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ARTICLE INFO ABSTRACT

MSC: Numerical solutions of stochastic problems involving random processes X (r), which constitutes infinite families
60 of random variables, require to represent these processes by finite dimensional (FD) models X,(1), i.e.,
62 deterministic functions of time depending on finite numbers d of random variables. Most available FD models
Keywords: match the mean, correlation, and other global properties of X(¢). They provide useful information to a broad
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range of problems, but cannot be used to estimate extremes or other sample properties of X(r). We develop FD
models X,(7) for processes X (t) with continuous samples and establish conditions under which these models
converge weakly to X (r) in the space of continuous functions as d — oo. These theoretical results are illustrated
by numerical examples which show that, under the conditions established in this study, samples and extremes

of X () can be approximated by samples and extremes of X ,(¢) and that the discrepancy between samples and
extremes of these processes decreases with d.

1. Introduction

Most probabilistic models match only some properties of target
processes, e.g., current models for wind pressure time series recorded
in wind tunnels match the mean and correlation functions [1-4] or the
marginal distributions, in addition to and mean and correlation func-
tions, [5-10]. There are no models which match sample properties of
target processes, although sample properties are critical for estimating
extremes of random processes and related properties [11].

There are at least three reasons for constructing models which
capture sample properties, rather than just mean, correlations, and
other low order statistics. First, a random process is defined completely
by its samples. Mean, variances, correlations, polyspectra and other
low order statistics are insufficient to characterize completely random
processes, generate samples and estimate extremes of these processes.

Second, processes with the same mean and correlation functions can
have very different sample properties and extremes. For example, the
processes X »(1) and X(1) defined by dX(1) = —p X(t)dt + \/2p dY (1)
with Y(¢) denoting the standard Brownian motion process B(r) and
a compound Poisson process C(¢) have the same mean and correla-
tion functions under proper tuning of the compound Poisson process
C(1). Yet, Xg(r) has continuous samples while the samples of X ()
exhibit jumps at random times. Also, the extremes sup,¢(g . | Xc(#)| and
Supepo,-1 | Xp(®)| of these processes differ significantly, as illustrated
by the histograms of Fig. 1 which are based on 50,000 independent
samples of X z(t) and X (¢). Note that the two histograms have different

* Corresponding author.

scales and that sup,e(o .y [ Xc (1] and sup,gg 1 | Xp(#)| are in the ranges
[0,14] and [1.5,5.0].

Third, simplified representations of non-Gaussian processes based
on heuristic assumptions may not work for extremes. For example,
Let X(t) = G(t)’, where G(t) = Acos(vt) + Bsin(vt), t € [0,7],
A, B are independent standard Gaussian variables and v = 2z/7.
Hence, X(1) = ij:l Z, @, (1), d = 4, where {Z,} are uncorrelated
but dependent non-Gaussian variables. The solid line in Fig. 2 is an
estimate of the probability P(sup,ci . |X(®)| > x). The dotted line
is an estimate of this probability under a common assumption in
applications [12] that the random coefficients {Z,} have the correct
distributions but are independent. The plots show that the extremes of
X (1) are underestimated under this heuristic assumption in agreement
with considerations in [13].

Our objective is to develop finite dimensional (FD) models { X (1)},
d = 1,2,..., for real-valued random processes X(¢), t € [0,7], with
continuous samples, i.e., deterministic functions of time which depend
on d random variables, whose samples match in some sense the samples
of the target process X(¢). The stochastic dimension of X,(r) is finite
and equal to d < oo. In contrast, the stochastic dimension of X(¢) is
infinity since it consists of an uncountable family of random variables
indexed by ¢t € [0,7]. It is shown that it is possible to construct FD
models such that the discrepancy sup,¢ . | X(#) — X,4(1)| can be made
as small as desired by increasing d. Specifically, we show that under
some conditions sup,epg ;| X (1) — X;(H)| — 0 as d — oo weakly and/or
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Fig. 1. Histograms of sup,c( ) |Xc (1] and sup,g ) X (1| (left and right panels) for responses X () and X (1) with the same mean and correlation functions, where 7 = 50, and

p=1

(t)] > z)

.

SUPg<i<, | X

P(

Fig. 2. Estimate of P(suptelﬂ,rl 1 X0 > x) and approximation under the assumption
that {Z,} are independent (solid and dotted lines).

a.s., which means that samples of X,(¢) can be used as substitutes for
samples of X (¢) for sufficiently large d so that extremes of X(¢) can be
approximated by those of X,(r).

The paper is organized as follows. We define finite dimensional
models in Section 2 and give their properties. Conditions under which
X ,(r) converges weakly to arbitrary processes X (¢) in C[0, r] are estab-
lished in Section 3, which contains our main result. The special cases of
Gaussian and translation processes X(¢) are also discussed. Numerical
illustrations of our theoretical results are in Section 4. Section 5 sum-
marizes our findings and the Appendix gives computational details for
one of the numerical illustrations.

2. Finite dimensional (FD) models

Consider a real-valued process { X (7),7 € [0, 7]}, 0 < 7 < o0, defined
on a probability space (£2,F, P) with mean u(r) = E[X ()] = 0 and
correlation function c(s,7) = E[X(s) X(¥)]. The assumption u(t) = 0 is
not restrictive since, if u(r) # 0, the deterministic function u(r) can
be added to the samples of X (). It is assumed that the correlation
function of X(¢) is continuous, so that it is square integrable on K =
[0,7]%, ie., [y c(s.ty’dsdi < oo. Under this assumption, Ag(r)
f [ ¢(s:1) p(s) ds is a compact, self-adjoint operator on L,(K) so that its
eigenvalues {4,}, k = 1,2...., are non-negative and its eigenfunctions
{@i(®}, k = 1,2.... are orthonormal, i.e., (¢, 9,) = [, o (1) @,(Ndt =
;- According to Mercer’s theorem [14] (Section 6.2) or [15], the series

c(s,t) = ZZ’;I Ax @(s) @, (1) converges absolutely and uniformly in K.
Also, X(¢) admits the Karhunen-Loéve (KL) representation

X (0 = )Y, 0,0), (2.1)
k=1
where {Y,} are uncorrelated random variables with E[Y,] = 0 and
E[Y, Y] = A,6;;. The series in (2.1) converges in mean square (m.s.)
for any + € [0,7]. This follows from the observation that the FD
models
d
Xira® = Yoo, d=12,..., 2.2)
k=1
which are truncated versions of Xy (¢), are such that E[(Xx, (1) —
XKL,m(t))z] = Y o M@@®* —> 0, as mn — oo, by Mercer’s
theorem. This shows that Xy, ,(r) is Cauchy in L2[0,7] and that the
series representation of X g (¢) is m.s. convergent [14] (Theorem 6.2.1).
Accordingly, Xy, (1) and X(¢) have the same mean and correlation
functions. It can also be shown that E[(XKL(s)—XKL(t))Z] —0ass—t,
s, t €[0,7].

