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Algorithms for Covering Barrier Points by Mobile Sensors with Line
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Abstract

We study the problem of covering barrier points by mo-
bile sensors. Each sensor is represented by a point in
the plane with the same covering range r so that any
point within distance r from the sensor can be covered
by the sensor. Given a set B of m points (called “bar-
rier points”) and a set S of n points (representing the
“sensors”) in the plane, the problem is to move the sen-
sors so that each barrier point is covered by at least
one sensor and the maximum movement of all sensors is
minimized. The problem is NP-hard. In this paper, we
consider two line-constrained variations of the problem
and present efficient algorithms that improve the previ-
ous work. In the first problem, all sensors are given on a
line ¢ and are required to move on ¢ only while the bar-
rier points can be anywhere in the plane. We propose an
O((n+m)log(n +m)) time algorithm for the problem.
We also consider the weighted case where each sensor
has a weight; we give an O((n + m)log®(n 4+ m)) time
algorithm for this case. In the second problem, all bar-
rier points are on £ while all sensors are in the plane but
are required to move to ¢ to cover all barrier points. We
solve the weighted case in O(mlogm + nlog?n) time.

1 Introduction

Let B be a set of m points and D be a set of n disks
of the same radius r in the plane. We consider the
problem of moving the disks of D to cover all points of
B so that the maximum moving distance of all disks is
minimized. The problem is NP-hard.! In this paper, we
consider two line-constrained variations of the problem
and present efficient algorithms for them.

Due to its potential applications in barrier coverage of
mobile sensors in wireless sensor networks [14, 15, 17],
we consider the problem from the barrier coverage point
of view. We call the points of B the barrier points. Let S
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be the set of centers of all disks of D, and points of .S are
called sensors. All sensors have the same covering range
(or sensing range) r so that any point within distance
r from a sensor s can be covered by s (i.e., s covers all
points in the disk centered at s with radius r). Hence,
our problem becomes the following: move sensors of S
to cover all barrier points of B such that the maximum
moving distance of all sensors is minimized.

We study a line-constrained variation of the problem
where all sensors are given on a line £ and are required to
move on £ only while the barrier points can be anywhere
in the plane. We also consider its weighted case where
each sensor s; has a weight w; > 0 and the moving cost
of s; is defined to be its moving distance times w;.

To the best of our knowledge, we are not aware of
any previous work on this particular problem. If all
barrier points are all on ¢, which becomes a 1D prob-
lem (our original problem can be considered as a 1.5D
problem), the algorithm of Li and Wang [18] can solve
the unweighted case in O(mlogm +nlogmlogn) time.
In this paper, we present an O((n+m)log(n+m)) time
for the unweighted case and an O((n + m)log?®(n +m))
time algorithm for the weighted case. Hence, our algo-
rithm for the unweighted case, albeit solving the 1.5D
problem, improves the algorithm of [18] by roughly a
logarithmic factor.

We also consider another problem variation in which
all barrier points are on a line ¢ while sensors can be
anywhere in the plane. We want to move all sensors to
{ to cover all barrier points so that the maximum mov-
ing cost of all sensors is minimized. Previously, Huang
et al. [14] studied the unweighted case and gave an
O(n(m+nlogn)log(n+m)) time algorithm. Our tech-
niques solve the weighted case in O(mlogm + nlog® n)
time. This improves the algorithm of Huang et al. [14]
by almost a linear factor. Note that we do not have a
faster algorithm for the unweighted case. As all barrier
points are on ¢ and all sensors will finally move to ¢,
once a sensor s moves to £, the portion of the covering
disk of s that is relevant is an interval of £. For this
reason, we refer to this problem as the mobile inter-
val coverage problem; for differentiation, we refer to the
first problem above as the mobile disk coverage problem.
Note that if sensors have different ranges, even the 1D
problem (i.e., all sensors and barrier points are on ¢) is
NP-hard [14].
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1.1 Related work

Many variations of mobile sensor barrier coverage prob-
lem have been studied in the literature.

Czyzowicz et al. [6] studied the problem of covering
a barrier segment on a line £ by moving a set of n sen-
sors on ¢ (the sensors are initially given on £); they gave
an O(n?) time algorithm. Chen et al. [3] presented a
more efficient O(nlogn) time algorithm. Chen et al. [3]
also studied the case where sensors may have different
covering ranges and proposed an O(n?logn) time algo-
rithm. For the weighted case where the sensors have
weights as defined in our problems (but sensors have
the same range), Lee et al. [16] derived an algorithm of
O(n?lognloglogn) time.

Li and Shen [17] studied the same problem as our in-
terval coverage problem except that their barrier is not
a set of points but a single line segment on ¢. They
proposed an O(n3logn) time algorithm. The algorithm
was later improved to O(n?lognloglogn) time by Li
and Wang [18]. Li and Wang [18] also studied a more
general problem setting where the barrier is a set of
disjoint line segments on ¢ (and the sensors are still in
the plane and are required to move to ¢); they gave an
O(n?lognloglogn + nmlogm) time algorithm. Fur-
ther, for the 1D case where all sensors are initially on
¢, the algorithm of Li and Wang [18] solves the problem
in O(mlogm+nlognlogm) time. These results are for
the case where sensors have the same range; if sensors
have different ranges, even the 1D problem is NP-hard
by a reduction from the Partition Problem as in [6].

