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Abstract
This paper presents a probabilistic perspective on iterative methods for approximating

the solution x ∈ Rd of a nonsingular linear system Ax = b. Classically, an iterative method
produces a sequence xm of approximations that converge to x in Rd. Our approach,
instead, lifts a standard iterative method to act on the set of probability distributions,
P(Rd), outputting a sequence of probability distributions µm ∈ P(Rd). The output of
a probabilistic iterative method can provide both a “best guess” for x, for example by
taking the mean of µm, and also probabilistic uncertainty quantification for the value
of x when it has not been exactly determined. A comprehensive theoretical treatment
is presented in the case of a stationary linear iterative method, where we characterise
both the rate of contraction of µm to an atomic measure on x and the nature of the
uncertainty quantification being provided. We conclude with an empirical illustration that
highlights the potential for probabilistic iterative methods to provide insight into solution
uncertainty.
Keywords: linear algebra, probabilistic numerical methods, uncertainty quantification

1. Introduction

The focus of this paper is on the numerical solution of a linear systems of equations

Ax = b, (1)

where A ∈ Rd×d is a given non-singular matrix, b ∈ Rd is a non-zero vector and x ∈ Rd

is an unknown vector to be computed. The problem of solving linear systems is central to
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scientific computation (Golub and Van Loan, 2013, p103). Solvers can broadly be catego-
rized as either direct, meaning they compute x by factorizing the matrix A, or as iterative,
meaning they output a sequence of approximations to x. The focus of the present paper is
on a probabilistic version of iterative methods.

There exist a wide variety of iterative methods, with the two main classes being the
stationary iterative methods (Young, 1971), such as Richardson’s method and Jacobi’s
method, and Krylov subspace methods (Liesen and Strakos, 2012) such as the conjugate
gradient method (CG; Hestenes and Stiefel, 1952). In each case, the output of an iterative
method is a sequence xm of approximations to x, that one hopes will converge to x as
m is increased. In practice the error em = x − xm is unknown but can be estimated.
Error estimation for linear systems has a long history, with von Neumann and Goldstine
(1947) among the earliest works in this now vast literature. For CG applied to a symmetric
positive definite matrix A, one typically estimates a bound for the A-norm of the error
‖em‖A =

√
e>mAem (e.g. Strakoš and Tichý, 2002, 2005; Meurant and Tichý, 2013, 2019;

Meurant, 1997; Golub and Meurant, 1997, 1994). Norm-wise estimates such as this may be
of limited utility for three reasons: they are often conservative, they may be complicated to
compute and, being a scalar-valued summary, they cannot capture all of the structure that
may be present in the error em.

The purpose of this paper is to lift standard iterative methods into probability space,
replacing iterates xm ∈ Rd with iterates µm ∈ P(Rd), where P(Rd) denotes the set of
probability measures on Rd. The output of such a method then simultaneously provides
an approximation to x, for example by taking the mean of µm, and probabilistic error
assessment. To motivate why such a method may be useful, suppose that the value of x is
the input to some further computation, denoted abstractly as F (x) for F : Rd → R, and
suppose that one wishes to characterise the error F (x)− F (xm) in replacing the unknown
x with the numerical approximation xm. It is not trivial to transfer a bound on a derived
quantity such as ‖em‖A into a practically useful estimate of this error, particularly when F
is not analytically tractable. For example, if F depends only on a subset of the entries of
x for which the iterative method converges rapidly, while the other entries converge slowly,
a bound on F (x) − F (xm) that is a function only of ‖em‖A can be too conservative to
be useful. In contrast, a probabilistic representation µm of uncertainty regarding x can be
directly propagated through F by repeatedly sampling X ∼ µm and computing F (X). The
resulting probability distribution provides probabilistic uncertainty quantification (UQ) for
the unknown quantity of interest F (x), and may not suffer the same degree of conservatism
of the norm-based estimators that we briefly described.

The methods described herein can be viewed as probabilistic numerical methods (PNM;
Larkin, 1972; Diaconis, 1988; Hennig et al., 2015; Cockayne et al., 2019b; Oates and Sullivan,
2019). PNMs for linear systems are numerical methods that take as input the quantities A
and b, together with an initial distribution µ0 ∈ P(Rd), and return a probability distribution
µm ∈ P(Rd) as their output. The role of µ0 is to encode any a priori information that can
be provided to the PNM. This is achieved by assigning probability mass to subsets of Rd

in which x is believed to be located, prior to any computations being performed. This
information may be elicited from a domain expert or obtained in an objective manner,
for instance by performing additional computations related to the numerical task. While
such applications to numerics have a different flavour to traditional applications of UQ (e.g.
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Smith, 2014), the use of probabilities to describe uncertainty is philosophically similar; see
further discussion in Hennig et al. (2015) and Cockayne et al. (2019b).

1.1 Related Work

Probabilistic Linear Solvers There has been recent interest in the construction of
PNM for the solution of Eq. (1), with contributions in Hennig et al. (2015); Bartels and
Hennig (2016); Bartels et al. (2019); Cockayne et al. (2019a); Reid et al. (2020); Wenger and
Hennig (2020). With the exception of Bartels et al. (2019), these works have predominantly
focused on replicating CG, and so a positive-definite A is assumed. Each of these works
constructed a PNM in the Bayesian statistical framework, where the distribution µ0 has
the interpretation of a prior posited over some quantity related to Eq. (1) at the outset,
and this distribution is updated based on the limited computations that are performed.
The updating is achieved using Bayes’ theorem and the result is a posterior or conditional
distribution µm that forms the output of the method; it is a distribution over the unknown
x that quantifies uncertainty given the limited computation performed. In Hennig et al.
(2015); Bartels and Hennig (2016); Wenger and Hennig (2020) the prior was placed on
the entries of A−1 (or jointly on A and A−1), while in Bartels et al. (2019); Cockayne
et al. (2019a) the prior was placed directly on the unknown solution of Eq. (1). In each
case, computation consisted of projecting Eq. (1) against a set of search directions si,
i = 1, . . . ,m (i.e. by computing s>i Ax = s>i b) and the output of the PNM was a distribution
that contracts to a point mass at x in an appropriate computational limit.

Each of these methods exploited conjugacy of Gaussian distributions under linear trans-
formations to condition on the linear information provided by the pairs (si, s

>
i b), i =

1, . . . ,m. This conditioning is justified only when the search directions si are not them-
selves dependent on x, the solution of Eq. (1). However, in practice these authors advocated
the use of search directions generated using a Lanczos-style recursion (Liesen and Strakos,
2012, Section 2.4), meaning that the si depend on x via b and the required assumption
is violated. As remarked in Bartels et al. (2019); Cockayne et al. (2019a), this violation
leads to PNM that are neither Bayesian nor calibrated, with the latter understood to mean
that the “width” of the probability distribution µm produced by the PNM can be a gross
over-estimate of the actual error, as quantified by the difference between the mean of µm

and x. Reid et al. (2020) addressed this deficiency by constructing a prior which corrects for
the over-confidence in an empirical Bayesian fashion, though with such a prescribed prior it
is difficult for other problem-specific information to be incorporated. It therefore remains
an open problem to develop a PNM for the solution of Eq. (1) that allows a generic initial
distribution µ0 ∈ P(Rd) to be used and ensures the distributional output µm ∈ P(Rd) of
the PNM is calibrated.

Calibration A central concern of this paper is the idea of calibration of a PNM. As
discussed above, informally this is the idea that x should look like a “typical sample” from
the output distribution µm. This is of critical importance for PNM, since their primary
aim is to provide meaningful UQ for the unknown solution x. Cockayne et al. (2020)
recently introduced a criterion for calibration, building on earlier work such as Dawid (1982);
Monahan and Boos (1992), which is appropriate for PNM. Two definitions of calibration
were introduced: in strong calibration, calibration is assessed by drawing multiple values of x
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from µ0, computing the corresponding µm and testing whether, on average, x is distributed
according to µm. Conversely in weak calibration only a marginal comparison is performed,
that is, we check whether the average of µm over different values of x drawn from µ0 is
equal to µ0. Naturally strong calibration is stronger, but as noted in Cockayne et al. (2020)
it is significantly more difficult to verify than weak calibration.

1.2 Contributions

This paper adopts a profoundly different approach to the existing literature on PNM for
linear systems. To our knowledge all existing methods seek to apply Bayes’ theorem as
described above. In this work we instead posit an initial distribution µ0 and iteratively
update this distribution by transforming it according to a standard iterative method for
solving Eq. (1). Thus, rather than µm being the conditional distribution of µ0 on some
prescribed data as in all existing PNM for linear systems, in a probabilistic iterative method
it is the pushforward distribution of µ0 through the sequence of maps that define a standard
iterative method.