The process Xy 4(7) in (2.2) is partially specified by its mean and
correlation functions which are those of the target process X (¢), unless
X (1) is Gaussian in which case {Y, } are independent Gaussian variables
so that Xy 4(¥) is a Gaussian process with the first two moments of X (7).
If X(7) is not Gaussian, the random variables {Y, } are uncorrelated but
dependent non-Gaussian variables. Since the joint distribution of {Y}}
is unknown, it is not possible to generate samples of, e.g., truncated
versions Xy ,(t) of Xy (1.

We construct an alternative sequence {X,(#)} of finite dimensional
(FD) processes which is closely related to that in (2.2) in the sense that
it shares the same basis functions, i.e., the eigenfunctions {¢,} of the
correlation function of X(¢). It has the expression

d

X, 0= Zy o0, d=12,..., (2.3)
k=1

where the random coefficients { Z, } are defined sample-by-sample from

samples of X (¢) by projection, i.e.,

Zy () = / Xt o)p(Ddt, k>1, o€ Q, (2.4)
0

where X (7,w) denotes a sample of X(¢r). We note that (1) the processes
{X,4()} are completely defined, (2) samples X,(t,w) and X(f,w) of
X,(1) and X(¢) are paired by construction and (3) the processes X,(r)
and Xy 4(#) have the same mean and correlation functions. The latter
statement follows from the observations that

E[Zk]:E[/ X(t)(pk(t)dt] :/ E[X()] () dt =0
0 0
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and

El[Z,Z]= E[ ROROIACIOLE dt]
[0,7]

=/ 2E[X(S)X(t)](pk(S)(p,(t)dsdt
[0.7]

:/ [/ c(s,t)(p,(t)dt] (pk(s)dszl,/ @,(8) @i(s)ds
0 0 0

= /11 5k1’

where the change of order of integration holds by Fubini’s theorem. It
also shows that, like Xy 4(t), X,(¢) converges in m.s. to X(r) as d — co.

Consider an arbitrary set of times (7,...,¢,). Since the random
vectors (Xgp (t)), ... Xgp a(ty)) and (X)), ..., X4(1,)) converge in
m.s. to (X(1),...,X(t,)) if their components converge in m.s., then
their convergence also hold in probability by Chebyshev’s inequality.
This implies the convergence of the finite dimensional distributions of
X 4(1) to those of X(¢) as d - oo [16] (Theorem 18.10).

We note that FD processes of the type in (2.3) can be constructed
by using other basis functions, e.g., trigonometric polynomials or other
sets of orthogonal functions. We use mainly the eigenfunctions of the
correlation functions of X(r), since they minimize the mean square error
and are delivered by available numerical algorithms.

The subsequent section considers processes X(r) with continuous
samples and shows that the sequence of processes {X,(r)} converges
weakly to X (7) in the space of continuous functions C[0, r] under some
conditions. The processes {Xy; 4(r)} do not have this property since
their samples are available only for Gaussian target processes X(r)
and, if available, cannot be paired with sample of X(7) so that the
discrepancy between samples of { Xy, 4(r)} and X(¢) cannot be assessed.

3. Main results

We follow the approach of Theorems 8.1 and 8.2 or 8.3 in [17]
to show that X,(r) converges weakly to X (¢) in C[0, 7], a convergence
which is denoted by X,( — X(1). Let X (1), X(t) : (2.F.P) —
(C[0,7],C) be real-valued processes with continuous samples, where
C denotes the Borel c-algebra on the space of real-valued continuous
functions CI0, r]. According to Theorem 8.1, the family of processes
{X,(} converges weakly to X (¢) in C[0, 7] if (1) the finite dimensional
distributions of X,(r) converge to those of X(¢) and (2) the family of
processes {X, (1)} is tight in C[0,r]. We say that the family {X,()} is
tight if for any € > 0, there exists a compact set K c C[0, 7] such that
P(X,(t) € K) > 1 —¢ for all d. Theorems 8.2 and 8.3 provide criteria
for checking whether a sequence of probability measures is tight, and
we use the conditions of these theorems to determine whether the
family {X,(r)} of processes is tight. Since we already have shown the
convergence of the finite dimensional distributions of X,(r) to those
of X(¢), we only need to show the tightness of the family {X,(r)} of
processes to prove that X,(r) converges weakly to X(r) in C[0, z]. The
following theorem is our main result.

Theorem 3.1. If the finite dimensional distributions of X,(r) converge
to those of X (1), X (1) has continuous samples and continuous correlation
function and either (i) or (ii) holds, then
sup. 1X,(1) = X(1)] = 0, d - oo, 3.1)

t€(0.
where X 4(1) is given by (2.3).

(D) Y2, A/ EIZZ1Li(7) < oo, where Li(8) = supjs_y<5 |9i(t) — @1 (s)],
6 €[0,7].

(ii) There is M > 0 such that E[ sup,c;o |1 X, 1< M forall d > 1
and {¢, (1)}, k > 1, are continuously differentiable functions.

Proof. Following Theorem 8.2 in [17], we first show the tightness of
the family of random variables {X,(0)}. Note that

d ©
E[X 0% = Y, 4007 < Y 407 = EIX(0*] <0, ¥ d > 1,
k=1 k=1
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by Mercer’s theorem and E X (0)? is finite by assumption. Then for any
& > 0 there exists L > 0 such that

PUX,O)] > L) < -5 E[X,(07) £ S EIX(07] <&, Vd > 1

by Chebyshev’s inequality. Therefore {X,(0)} is tight.

Consider now the second condition of Theorem 8.2, which requires
to show that, for given ¢, > 0, there exists §, > 0 such that P(W((SO) >
€) < for d > dy, where W (8)) = supj,_; <5, |X4() — X,4(5)| denotes the
modulus of continuity of X,(r). We show that the sequence {X,(r)} of
processes satisfies this condition provided that (i) or (ii) holds.

Case one (i) holds: for given ¢ > 0, we have

P< sup | X () — X (9] 28) < P< sup ZZk((pk(t)—(pk(s)) >£>
|s—t|<6 |s—t]<6
d
< <Z |Zk|| SUP (@) — @ ()] 2 6)
k=1 s—t|<
< —2E|Zk| sup |@(1) = @y (s)]

|s—1|<6

E|Z|Li(9).

1]
oM | —
M8

k

Since L,(6) is monotonically increasing, Z,;";l E|Z|Li(r) < oo and
each ¢, (1) is continuous so that L,(8) is bounded, then by dominated
convergence theorem [18] (Theorem 1.34), we know that for any ¢, >
0, there exists &, such that

P< sup | X, () = X ()] > e) <n, Vd>1,
|s—1]<8g

which implies X,(¢) is tight in C[0,7]. Since we assume the weak
convergence of f1n1te dimensions of X,(¢), we conclude by Theorem 8.1
in [17] that X,(¢) d X(t) in the space C[0, 7] as d — oo.