The min-sum version of the line-constrained barrier
coverage was also studied in the literature where sensors
are given on ¢ and a barrier segment is also on ¢, and
the goal is to move sensors to cover the barrier segment
such that the total sum of the moving distances of all
sensors is minimized. If sensors have different ranges,
the problem is NP-hard [7]. Otherwise, Czyzowicz et
al. [7] solved the problem in O(n?) time. Later Andrews
and Wang [1] proposed a faster algorithm of O(nlogn)
time.

A circular barrier coverage problem was also consid-
ered, where the barrier is a circle and sensors are ini-
tially located inside the circle and the goal is to move
all sensors to the circle to form a regular n-gon (to form
a coverage) so that the maximum moving distance of
all sensors is minimized. Bhattacharya [2] first gave an
algorithm of O(n3®logn) time. An improved algorithm
of O(nlog®n) time was later derived by Chen et al. [4].

There are also other variations of the barrier coverage
problem, e.g., see [8, 9, 20, 21].

1.2 Our approach

We first discuss the mobile disk coverage problem. Let
A* denote the optimal moving cost, i.e., the maximum
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moving cost of all sensors in an optimal solution. In
both the unweighted and weighted cases, we first con-
sider the decision problem: Given any value A, deter-
mine whether A\ > \*.

For the unweighted case, a critical property is an
order-preserving property: There exists an optimal so-
lution in which the order of the sensors are consistent
with their order in the input. Due to the property, we
can solve the decision problem in linear time by a simple
greedy algorithm (after all barrier points and all sensors
are sorted). Next, we use the decision algorithm to com-
pute \*. To this end, we define 2m arrays of size n each
and we show that \* must be an element of one of the
arrays. To search A* in these arrays in an efficient way,
we form these arrays implicitly. A helpful observation
is that each of these arrays is sorted. Consequently, by
using our decision algorithm, we apply a sorted matrix
searching technique [10, 11, 12] (or a simpler implemen-
tation called binary search on sorted arrays in [5]) to
find A* in these arrays in O((n + m)log(n + m)) time.

For the weighted case, unfortunately the order-
preserving property does not hold anymore. In fact, the
major difficulty is to find the correct order for sensors in
an optimal solution. This is also the case for solving the
decision problem. So we have to use a different approach
to solve the decision problem. The runtime of the algo-
rithm is O((n+m) log(n+m)). To compute the optimal
cost A", we implicitly form 2n arrays of size m each such
that \* is one of the array elements. To apply the sorted
matrix searching technique, we manage to find a way to
order the array elements implicitly so that the arrays
are still sorted. Then, with the decision algorithm, the
value A* can be found in O((n + m)log®(n + m)) time.

For the mobile interval coverage problem, we solve
the weighted cases directly (without having a faster al-
gorithm for the unweighted case). As above, we also
solve the decision problem first, and then form sorted
arrays and apply the sorted array searching technique.
To solve the decision algorithm, we use an algorithm
similar to the weighted case of the above mobile disk
coverage problem, but with a simpler and slightly faster
implementation. The runtime of our decision algorithm
is O(m+nlogn) after O((n+m)log(n+m)) time pre-
processing for sorting all sensors and barrier points. The
time of the overall algorithm (for computing the optimal
value A*) is O(mlogm + nlog?n).

Outline. The rest of the paper is organized as fol-
lows. We define notation in Section 2. In Section 3,
we present our algorithm for the unweighted case of the
mobile disk coverage problem, while the weighted case
is discussed in Section 4. The algorithm for the mobile
interval coverage is described in Section 5.
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2 Preliminaries

For each problem we consider, we use \* to denote the
optimal moving cost. Given any A, the decision problem
is to decide whether A > \*, i.e., whether it is possible
to move sensors to cover all barrier points so that the
moving cost of each sensor is at most A. If A > \*, we
say that A is a feasible value. We use feasibility test to
refer to the procedure for determining whether A > \*.
For differentiation, we refer to our original problem for
computing \* as the optimization problem.

Without loss of generality, we assume that the line
¢ is the z-axis. Let S = {s1,52,...,8,} be the set of
sensors (unless otherwise stated, the order is arbitrary).
For each s;, we use (x;,y;) to denote its coordinate in
the input. For differentiation, for each barrier point
b € B, we use (xp, yp) to denote its coordinate.

In each problem, we use a configuration to refer to
a specification on where each sensor s; is located. For
example, in the input configuration, each sensor s; is at
(i, yi)-

For each sensor s, we use D(s) to refer to its covering
disk, i.e., the disk of radius r centered at s. For any
disk D, we use 0D to denote its boundary, which is a
circle. The left half-circle of D refers to the portion of
0D to the left of the vertical line through the center of
D:; the right half-circle is defined similarly.

For the mobile disk coverage problem, for simplicity
of discussion, we assume that all barrier points above or
on ¢ since if a barrier point is below ¢, then we can use
its symmetric point about ¢ to replace it and that does
not affect the solution of the problem.

For any point p on ¢, for convenience, sometimes we
also use p to refer to its x-coordinate. For example, for
two points p and g on £, p < ¢ means that p is to the left
of ¢ (including the case where p and ¢ are coincident)
and p < ¢ means that p is strictly to the left of g.