The initial distribution µ0 is loosely analogous to the prior in a Bayesian approach, but
since no analogue of the Bayesian update occurs these methods are not Bayesian and we
refrain from using the terms prior and posterior in this work. We thus refer to µm as a
belief distribution, following the contemporary literature on generalised Bayesian inference
(Bissiri et al., 2016). In departing from an established statistical paradigm one is required
to justify, mathematically, the sense in which the uncertainty quantification provided by µm

is meaningful. For this purpose we leverage the recent work of Cockayne et al. (2020), who
argued that non-Bayesian procedures can be justified if they are calibrated, meaning that
the unknown true solution x is indistinguishable in a certain, statistical sense, from any
other sample drawn independently from µm. The contributions of this paper are therefore
as follows:

• We introduce probabilistic iterative methods, a class of PNM derived from iterative
methods for solving linear systems such as Eq. (1). These methods can be interpreted
as a lifting of standard iterative methods into probability space, and are equivalent
to randomising the initial iterate in a standard iterative method.

• A detailed theoretical analysis of the convergence properties of these new PNM is
conducted for the class of linear stationary iterative methods, in which the next iterate
is obtained by an affine transformation of the previous iterate. We prove that in this
case the iterates produced are strongly calibrated in the sense of Cockayne et al. (2020)
and hence provide meaningful uncertainty quantification despite not existing in the
Bayesian paradigm.

• We test the bounds of our theory by describing and implementing an empirical test for
calibration of more complex and general iterative methods, such as Krylov methods.

• We study application of probabilistic iterative methods to a toy regression problem.
Here we examine the convergence and calibration of both linear and nonlinear proba-
bilistic iterative methods, and highlight how their output may be used to gain insight
into the impact of numerical uncertainty in the context of the regression task.
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1.3 Structure of the Paper

In Section 2 we introduce iterative methods for linear systems and describe how these may
be lifted into algorithms that operate on probability space. Theoretical results concerning
the convergence and calibration of a class of analytically tractable probabilistic iterative
methods are presented in Section 3, and in Section 4 we consider the general case, presenting
a statistical test that can be used to assess whether the output from a probabilistic iterative
method is calibrated. In Section 5 we apply probabilistic iterative methods to solve a linear
system arising in a regression problem. Lastly, in Section 6 we discuss the results presented
and the outlook for this new class of methods.

1.4 Notation

Here the notation for the paper is established. We will work in the measurable space
(Rd,B(Rd)) where B(Rd) is the standard Borel sigma-algebra for Rd. Let P(Rd) denote
the set of all probability measures on (Rd,B(Rd)). Bold lower-case roman letters (e.g. v)
will be used to denote vectors in Rd and bold capital roman letters to denote matrices in
Rd×d (e.g. M). Bold capital italic letters will denote random variables on Rd (e.g. X) and
lower-case Greek letters (e.g. µ) will be used to denote elements of P(Rd).

Throughout it will be assumed that ‖ · ‖ is a fixed but arbitrary norm on Rd. One
important example is the vector p-norm, given by

‖v‖p =

(
d∑

i=1

|vi|p
) 1

p

,

though we note that many of the results presented herein do not assume any particular
norm, and where a specific norm is required this will be emphasised. This notation will
also be used for the induced norm on Rd×d, given by

‖M‖ = sup
‖x‖=1

‖Mx‖.

Recall that all induced norms are sub-multiplicative, meaning that ‖Mv‖ ≤ ‖M‖‖v‖. Let
ρ(M) denote the spectral radius of M, let M† denote the Moore-Penrose pseudo-inverse of
M, let range(M) denote its range and ker(M) its kernel or null space. For a symmetric
matrix M, let λmin(M) and λmax(M) denote the smallest and largest eigenvalue of M. For
a positive-definite matrix M we define the weighted norm ‖v‖M = (v>Mv)1/2. Let M1/2

denote a matrix for which M = (M1/2)>M1/2. Note that this is not the typical notion of
a square root, in that it will not be required that (M1/2)> = M1/2.

For a measurable map S : Rd → Rd and a set B ⊂ Rd, S−1[B] will be used to denote
the preimage of B under S, i.e.

S−1[B] = {v ∈ Rd s.t. S(v) ∈ B}.

The notation N (v,Σ) will be used to denote the multivariate Gaussian distribution with
mean v and positive semi-definite covariance Σ.
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2. Probabilistic Iterative Methods

In this section we start by recalling standard iterative methods, using the taxonomy of
Young (1971), before then presenting our new concept of a probabilistic iterative method.

2.1 Iterative Methods

A general iterative method I is defined (Young, 1971, Section 3.1) as a sequence of maps I =
(Pm)m≥1, for which xm = Pm(x0, . . . ,xm−1;A,b). The notation I(A,b) will occasionally
be used to make the dependence of the iterative method on A and b explicit. The iterative
method I is said to be linear if each Pm is linear in x0, . . . ,xm−1. It is said to be of
degree s if for all m ≥ s we have that Pm depends only on the s previous iterates, i.e.
Pm(x0, . . . ,xm−1;A,b) = Pm(xm−s, . . . ,xm−1;A,b). Lastly, a degree s method is said to
be stationary if the maps (xm−s, . . . ,xm−1) 7→ Pm(xm−s, . . . ,xm−1) are independent of m
for all m ≥ s. In what follows we tend to suppress dependence of I and the Pm on A and
b to reduce notational overhead.

Many of the most widely used iterative methods can be expressed as methods of degree
s = 1. For simplicity, we present the majority of the material in this paper in these terms,
though the core ideas readily generalise to higher degree methods as will be explored in
Sections 4 and 5. Any iterative method I of degree s = 1 implies a map Pm that acts only
on the first iterate x0 to produce iterate xm, as follows:

Pm(x0) = (Pm ◦ · · · ◦ P1)(x0).

In such cases each Pm is generally a contraction map with fixed point x, i.e. Pm(x) =
x. Thus, when the iterative method is stationary it amounts to applying a single fixed
contraction map to an initial iterate until convergence.

We now present several examples of first degree iterative methods; for each see Young
(1971, Section 3.3). These methods are seldom used as linear solvers in contemporary
applications, but are still sometimes used in conjunction with other methods (Saad, 2003,
p103).

Example 1 (Stationary Richardson method). This method adopts the following iteration

xm = xm−1 + ω(b−Axm−1), m ≥ 1

where ω > 0 is a parameter of the method. The method is stationary and linear, with each
map Pm of the form

Pm(v) = P (v) = Gv + f (2)

where G = Id − ωA and f = ωb.

Example 2 (Jacobi’s method). In Jacobi’s method it is assumed that the diagonal elements
of A are nonzero. The iteration takes the form

xm = D−1(b− (A−D)xm−1) + xm−1, m ≥ 1

where D = diag(A). The method is again stationary and linear. In the notation of Eq. (2).
we have that G = Id −D−1A and f = D−1b.
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The next method, CG, sees significantly more use, particularly in the solution of large
sparse linear systems. Whereas the above two methods are based on matrix splittings, in CG
the solution x is instead projected into a sequence of Krylov subspaces (Liesen and Strakos,
2012, Section 2.2) of increasing dimension. As a result it is not traditionally viewed within
the classification of Young (1971)1. Nevertheless CG is currently seen as an iterative method
and may be categorised within the taxonomy presented above, albeit rather degenerately
since CG converges (in exact arithmetic) in a finite number m′ ≤ d of iterations and so Pm

is undefined for m > m′.

Example 3 (Conjugate gradient method). In CG, for a symmetric positive-definite matrix
A the iteration is of the form

xm = xm−1 + αmsm αm =
s>mrm
s>mAsm

sm+1 = rm + βmsm βm =
r>mrm

r>m−1rm−1

where the initial direction s0 is taken to be the initial residual r0, and we recall that recall
that rm = b−Axm. From Saad (2003, Algorithm 6.19), CG may be expressed as a three-
term recurrence. Examining this, we see that CG is neither stationary nor linear, and is of
second degree. Nevertheless in terms of its implementation, the algorithm requires only the
storage of xm, rm and sm to compute xm+1.

2.2 Lifting to Probability Space

Now we introduce the central definition of this paper, that of a probabilistic iterative
method. We define probabilistic iterative methods in terms of degree s = 1 methods since,
as noted above, many degree s > 1 methods can be expressed as degree s = 1 methods.
We extend our definition to higher degree methods in Section 3.3 . First, recall that for a
distribution µ ∈ P(Rd), the pushforward distribution S#µ is the element of P(Rd) defined
as (S#µ)(B) = µ(S−1[B]) for each B ∈ B(Rd). Effectively S#µ is the image of µ under the
map S.

Definition 1. Let I = (Pm)m≥1 be an iterative method of first degree. Then the maps Pm :
Rd → Rd can be lifted to maps (Pm)# : P(Rd) → P(Rd) operating on elements µ ∈ P(Rd)
by computing the pushforward distribution (Pm)#µ. We say that I# = ((Pm)#)m≥1 is a
probabilistic iterative method.