Case two (ii) holds: we have for any k > 1,

( sup_|Xy(0) = Xy(5)| >e> = ( sup |sz((pk<z>—rpk(s>>1>e>

[s—t]<é |s—1|<8

./]Rd < sup ‘ZZk((pk(l)—(ok(Y))’

|s—t]|<6

\%

elZy=2,....7Z; = zd>F(dzl ~dzy)

/ 1< sup ‘sz((pk(t)—(pk(s))‘ >£>F(dzl ~dzy),
R4

|s—t]<6

where F is the joint distribution function of (Z, ...,

L Zg) = ZZ=1 2, ¢, (1) for fixed zy, ...
almost surely, then by mean value theorem there exists ¢ between s
and 7 such that

Z,). Let hy(t: z,,

,zg4, since zy, ..., z; are bounded

hy(ts 2y, 2g) = hy(s3 2y, .o 2g) = (t = HHY(E 21, 005 Zg)s

since @, (7) is assumed to be continuously differentiable, which implies

sup 1sz(rpk(z)—rpk(s>)

|s—1]<6

= sup |hy(tzq,...,29) — hy(s; 2, ..., 29)]
t€[s—8,5+6]

= sup |t — A&z Lzl
t€[s—8,5+6]
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Note that & is between s and ¢ and ¢ € [s — &, s + 6], then

sup 12zk<(pk(z)—¢k<s>) <6 sup W&z z)l
|s—t]<6 1€[5—5,5+0]
<6 sup A& zys .20l
é€[s—6,5+6]

which implies

P( sup | X, () — X (5)| Ze)

|s—1]<8

S/ 1<5 sup |h'd(.§;zl,...,zd)| Ze)F(dzl e dzy)
R4 E€[s—6,5+6]

; I3
= P( sup | X402 5)
é€[s—8,5+6]

By Markov inequality and E[ sup,c(.; |X;(0)| 1< M for all d > 1, take
& =en/M, we have

Mé

P( sup | X, () — Xy (9)] > 6) < gE[ sup |Xd(5)|] <— =

|s—t]<é £€[s—6,5+6]
Hence X,(1) is tight in C[0, z]. This property and the convergence of
the finite dimensional distributions of X,(¢) to those of X (r) imply

WP [X4(®) — X0 50, d - . Od
te[0,7

In applications, we can use the condition (i) or (ii) depending
on properties of X(¢). For example, the condition (ii) holds for m.s.
differentiable processes, see Theorem 3.2 and Corollary 3.1. Otherwise,
we can use the condition (i) as illustrated in Corollaries 3.2 and 3.3.

Remark 3.1. The Brownian motion process B(t), 0 < ¢t < 1, does
not satisfy the conditions of the previous theorem. Yet, the family of
FD models {B,(t)} of this process constructed as in (2.3) is tight and
converges weakly and almost surely to B(¢) in the space of continuous
functions.

Proof. The sequence { B,;(0)} of random variables is tight, since B,(0) =
B(0) = 0 for any d > 1. The difference B;(s)— B,(1) = ZZ: Z (s, 1) is
a zero-mean Gaussian random variable with variance Y;_, A,w; (s, 1),
where v, (s,1) = @ (s) — @ (t) = 23/2sin((k — 1/2)n(s — 1)/2) cos((k —
1/2)n(s+1)/2), k=1,2,..., and s,t € [0, 1]. Then,

) 2
<Z Aw(s, ) > <3<Z A y/(s,t)2>
k=1

= E[|B(s) - BOI*] =3(s — 1)’

E[1B,(s) — B4(1)]*]

by properties of the Gaussian variables and the fact that ZZ=1 A wi(s, 2
increases with ¢ and is bounded. This shows that the second condition
of the Theorem 12.3 in [17] is satisfied for y = 4, « = 2 and the
monotonically increasing and continuous function h(t) = \/Et, so that
B, converges weakly to B in C[0, 1]. This also implies the convergence
By 2 Bin Cl[0,1] as d — oo by the It6-Nisio theorem in [19]. [

It is not surprising that the Brownian motion process B(t) does not
satisfy the conditions of our main result although the family {B,(r)} of
its FD models converges weakly to B(¢) in C[0, 1] since the statement
of the theorem does not make any assumption on the distribution of
the target process X (¢). In contrast, the above proof of the remark uses
explicitly the fact that B(f) is a Gaussian process with independent
increments.

We now develop conditions for the weak convergence of FD models
{X,()} for Gaussian processes X (¢) with smooth samples based on the
condition (ii) of Theorem 3.1.

Theorem 3.2. Let G(t) be a zero-mean Gaussian process with continuous
samples and continuous correlation function and let G,(t) defined by (2.3)
be a finite dimensional model of G(t). Then

sup |G,(t) — G@)| = 0, d > 0. (3.2)

t€[0,7]
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Proof. Following Theorem 8.3 in [17], we first show that the sequence
{G4(0)} of random variables is tight. This follows from the observation
that for any e > 0, there exists L such that

d 2
PG, 0] > L) < éE[Gd(Oﬁ = éELZ‘1 kak«»]

)

L3 E12210,07

d
= iz 2 (2210, 0 <

_ 1 2
= LzE[G(O) 1<e Vd > 1.

Then, we show that the sequence of processes {G,(7)} is tight in C[0, 7]
by showing that the second condition of Theorem 8.3 holds. Note that
for any fixed s € [0,7] and 6 > O, [s,s + 6] is a closed interval of R,
so that there exists constant K for e = 1/2 such that [20] lemma 3.1
or [21]

P( sup (G (1) — Gy(s)) > A) < Ke m9#/25 550,
t€[s,s+6]

which implies

P( sup |Gy(t) — Gy(s)| > ﬂ)
1€[s,5+6]

P<{,§“p (Gd<t>—Gd<s)>>z}U{r€sup (Gd(s>—Gd(r>>>A})

[s,5+6] [s,5+6]

IA

P( sup (Gy(1) = Gy(s) > /1> + P< sup (Gy(s) — Gy(1) > z)

t€[s,s+6] t€[s,s+6]

32 2
< 2Ke /1/40'{]’

where 0'5 = SUPse[ysta) YATIG4(1) — Gy(s)] is finite, since E[(G,(t) —
G4()*] < E[(G(H)-G(s))*] and E[(G()—G(s))*] < oo for all t, s € [0, 7] by
assumption that the correlation function is continuous. Moreover, we
can find & such that sup,c(, ;.5 E[(G(®) — G(5))*] is as small as desired.
Then for any &, > 0, there exists § such that supef, .5, EL(G() —
G(5))*] < €2/(410g(2K /n)). Further, for any d > 1, we have

P< sup |G,(t) — Gy(s)| > £>
t€[s,s+6¢]

<2K exp{ - e’ }
B 4sup;e(g ss,) VArlGy (1) — Gy4(s)]

§2Kexp{— £ } <n.

