure shows the correlation
function 𝑐(𝑢) = 𝐸[𝐺(𝑡 + 𝑢)𝐺(𝑡)] (heavy solid line) and its estimates
̂(𝑢) = 𝐸[𝐺̂(𝑡 + 𝑢) 𝐺̂(𝑡)] (thin solid and dashed lines). As expected, the
estimates improve with the sample size.

The following figures quantify the performance of the FD models
constructed from the available two samples of length 𝑁 = 1000
(Figs. 12–14) and 𝑁 = 4000 (Figs. 15–17). All plots are based on
3000 samples. Histograms of the first metric sup𝑡∈[0,𝜏] |𝐺(𝑡) − 𝐺̂𝑑 (𝑡)| are
in the left, middle and right panels of Fig. 12 for 𝑑 = 100, 150, 200.
Figs. 13 and 14 focus on the second metric. They show scatter plots
of

(

sup0≤𝑡≤𝜏 |𝐺(𝑡)|, sup0≤𝑡≤𝜏 |𝐺̂𝑑 (𝑡)|
)

and histograms of sup0≤𝑡≤𝜏 |𝐺(𝑡)| −
sup0≤𝑡≤𝜏 |𝐺̂𝑑 (𝑡)| for 𝑑 = 100, 150 and 200 (left, middle and right panels).
Fig. 15, 16 and 17 show the same statistics as in Figs. 12–14 but for
𝑁 = 4000. The same types of plots are in Figs. 18–20 but the FD
model 𝐺𝑑 (𝑡) is based on the actual law of 𝐺(𝑡) rather than estimates
of it. The plots show that 𝐺𝑑 (𝑡) is superior to the FD models 𝐺̂𝑑 (𝑡)
based on a single sample of the target process, an expected result
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Fig. 14. Histograms of sup𝑡∈[0,𝜏] |𝐺(𝑡)| − sup𝑡∈[0,𝜏] |𝐺̂𝑑 (𝑡)| for 𝑁 = 1000 and 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
Fig. 15. Histograms of sup𝑡∈[0,𝜏] |𝐺(𝑡) − 𝐺̂𝑑 (𝑡)| for 𝑁 = 4000 and 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
Fig. 16. Scatter plots of sup𝑡∈[0,𝜏] |𝐺(𝑡)| and sup𝑡∈[0,𝜏] |𝐺̂𝑑 (𝑡)| for 𝑁 = 4000 and 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
Fig. 17. Histograms of sup𝑡∈[0,𝜏] |𝐺(𝑡)| − sup𝑡∈[0,𝜏] |𝐺̂𝑑 (𝑡)| for 𝑁 = 4000 and 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
since 𝐺̂𝑑 (𝑡) is constructed from approximate Gaussian samples and basis
functions based on estimates 𝐹 and 𝑐(𝑢) of the actual distribution 𝐹

and correlation function 𝑐(𝑢) whose accuracy depends on the sample
size. Also, as expected, the performance of the FD model 𝐺̂𝑑 (𝑡) improves
with the sample size. The plots also show that under adequate statistical
information on the target process and sufficiently large 𝑑, samples and
extremes of 𝑋(𝑡) can be approximated by those of 𝑋 (𝑡).
𝑑

11
5. Comments

Finite dimensional (FD) models 𝑋𝑑 (𝑡), 𝑑 = 1, 2,…, i.e., deterministic
functions of time which depend on finite sets of 𝑑 < ∞ random
variables, have been developed for real-valued processes 𝑋(𝑡) with
finite variances and continuous samples defined on bounded inter-
vals [0, 𝜏]. It was shown that under some conditions the discrepancy
sup𝑡∈[0,𝜏] |𝑋(𝑡) −𝑋𝑑 (𝑡)| between samples of target processes 𝑋(𝑡) and
their FD models can be made as small as desired by increasing the
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Fig. 18. Histograms of sup𝑡∈[0,𝜏] |𝐺(𝑡) − 𝐺𝑑 (𝑡)| for 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
Fig. 19. Scatter plots of sup𝑡∈[0,𝜏] |𝐺(𝑡)| and sup𝑡∈[0,𝜏] |𝐺𝑑 (𝑡)| for 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
Fig. 20. Histograms of sup𝑡∈[0,𝜏] |𝐺(𝑡)| − sup𝑡∈[0,𝜏] |𝐺𝑑 (𝑡)| for 𝑑 = 100, 150, 200 (left, middle and right panels) based on 3000 samples.
𝑟