Thus probabilistic iterative methods are a class of PNMs that take as input an initial
distribution µ0 ∈ P(Rd) and return a sequence of iterates µm = (Pm)#µm−1. Again we
note that I#, and therefore µm, each formally depend on A and b, but this dependence
is notationally suppressed. The distribution µ0 should be thought of as an initial belief

1. The discussion in Liesen and Strakos (2012, Section 2.5.7) highlights that, when Young (1971) was
written, CG was still often considered a direct method owing to its convergence in m′ ≤ d iterations; its
attractive properties as an iterative method were not understood by the community until Reid (1971),
who studied its use as an iterative method for large sparse linear systems. This likely explains why
Young (1971) does not attempt to categorise it within his taxonomy.
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about where the solution x to the linear system might lie in Rd. Thus µ0 has a similar
role to the prior distribution in the Bayesian setting. However, unlike existing PNMs for
linear systems the iterates µm do not arise as a conditional distribution, and so the output
from probabilistic iterative methods does not have the same Bayesian interpretation as
existing methods. It is therefore crucial to ensure that the UQ provided by the method is
meaningful. Indeed, in contrast to a Bayesian approach, it is straightforward to construct an
example showing that the support of µm need not be contained in the support of µ0. Thus,
even if µ0 encodes properties of the solution that are expected to hold with probability one
(for example, positivity of the elements) µm is not guaranteed to inherit those properties.
This emphasises the need for careful analysis of probabilistic iterative methods, which we
present in detail in Section 3.2 (for stationary linear methods) and Section 4.2 (for general
methods).

Compared to earlier attempts to construct PNM for solution of Eq. (1), probabilistic
iterative methods are significantly easier to implement. For example, an algorithm for
producing a sample from µm is to sample X ∼ µ0 and compute Pm(X). Thus sampling
from the output of a probabilistic iterative method inherits the computational efficiency
and stability of the underlying iterative method, only multiplying the cost by the number
of samples required. Conversely, earlier approaches to PNM (which had a Bayesian flavour)
generally required new algorithms and corresponding code to be developed, whose numerical
stability must then be independently tested and verified2.

Our first theoretical result shows that if the classical iterates xm converge to the true
solution x, then the distributions µm contract to an atomic mass centred on x under weak
regularity conditions on µ0, namely that the integral

∫
‖x − v‖kdµ0(v) is finite for some

k > 0.

Proposition 2. Let I be an iterative method of first degree for solution of Eq. (1). Suppose
that each Pm has error controlled by the bound

‖x− Pm(x0)‖ ≤ ϕ(m)‖x− x0‖, m ≥ 1 (3)

where ϕ : N → R is some function independent of x0, such that ϕ(m) → 0 as m → ∞.
Then for any k > 0 and δ > 0,

µm(Bc
δ(x)) ≤

(
ϕ(m)

δ

)k ∫
Rd

‖x− v‖k dµ0(v),

where Bδ(x) represents a ‖ · ‖-ball of radius δ about x, i.e. Bδ(x) = {v ∈ Rd : ‖x−v‖ < δ},
and Bc

δ(x) its complement in Rd.

2. This is particularly true of existing PNM for solving linear systems such as those methods discussed in
Section 1.1. The Lanczos-style recursions exploited to construct the search directions of those methods
are well known to lead to accumulation of round off error in algorithms such as CG, and the impact
of this on the posterior covariance matrices computed in those methods has, to our knowledge, not yet
been analysed.
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Proof For any k > 0,∫
Rd

‖x− v‖k dµm(v) =

∫
Rd

‖x− v‖k dPm
# µ0(v)

=

∫
Rd

‖x− Pm(v)‖k dµ0(dv)

≤ ϕ(m)k
∫
Rd

‖x− v‖k dµ0(dv)

where the second line follows from the change of variables v 7→ Pm(v), and the third line
follows from Eq. (3) and extracting terms independent of v from the integral. Now, recall
from Chebyshev’s inequality (Kallenberg, 2002, Lemma 3.1) we have that for a measure µ
on Rd, a µ-measurable function f : Rd → [0,∞) and scalars δ ∈ [0,∞), k ∈ (0,∞) it holds
that

µ({v ∈ Rd : f(v) ≥ δ}) = µ({v ∈ Rd : f(v)k ≥ δk}) ≤ 1

δk

∫
Rd

f(v)k dµ(v).

Applying this in the present setting with f(v) = ‖x− v‖ we therefore have

µm(Bc
δ(x)) ≤

(
ϕ(m)

δ

)k ∫
Rd

‖x− v‖k dµ0(v)

as required.

Thus the probability mass assigned by µm to the region outside of a ball Bδ(x) centred
on the true solution x vanishes as m → ∞. Moreover, and again asymptotically as m → ∞,
the probability mass outside Bδ(x) vanishes more rapidly when high-order moments of µ0

exist (i.e. for large k). However, Proposition 2 does not imply that the UQ provided by µm

is meaningful, or even that x is in the support of µm. For the UQ to be meaningful further
assumptions are required on I, such as those made in Section 3.2.

3. Linear Probabilistic Iterative Methods

In this section we restrict attention to linear, stationary iterative methods of first degree,
as a richer set of theoretical results can be developed for this restricted set of methods. In
Section 3.1 we recall some classical results and describe how the probabilistic iterates µm

can be exactly computed when µ0 is Gaussian. In Section 3.2 we prove that these methods
are strongly calibrated in the sense of Cockayne et al. (2020), and in Section 3.3 we discuss
relaxing the stationarity and first degree assumptions.

3.1 Linear and Stationary Probabilistic Iterative Methods

For a linear stationary iterative methods of first degree, Pm(x0, . . . ,xm−1) = P (xm−1), as
described in Example 1, where

P (v) = Gv + f (4)

for some G 6= 0 ∈ Rd×d and f ∈ Rd. It follows that Pm(x0) = Gmx0 +
∑m−1

i=0 Gmf , where
G0 = I. We now recall a classical result for linear stationary iterative methods of first
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degree which will later be useful. The following is based on Young (1971, Section 3.3.2 and
3.3.5) and Saad (2003, Section 4.2).

Proposition 3. Let A be nonsingular, suppose that G ∈ Rd×d is such that ‖G‖ < 1 and

f = (Id −G)A−1b = (Id −G)x. (5)

Then the iterative method
xm+1 = Gxm + f m ≥ 1

converges to x for all x ∈ Rd. Furthermore the error in xm is controlled by the bound

‖x− xm‖ ≤ ‖G‖m‖x− x0‖.

Now we consider lifting linear stationary iterative methods of first degree into P(Rd).
Our main observation is that if µ0 is Gaussian, then the distribution µm can be computed
in closed form using standard formulae for linear transforms of Gaussian distributions.

Proposition 4. Let I be a linear, stationary, first degree iterative method. Let µ0 =
N (x0,Σ0). Then µm = N (xm,Σm), where xm = Pm(x0) coincides with the iterate from
the underlying method, and

Σm = GmΣ0(G
m)>.

Furthermore we have the following bounds:

‖x− xm‖ ≤ ‖G‖m‖x− x0‖ ‖Σm‖ ≤ ‖G‖m‖G>‖m‖Σ0‖.

Proof From elementary properties of Gaussian distributions (Tong, 1990, Theorem 3.3.3)
we have that µ1 = N (x1,Σ1) where x1 = Gx0 + f and Σ1 = GΣ0G

>. This can be contin-
ued inductively to achieve the form stated in the proposition for all m ≥ 1. The bound on
‖x−xm‖ is a consequence of xm coinciding with the classical iterate and Proposition 3. The
bound on Σm is direct by applying submultiplicativity of the norm ‖ · ‖ to ‖GmΣ0(G

m)>‖.

Remark 5. The bound on Σm in Proposition 4 does not require that ‖ · ‖ be the induced
norm, only that it is submultiplicative. As a result, this applies to other matrix norms such
as the Frobenius norm, which is submultiplicative but not induced.

3.2 Evaluation of Uncertainty Quantification

The crucial point that must be addressed in order for probabilistic iterative methods to be
useful is whether the covariance matrix Σm relates meaningfully to the error em = x−xm.
It is not possible to provide a satisfactory answer to this question by considering just one
linear system; this would be akin to asking whether the number 3 is meaningfully related
to the distribution N (0, 1). Therefore a collection of linear systems is required so that
average-case properties can be discussed.

The criteria for meaningful UQ introduced in Cockayne et al. (2020) imply the calibra-
tion of the PNM can be assessed using an ensemble of linear systems obtained by replacing
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the right hand side b with realisations of a random vector B = AX, X ∼ µ0. The PNM
is then said to be strongly calibrated if the true solution X is statistically “plausible” as a
sample from N (xm,Σm), on average with respect to X, a notion that will be formalised in
Definition 6. Note that when X is randomised in this way both the mean xm and covari-
ance Σm of µm will themselves be random in general3, as a consequence of the fact that
I# = I#(A,B). A strongly calibrated PNM provides meaningful UQ, since its output pro-
vides a probabilistic representation of uncertainty whose credible sets have correct coverage
with respect to realisations of X.

In this section we will show that linear, stationary, first-degree probabilistic iterative
methods are strongly calibrated when a Gaussian µ0 is used. This is in contrast to earlier
work, where empirical studies in Cockayne et al. (2019a) found that the PNM proposed in
that work (called BayesCG) failed to be calibrated, though we note that Reid et al. (2020)
proposed a particular prior under which BayesCG is calibrated. Initially we assume that
Σm is nonsingular, which implies that G must also be nonsingular.