For each problem, for ease of exposition, we assume
that it is always possible to cover all barrier points by
moving sensors (i.e., the covering range r is big enough).
Our algorithm can actually determine whether the as-
sumption is true or not. This implies that in the mobile
disk coverage problem, for each barrier point b, y, < r
must hold since otherwise no sensor on ¢ can cover b.
Also, for each problem we assume that \* > 0, i.e., one
has to move at least one sensor in order to form a cover-
age for all barrier points. Note that whether A* = 0 can
be easily determined in O(n + m)log(n + m) time for
each problem (which does not affect the time complexity
of the overall algorithm asymptotically).

For a barrier point b and the covering disk D(s) of a
sensor s, we say that D(s) is strictly to the left (resp.,
right) of b if D(s) does not cover b and the intersec-
tion between D(s) and the horizontal line through b is
strictly to the left (resp., right) of b.
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3 The mobile disk coverage problem: the un-

weighted case

In this section, we consider the unweighted case of the
mobile disk coverage problem. In this problem, all sen-
sors of S are on the line ¢ while each barrier of B can
be anywhere in the plane.

We first present an algorithm to solve the decision
algorithm. Consider a value A. If A > A\*, we use a
feasible solution to refer to a configuration in which all
barrier points are covered and the moving cost of each
sensor is no more than A. As all sensors have the same
range, it is not difficult to see that the order-preserving
property in the following observation holds.

Observation 1 (The order-preserving property) If
A > )\*, then there exists a feasible solution in which
the order of sensors is the same as in the input.

Due to the order-preserving property, we can solve
the decision problem by a simple greedy algorithm in
linear time (after sensors and barrier points are sorted).

Lemma 1 After O(nlogn + mlogm) time preprocess-
g, given any A\, whether A > \* can be decided in
O(n+m) time.

Proof. In the preprocessing, we sort all sensors of S
from left to right on ¢; let S = {s1,52,...,8,} be the
sorted list. We also sort all barrier points of B by their
a-coordinates from left to right; let B = {b1,b2,...,b;}
be the sorted list. Given any A, in what follows we de-
scribe our O(n+m) time algorithm for deciding whether
A > A", which is based on the greedy strategy.

We first move each sensor rightwards on £ by distance
A and we use Cy to refer to the configuration, i.e., in
Cy, the location of each s; is x; + A. Then, during
the algorithm, each sensor will not be allowed to move
rightwards anymore but can move leftwards by 2\.

Starting from ¢ = 1 and j = 1, we process sensors
s; and barrier points b; incrementally. We first check
whether b; is covered by s;. If yes, we increase j by one
(if j = m before the increase, then all barrier points are
covered and we have found a feasible solution; in this
case, we can stop the algorithm and report that A is
a feasible value, i.e., A > A*). Otherwise, either b; is
to the right of the covering disk D(s;) of s; or b; is to
the left of D(s;). In the former case, we increase ¢ by
one and proceed as above (if i« = n before the increase,
then we can stop the algorithm and report that A is
not a feasible value, i.e., A < A*). In the latter case,
we check whether it is possible to move s; leftwards by
distance at most 2 to cover b;. If not, then we can stop
the algorithm and report that A is not a feasible value.
Otherwise, we move s; leftwards until b; is covered (i.e.,
b; is on the left half-circle of D(s;)); we then increase
j by one and proceed as above (if j = m before the



337? Canadian Conference on Computational Geometry, 2021

increase, then all barrier points are covered and thus we
can stop the algorithm and report that A is a feasible
value). This finishes the description of the algorithm.
The correctness of the algorithm is based on the
order-preserving property. It is not difficult to see that
the running time of the algorithm is O(n + m). O

We next tackle the optimization problem for com-
puting A\*, by making use of our decision algorithm in
Lemma 1 as a subroutine. For this, we have the follow-
ing lemma.

Lemma 2 \* is equal to x; — /1% — yg —xp or XTY —
\/T2 — yg — x; for a sensor s; and a barrier point b.

Proof. Consider an optimal solution OPT', where \*
is the maximum moving distance of all sensors. Then,
A* is equal to the moving distance of a sensor s;. Let
x} be the position of s; in OPT. If 2} < x;, then s;
has been moved leftwards. In this case, there must be
a barrier point b on the left half-circle of 9D(s;) since
otherwise we could move D(s;) rightwards slightly so
that D(s;) still covers the same set of barrier points as
before but the moving distance of s; is strictly smaller
than A\*, a contradiction to the definition of A*. Thus,
we have =} = \/r? — y? + zp. Hence, \* = x; — 2} =
z; — /1% — yi — xp. If 2} > z;, then by similar analysis
as above, we can show that \* =z, —+/r2 — yg —x;. O

We sort all sensors of S from left to right on /;
let S = {s1,82,...,8,} be the sorted list. For each
barrier point b € B, we define two arrays A[l---n]
and Aj[l---n] of size n each as follows: For each
i € [1,n], define Ap[i] = =z — \/r? —y; — x, and
Ajli] = xp — \/r? —y? — ;. According to Lemma 2,
A* is an element in one of the 2m arrays A, and Aj for
all b € B. We next find A* in these arrays. Computing
these arrays explicitly will take Q(nm) time. Below, we
present a near linear time algorithm without computing
these arrays explicitly. Indeed, given an index i € [1, n]
and a barrier point b € B, we can obtain the values
Aypli] and Aj[i] in constant time.