4 SUPsels,s+6] E[(G(t) — G(5))?]
Therefore the second condition of Theorem 8.3 in [17] holds, which
means that sup,cpg ) |G,(®) — G@)| d 0, d — oo. Since G, (1) is the sum
of independent normal random variables for fixed ¢, i.e., the random
variables Z, ¢, (1), then G, converges a.s to G in C[0,7] by It6-Nisio
theorem [19]. [J

We extend the above result to a class of non-Gaussian processes,
referred to as translation processes, which are monotonically increasing
mappings of Gaussian processes. Let X(r) be a translation process
defined by

X(t) = Flo®(G()), (3.3)

where G(¢) is a stationary Gaussian process with zero mean and unit
variance, @ denotes the distribution of the standard normal vari-
able and F is the marginal distribution of X(r). The translation pro-
cesses {X(r)} are completely defined by the marginal distribution F
and the correlation function of G(¢). Translation processes exist if the
selected marginal distributions and the correlation functions satisfy
some compatibility conditions [22]. Generally, these conditions are
mild, since the correlation functions of the translation processes and
their Gaussian images are similar. Translation processes match ex-
actly/approximately specified distribution/correlation functions [8,9].
They have been used extensively in applications, e.g., to characterize
wind pressure coefficients in Wind Engineering [7,23].
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Theorem 3.3. Let X(t) be defined in (3.3) and X,(t) = F~1o®(G (1),
t € [0, ], where G, (t) is a finite dimensional model of a Gaussian process
G(1), see (2.3). If G() satisfies the conditions of Theorem 3.2 and F is
continuous and strictly monotonically increasing, then

sup [X,(0 - X(O] =0, d > co.
te[0,7]

Proof. Let U,(1) = @(G4(1)) and U(t) = ®(G(t)). According to Theo-
rem 3.2 and mean value theorem, we have

sup |Uy(1)-U@)| <
te[0,7]

sup |G,(H) — G| 50, d > co.
27 tel0.7]

Since F~! is continuous, then F~! is uniformly continuous on [0, 1],
which leads to sup,g(o

1X (1) = X(0)] 5570, d - 00. [

As previously stated, there are other FD models in addition to
those in (2.3). The following theorem considers FD models X)(z)
whose samples interpolate linearly between values of X(¢) at the times
(0,41, ..., N Ar), where At = t/N. The samples of these FD models
are continuous functions so that they are elements of C[0,r]. Under
the conditions of the following theorem, the discrepancy between the
samples of X(M)(r) and those of X(r) measured by the metric of C[0, 7]
can be made as small as desired by increasing N. Generally, the
stochastic dimension N + 1 of X™)(¢) is much larger than that of X ,(t)
in (2.3) so that they are less useful in applications.

Theorem 3.4.
and s and

If E[X(1)] = 0, r(s,t) = E[X(t)X(s)] is continuous in t

sup | X(1) = X(5)] = 0, 6 =0,

|s—t|<6
then

sup [XMO = X050, N> 0. (3.4)
1€[0,7]

Proof. As previously, we show that the finite dimensional distributions
of XN)(t) converge to those of X(¢), the sequence of random variables
{XMN)(0)} is tight and the sequence of processes {XN)(#)} is tight in
clo, z].

For any r € [t;_;,1;), ] <i < N, lett =1,_; + &, where & € [0, 4r).
Since r(1, s) is continuous, X is m.s. continuous so that XM (1) =" X (1)
results from

E [X“V )ty — X(t)]2

2
E [X(t,._l) + A%(X(t,.) - X(ti_l))(t 1 - X(t)]

¢ ¢ :
E [(1 - I)(X(ti_l) — Xt + :)) ‘< (X(z,.) — X(t + 5))]
£y 2 g2 2
2(1 - E) E[X(ti_l) — X(t,_, + 5)] + EE[X(z,.) — Xty + 5)]
2r(ti_y,tim) —4r(ti_ 1t + &) +2r(ti_ + &t + &)
+2r(t;, 1) —4r(t, t_ + )+ 2r(ti_ + &t +&) - 0, N - 0.

IN

IA

This implies (X(V(z,), ..., XM(1,) = (X(t)),..., X(t,)) for any n > 1
and ?,,...,1, € [0,7] which extends to convergence in probability by
Chebyshev’s inequality. The latter yields the convergence of the finite
dimensional distributions of X™)(¢) to those of X(f) as N — oo by
Theorem 18.10 in [16].

Note that the sequence {X™)(0)} of random variables is tight, since
for any ¢ > 0, there exists L such that

PUXM©O)] > L) = P(1X(©0)] > L) < %E|X<0>| <e, VN> 1.

We now show the tightness of X(N)(¢) in C[0, z] which, according to the
second condition of Theorem 8.2, requires to show that, for any &, > 0,
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there exists § > 0 such that P(IWN)(5) > €) <  for all N starting from a
finite value, where W™)(8) = sup|;_, <5 [ XV () = X™N(s)|. Given € > 0,
we have

P< max  sup | XN@) - X@)| > f)
I<iSNyeqr_y ) 3
¢
-p (1——)()( o) = X(t_ + )
(12?}‘\/ ges[l(l)g,) At (1 1) (I ! é)

¢ 3
+E(X(Ii)_X(Ii—l +f))‘ 2 §>

IA

p< max  sup (1—%)|X(r,-_1>—xu,._l+5)|zg)

1<I<N gef0.41)

& 3
P sup | X(1,) — X(t; > £
* <12?’(" selon a X0 = X+ Ol 2 g

IN

2P< sup |X(t)—X(s)|z§>.

|s—t|<At
This inequality implies

P< sup [X®M (1) — xN(s5)] zs>

|s—t|<6

= P< sup | XN = X+ X (1) — X(s) + X(s) — XMN(s)] > e)

|s—t|<6

I\

P( sup [ XM@) = X@)|+ sup |X@) — X(s)|

|s—t|<6 |s—t|<é

+ sup |X(s)—X<N>(s)|zg>

|s—t|<6

I\

P( max  sup

IISN eyt

XM - x0) 2 §> + P( sup|X(1) = X(s)| > §)

|s—1|<é

+ P< max  sup

1<j<N SE€[t;_1.1))

IXM(s) - X(5)] > §>

< 4P< sup |X(H) - X(s)| > g) +P( sup | X (1) — X(s)] > %)

|s—t|<At |s—t]<é
then if supj,_<5 IX() = X(s) > 0, 6 — 0, we have P(sup,_j<s
XM= XMN(s)| > €) - 0, N - o0, 6 — 0. Therefore XN(r)
is tight on C[0, 7] by Theorem 8.2 in [17]. Further, combining with
M@, ..., XM, S (X)), ... X(,), from Theorem 8.1 in [17],
we get sup,eio. [ XM - X(0)] > 0, N —» 0. []

The following corollaries describe several special models that con-
verge weakly in the continuous space C[0, r] under some conditions.
We define the finite dimensional models X,(r) and apply Theorem 3.1

to determine whether sup,¢jo 1 | X4(1) — X (0] — 0 or not.