Definition 6 (Strong calibration, nonsingular case). Fix µ0 ∈ P(Rd). Suppose that a
PNM for the solution of Eq. (1) produces output of the form µm = N (xm,Σm) where Σm

is a symmetric positive-definite matrix. Then the PNM is said to be strongly calibrated
for (µ0,A) if, when applied to solve a random linear system defined by A and B = AX,
X ∼ µ0, it holds for all m > 0 that

Σ
− 1

2
m (X − xm) ∼ N (0, Id). (6)

Similar notions of calibration have recently been exploited for verifying the correctness of
algorithms for Bayesian computation in Cook et al. (2006); Talts et al. (2018); see Cockayne
et al. (2020) for detail. Similar ideas have also been explored in the literature on PNM,
such as in Cockayne et al. (2019a); Bartels et al. (2019); Reid et al. (2020). Those works
explored calibration through a statistic referred to as the Z-statistic. Definition 6 is strictly
more general than the Z-statistic, which is obtained by simply taking the squared 2-norm
of Eq. (6).

The next proposition proves that when G is nonsingular, probabilistic iterative methods
are strongly calibrated.

Proposition 7. Let the assumptions of Definition 6 hold, with µ0 = N (x0,Σ0) and Σ0

a positive definite matrix. Additionally assume that I is a linear first degree stationary
iterative method with nonsingular G, and that Eq. (5) holds with probability one when I is
applied to solve a system defined by the right hand side B = AX, X ∼ µ0. Then I# is
strongly calibrated for (µ0,A).

Proof First we consider Σ
−1/2
m (x − xm) for a fixed true solution x; we will complete the

proof by randomising x to obtain the result. Note that Σm is nonsingular since G and Σ0

are nonsingular, and recall that since square-roots are not required to be symmetric in this

3. A possible exception occurs if I is a linear, stationary, first-degree iterative method, when Σm depends
only on G, and for such methods G is often independent of b. In this case Σm is not random when X
is randomised.
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work we have that Σ
1
2
m = Σ

1
2
m−1G. Now, for each fixed x and all m > 0 we have:

Σ
− 1

2
m (x− xm) = Σ

− 1
2

m−1(G
−1(x−Gxm−1 − f))

= Σ
− 1

2
m−1(G

−1(x− f)− xm−1).

Now we have G−1(x− f) = x, from nonsingularity of G and Eq. (5). It follows inductively
over m that

Σ
− 1

2
m (x− xm) = Σ

− 1
2

m−1(x− xm−1)

= Σ
− 1

2
0 (x− x0).

Thus, if we now randomise x according to X ∼ µ0 = N (x0,Σ0), we obtain Σ
−1/2
m (X−xm) ∼

N (0, Id), completing the proof.

Remark 8. The only demand Proposition 7 makes of I is that Eq. (5) is almost surely
satisfied; it does not require that ‖G‖ < 1. Thus strong calibration of a PNM does not
imply that µm contracts to the truth, only that µm should be a fair reflection of the size of
the error. For example, if I diverges for some x0 it is natural that µm should tend to a
distribution with infinite variance as m → ∞.

The assumption of nonsingular G permits a straightforward proof for Proposition 7, but
unfortunately G may be singular even for such elementary methods as the Jacobi iterations.
The next definition adapts Definition 6 to the case where G, and therefore also Σm, are
singular. It simplifies the subsequent presentation to focus on the case where Σm does not
depend on b. To the best of our knowledge this is the case for the majority of stationary
iterative methods.

Definition 9 (Strongly calibrated, singular case). Fix µ0 ∈ P(Rd). Suppose that a PNM
for the solution of Eq. (1) produces output of the form µm = N (xm,Σm) where Σm is a
positive semidefinite matrix with rank 0 < r < d, with Σm not depending on the right hand
side b. Then the PNM is said to be strongly calibrated for (µ0,A) if, when applied to solve
a random linear system defined by A and B = AX, X ∼ µ0, for each m > 0 there exist
R ∈ Rd×r and N ∈ Rd×(d−r), with range(R) = range(Σm) and range(N) = ker(Σm), such
that the following two conditions are satisfied:

1. (R>ΣmR)−
1
2R>(X − xm) ∼ N (0, Ir).

2. N>(X − xm) = 0.

This definition is an intuitive extension of Definition 6 to the case of singular Σm; it demands
that in any subspace of Rd in which Σm is nonzero, the PNM is strongly calibrated as in
Definition 6, and in any subspace in which it is zero and thus no uncertainty remains, xm

is identically equal to the true solution X. Note that in the special case r = d, Definition 9
reduces to Definition 6 since range(Σm) = range(Id).

We then have the following result, the proof of which is provided in Appendix A. The
intuition behind the proof in the singular case is the same as in the nonsingular case, but
additional technical effort is required to project into the null space of Σm.
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Proposition 10. Let µ0 = N (x0,Σ0) where Σ0 is a positive definite matrix. Let I be a
linear first degree stationary iterative method such that Eq. (5) holds with probability one
when I is applied to solve a system defined by the right hand side B = AX, X ∼ µ0.
Suppose that G is independent of B, and that G is diagonalisable with rank 0 < r ≤ d.
Then the probabilistic iterative method I# is strongly calibrated for (µ0,A).

Remark 11. Since in Definition 9 the matrix Σm does not depend on B, both R and N
can be fixed matrices independent of X. Furthermore while the columns of R and G must
be bases of the range and kernel of Σm respectively, Definition 9 and Proposition 10 are
basis-independent.

Propositions 7 and 10 provide a clear and defensible sense in which the output µm from
a probabilistic iterative method I#, arising from a linear first degree stationary iterative
method I, can be considered to be meaningful. Specifically, one has a guarantee that the
unknown solution is indistinguishable, in a statistical sense, from samples drawn from µm.
Thus one may interpret µm as quantifying uncertainty with respect to the unknown true
value of x in Eq. (1).

3.3 Generalisations

Here we discuss generalisations to both non-stationary and higher degree iterative methods,
while remaining in the linear framework.

3.3.1 Non-Stationary Methods

In a non-stationary linear iterative method of first degree (Young, 1971, Chapter 9), the
iteration is of the form:

xm = Gmxm−1 + fm (7)
where fm ∈ Rd and Gm ∈ Rd×d for all m ≥ 0. The map Pm is then of the form:

Pm(x0) = Ĝmx0 + f̂m

Ĝm =
m∏
i=1

Gm f̂m = fm +
m∑
i=1

 m∏
j=i+1

Gj

 fi.

From this it follows by an identical argument to Proposition 4 that µm = N (xm,Σm), with
xm = Ĝmx0 + f̂m and Σm = ĜmΣ0Ĝm.

Considering the consistency of the implied probabilistic iterative method, as in the
stationary setting, xm coincides with the classical iterate. Furthermore, Young (1971)
notes that the iteration from Eq. (7) converges to x only if Ĝm → 0. In this event clearly
Σm → 0, and so provided the underlying iterative method converges, µm converges to an
atomic mass on x as m → ∞.

From the perspective of calibration of UQ, the proofs in Section 3.2 do not apply to non-
stationary iterative methods I since those proofs exploit that Σm = GmΣ0(G

m)>, which
no longer holds in the non-stationary setting. However if one instead directly assumes
Ĝm to be diagonalisable for each m, the proof of Proposition 7 would need only minor
modifications to establish that the associated probabilistic iterative method I# is strongly
calibrated in the non-stationary setting.
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3.3.2 Higher Degree Methods

Modifying Definition 1 to allow methods of higher degree requires changing the space on
which µ is defined, and the domain of Pm (and by extension (Pm)#), to a Cartesian product
of s instances of Rd.

In terms of such methods, when s = 2 (Young, 1971, Chapter 16) the iteration takes
the form

xm = Gxm−1 +Hxm−2 + k (8)

where G,H ∈ Rd×d and k ∈ Rd. While second degree methods are seldom used in prac-
tice, higher order methods can accelerate convergence and raise some interesting statistical
questions. These methods are analysed by augmenting the space as follows, to obtain a first
degree linear stationary iterative method on R2d:(

xm−1

xm

)
=

(
0 Id
H G

)(
xm−2

xm−1

)
+

(
0
k

)
= G̃

(
xm−2

xm−1

)
+ k̃.

Convergence of the iterate, and hence the covariance in Proposition 4, then requires ρ(G̃) <
1. Similarly, provided G̃ satisfies the assumptions in Propositions 7 and 10, µm will provide
meaningful UQ according to Definitions 6 and 9.

An interesting technicality for higher degree methods is that, whereas in first degree
methods only an initial iterate x0 must be supplied, in second degree methods both the
iterates x0 and x1 are required. This raises a challenge in the probabilistic framework
because it is not clear how one should specify an initial distribution jointly over x0 and x1.
While expert knowledge may be exploited to build a distribution over x0, the same is not
true of x1. Several possible approaches are considered experimentally in Section 5.