An easy observation is that elements of the array A
are sorted in ascending order and elements of Aj are
sorted in descending order. Therefore, we are search-
ing A* in 2m sorted arrays of size n each. Note that
A* is actually the smallest feasible value in these 2m
arrays. We can use the sorted matrix searching tech-
niques [10, 11, 12] (or a simpler implementation, called
binary search on sorted arrays, in [5]) to search sorted
arrays with the following lemma.

Lemma 3 [5, 10, 11, 12] Suppose we have a set of M
sorted arrays of size at most N each such that each ar-
ray element can be evaluated in O(1) time (i.e., given
the index of an array, the element of the array can be 0b-
tained in O(1) time). Then, the smallest feasible value
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in these arrays can be computed by O(log(N+M)) feasi-
bility tests and the total time of the algorithm excluding
the feasibility tests is O(M log N).

Applying Lemma 3 and using our decision algorithm
in Lemma 1, A* can be found in O((n + m)log(n +
m)) time. We summarize our result in the following
theorem.

Theorem 4 Given a set of m barrier points in the
plane and a set of n sensors on a line £, the problem
of moving sensors on £ to cover all barrier points such
that the maximum moving cost of all sensors is mini-
mized can be solved in O((n + m)log(n +m)) time.

4 The mobile disk coverage problem: the weighted
case

In this section, we solve the weighted case of the mo-
bile disk coverage problem. Here also, we start with
the decision problem and later solve the optimization
problem by applying sorted array searching techniques
in Lemma 3. In the weighted case, each sensor s; is
associated with a weight w; > 0.

4.1 The decision problem

Given any A, the problem is to decide whether A > \*.
Although our algorithm is similar in spirit to those in
the previous work [3, 16, 18], our algorithm is for a more
general problem setting in that the barrier points are in
the plane while the barriers in all previous work [3, 16,
18] are on ¢. In the following, we first describe our
algorithm, and then prove its correctness; finally, we
will discuss how to efficiently implement the algorithm
in O((n + m)log(n +m)) time.

4.1.1 The algorithm description

For each sensor s;, define :Cﬁ = z; — Mw; and z] =
x; + N w;, e, xi is the leftmost location on ¢ where s;
can move to and z] is the rightmost location on ¢ where
s; can move to with respect to A. We call z! (resp., z7)
the leftmost (resp., rightmost) A-reachable location.

For each barrier point b, we use ¢(b) to denote the cen-
ter of the circle of radius r whose center is at £ and whose
left half-circle contains b, i.e., ¢(b) = z++/r% — y7. We
sort all barrier points b € B in the order of the values
c(b). Alternatively, it is also the order of the barrier
points of B encountered by sweeping a left half-circle
centered at ¢ from left to right. Let B = {b1,bs,...,bm}
be the sorted list.

Initially, we move each sensor s; to x] and thus s;
will not be allowed to move rightwards anymore but can
move leftwards by 2)\/w;. Let Cy denote the resulting
configuration. If A > \*, our algorithm will find a subset
of sensors with their new locations such that all barrier
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points are covered and the maximum moving cost of
each sensor is at most A (sensors not in the subset are
still in their positions of Cp).

Consider the i-th iteration of the algorithm (initially,
it =1). Let C;_1 be the configuration right before the
iteration. Our algorithm maintains the following invari-
ants.

1. A subset of sensors S;_1 = {Sg,,...,84,_, has
been computed, where g; is the index of the sensor
sg, for each j € [1,7 —1].

2. In C;_1, each sensor s, of S;_1 is at a location,
denoted by ., which may not be equal to z},, while
sensors of S\ S;_1 are still in their locations of Cy
(i.e., each sensor of S\ S;_1 is at its rightmost A-
reachable location).

3. An index h;_1 of a barrier point is maintained such
that in the configuration C;_1, the barrier point
by,_, is not covered by any sensor of S;_; while by, is
covered by a sensor in S;_; for each k < h;_1 (note
that it is possible that b, for some k > h;_; is also
covered by a sensor in S;_;, which cannot happen
in the problem settings of the previous work [3, 16,
18]; this case makes our problem more challenging
to solve).

4. Each sensor of S;_1 covers at least one barrier point
bj Wlthj < h;_1in Cj_1.

5. The locations of the sensors sg,, Sg,, .-
C;_1 are sorted from left to right on /.

., 8g;_, in

6. The barrier point by, _, is strictly to the right of the
covering disk D(sg, ,) of sq, , if S;—1 # 0.

Initially when i = 1, we have Sy = () and we set
ho = 1; thus, all algorithm invariants trivially hold. The
i-th iteration of the algorithm finds a sensor s, from
S\ S;—1 and move it to a new location ) € [z} 27 ] to
obtain a new configuration C; with S; = S;_1 U {sg, }.
The details of the i-th iteration of the algorithm are
described below.

Define S;1 to be the set of sensors that cover the bar-
rier point by, , in the configuration C;_;. According
to our algorithm invariants, by, , is not covered by any
sensor in S;_1. Hence, S;; € S\ S;_1.

If S;1 # 0, we pick an arbitrary sensor from S;; as
sg; and set xy = xp (i.e., the sensor does not move
from its position in C;_1); thus C; = C;—;. We set
hi = k+1, where k is the largest index in [h;_1,n] such
that barrier points b; for all j € [h;_1, k] are covered
by sensors of ;. If h; = n + 1, all barrier points b; for
all j € [hj_1,n] are covered, and thus we can stop the
algorithm and report A > \*.