stochastic dimension 𝑑. Under these conditions and sufficiently large
𝑑, samples of 𝑋(𝑡) can be approximated by samples of 𝑋𝑑 (𝑡) so that
extremes of 𝑋(𝑡) can be approximated by those of 𝑋𝑑 (𝑡). The discrep-
ancy between these samples is measured by the metric of the space
𝐶[0, 𝜏] of real-valued continuous functions defined on [0, 𝜏]. Examples
are presented to illustrate numerically and graphically the relationship
between samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡).
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Appendix

Covariance function of 𝐗(𝐭) in Example 4.1 Let 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),
𝑥3(𝑡))𝑇 and 𝑥1(𝑡) = 𝑋(𝑡), 𝑥2(𝑡) = 𝑋̇(𝑡), 𝑥3(𝑡) = 𝑌 (𝑡). The covariance
function 𝑟(𝑡, 𝑠) = 𝐸[𝑥(𝑡)𝑥(𝑠)𝑇 ] of 𝑥(𝑡) can be obtained in two steps. First,
we calculate the covariance matrix 𝑟(𝑡, 𝑡) of the random vector 𝑥(𝑡),
𝑡 ≥ 0, from

̇ (𝑡, 𝑡) = 𝑎𝑟(𝑡, 𝑡) + 𝑟(𝑡, 𝑡)𝑎𝑇 + 𝑏𝑏𝑇 ,

where

𝑟(0, 0) = 𝟎, 𝑎 =
⎡

⎢

⎢

⎣

0 1 0
−𝛽 −𝛼 1
0 0 −𝜌

⎤

⎥

⎥

⎦

, 𝑏 =
⎡

⎢

⎢

⎣

0
0

√

2𝜌

⎤

⎥

⎥

⎦

.

The solution of this ordinary differential equation is

𝑅(𝑡) = −𝐴−1𝐵 + 𝑒𝐴𝑡𝐴−1𝐵,

where 𝑅(𝑡) =
(

𝑟11(𝑡, 𝑡), 𝑟12(𝑡, 𝑡), 𝑟13(𝑡, 𝑡), 𝑟22(𝑡, 𝑡), 𝑟23(𝑡, 𝑡), 𝑟33(𝑡, 𝑡)
)𝑇 ,

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

0 2 0 0 0 0
−𝛽 −𝛼 1 1 0 0
0 0 −𝜌 0 1 0
0 −2𝛽 0 −2𝛼 2 0
0 0 −𝛽 0 −𝜌 − 𝛼 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎣ 0 0 0 0 0 −2𝜌 ⎦
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f

w

and 𝐵 = (0, 0, 0, 0, 0, 2𝜌)𝑇 .
Then, we calculate the correlation function 𝑟(𝑡, 𝑠) of the vector-

valued process 𝑥(𝑡) from
𝜕𝑟(𝑡, 𝑠)
𝜕𝑡

= 𝑎𝑟(𝑡, 𝑠), 𝑡 > 𝑠 > 0,

or 𝑡 > 𝑠 > 0 and the initial condition 𝑟(𝑠, 𝑠), which is available from
the previous step. The solution of this equation has the form

𝑟(𝑡, 𝑠) = 𝑒𝐷𝑡𝑔(𝑠), 𝑡 > 𝑠 ≥ 0,

here 𝑔(𝑠) is any deterministic function so that

𝑟(𝑡, 𝑠) = 𝑒𝐷(𝑡−𝑠)(−𝑇𝐴−1𝐵 + 𝑇 𝑒𝐴𝑠𝐴−1𝐵), 𝑡 > 𝑠 ≥ 0, (A.1)

where

𝐷 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
−𝛽 0 0 −𝛼 0 0 1 0 0
0 −𝛽 0 0 −𝛼 0 0 1 0
0 0 −𝛽 0 0 −𝛼 0 0 1
0 0 0 0 0 0 −𝜌 0 0
0 0 0 0 0 0 0 −𝜌 0
0 0 0 0 0 0 0 0 −𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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