4. Beyond Linearity

In the non-Gaussian and non-linear setting it is significantly more difficult to formulate an
appropriate sense in which a PNM can be considered to be strongly calibrated. Instead,
in this section we adopt a strictly weaker notion called weak calibration, which is simply
defined and can be empirically tested. In Section 4.1 we present that definition and in
Section 4.2 discuss statistical tests for weak calibration which will be applied in Section 5
when nonlinear iterative methods are assessed.

4.1 Weakly Calibrated Probabilistic Iterative Methods

The chief issue with Definitions 6 and 9 is that in order to define strong calibration we
require that µm is Gaussian. This is problematic because Gaussian distributions are unable
to express all initial beliefs about components of x, and because the linear iterative methods
which result in a Gaussian µm are less widely-used compared to nonlinear iterative methods,
such as CG. Therefore we turn to an alternative, weaker sense in which the output µm from
a (possibly nonlinear) probabilistic iterative method can be considered to be meaningful.

Our notion of weak calibration is also due to Cockayne et al. (2020), and will now be
defined. In the same setting as Section 3.2, we fix A and randomly generate a right hand
side B = AX, X ∼ µ0. Then, conditional on X and for each m > 0, we introduce a second
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random variable Y (m)|X ∼ µm that is sampled from the output µm of the PNM applied to
solve the linear system defined by A and B. Let Y (m) denote the random variable obtained
by marginalising Y (m)|X over realisations of X.

Definition 12 (Weakly calibrated). Fix µ0 ∈ P(Rd). A PNM for the solution of Eq. (1)
is said to be weakly calibrated to (µ0,A) if, when applied to solve a random linear system
defined by A and B = AX, X ∼ µ0, and when Y (m)|X ∼ µm, it holds for all m > 0 that
Y (m) has marginal distribution

Y (m) ∼ µ0. (9)

Eq. (9) is sometimes called the self-consistency property and, as with strong calibration,
the notion of weak calibration has previously been exploited to verify the correctness of
algorithms for Bayesian computation (Geweke, 2004). Cockayne et al. (2020, Lemma 2.19)
establishes that strong calibration implies weak calibration. Although weaker than strong
calibration, Definition 12 allows for statistical tests of distributional equality to be used to
assess the quality of the uncertainty quantification provided by a PNM whose output is
non-Gaussian.

Remark 13 (Strong versus weak calibration). From a simulation perspective, we can in-
tuitively think about strong and weak calibration in the following terms:

1. draw X ∼ µ0,

2. compute output µm from the probabilistic iterative method I#(A,AX),

3. draw X ′ ∼ µm,

then, in strong calibration we

4. compare X to X ′.

while in weak calibration we

4. independently draw X ′′ ∼ µ0 and compare X ′′ to X ′.

Thus in strong calibration a conditional comparison is performed, while in weak calibration
only a marginal comparison is performed.

4.2 Testing for Weak Calibration

We now present a statistical test to determine whether a PNM is weakly calibrated. For
convenience we let νm denote the distribution of Y (m), so that we aim to test whether
νm = µ0. Since νm does not necessarily have a closed form but it is possible to access
samples from νm, we aim to perform a goodness-of-fit test to determine whether such
samples are consistent with being drawn from µ0. In this work we adopt a general purpose
goodness-of-fit test based on maximum mean discrepancy (MMD), due to Gretton et al.
(2012), which we briefly describe next.
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Definition 14 (Maximum mean discrepancy). Let µ, ν ∈ P(Rd) and let F be a set of
real-valued, µ and ν-integrable functions on Rd. Then the MMD between µ and ν, based on
F , is given by

mmdF (µ, ν) := sup
f∈F

(∫
f(v) µ(dv)−

∫
f(v) ν(dv)

)
.

Gretton et al. (2012) considered taking F to be a unit ball in a reproducing kernel Hilbert
space (RKHS), showing that when the RKHS is chosen judiciously then MMD is a metric
on P(Rd). Moreover, this choice ensures that an unbiased estimator for MMD can be
constructed, as will now be explained. Recall that an RKHS is associated with a symmetric
positive definite kernel k : Rd × Rd → R; we emphasise this using the notation F ≡ Fk =
{f ∈ Hk : ‖f‖Hk

≤ 1} where Hk is the unique RKHS with kernel k and ‖·‖Hk
is the norm in

Hk. Define the kernel mean embedding of µ in Hk as µ[k] where µ[k](v) :=
∫
k(v,v′)µ(dv′).

Then Gretton et al. (2012, Lemma 4) asserts that MMDFk
(µ, ν) can be expressed as a

difference between the kernel mean embeddings of µ and ν:

mmdFk
(µ, ν) := ‖µ[k]− ν[k]‖Hk

. (10)

For convenient choices of k and µ it may be possible to compute µ[k] in closed-form, but in
general one must resort to approximating Eq. (10) based on samples from one or both of µ
and ν. Given independent samples X1, . . . ,XN ∼ µ0 and Y

(m)
1 , . . . ,Y

(m)
N ∼ νm, we define

an estimator

m̂md2
Fk

:=
1

N(N − 1)

N∑
i,j=1
i 6=j

k(Xi,Xj) + k(Y
(m)
i ,Y

(m)
j )− k(Xi,Y

(m)
i )− k(Y

(m)
i ,Xj), (11)

which can be verified to be an unbiased estimator of mmdFk
(µ, νm)2 provided that, in

addition to having the stated distribution, the samples Y
(m)
1 , . . . ,Y

(m)
N are generated inde-

pendently from the samples X1, . . . ,XN .
The statistic in Eq. (11) enables a goodness-of-fit test to be performed, and the dis-

tribution of this test statistic under the null hypothesis νm = µ0 may be estimated using
a standard bootstrap procedure as described in Gretton et al. (2012, Section 5). Having
obtained M approximate samples from the distribution of Eq. (11) using the bootstrap, we
determine a threshold for a prescribed power level α ∈ (0, 1) by computing a (1−α)-quantile
of this empirical distribution. This procedure will be used in Section 5, next, to empirically
test whether PNM are weakly calibrated.

5. Empirical Assessment

The aim of this section is to empirically assess our proposed probabilistic iterative methods.
For this purpose we consider the problem of inverting a linear system that arises when
building a kernel interpolant. Our aim is not to address the problem of computing kernel
interpolants per se, as many powerful methods exist for this task, but this problem serves
as a convenient test-bed in which probabilistic iterative methods can be examined. The
code to reproduce these results is available on GitHub4.
4. https://github.com/jcockayne/probabilistic_iterative_methods_code
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5.1 Problem Definition

Consider a dataset consisting of pairs (zi, yi), i = 1, . . . , d, d ∈ N, where the zi ∈ [0, 1] are
distinct locations at which observations yi ∈ R of some physical phenomenon were obtained.
The aim is to compute a interpolant of this dataset, that is, a function g : [0, 1] → R which
is such that g(zi) = yi for all i = 1, . . . , d. For a given symmetric positive definite kernel
c : [0, 1]× [0, 1] → R, we consider an interpolant of the form

g(z) :=
d∑

i=1

xic(z, zi) (12)

and note that there is a unique set of weights xi ∈ R such that the interpolation equations

g(zi) = yi, i = 1, . . . , d

are satisfied. The vector x = (x1, . . . , xd)
> of such weights satisfies the d-dimensional linear

system in Eq. (1) with Ai,j = c(zi, zj) and b = (y1, . . . , yd)
>.

This linear system is representative of linear systems that are widely encountered in
statistics and machine learning, and naturally a variety of methods have been proposed to
circumvent the need to solve them; for example, based on reducing the degrees of freedom
of the parametric function g so that the dataset is only approximately interpolated. Our
aim is to use a finite number of iterations, m, of a probabilistic iterative method on the full
problem in Eq. (1) and to lift the distribution µm over the unknown solution vector x into
the function space spanned by functions of the form in Eq. (12). This enables uncertainty
due to limited computation to be interpreted in the domain on which the interpolation
problem was defined.

The condition number of A depends on the spectrum of the kernel c and the closeness
of the elements in {z1, . . . , zd}. For kernels with rapidly decaying spectrum, such as the
squared exponential kernel

c(x, x′) = exp

(
−‖x− x′‖22

2`2

)
(13)

with length-scale parameter ` > 0, it is common for A to be badly conditioned. Thus even
when d is small, solution of Eq. (1) can be difficult, which motivates the use of probabilistic
methods that return a measure of error.

A dataset of size d = 520 was generated, with (zi)i=1,...,d consisting of 60 evenly spaced
points in [0, 0.1], 400 evenly spaced points in [0.2, 0.8] and 60 evenly spaced points in [0.9, 1],
and yi = f(zi) where f(z) = 1z<0.5 sin(2πz)+1z≥0.5 sin(4πz). The parameter ` = 0.0012 was
used, which produces a system for which a direct solver can be used, so that a ground-truth
is accessible, but which is not entirely trivial.