Lemma 5 All algorithm invariants hold.
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Figure 1: Tlustrating the Invariant (6) in the proof of Lemma 5:
the circle is the boundary of D(sg,).

Figure 2: Tllustrating the definition of S;2: The solid circle
shows the position of s in C;_1, ie., at z}, and the dashed

circle shows its leftmost A-reachable location, i.e., xﬁq

Proof. We go through every invariant. Invariant (1)
trivially holds. Invariant (2) holds because C; = C;_.
Invariant (3) follows immediately from how our algo-
rithm computes h;. Invariant (4) holds because s4, cov-
ers by, , in C;. For Invariant (5), it suffices to show that
Sg,_, is to the left of the sy, in C;. Indeed, according
to Invariant (6) in C;_1, by, , is strictly to the right
of the covering disk D(sg4, ,). Since by, , is covered by
sg, in C;, we obtain that s4,_, must be to the left of
sg, in C;. For Invariant (6), since the sensor s, covers
bp,_, but does not cover by, and h;,_; < h;, according
to the definition of the indices of the barrier points, we
can obtain that by, must be strictly to the right of the
covering disk D(sg,) of s4, (e.g., see Fig. 1). This proves
Invariant (6). O

If Si1 = 0, we define Siz = {si | 2} < c(by, ,) <
zy, sp € S\ Si—1}, i.e., the set of sensors sj, that do not
cover by, , in C;_1 but can be moved leftwards to cover
b, _,; e.g., see Fig. 2. Note that each sensor of S;s is
currently at its rightmost A-reachable location in C;_;.

If S;5 # (), then among all sensors of S;2, we choose
the leftmost one (with respect to their positions in C;_1)
as s4, and add it to S;—; to obtain S;. We move s, left-
wards until by, , is covered (i.e., it is on the left half-
circle of 0Dy, ); this obtains the configuration C;. Next,
we set h; = k—+1, where k is the largest index in [h;_1, n]
such that barrier points b; for all j € [h;—1, k] are cov-
ered by sensors of S;. If h; = n + 1, then all barrier
points are covered and thus we can stop the algorithm
and report A > A*. Following the similar analysis as
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Lemma 5, we can show that all algorithm invariants
hold.

If S;> = ), then we terminate the algorithm and re-
port that A < A*.

In summary, if S;; = S;2 = (), then the algorithm will
terminate and report A < A*. Otherwise, a sensor sg,
is found from either S;; (if it is not empty) or S;2 and
added to S;_1 to obtain S;. In either case, h; = k + 1,
where k is the largest index in [h;_1, n] such that barrier
points b; for all j € [h;—1, k] are covered by sensors of
S;. If h; = n+1, then the algorithm will terminate and
report A > \*; otherwise, the algorithm will proceed
to the next iteration ¢ + 1 and all algorithm invariants
hold. As there are m barrier points and a new barrier
point is covered in each iteration, the algorithm has at
most m iterations. On the other hand, as there are n
sensors and each iteration finds a new sensor to form
S;, the algorithm has at most n iterations. Hence, the
algorithm will stop in min{n, m} iterations.

The proof of the algorithm correctness is omitted but
can be found in the full paper.

4.1.2 The algorithm implementation

We now provide an efficient way to implement the algo-
rithm in O((n + m)log(n + m)) time. For differentia-
tion, we use “algorithm implemntation” to refer to the
algorithm we will discuss below and use “algorithm de-
scription” to refer to the algorithm we described before
in Section 4.1.1.

We sweep a point p on £ from left to right. The event
point set is £ = {c(b) | b € B} U {zl,a7 | s, € S}.
We sort all points of F from left to right on ¢ and put
them in a list, still denoted by E. Using the sorted
list E as a guide, we sweep p on £ from left to right.
When p encounters a point z} for some sensor sj, we
insert s; to a balanced binary search tree T' in which
the sensors sj, are ordered by their values z}. As will be
shown later, the tree T is used to maintain the set Sjs.
When p encounters a point j,, we remove s from 7" and
store s, at a variable s* (if s* already stores a sensor, we
simply update s* to si). Our algorithm implementation
maintains the following invariant: the sensor s stored
in s* and all sensors of T are at their positions in Cj.

Now consider the case where p encounters c(b;) for
some barrier point b;. We assume that j is equal to
hi_1 for some ¢ as defined in the algorithm description.
The assumption is true initially when 7 =1 and ¢ = 1.
This means that we are at the beginning of the i-th
iteration in the algorithm description. We first need
to check whether S;; = 0. To this end, we have the
following Lemma 6. But before giving Lemma 6, we
prove the following observation, which will be used in
the proofs of Lemma 6 and other lemmas.
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Figure 3: Illustrating Observation 2.

Observation 2 Consider a barrier point b and two
sensors s and s'. Suppose the followings hold (e.g., see
Fig. 3): (1) s is to the right of s; (2) s covers b; (3)b
is to the right of the left half-circle of dD(s’). Then, s’
also covers b.

Proof. Assume to the contrary that s’ does not cover
b. Then, since b is to the right of the left half-circle
of dD(s’), b must be strictly to the right of the right
half-circle of dD(s’). Because s’ is to the right of s, b
must also be strictly to the right of the right half-circle
of 9D(s). But this means that s does not cover b, a
contradiction. O

Lemma 6 If the sensor s; stored in s* covers b; when
sy is at a7}, then sy € S;1; otherwise (including the case
where s* does not store any sensor) S;; = (.