Corollary 3.1. Let g(v), v > 0, denote the one-sided spectral density of a
zero-mean weakly stationary process X (1), 0 < t < 7. Consider the sequence
of processes {X,(1)}, 0 <t < z, which are obtained from X (t) by truncating
its spectral density to g,(v) = g(v) 1(v < v,), where v; >0, d = 1,2,..., is
increasing with d such that v; - v as d - . If V < oo, then

sup |X,(0 = X(O] S0, d > .
t€[0,7]

Proof. The FD processes {X,()} admit the spectral representations
Vd
X, = / [cos(vt)dU) +sin(v)dV(v)], 0<t<z, d=1.2,..,
0

(3.5)

where E[dU(v)] = E[dV(v)] =0, E[dU(v)dU(V')] = E[dV(v)dV (V)] =
g(v)6(v—v')dv and E[dU(v)dV (v')] =0 for all v,v' > 0. The mean and
variance of the uncorrelated random variables U(v) and V(v) are zero
and G(v) = [’ g(a)a, v > 0. Since X, (1) is m.s differentiable and for all
d>1,

E[ sup |Xd(t)|] = E[ sup
1€[0,7]

te[0,7]

/ ‘ —vsin(v)dU(v) + vcos(v)dV (v)
0
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which takes the form

E[ sup X,
te[0,7]

=E [ sup
t€[0,7]

— v sin(vy DU (vg) + /Vd (sin(vt) + vt cos(vt))U(v)dv
0

|

+ v, cos(vy HV (vy) — / ‘ (cos(v t) — vt sin(v t))V(v)dv
0

IA

E[ sup <vd|U(vd)| +/ d(l +v)lUW)ldv + vy |V (vy)l
0

t€[0,7]

+ /Vd(l + vt)lV(v)|dv>]
0

Ve E|U(vy)l +/0 d(l +V)E|IUW)|dv+ v E|V (vy)]

IA

Va
+ / (1 +zv)E|V(v)|dv < o,
0

by integration by parts Then, we conclude by Theorem 3.1 that
Supeqo.7 | X4 @) — X ()| £ 0 holds. O

Suppose that the correlation function c(u) = E[X (¢t + u) X(¢)] of X (1)
is periodic with period T > 0. Then the correlation and two-/one-sided
spectral density functions of X (r) have the expressions

© ©

c(u) = Z & giviu = Z ¢ cos(vu) and
k=—o00, k#0 k=1

swm= Y %" 5=y g =Y e v —vy) (3.6)
k=—o00 k=1

where ¢, >0, ¢, =c_;, v =2x/T and v, = kv, v, = —v_;. The series
i ¢ is convergent since X(r) has finite variance by assumption.
Processes with the second moment properties in (3.6) are referred to
as mean square periodic. The spectral representation of X(¢) has the
form [24] (Section 3.9.4)

X() = Z Vel = Z[Ak cos(v, 1) + By sin(vy 1)], 3.7)
k=—co k=1

where
1 (7 ;

YV, = T /0 X(t)e "k dt,
s (T

A== / X(t) cos(v, t)dt,
T Jo
s (T

B.=2 / X (1) sinvg 1) d, 3.8)
T Jo

and the equality in (3.7) is in the m.s. sense. The random variables in
(3.8) are zero-mean, e.g.,

T
E[A,]=E[2/T) / X(1) cos(vy 1) di
0

T
=2/T) / E[X(?)] cos(v, t)dt =0,
0

and are uncorrelated, ie., E[Ay
E[A, B)] =

The equahty /0 c(s =ty cos(vyt)dt = (T/2)¢; cos(v;s), s € [0,T],
which results by calculations as those above, shows that cos(v, t) is an
eigenfunction of the correlation function c(u). Similar considerations
show that sin(, 1) is also an eigenfunction of ¢(u). The uncorrelated coef-
ficients {A, } and { B, } are independent Gaussian variables for Gaussian
processes but dependent for non-Gaussian processes. We define X, (r) by
truncating the spectral representation of X(r),

Ajl = ¢ 6y, E[By B]] = ¢, 6, and

d

X () =Y [Ay cos(vy 1) + By sin(v 1)],
k=1

d=12.... (3.9

Corollary 3.2. If 3,7 ¢, e/* < co, then

sup |X,(0 = XD =0, d > .

tel0,7]
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Proof. Note that the condition )7, c]i/ > < oo is not related to the
frequency v,. The eigenfunctions cos(v, t) and sin(v, t) lead to Lk(é) =
SUP|_ /< |(pk(t)— @i(s)| < 2 for all 6 > 0. Since E[A7] = E[B]] =
and Y777, ¢ <o by assumption, the condltlons (i) of Theorem 3.1 is

satisfied so that SUP;ef0.71 | X4 (1) — X (D] Zo. O

We now consider an extension of the previous corollary to a real-
valued process X (1), 0 < ¢t < T, whose correlation function is not
periodic. Let

X0 =X010<t<T)+ [XO) a®) + X(T) O] (T <t <T%),

0<r<T (3.10)

be a extension of X(¢) to the time interval [0, T*], where T* = T + 4,
A > 0 is arbitrary, a(t) = (t — T)/A and B(t) = 1 — a(t). The periodic
extension of X*(¢) to the real line is also denoted by X*(¢) for simplicity.
This extension has periodic samples with period 7% = T+4 and X*(0) =
X*(T*) a.s. It is not weakly stationary even if X(¢) is weakly stationary
since its correlation function c*(s,t) = E[X *(5) X *(t)] depends on the
times s and ¢, e.g., ¢*(s,1) = E[(X(0) a(s) + X(T) f(5)) X ()] = a(s) c(t) +
p(s)c(t = T) for s € [T, T*] and ¢+ € [0,T]. We note that any other
continuous extension of the samples of X (¢) on [0, T'] to samples of X*(r)
on [0,7*] can be used provided it is periodic with period T*. Since
almost all samples of X(¢) are continuous on [0,7] by assumption and
the samples of X*(r) are continuous and periodic with period T* by
construction, the Fourier series representations of the samples of X*(r)
converge absolutely and uniformly [25] (Section 1.10). These series
have the form