5.2 Choice of µ0

For the initial distribution µ0 several candidates were considered. Firstly a default choice
given by µ0 = N (0, Id). This can be interpreted as a lack of a priori insight, since under
this prior the components of x are independent and identically distributed. Secondly the
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natural choice µ0 = N (0,A−1) which incorporates the structure of A into the initial
distribution. This choice of prior covariance and has been noted to have desirable theoretical
properties in the related work of Cockayne et al. (2019a); Hennig (2015); when used as a
prior in those works it was shown to yield a posterior mean that coincides with the iterates
from CG. We note that the natural initial distribution is not a practical choice in general
as it requires computation of A−1.

The third initial distribution we consider is applicable only in settings where a small
number of ansatz solutions (i.e. guesses) are provided, perhaps obtained by expert knowl-
edge of the system at hand. Let xi, i = 1, . . . , N , be these ansatz solutions; we use these to
estimate the scaling parameter ν2 for an initial distribution µ0 = N (0, ν2Σ0) where Σ0 is
fixed. Maximum likelihood estimation yields the estimator

ν2opt :=
1

Nd

N∑
i=1

‖xi‖2Σ−1
0
,

which can be seen to adapt to the scale of the problem at hand; we call this approach opt.
In the experiments below where this approach is used we assume that Σ0 = Id, so that
this choice is effectively default with a scaling parameter that allows the prior to adapt
to the scale of the problem. We used N = 5 ansatz solutions, obtained by sampling 5
right-hand-sides B1, . . . ,B5 ∼ N (0, Id) and computing xi = A−1Bi.

We note that this does not result in an entirely fair comparison since 5 exact solutions to
the linear system are used to construct the initial distribution. One could consider instead
using only approximate solutions, but this introduces additional degrees of freedom into
the assessment. Since the focus of this paper goes beyond selecting µ0, we simply use exact
solutions within opt for the assessment. Furthermore note that this choice of µ0 violates the
assumption from Proposition 10 that Σm is independent of b, since Σ0 implicitly depends
on b through the xi. Thus, this choice of prior tests the bounds of our theoretical results.

5.3 Results in Function Space

In this section we examine the resulting distributions µm from application of a number of
probabilistic iterative methods to the problem above, for each choice of initial distribution
from Section 5.2.

Stationary Iterative Methods We first consider Richardson’s iteration with a constant
step size. Since this method is stationary and linear, the theoretical results obtained in
Section 3 apply. Fig. 1 displays samples (grey curves) from each of the probabilistic iterative
methods that we considered and the blue curve represents the exact kernel interpolant. The
step size ω was set to either the optimal value in Fig. 1b, ω = 2/(λmin(A)+λmax(A)), that
minimises the spectral radius of G, or a default value ω = 2/3 in Fig. 1a. Note that the
optimal ω is not practical, since computing λmin(A) and λmax(A) is at least as expensive
as solving the linear system. It is included to provide a point of comparison. Jacobi’s
method was also considered, but in our simulations the results were virtually identical for
this problem, so they are not presented.

Examining first Fig. 1a, the output is seen to contract around the exact solution as the
number m of iterations is increased, which is to be expected as the underlying iterative
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methods are known to converge for this problem for any initial x0. Interestingly, very
little variation is observed in the intervals [0.1, 0.2] and [0.8, 0.9] where no data points are
located. In this region the posterior mean reverts to the prior mean, and so it is somewhat
natural to expect fast convergence of the solver in this portion of the domain and slower
convergence where more data points are concentrated. The low variation seen in the output
of the probabilistic iterative method in these regions suggests that this is indeed the case,
and therefore that the distributional output can act as a local error indicator.

The results for each of the three priors chosen appear to be very similar apart from
changes in the posterior width, with default the narrowest and opt the widest. The
increased width of opt is to be expected since this prior is simply default inflated by the
parameter νopt, which for this problem was computed to be 5.48.

Turning now to Fig. 1b, we note that both default and natural appear to exhibit
some bias away from the true solution at m = 3, 5 and 10. We believe this is due to a
violation of one of the central assumptions of Propositions 7 and 10, namedly that x ∼ µ0.
Since in this case x depends upon pointwise values of the interpolant, it inherits smoothness
properties that none of the priors considered encodes. This view is supported by results in
Section 5.4, wherein Richardson iteration with optimal ω is shown to be weakly calibrated
when x0 ∼ µ0. This highlights the importance of prior selection. Note that this bias does
not visually appear to be present for opt, but we suggest that this is due to the increased
width of the posterior.

Non-Stationary and Higher-Order Methods We now consider non-stationary and
higher-order iterative methods. As discussed in Section 3.3, these methods are expected to
be strongly calibrated as they are still linear, though calibration has not been rigorously
established. For the non-stationary scheme we considered Richardson iteration again but
with the step-size chosen adaptively, with ωm = r>mArm/‖Arm‖22 minimising the Euclidean
norm of the residual rm+1 = b − Axm+1. Results for the non-stationary scheme are pre-
sented in Fig. 2, with qualitative behaviour appearing to be similar to that with the default
ω from Fig. 1a. Since the non-stationary scheme is better able to adapt to the problem at
hand, this seems a more prudent choice than an arbitrary ω = 2/3, though we note that
the calibration of this method remains to be assessed empirically; this will be considered in
Section 5.4.

As an example of a higher-order iterative method, we consider a second-degree version
of Richardson iteration presented in Young (1972). In this method the iteration is of the
form

xm = γσ

(
2

β − α
G− β + α

β − α

)
xm−1 + (1− γ)xm−2 +

2γσ

β − α
f

where G and f are as given in the classical first-order Richardson iteration from Example 1,
with optimal ω = 2/(λmin(A) + λmax(A)), while α = λmin(G), β = λmax(G) and

σ =
β − α

2− (β − α)
γ =

2

1 +
√
1− σ2

.

Recall that for a second degree probabilistic iterative method, a joint initial distribution
must be specified for x0 and x1. The distribution assigned to x0 was fixed to opt, since,
in the results for s = 1 (to follow), this appeared to provide better UQ across different
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choices of ω. Three choices were considered for initial distributions for x1: iid, in which
x1 is an independent copy of x0, corr, in which x1 is identical to x0 and rich, in which
x1 is obtained from x0 by performing one iteration of Richardson iteration with optimal
ω. Note that both iid and corr yield the same marginal distribution for x1, but the joint
distributions differ.

Fig. 3 displays samples from the output of the probabilistic iterative methods just de-
scribed. Qualitatively, the results appear to be similar to those from Fig. 1b with initial
distribution opt, as one would expect given that µ0 in all three rows is that same distri-
bution. Of the three choices for µ1, rich appears to contract marginally faster, though in
all three methods the improvement over the first order method from Fig. 1b appears to be
negligible.

Nonlinear Methods Here we consider a probabilistic iterative method based on CG,
which is one of the most widely used iterative methods, but for which our theoretical
results on strong calibration do not hold. Results are displayed in Fig. 4. Convergence is
clearly seen to be faster than in the other methods considered, though qualitatively the
samples obtained otherwise seem to be similar. This hints at the results from the next
section, in which we will see that CG is weakly calibrated for this problem and for the
initial distributions that we considered.

5.4 Testing Calibration

We now test for evidence against weak calibration for all of the probabilistic iterative meth-
ods and initial distributions considered. Recall that, according to the results in Section 3.2,
stationary Richardson iterations give rise to probabilistic iterative methods that are strongly
calibrated when ω is fixed (irrespective of whether the optimal ω or a fixed ω is used). Non-
stationary Richardson iteration with adaptive parameter ωm is conjectured to also give
rise to a probabilistic iterative method that is strongly calibrated, as is the higher order
method described above, but these strong calibration results have not been established. It
is unknown whether probabilistic iterative methods based on CG are strongly or weakly
calibrated. In addition to probabilistic iterative methods, we also include BayesCG from
Cockayne et al. (2019a), which is not a probabilistic iterative method in the sense of this
paper and is not expected to be strongly calibrated owing to the negative results presented
in Cockayne et al. (2019a) and in Reid et al. (2020). It was hitherto unknown whether
BayesCG is weakly calibrated.

To test the hypothesis that probabilistic iterative methods are weakly calibrated, we
apply the MMD-based test described in Section 4.2. For each initial distribution and each
iterative method we generated N = 100 independent samples from µ0 and νm from which the
test statistic Eq. (11) was computed. Significance was assessed using the bootstrap method
with M = 1000. The kernel k used was the squared exponential kernel from Eq. (13), with
the length-scale set using the median heuristic as recommended in Gretton et al. (2012).
For each method, m = 10 iterations were performed. For the second order method, we
opted to use the rich initial distribution for x1.