Proof. Suppose the sensor sj stored in s* covers b;
when sy, is at },. To prove the lemma, it suffices to show
that if S;; # (0, then s must be S;;. In the following, we
assume that S;; # (). Our goal is to prove that sy is in
Si1. Since sj is stored in s*, according to our algorithm
implementation invariant, sy is at xj. Hence, to prove
Sk € Si1, by the definition of .S;1, it is sufficient to show
that s covers b, (when sy, is at x7,).

Let s, be a sensor of S;;. If s, is s, then it is vac-
uously true that s € S;;. In what follows, we assume
that s, is not sg. Because s, is in S;1, according to our
algorithm description, s, is at z], and has never been
moved during the algorithm, and further, s, covers b;.
Since the sweeping point p is at ¢(b;), which is the right-
most position on £ for the center of a circle of radius r to
cover b;, p must have passed z. Therefore, according
to our algorithm implementation, s, had been stored in
s* before and later s* got updated to si. This implies
that sj is to the right of s, (and both of them are at
their rightmost A-reachable locations). Because p is now
at ¢(b;), p has already passed zj,. Therefore, b; is to the
right of left half-circle of 0D(sy). Since b; is covered
by s, and s is to the right of s,, by Observation 2, b;
must be covered by sg. O

By Lemma 6, if s* does not store any sensor or if
the sensor stored at s* does not cover b;, then S;; = 0.
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Otherwise, the sensor stored at s*, denoted by s, covers
b; and is in S;;. Depending on whether S;; = @, there
are two cases to proceed.

The case S;; # 0. We first consider the case S;1 # 0.
In this case, according to our algorithm description, we
can simply choose sj, as sy, and add it to S;_; to obtain
S;. Next, we need to determine h;, which is equal to
I + 1 with [ as the largest index such that all barrier
points b;,b;11,...,b; can be covered by sensors of S;.
To find [, we initialize [ = j and then keep sweeping p
rightwards. If p encounters a point xi or xj., we process
the event in the same way as before. If p encounters
a point ¢(bj/), we know that j/ = [+ 1. We need to
determine whether b;; can be covered by sensors of S;.
For this, we have the following lemma.

Lemma 7 bj can be covered by sensors of S; if and
only if bjr can be covered by sg, .

Proof. If b;s is covered by sg,, then it is vacuously true
that b/ is covered by sensors of S; because s, is in S;.

Now assume that b; is covered by a sensor sg, €
S;. We need to prove that sy, also covers b;,. This is
obviously true if « = i. We now assume a # i, implying
that a < i. According our algorithm implementation,
bjs is to the right of the left half-circle of dD(sy) and
8g, = Si. According to our algorithm invariants in the
algorithm description, s4, is to the left of s4,. Since s,
covers b;, by Observation 2, s,4, also covers b;. O

In light of Lemma 7, we check whether b;: is covered
by sg,. If yes, we increment [ by one and proceed as
above (if | = n, then all barrier points are covered and
we can stop the algorithm and report A > A*). Other-
wise, we set h; = j'; in this case, we have finished the
i-th iteration of the algorithm and we then proceed to
the (i + 1)-th iteration.

The case S;; = 0. We now consider the case S;; = 0.
In this case, we need to know whether S;» = ), and if
not, we need to find the leftmost sensor in S;». For this,
we have the following lemma.

Lemma 8 The sensors stored in the current tree T are
ezactly the sensors of Sia.

Proof. We prove the lemma by analyzing our algorithm
implementation. Recall that the sweeping point p is now
at c(b;) and j = h;_1.

e Let s, be a sensor of S;5. We show that s, is stored
in T. Indeed, since s, is in S;2, by the definition
of Sj2, we have z!, < ¢(bj) < 2. According to our
algorithm implementation, when p encounters xfl,

Sq 18 inserted to T and will not be removed from

T until p counters x},. Since p is at ¢(b;) right now

and c(b;) < a7, sq is still in T'.
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e Let s, be a sensor stored in T'. We show that s,
is in S;2. Indeed, since s, is in T, according to our
algorithm implementation, p has already passed !,
but not encountered z, yet. Since p is at ¢(b;) right
now, we obtain that z!, < ¢(b;) < 27. Further, ac-
cording to our algorithm implementation invariant,
Sq has not been moved from its position in Cy, i.e.,
Sq is still at z},. Therefore, s, is in S;a.

This proves the lemma. O

In light of Lemma 8, we can use T to find the left-
most sensor of T in O(logn) time; let s; denote the
sensor. We choose sj as s4, and add it to S;_;1 to ob-
tain S;. Then, we move sy, leftwards to c(b;), i.e., setting
z), = c(bj), and remove s, from T'. We also remove both
events xfc and zj, from the list £ because we do not need
to process these two events anyrnore.2 Next, we need to
determine h;. This can be done using the same method
as in the above case where S;; # (0 (i.e., keep sweep-
ing p rightwards and making use of Lemma 7, which is
still applicable here). After h; is found, we finish the
i-th iteration of the algorithm and begin the (i 4+ 1)-th
iteration.

This finishes the description of the algorithm imple-
mentation. The proof of the following lemma analyzes
the running time of the algorithm.