X*(1) = Ay /2 + Z ¥ cos(ve 1)+ B! sin(v, )], 1 €[0,T7], (3.11)
k=1
where vi =27z/T*, v;, = kv, and
2 T
A== X*(1) cos(v, ydt, k=0,1,2,...,
2 (T
B == X*@) sin(v, )dt, k=12,.... (3.12)

We deflne X () by truncating the spectral representation of X* (),

d
X;(0) = Ay /2+ Y [} cos(ve 1) + By sin(v, 1)],
k=1

d=12,.... (3.13)

Corollary 3.3. If 7% | (E[(A})?] 2, E[(B})] 1/2) < oo, then

sup [ X5(0) = X*(0)] = 0, d — co.
t€[0,7]

Proof. We cannot apply Corollary 3.2, because the models in (3.7)

and (3.10) differ, e.g., X*(¢) is not stationary. We first show that X MO]
converges to X*(f) in mean square sense. For any m > n, we have

2
[x " - X* (z)] = E[ Y 14] cos(vr) + B; sm(vkt)]]

k=n+1
m m 2
< ZE[ Y A cos(vkt)] +2E[ Y B sin(vkt)]
k=n+1 k=n+1
<2 Z( [ap?] + E[B? )
k=n+1
+4 Y (ELA7 A7 costyn cos(v;n) + ELB] B} Isin(v,0)sin(v;0))
n+l1<i<j<m
<2 2( [ap?] + E[Bp?] )
k=n+1
w4 Y (Bl e[ + B[ BB ) )
n+1<i<j<m

2< zm: E[(BZ)2]1/2>2+2<ki E[(BZ)2]1/2>2.

k=n+1 =n+1
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This shows that (X} (1)} is Cauchy, since ¥, E[(A:)z]l/ ? < o and
¥2 E[B?'? < oo so that X%() "5 X*(), which implies the
convergence of the finite dimensional distributions of X:;(t) to those
of X*(t). Further, by Theorem 3.1 the sequence of processes (X0}

has the property sup,¢(o . | X () — X*(1)] Z 0, since Tt (E[(49?] 1/2
E[B]'?) <. O

4. Examples

We illustrate numerically that samples and extremes of real-valued
continuous processes X(f) can be approximated by samples of FD
models {X,()}, d = 1,2, ..., of these processes for sufficiently large d
provided that they satisfy the conditions of Theorem 3.1 and related
results. The discrepancy between samples of X(¢) and X,(¢) is mea-
sured by the metric sup,.,, |X(t,0) — X,(t,w)| of the space C[0,7] of
continuous samples. This discrepancy cannot be obtained exactly since
the samples of these processes can only be recorded at finite numbers
of times, e.g., the times {r,}, k = 0,1,...,N, where 1, = t,_; + At
and At = 7/N. The numerical value, max,_o; _ n | X(t, ©) — X, (1), @),
of the discrepancy between X(r) and X,(t) provides a lower bound
on supp<, | X(t,w) — X,(t,w)|. Since X(r) and X,(r) have continuous
samples, it is expected that the lower bound is tight for sufficiently large
N.

Accordingly, we approximate the samples of X(r) by those of ran-
dom vectors (X o), X (@) ..., Xt N)), and the actual discrepancy
SUPo<<; | X (1, @) — X ,4(t, w)| between samples of X () and X,() by its
numerical values max,_g | n |X(f,®) — X,(t;, ®)| for large N. In some
of examples, we only prove the weak convergence of X, to X in C[0, 7].
Under this convergence, the measure of the set

Q) ={w: sup |[X(t,w)—

0<t<t

Xy, )| > €}

can be made as small as desired for any € > 0 by increasing d.
Generally, the sets Q,(¢) differ for d # d’ but have small measures for
sufficiently large d and d’. Therefore, although we may not have almost
sure convergence, we can still use the samples of X,(¢) as substitutes
for samples of X(¢) for sufficiently large d, since the probability that
samples of X ,(f) may misrepresent samples of X () is P(£2,(¢)).

This section illustrates the construction of FD models X,(r) for
three real-valued processes X(r), a stationary Gaussian process, a non-
stationary Gaussian process and a non-Gaussian translation process,
and (2) quantifies the performance of the resulting FD models X ,(7)
by two metrics, the norm sup,.,, |X(¥) — X,;(#)| and the discrepancy
between extremes sup,.,, |X(*)| and sup,,, | X ()| of X(r) and X, ().
The examples show that under the conditions of our theoretical results,
samples and extremes of X,(r) can be used as substitutes for samples
and extremes of X(r) provided that the stochastic dimension d is
sufficiently large.

Example 4.1. Let X(r), 0 <t < 7, be a real-valued process defined by
the differential equation

X +aXO+pXO)=Y(@), 0<t<r, (4.1)

with the initial conditions X(0) = 0 and X(0) = 0, where o, > 0 are
constants, Y is the stationary solution of dY () = —p Y (1) dt++/2 pd B(?),
p >0, and B denotes the standard Brownian motion.

The mean and correlation functions of Y(r) are E[Y(r)] = 0 and
E[Y(s)Y(t)] = exp(—p|s—t|) for any p > 0. Since the Brownian
motion has continuous samples, the processes X(f), X(¢) and Y () also
have continuous samples as they are obtained from samples of B(r)
by integration. These processes are Gaussian as linear transformations
of B(1). The target process is the solution X(r) of (4.1) which is a
non-stationary Gaussian process with continuous samples.

The basis functions {¢,(t)} for the FD models X,(r) of X(¢) in
(4.1) are the top eigenfunctions of the correlation function c(s,f) =
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E[X(s) X(#)] of X(), i.e., the eigenfunctions corresponding to the
largest d eigenvalues of c(s,7), 0 < s,# < 7. The correlation func-
tion of X(#) can be obtained by solving the differential equations for
the correlation function of the vector-valued process (X ), X(@), Y(t)),
see [24], Section 7.2.1.1, or by estimation from samples of X(¢). The
basis functions {¢, (r)} were obtained by (A.1) in Appendix. FD models
of X(¢) can also be obtained from FD models B,(t) of the Brownian
motion B(t) and the defining equation of X(¢) but this approach was
not followed.

We first show that samples of X () can be approximated by samples
of X ,(1) for sufficiently large d, then present numerical estimates for the
discrepancy between samples of X(¢) and X, (¢). The mean square (m.s.)
convergence X,(1) T x (1) for a fixed time ¢ follows from Mercer’s
theorem. This also implies the m.s. convergence of (X,(s), ..., X,(s,))
to (X(s), ..., X(s,)) as d > oo for arbitrary 0 < s; < - < 5,, < v and
m > 1, then their convergence also hold in probability by Chebyshev’s
inequality, which leads to the convergence of the finite dimensional
distributions of X,(¢) to those of X(r), see [16], Theorem 18.10. Since
the process X(¢) is Gaussian with zero mean and finite variance, we
also have the a.s. convergence of X, to X in C[0, z], see Theorem 3.2.
Accordingly, we can substitute samples of X(r) with samples of X,(t)
for sufficiently large d.