Table 1 shows test statistics obtained for each of these methods arising in the test
for weak calibration described in Section 4.2, for each choice of initial distribution from
Section 5.2. Reported are the value of Eq. (11) (as mmd in Table 1). Note that while
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Rich. Rich. Rich. Rich.
(default) (optimal) (adaptive) (2o) CG BayesCG

default mmd2
Fk

1.90e-04 -3.11e-05 9.76e-06 5.36e-05 -2.80e-05 1.14e-03
q 0.34 0.52 0.45 0.43 0.49 0.03

natural mmd2
Fk

-1.72e-04 -2.71e-04 -2.44e-04 -3.20e-04 -2.98e-04 4.18e-03
q 0.60 0.64 0.64 0.68 0.68 0.00

opt mmd2
Fk

3.59e-05 1.00e-05 4.30e-06 -6.62e-06 3.57e-05 6.57e-03
q 0.48 0.47 0.48 0.49 0.47 0.00

Table 1: Results from applying the maximum mean discrepancy (MMD)-based test from
Section 4.2 to the methods described in Section 5. The abbreviation “Rich.” refers to
Richardson iteration. “2o” refers to the second order method. The test does not reject the
null that each of the methods assessed is weakly calibrated, with the exception of BayesCG
where the null is rejected. Results that are statistically significant at the 5% level, indicating
that the method is not weakly calibrated, are highlighted in bold.

strictly speaking mmd ought to be positive, due to sampling error it may be negative; this
was also observed in Gretton et al. (2012). Also reported is the statistic q, which is analogous
to a p-value in a classical statistical test. To compute this we again used a bootstrap-based
method. In detail, we bootstrapped a sample of size M of Eq. (11) by pooling the samples
from µ0 and νm, sampling with replacement two samples of size N from the pooled samples
and computing Eq. (11). We then computed the empirical quantile q′ of the obtained value
of mmd within this sample, by placing the sample in ascending order, computing the rank r
of the value immediately below mmd within the bootstrapped sample and letting q′ = r/M .
We then took q = 1 − q′. We used the value α = 0.05, representing a 5% significance
level, as a threshold in Table 1; thus, if a value of q below 0.05 was obtained this constitutes
evidence that the method is not weakly calibrated. Note that owing to the fact that q is
based on a sample from the bootstrapped distribution, it is possible to obtain q = 0; we
would expect the true p-value to be small but positive.

Examining the results, Richardson iteration with both default and optimal ω is seen
to be weakly calibrated. This provides support for our testing methodology, since from
Cockayne et al. (2020, Lemma 2.19) any strongly calibrated PNM must be weakly calibrated.
Similarly the second order method is weakly calibrated, which is to be expected since the
proof of strong calibration for this method would require only a small extension relative to
the case of a first order method. Richardson iteration with the adaptive ω appears to be
weakly calibrated for all initial distributions considered, suggesting that the non-stationarity
implied by the adaptive parameter does not affect the weak calibration of the method. Also
note that the fact that for opt, Σm implicitly depends upon b through the parameter νopt,
does not appear to affect the calibration of any of the methods considered, suggesting that
this theorem may be generalisable.

Perhaps more surprisingly, owing to its high degree of nonlinearity, CG also appears to
be weakly calibrated. This hints at the possibility of a more fundamental result regarding
the calibration of probabilistic iterative methods in the general setting, though we leave
study of this conjecture to future work.
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Concerning BayesCG (which we emphasise again is not a probabilistic iterative method
in the same sense as the other methods considered), the results show that BayesCG is not
weakly calibrated for either the natural or opt initial distributions µ0 even when the
prior distribution, required in BayesCG, is set equal to µ0 itself. This is to be expected,
considering that this method is known not to produce meaningful posteriors apart from in
special cases (e.g. Reid et al., 2020). One other noteworthy point is that for the default
initial distribution the mmd obtained for BayesCG has a slightly higher value of q = 0.03.
This is perhaps due to the fact that, with such an uninformative prior, BayesCG is known
to converge quite slowly. Thus the posterior after 10 iterations may not have deviated far
from the prior.

5.5 Spectral Behaviour

Lastly we examine the spectral behaviour of one of the methods above by performing a
principal component analysis, to illustrate how the output of a probabilistic iterative method
can provide a richer description of error compared to a classical error bound. In this section
we fixed the distribution µ0 to natural.

Here we consider principal components (leading eigenvectors) of the covariance matrix
AΣmA>, which describes covariance in the domain of the function Eq. (12). The six
leading principal components for the probabilistic iterative method based on Richardson
iteration with default parameter ω = 2/3 are displayed in Figure 5. At each of the values
of m considered, the low frequency variation over the interval [0.2, 0.8] is seen to be the
dominant principal component (more so as m is increased), which accords with the result
of Figure 1a in that the error of natural is mainly manifest in a low-frequency vertical
shift between the exact interpolant and the sampled output. At m = 100 the first six
components account for over 50% of the variability in the distributional output, with the
remaining variability dedicated to higher-frequency aspects of the solution.

The detailed nature of these error indicators may be useful to shed light on the aspects
of the exact solution x that we are most uncertain about, having run a finite number of
iterations of a probabilistic iterative method. This rich description of numerical uncertainty
can trivially be propagated through subsequent computation F (x), e.g. by sampling from µm

and then applying F , in order to probabilistically assess the impact of numerical uncertainty
on any subsequent computational output.

6. Conclusion

In this paper we have introduced probabilistic iterative methods, a new class of proba-
bilistic numerical methods for solving linear systems. We have provided theoretical results
concerning the convergence and calibration of these methods in the stationary and linear
setting, and examined their empirical performance using a synthetic test-bed. Finally, we
alluded to how the output of a probabilistic iterative method could be used represent nu-
merical uncertainty and how such a representation could be propagated through subsequent
computational output.

Several interesting avenues for future related work are now highlighted:

22



Probabilistic Iterative Methods

6.1 Generalisation to Nonlinear Methods

The generalisation of this work to nonlinear iterative methods, such as CG (Hestenes and
Stiefel, 1952) and other Krylov methods is of interest. These methods are more widely
used than stationary iterative methods in modern applications, owing both to their faster
convergence and that they only require access to the action of A, rather than needing to
interrogate and modify the elements of A.

The definition that we proposed for probabilistic iterative methods in Definition 1, and
the sampling algorithm for accessing the output of a probabilistic iterative method described
in Section 3, do not require the generating iterative method to be linear. However, with the
exception of Proposition 2, the theoretical results presented in this paper depend strongly
on linearity. The experimental results in Section 5.4 indicate that CG, a prototypical
nonlinear iterative method, may be weakly calibrated. The goal of theoretically establishing
the calibration properties of nonlinear probabilistic iterative methods represents interesting
future work.

6.2 Gradient Flow Interpretation

Recent work in the numerical analysis community highlights that iterative methods for linear
systems may be interpreted as the discrete-time solution of an underlying dynamical system
on Rd (Chu, 2008). Insight may then be gained by studying the original dynamical system.
In parallel, recent work in the statistics and machine learning communities has provided
gradient flow interpretations of various sampling and variational inference algorithms on
P(Rd) (e.g. Arbel et al., 2019; Liu et al., 2019) An interesting avenue for future work
would be to consider whether the methods presented in this paper may be interpreted as a
discretisation of a gradient flow on P(Rd), and whether insight can be gained by performing
analysis of the continuous flow.

6.3 Wider Applications

In this paper we have focussed on iterative methods for solving linear systems. However,
the assumption that I was an iterative method for solving such systems was not essential
to Definition 1. Provided an initial distribution µ0 can be constructed in the domain of I#,
probabilistic iterative methods could be applied to any classical problem for which iterative
methods are used, such as solvers for eigenproblems, numerical optimisation problems or
even solvers for nonlinear differential equations. Proposition 2 also applies to this general
case, provided a suitable bound of the form in Eq. (3) can be derived in a norm adapted to
the problem and, when the iteration is an affine map, we expect that the proof techniques
from Section 3.2 could be applied.
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(a) Default ω

1

0

1

d
e
fa

u
lt

m = 0 m = 3 m = 5 m = 10 m = 100

1

0

1

n
a
t
u
r
a
l

0.0 0.5 1.0

1

0

1

o
p
t

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

(b) Optimal ω

Figure 1: Samples from the distributional output of a probabilistic iterative method based
on Richardson iteration, used to solve an interpolation problem and visualised in the physical
domain in which the interpolant is defined. The rows in each figure represent the three
choices of initial distribution described in Section 5.2. In each panel we present 50 samples
(grey curves) from the output of the probabilistic iterative method after m iterations have
been performed. The interpolant, corresponding to the exact solution of the linear system,
is also shown in blue.
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Figure 2: As in Fig. 1, but with ω chosen adaptively.

1

0

1

ii
d

m = 0 m = 3 m = 5 m = 10 m = 100

1

0

1

c
o
r
r

0.0 0.5 1.0

1

0

1

r
ic

h

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

Figure 3: A probabilistic iterative method based on a second degree version of Richardson
iteration, as described in Section 5. Each row uses opt as the initial distribution for x0

and a different initial distribution for x1, as described in the main text.
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Figure 4: Samples from the distributional output of the probabilistic iterative method
implied by using the conjugate gradient method as the underlying iterative method.
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Figure 5: A closer look at the distributional output: principal components from a prob-
abilistic iterative method based on Richardson iteration with the default parameter and
initial distribution natural. Here the first 6 principal components (PC) are displayed for
the same values of m used in Figure 1. The percentages indicate the percentage of the total
variation that is explained by that component. Each grey line is constructed as the mean of
µm, plus a sample in the direction of the relevant principal component, re-scaled to improve
visualisation, with 50 samples shown in total.
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Appendix A. Proof of Proposition 10

In order to prove Proposition 10, we need several results from linear algebra about the range
and kernel of products of matrices, as well as decomposition of a diagonalizable matrix.