Lemma 9 Given any A, whether A > \* can be decided
in O((n+m)log(n +m)) time.

Proof. We analyze the running time of our implemen-
tation. In the beginning, computing the sorted list £
takes O((n +m)log(n +m)) time. There are O(n + m)
operations on E, each of which takes O(1) time. The
time we spent on the binary search tree T is bounded
by O(nlogn) as there are n sensors and each sensor
can be inserted and removed from T at most once (also,
there are at most n operations of “finding the leftmost
sensor” ). Therefore, the total time of the algorithm is
O((n+m)log(n+m)). More specifically, after the points
of E are sorted in O((n + m)log(n +m)) time, the rest
of the algorithm takes O(m + nlogn) time. O

4.2 The optimization problem

We now solve the optimization problem, i.e., computing
A*, by using the algorithm of Lemma 9 as a subroutine.
We begin with the following lemma.

Lemma 10 \* is equal to (x;— , /1% — ygj — ;) /w; or
(wp, — (/7% — ylfj —x;)/w; for a sensor s; and a barrier

point b;.

2To implement each remove operation in constant time, we can
store the list E' by a doubly-linked list and associate each of the
values wfl and z, for all sensors s, € S with a pointer pointing to
its location in E.
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Proof. The proof is almost the same as that of
Lemma 2 except that we have to consider the weight
in the last step of the proof. We briefly discuss it be-
low.

Consider an optimal solution OPT, where \* is the
maximum moving cost of all sensors. Then, A* is equal
to the moving cost of some sensor s;. Let x} be the
x-coordinate of s; in OPT. If 2} < z;, then s; has
been moved leftwards and there must be a barrier point
b; on the left-circle of 0D(s;). Thus, we have 2} =

/T2 —y?i + ap,. Hence, \* = (x; — 2})/w; = (2; —

r2 — ygj —xp,)/w;. If 2§ > a;, by similar analysis, we

can show that A* = (zp; — /7% — 4, — @) /wi. O

For each sensor s;, we will define two sorted arrays
A;[1---m] and B;[1---m] of size m each. Unlike the un-
weighted case where defining sorted arrays is relatively
straightforward, here the definitions are quite subtle.
We define the array A; first, which consists of the val-

ues (z; — /1% =y — ap,)/w; for all j =1,...,m. For
each j € [1,m], let a; = /7?2 fygj + xp;. We sort the

values a; for all j = 1,...,m in ascending order. For
each j € [1,m], we let 7(j) = k if aj ranks the j-th
place in the above sorted list. Hence, 7(+) is a permuta-
tion of the indices 1,2, ..., m; note that we can obtain
7(-) in O(mlogm) time. For each j € [1,m], we define
Ailj] = (@i — ax(;))/w;. In light of the definition of 7(-),
Aj; is a sorted array. Analogously, we can define a sorted
\/712 - yl?j - xi)/wiv
j =1,...,m. Note that the permutation 7(-) can be
used to define A; for all ¢+ = 1,2,...,n. Hence, in
O(n + mlogm) time, we can implicitly form 2n sorted
arrays A; and B; for all i = 1,2,...,n, such that given
any index j and any array A; (resp., B;), we can obtain
the array element A;[j] (resp., B;[j]) in O(1) time. Also,
Lemma 10 implies that \* is the smallest feasible value
of all elements of these arrays. By applying Lemma 3
and using our decision algorithm in Lemma 9, we can
find \* in O((n 4 m)log?(n +m)) time. We summarize
our result in the following theorem.

array B; for the m values (x5, —

Theorem 11 Given a set of m barrier points in the
plane and a set of n weighted sensors on a line ¢, the
problem of moving sensors on £ to cover all barrier
points such that the maximum moving cost of all sensors
is minimized can be solved in O((n 4+ m)log®(n + m))
time.

5 The mobile interval coverage problem

In this section, we consider the mobile interval coverage
problem, where the barrier points are on the z-axis /¢
while the sensors can be anywhere in the plane. The
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problem is to move all sensors to £ to cover all barrier
points so that the minimum moving cost of all sensors
is minimized.

We first sort all barrier points from left to right on
¢ in O(mlogm) time; let B = {by,ba,..., by} be the
sorted list. Recall that for each sensor s; € S, (x;,y;)
is its coordinate. In the weighted case, each sensor s;
has a weight w; > 0. In the following, we only give
an algorithm for the weighted case because we do not
have a faster algorithm for the unweighted case. Our
goal is to compute the optimal moving cost A\*. Note
that since we require that all sensors finally move to ¢,
it must hold that A* > maxi<j<n w; - ¥s.

We again first consider the decision problem: Given
any A, decide whether A > A*. We present an algo-
rithm of O(m+nlogn) time (not including the time for
sorting the barrier points) for the problem. Later we
will solve the optimization problem (i.e., computing A*)
using Lemma 3 and the decision algorithm.

5.1 The decision problem

Consider a value A. We assume that A > max;<;<, w; -
y; since otherwise it is impossible to move all sensors
to ¢ (and thus we immediately report A < A\*). For
each sensor s;, define =7 = z; + /(\/w;)? — y? and
al = x; — /(Mw;)? —y?. We call 2 (resp., z!) the
rightmost (resp., leftmost) A\-reachable location of s;.