The following numerical results are for « = 0.1, f = 25, p = 5,
7 = 10 and the time step 4t = /N = 0.01 with N = 1000. The solid and
dotted lines of Fig. 3 show five samples of X(¢) and the corresponding
samples of X,(r) for d = 5, 15 and 25 (left, middle and right panels).
Histograms of the first metric sup,,, |X(¢) — X,(t)| are in Fig. 4 for
the same values of d. Figs. 5 and 6 focus on the second metric. They
show scatter plots of (supg,<, |X ()|, supyc/<, |X4(1)]) and histograms
of supy<,<; | X(®)| = supy</<, | X, (@) for d = 5, 15 and 25 (left, middle
and right panels). The plots in Figs. 4-6 show, in agreement with our
theoretical results, that the discrepancy between samples and extremes
of X(r) and X,(r) can be made as small as desired by increasing the
stochastic dimension d. The plots in these figures are based on 1000
samples of X(¢) and X, (r).

Example 4.2. Let X(¢) be a zero-mean stationary Gaussian process
with spectral density g(v) = X2, ¢, 8(v — v;), where ¢, = «a flk(v2 +
P Ndy, I = [v — Av/2,v, + AV/2], v, = (k= 1/2)Av, k = 1,2,..,
Av > 0 denotes the frequency increment, k¥ > 0, p > 0 and a = %
such that }77° ¢, = 1.

The sequence of processes X,(r) has the form in (3.9) so that
w .
Supseqo.71 1 X4 @) — X(@®)| = 0, since

o 0o Vi +Av/2 12 a2 Ay1/2
chiﬂ:z:(/ 2 021 dv) SZ A 1
k=2 k=2 \Jv—4v/2 (v2 + p2)ltx = (v — AV/Z) +x
AV—1/2 Kl/2
= (k — 1)1+)(

This implies sup,cfg .7 | X4 (t) = X (1)] 2o by Theorem 3.2 since X ,(¢) and
X (t) are Gaussian processes. Hence, samples of X () can be substituted
with samples of X () for sufficiently large d.

As previously stated, since it is not possible to generate the samples
of target process X(r), we approximate this process by X;(¢), which is
set equal to X,(¢) in (3.9) with d replaced by 7 > d. The following
numerical results are for p = 5, ¢ = 10, x = 2, i = 1000, the
frequency increments Av = 0.1 and the time step 4r = /N = 0.01
with N = 1000. The plots in Figs. 7, 8, 9 and 10 are similar to those
in Figs. 3, 4, 5 and 6 of the previous example. The solid and dotted
lines of Fig. 7 show five samples of X () and the corresponding samples
of X,(r) for d = 50, 100 and 150 (left, middle and right panels).
Histograms of the first metric supy.,, |X(#) — X,;(7)| are in Fig. 8 for
the same values of d. Figs. 9 and 10 focus on the second metric. They
show scatter plots of (supy<,<, |X (1), supge,<, | X4(1|) and histograms of
SUPg</<; [ X (1) = supgc,<, |1 X4 (@) for d = 50, 100 and 150 (left, middle
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time time

Fig. 3. Five samples of X (1) and X,(¢) (solid and dotted line) for d =5, 15,25 (left, middle and right panels).
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Fig. 4. Histograms of sup,c o, |X(t) = X, (1| for d = 5,15,25 (left, middle and right panels) based on 1000 samples.
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Fig. 5. Scatter plots of sup,cp1 X (®)| and sup,c .y |X,(0)| for d =5,15,25 (left, middle and right panels).

140 350
120 300
100 250
80 200
60 150
40 100
20 50
= - 0 4
-0.05 01 0.15 02 -0.05 0 0.05 01 0.15 0.2 -0.05 0 0.05 0.1 0.15 0.2

0 0.05
SUPyeo,r] [X(®)| SUPye(o,7) [Xa(t)

SUPye(o,7) [X(®)] - SUPye(o,7) [Xa(t)

SUPye(o,7) [X(@®)] - SUP¢e(o,7) [Xa(t)

Fig. 6. Histograms of sup,co . | X (1] = sup,o. X, ()| for d =5,15,25 (left, middle and right panels) based on 1000 samples.

and right panels). The plots in Figs. 8-10 show, in agreement with our Our objectives are to construct the law of X(r), develop FD mod-
theoretical results, that the discrepancy between samples and extremes els {X,()} for this process, and determine whether X, converges
of X(¢) and X,(r) can be made as small as desired by increasing the weakly/a.s. to X in the space of continuous functions. These objectives
stochastic dimension d. The plots in these figures are based on 1000 can be achieved under the assumptions that (1) the target X(r) is an
samples of X (r) and X (7). ergodic translation process and (2) the available sample of X(¢) is

sufficiently long such it is possible to construct accurate estimates F
Example 4.3. Suppose a sample (X (1y), X(t)),...,X(ty)) of a real- of the marginal distribution F of X(r) and of the correlation function
valued process X (7), 0 < t < 7, with continuous samples is available. of the Gaussian image G(r) of X (7).
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Fig. 8. Histograms of sup,o. |X(1) — X, ()| for d = 50,100,150 (left, middle and right panels) based on 1000 samples.
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Fig. 9. Scatter plots of sup,¢ . [X()] and sup,cy . [X,(1)]| for d = 50,100,150 (left, middle and right panels).
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Fig. 10. Histograms of sup,co 1 |X (1) = sup,epo. 1X, (1) for d = 50,100,150 (left, middle and right panels) based on 1000 samples.

We proceed as follows. First, the sample of X () is used to estimate
the marginal distribution F of X(¢) and, then, construct the corre-
sponding samples of its Gaussian image by G(t) = tD‘loF(X (1)), where
F is an estimate of F delivered by the MATLAB function ksdensity.
Second, the resulting sample of G(r) is used to estimate its correlation
function é(u) = E[G(t+u) G(r)]. This estimate and the standard Gaussian
distribution @ define completely the law of G(¢). Third, the law of G(r)

is used to construct FD models {Gd(t)} of the type in (2.3), i.e.,

d

Git.0) = Y, 1 Z (@) (o), (4.2)
k=1

where {ik,ézk} denote the eigenvalues and the eigenfunctions of the

correlation function of G(r) and the samples Z,(w) of Z, are obtained

by projecting the samples G(z, w) on the eigenfunctions ¢ in [0, z]. The
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Fig. 11. Distributions F and F of X(r) (left panel) and correlation functions ¢ and ¢ of G(r) (right panel). The heavy solid lines are the target distribution and correlation function.
The thin solid and heavy dotted lines are corresponding estimates based on samples of length N = 1000 and N = 4000.
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Fig. 12. Histograms of sup,cy, |G(1) — G, ()| for N =1000 and d = 100, 150,200 (left, middle and right panels) based on 3000 samples.
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Fig. 13. Scatter plots of sup,e(o. |G(*)| and sup,cp |G4(0)| for N =1000 and d = 100,150,200 (left, middle and right panels) based on 3000 samples.

corresponding FD model of X(¢) is the same as in Theorem 3.3, i.e.,
Xt 0) = F7lod (G, (1, ).