Lemma 15 (Ipsen (2009, Fact 6.3)). Let Y,W ∈ Rd×d. If Y is non-singular, then
ker(YW) = ker(W).

Lemma 16 (Ipsen (2009, Facts 6.3 and 6.4)). Let Y,Ω,W ∈ Rd×d where Y and W are
non-singular. If Y, Ω, and W have the partitions

Y =
[
Y1 Y2

]
, Ω =

[
Ω11 0
0 0

]
, and W =

[
W>

1

W>
2

]
,

with Y1,W1 ∈ Rd×r, Y2,W2 ∈ Rd×(d−r), and Ω11 ∈ Rr×r nonsingular, then

range(YΩW) = range(Y1) and ker(YΩW) = range(W2).

Lemma 17. Horn and Johnson (2009, Lemma 3.4.1.10) Let G ∈ Rd×d be diagonalisable
and of rank r < d. Then G may be represented in its real Jordan canonical form as

G = YΩY−1

where Y ∈ Rd×d is invertible, while Ω ∈ Rd×d is of the form

Ω =

(
Ω11 0
0 0

)
.

Here Ω11 ∈ Rr×r is nonsingular and block-diagonal, with ` 2× 2 blocks and s 1× 1 blocks,
where ` is the number of nonzero conjugate pairs of complex eigenvalues of G and s is the
number of nonzero real eigenvalues of G, so that r = 2`+ s.

With these results stated we proceed to the main proof:

Proof [Proof of Proposition 10] First note that if rank(G) = d then G is invertible, so the
probabilistic iterative method is strongly calibrated as a result of Proposition 7. Thus we
focus on the case that rank(G) < d.

We complete this proof in multiple steps:

Step 1 We express the range and kernel of Σm in terms of the matrices forming the real
Jordan canonical form of G, thus identifying the matrices R and N from Proposi-
tion 10.

Step 2 We compute (R>ΣmR)1/2, (R>ΣmR)1/2R>(xm − x) and N>(xm − x).

Step 3 We combine these results to show that stationary iterative methods are strongly
calibrated when G is diagonalisable.
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Step 1 We first compute the range and kernel of Σm. This covariance matrix is defined
as

Σm = GmΣ0(G
m)>.

From Lemma 17 we have that

Gi = YΩiY−1, 0 ≤ i ≤ m.

We partition the factors above as

Y =
[
Y1 Y2

]
, Ω =

[
Ω11 0
0 0

]
, and Y−1 =

[
W>

1

W>
2

]
,

where Y1,W1 ∈ Rd×r, Y2,W2 ∈ Rd×(d−r), and Ω11 ∈ Rr×r is nonsingular. With this
partitioning and Lemma 16 we have

range(Gi) = range(Y1) and ker((Gi)>) = range(W2), 0 ≤ i ≤ m. (14)

We now express the range and kernel of Σm in terms of Y1 and W2. Express Σm as the
product Σm = QQ>, where Q = GmΣ

1/2
0 . For any v ∈ ker(Σm) we have

Σmv = 0 ⇐⇒ v>Σmv = 0 ⇐⇒ (Q>v)>Q>v = 0 ⇐⇒ Q>v = 0

where the first equivalence above holds because Σm is symmetric positive-semi-definite.
Thus ker(Σm) = ker(Q>). Because Σ

1/2
0 is the non-singular square root of the non-singular

matrix Σ0, we can apply Lemma 15 to Q> = Σ
1/2
0 (Gm)> to obtain

ker(Σm) = ker(Σ
1/2
0 (Gm)>︸ ︷︷ ︸

Q>

) = ker((Gm)>). (15)

By the fundamental theorem of linear algebra, ker((Gm)>) is the orthogonal complement of
range(Gm) and ker(Σm) is the orthogonal complement of range(Σ>

m) = range(Σm). This
combined with Eq. (15) implies

range(Σm) = range(Gm). (16)

Applying Lemma 16 with W = Y−1 gives

range(Σm) = range(Y1) and ker(Σm) = range(W2). (17)

Therefore, referring to Proposition 10, we have that R = Y1 and N = W2.

Step 2 We begin by computing (Y>
1 ΣmY1)

1/2. We have that

Y>
1 ΣmY1 = Y>

1 G
mΣ0(G

m)>Y1

= Y>
1 YΩmY−1Σ0Y

−>(Ωm)>Y>Y1

= Y>
1 Y1Ω

m
11W

>
1 Σ0W1(Ω

m
11)

>Y>
1 Y1.
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The product Y>
1 Y1 is Hermitian positive definite because Y1 is full rank. Additionally,

Y1W
>
1 = Ir because YY−1 = Id. Therefore the inverse square root5 is,

(Y>
1 ΣmY1)

−1/2 = BΩ−m
11 (Y>

1 Y1)
−1, (18)

where B = (W>
1 Σ0W1)

−1/2 ∈ Rr×r.
Next, we compute (Y>

1 ΣmY1)
1/2Y>

1 (x− xm). Left-multiplying x− xm by Y>
1 yields

Y>
1 (x− xm) = Y>

1

(
x−Gmx0 −

m−1∑
i=0

Gif

)
(19)

= Y>
1

(
x−YΩmY−1x0 − f −

m−1∑
i=1

YΩiY−1f

)

= Y>
1 x−Y>

1 Y1Ω
m
11W

>
1 x0 −Y>

1 f −
m−1∑
i=1

Y>
1 Y1Ω

i
11W

>
1 f . (20)

Now left-multiplying by Eq. (18) gives

(Y>
1 ΣmY1)

−1/2Y>
1 (x− xm)

= BΩ−m
11 (Y>

1 Y1)
−1

(
Y>

1 (x− f)−
m−1∑
i=1

Y>
1 Y1Ω

i
11W

>
1 f

)
︸ ︷︷ ︸

(?)

−BW>
1 x0. (21)

We now focus on simplifying (?). Left-multiplying Eq. (5) by Y>
1 gives

Y>
1 x = Y>

1 Y1Ω11W
>
1 x+Y>

1 f .

=⇒ W>
1 x = Ω−1

11 (Y
>
1 Y1)

−1Y>
1 (x− f) (22)

while left-multiplying by W>
1 gives

W>
1 x = Ω11W

>
1 x+W>

1 f

=⇒ W>
1 x = Ω−1

11 W
>
1 (x− f). (23)

Substituting Eq. (22) into (?) results in

(?) = BΩ−m
11 (Y>

1 Y1)
−1

(
Y>

1 (x− f)−
m−1∑
i=1

Y>
1 Y1Ω

i
11W

>
1 f

)

= BΩ
−(m−1)
11

(
Ω−1

11 (Y
>
1 Y1)

−1Y>
1 (x− f)−Ω−1

11 (Y
>
1 Y1)

−1
m−1∑
i=1

Y>
1 Y1Ω

i
11W

>
1 f

)

= BΩ
−(m−1)
11

(
W>

1 x−W>
1 f −

m−2∑
i=1

Ωi
11W

>
1 f

)
.

5. This is a square root in the sense of Section 1.4, a matrix T1/2 such that T1/2(T1/2)> = T.
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Repeatedly substituting Eq. (23) into the previous equation gives

(?) = BΩ
−(m−1)
11

(
W>

1 (x− f)−
m−2∑
i=1

Ωi
11W

>
1 f

)

= BΩ
−(m−2)
11

(
Ω−1

11 W
>
1 (x− f)−Ω−1

11

m−2∑
i=1

Ωi
11W

>
1 f

)

= BΩ
−(m−2)
11

(
W>

1 (x− f)−
m−3∑
i=1

W>
1 f

)
...

= B
(
Ω−1

11 W
>
1 (x− f)

)
= BW>

1 x.

Finally substituting this back into Eq. (21) shows

(Y>
1 ΣmY1)

−1/2Y>
1 (x− xm) = BW>

1 (x− x0). (24)

Lastly we compute W>
2 (x − xm). This follows a similar argument to the above. We

have
W>

2 (x− xm) = W>
2 (x− f) (25)

since W>
2 G = 0. Similarly, left-multiplying the fixed-point equation Eq. (5) by W>

2 gives

W>
2 x = W>

2 f

Substituting this into Eq. (25) gives

W>
2 (x− xm) = 0. (26)

Step 3 Eq. (26) validates the second requirement of Definition 9, since N = W2. It
remains to establish the first requirement. To accomplish this replace x with X ∼ N (x0,Σ0)
in Eq. (24). Since W>

1 X ∼ N (W>
1 x0,W

>
1 Σ0W

>
1 ), it follows that

BW>
1 (X − x0) = (W>

1 Σ0W
>
1 )

− 1
2W>

1 (X − x0) ∼ N (0, Ir).

which verifies the first requirement and completes the proof.
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