At the outset, we move each sensor s; to z} on £. Let
Cy denote the resulting configuration. The rest of the
algorithm is similar to the one in Section 4.1. In fact,
we can basically apply the same algorithm. But since
the problem setting here is simpler (because all barrier
points are now on ¢), below we describe the algorithm
in a simpler way (the running time is also slightly faster
if m is significantly larger than n).

Consider the i-th iteration of the algorithm (initially
i = 1). Let C;_1 denote the configuration right before
the iteration. Our algorithm maintains the following
invariants:

1. Asubset S;_1 = {54(1), 54(2), - - -+ Sg(i—1) } Of sensors
has been computed.

2. In C;_1, each sensor s, of S;_1 is at a location,
denoted by ., which may not be equal to x},, while
sensors of S\ S;_1 are still in their locations of Cy.

3. An index h;_; of a barrier point is maintained such
that in the configuration C;_;, the barrier point
by, , is not covered by any sensor of S;_; while by,
is covered by a sensor in S;_; for each k < h;_1

4. Each sensor of S;_1 covers at least one barrier point
bj with 7 < h;_1in C;_1.

5. The locations of the sensors sg,, sg,,. -
C;_1 are sorted from left to right on 4.

., 8g;_, 1N
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6. The barrier point by, _, is strictly to the right of the
covering disk D(sg, ,) of sq, , if S;—1 # 0.

Initially when ¢ = 1, we have Sy = () and set hg = 1;
thus all algorithm invariants hold. The i-th iteration
of the algorithm finds a sensor s, from S\ S;_; and
move it to a new location xg ; we thus obtain a new
configuration C; with S; = S;_1 U {sg,}. We briefly
discuss algorithm below.

Define S;; be the set of sensors that cover the bar-
rier point by, , in C;_1. Again, due to our algorithm
invariants, Sz‘l - S \ Si—l-

If S;1 # (), we choose an arbitrary sensor in S;; as
5g, and set :z:g = :E . Hence, C; = C;_1. Next, we set
h; = k + 1, where k‘ is the largest index such that all
barrier points of [h;_1, k] are covered by S; (it is easy
to see that a barrier point b; with I > h;_; is covered
by S; if and only if b; is covered by sg,, i.e., Lemma 7 is
still applicable). If k = m, then we stop the algorithm
and report A > A\*.

If S;1 = 0, we define S5 as the set of sensors of S\\S;_;
that do not cover by, , in C;_1 but can be moved left-
wards to cover by, ,. If S;s # 0, we choose the leftmost
sensor of Sjy as s4, and set x;i = xp +r to obtain a new
configuration C;, where b = by, ,. Next, we set h; in
the same way as above. If S;3 = (), then we terminate
the algorithm and report A < A*.

The algorithm will terminate in at most min{m,n} it-
erations. The correctness of the algorithm can be proved
in a similar way as before.

To implement the algorithm, we first sort the bar-
rier points in the preprocessing, which takes O(m logm)
time. Then, given any A, we can implement the algo-
rithm in O(m + nlogn) time using essentially the same
implementation as in Section 4.1. We briefly discuss it
below.

We first compute z7 and z! for each sensor s; € 9,
and sort all these 2n values in O(nlogn) time. Then,
we compute the value ¢(b) for each barrier point b € B.
Unlike in Section 4.1, here the value ¢(b) is fixed and
does not depend on A, and the sorted list of ¢(b) of all
barrier points b € B is consistent with the sorted list of
all barrier points b € B. Since the sorted list of B is
already computed in the preprocessing, we can obtain
the sorted list of ¢(b) for all barrier points b € B in
O(m) time. By merging it with the sorted list of ¥
and z! for all sensors s; € S, we can obtain the sorted
list of the event set E = {c(b) | b€ By U {zl, 27 | s; €
S} in additional O(n + m) time. Using F, we run the
same sweeping algorithm as before. We still use a binary
search tree T to maintain the sensors of S;2 and use a
variable s* to store a sensor of S;;. When p encounters
xé for a sensor s, we insert s; to T. When p encounters
xp, we remove s from T and set s* to s;. When p
encounters a barrier point b;, we determine the sensor
8¢, using the variable s* and the tree 7' in the same way
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as before. As analyzed in the proof of Lemma 9, the
total time of the algorithm is O(m + nlogn).

Lemma 12 After O(mlogm) time preprocessing,
given any X\, whether X > \* can be decided in
O(m + nlogn) time.

5.2 The optimization problem

We now show how to compute A\*. We first implicitly
form 2n sorted arrays as follows. For each sensor s;, we
define two sorted arrays A;[1...m] and B;[1---m] of
size m each: for each 1 < j < m, A;[j] = (Vzi +y? —
r—xy,)/w; and By[j] = (2, —r — /27 +y7)/w;. One
can verify that A* must be one of the elements of these
arrays (e.g., using analysis similar to Lemmas 2 and
10) and each array is sorted. Then, applying Lemma 3
with our decision algorithm in Lemma 12, A\* can be
computed in O(mlogm+ (m+nlogn) 1og(n+m)) time,
which is bounded by O(mlogm + nlog®n).?

Theorem 13 Given a set of m barrier points on a line
{ and a set of n weighted sensors in the plane, the prob-
lem of moving sensors to £ to cover all barrier points
such that the mazimum moving cost of all sensors is
minimized can be solved in O(mlogm + nlog?n) time.
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