Note that G(r) has zero mean. If G(¢) has continuous samples and
continuous correlation function, then (Theorem 3.2)

sup |Gy~ G| = 0 and 1%, - X1 50, d = o,

sup
te[0,7] te[0,7

.7]
where the latter statement follows by Theorem 3.3 provided that F is
continuous and strictly monotonically increasing.

In fact, G(r) is a zero-mean, unit-variance stationary Gaussian pro-
cess with one-sided spectral density g(v) = a (4p?/7)/(v*+p?)? truncated
at v = 5, where « = 1.0232. The following numerical results are for
t = 100, 4v = 0.025, 4t = 0.025, p = 2 and a Gamma distribution
F(x) = y(k,x/0)/I'(k) with k = 3 and 6 = 2, where y(-,-) is the lower
incomplete gamma function. We consider two samples of X(f) with
length N, where N = 1000 and N = 4000.

The heavy solid line in the left panel of Fig. 11 is the actual
distribution F of X (¢). The thin solid and dashed lines are the estimates
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F of F based on the samples of this process of length N = 1000
and N = 4000. The right panel of the figure shows the correlation
function c¢(u) = E[G(t + u)G()] (heavy solid line) and its estimates
éw) = E[G(t + u) G(t)] (thin solid and dashed lines). As expected, the
estimates improve with the sample size.

The following figures quantify the performance of the FD models
constructed from the available two samples of length N = 1000
(Figs. 12-14) and N = 4000 (Figs. 15-17). All plots are based on
3000 samples. Histograms of the first metric sup,(g . |G(®) — G, (1) are
in the left, middle and right panels of Fig. 12 for d = 100, 150, 200.
Figs. 13 and 14 focus on the second metric. They show scatter plots
of (5“P05x§T |G(#)], supy</<. G4(1)]) and histograms of supy,<, |G(*)| —
SUPg<s<, |G, (®)| for d = 100, 150 and 200 (left, middle and right panels).
Fig. 15, 16 and 17 show the same statistics as in Figs. 12-14 but for
N = 4000. The same types of plots are in Figs. 18-20 but the FD
model G,(r) is based on the actual law of G(r) rather than estimates
of it. The plots show that G,(r) is superior to the FD models G,(t)
based on a single sample of the target process, an expected result
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Fig. 14. Histograms of sup,g |G(®)]| = sup,eo |G, (1) for N = 1000 and d = 100, 150,200 (left, middle and right panels) based on 3000 samples.
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Fig. 15. Histograms of sup,go. |G(t) — G, (1) for N =4000 and d = 100,150,200 (left, middle and right panels) based on 3000 samples.
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Fig. 16. Scatter plots of sup,cy . |G(t)| and sup,g

" |G, (1) for N =4000 and d = 100,150,200 (left, middle and right panels) based on 3000 samples.
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Fig. 17. Histograms of sup,cjo.j |G(1)| = sup,epo |G,(0)| for N =4000 and d = 100,150,200 (left, middle and right panels) based on 3000 samples.

since G, (1) is constructed from approximate Gaussian samples and basis
functions based on estimates £ and é(u) of the actual distribution F
and correlation function c(u) whose accuracy depends on the sample
size. Also, as expected, the performance of the FD model G, (r) improves
with the sample size. The plots also show that under adequate statistical
information on the target process and sufficiently large d, samples and

extremes of X (¢) can be approximated by those of X (7).

5. Comments

Finite dimensional (FD) models X,(1), d = 1,2, ..., i.e., deterministic
functions of time which depend on finite sets of d < oo random
variables, have been developed for real-valued processes X(r) with
finite variances and continuous samples defined on bounded inter-
vals [0, 7]. It was shown that under some conditions the discrepancy
SUp;epo.r | X () — X, ()| between samples of target processes X(¢) and
their FD models can be made as small as desired by increasing the
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stochastic dimension d. Under these conditions and sufficiently large
d, samples of X(r) can be approximated by samples of X,(r) so that
extremes of X (r) can be approximated by those of X (7). The discrep-
ancy between these samples is measured by the metric of the space
C[0, 7] of real-valued continuous functions defined on [0, r]. Examples
are presented to illustrate numerically and graphically the relationship
between samples of X(¢) and X, (7).
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Appendix

Covariance function of X(t) in Example 4.1 Let x(¢) = (x; (1), x,(?),
x3(M)T and x,() = X(@),x,(t) = X(0),x3(1) = Y(®). The covariance
function r(t, s) = E[x(¢)x(s)"] of x(t) can be obtained in two steps. First,
we calculate the covariance matrix r(z,¢) of the random vector x(z),
t >0, from

M1, 1) = ar(t, ) + r(t,0a’ + bbT,

where
0 1 0 0
- -a 1 , b= 0

0 0 -p V2p

The solution of this ordinary differential equation is

r(0,00=0, a=

R()=—-A"'B+eMA'B,

where R(t) = (ry,(t,0), rip(t, 1), ri3(t, 1), rop (8, 1), 31, 1), 1332, t))T,
0 2 0 0 0 0
- -—a 1 1 0 0
a-| 00— 0 1 0
0 -2 0 2« 2 0
0 0 -p 0 —-p—a 1
0 0 0 0 0 —2p
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and B = (0,0,0,0,0,2p)T.

Then, we calculate the correlation function r(z,s) of the vector-
valued process x(r) from
or(t, s)

ot
for + > s > 0 and the initial condition r(s, s), which is available from
the previous step. The solution of this equation has the form

=ar(t,s), t>s>0,

rt,s) = eP'g(s), 1> 5>0,

where g(s) is any deterministic function so that

rt,s) = eP"(=TA'B+Te*A™'B), t >5>0, (A1)
where

(0o o o 1 o0 0 o0 0 0 |

0 0 o0 0 1 0 0 0 0

0 0 0 0 O 1 0 0 0

-4 0 0 -« 0 0 1 0 0
D= 0 - 0 0 -« 0 0 1 0 |and

0 0 - 0 0 -a 0 0 1

0 0 0 0 0 0 —p 0 0

0 0 0 0 0 0 0 —p 0

0 0 0 0 0 0 0 0 —p

(1 0 0 0 0 0]

01 0 0 0 0

001 0 00

01 0 0 0 0
T=l0o 0 0 1 0 0

00 0 0 1 0

001 0 0 0

00 0 0 1 0

00 0 0 0 1
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