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Topological insulators open many avenues for designing future electronic devices. Using the
Bardeen transfer Hamiltonian method, we calculate the current density of electron tunneling between
two slabs of Bi2Se3. 3D TI tunnel diode current-voltage characteristics are calculated for different
doping concentrations, tunnel barrier height and thickness, and 3D TI bandgap. The difference in
the Fermi levels of the slabs determines the peak and trough voltages. The tunnel barrier width
and height affect the magnitude of the current without affecting the shape of the current-voltage
characteristics. The bandgap of the 3D TI determines the magnitude of the tunnel current, albeit
at a lesser rate than the tunnel barrier potential, thus the device characteristics are robust under
changing TI material. The high peak-to-trough ratio of 3D TI tunnel diodes, the controllabilty
of the trough current location, and the simple construction provide advantages over other NDR
devices.

I. INTRODUCTION

Recent advances in the field of topological insulators [1]
have opened a plethora of opportunities for their use in
both charge-based [2, 3] and spin-based devices [4, 5]. TIs
have been proposed for many exotic applications includ-
ing quantum computation [6], lasing [7], and skyrmion-
based devices [8]. Some recent proposed applications
are electrochemical energy storage [9] and mode-locked
lasers [10]. Electric-field control of the surface state spin-
polarization opens a plethora of opportunities in building
spin-based devices using Bi2Se3 including, superconduc-
tivity [11], photodetectors [12], and tetrahertz frequency
generation [13].

Topological Insulators are a class of material with spin-
momentum locked surface or edge states. Topological in-
sulators are classified as either two-dimensional (2D) or
three-dimensional (3D). A 2D TI has an insulating 2D
bulk and a conducting edge, while a 3D TI has an insu-
lating bulk and conducting surface. 3D TIs are arguably
more promising for short-term device applications than
2D TIs because well-known materials like Bi2Se3 are 3D
TIs while 2D TIs rely on more exotic materials [2] like
stanene [14, 15] and bismuthene [16]. Surface states of
3D TIs have the interesting property that they have a
Dirac dispersion and that their spin and momentum is
locked [3]. Previous device proposals have exploited the
spin-momentum locking to convert charge to spin [17].
Here we will take a different approach and exploit the
spin-momemtum locking of 3D TI surface states to block
tunneling current and realize an NDR device[18].

Negative-differential resistance (NDR) devices are a
class of electronic devices with non-linear current-voltage
characteristics. Due to their unusual response to applied
voltage, they are used in many applications such as fast

memories, high-frequency devices, frequency-multipliers,
and fast switching devices [19].

Unfortunately, present day NDR devices are less con-
trollable in terms of the location of the minima and come
with a fixed peak-to-trough ratio [20]. Although some
new devices based on nanoscale molecular junctions [21]
, and graphene nanoribbons [22] have been proposed to
remedy the relatively little control possessed in many cur-
rent the NDR devices, the diffculty in fabricating such
devices presents a roadblock for their practical applica-
tion [23, 24]. The difficulty in fabricating 2D NDR de-
vices has been noted in both graphene nanoribbons [23],
and graphene quantum dots [25]. The development of a
3D TI NDR device could potentially solve many of these
issues.

In this work, we investigate a two-terminal NDR de-
vice using two 3D TI slabs separated by a tunnel bar-
rier. First, we model the electronic structure of 3D TIs
and present the theoretical formulation for calculating
the tunneling current. We then show the NDR character-
istics of the proposed device, and discuss various control
parameters which can be tuned to control the character-
istics of the device. We show that the presented device
provides a very high peak to trough ratio along with an
efficient control over the position of the trough. Finally
we discuss the results and their implications and con-
clude.

II. DEVICE STRUCTURE AND THEORETICAL
MODEL

II.1. Device Structure

Figure 1(a) shows the schematic of the Bi2Se3 device
under investigation. The device comprises of two TIs
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FIG. 1: (a) Device schematic for our proposed TI
tunnel diode NDR device. The top slab is p-doped and
connected to bias while the bottom slab is n-doped and

grounded. The p-doped and n-doped slabs have
thickness tp = tn = 10 nm. The tunnel barrier’s

default thickness is t = 1.0 nm. (b) Relative position of
TI slab Dirac cones due to ∆EF at zero bias. (c)

Relative position of the TI slab Dirac cones at bias
Vpn less than ∆EF. (d) Relative position of the TI slab

Dirac cones at bias Vpn equal to ∆EF.

separated by a tunnel barrier. The two slabs of Bi2Se3

are assumed to have a different Fermi level as determined
by their doping [26, 27]. The spin-polarized conducting
surface states are illustrated by the surfaces of the two
slabs. The top and bottom slabs are given different colors
in our schematic to reference the difference in the Fermi
levels (∆EF) of the two slabs shown in Fig. 1(b). The top
slab, which is p-doped, is connected to a voltage source to
set the bias Vpn and the bottom slab, which is n-doped, is
grounded. The total device thickness in our simulations
is taken to be 21 nm with a slab size of 10 nm for the
top and the bottom slabs, and a tunnel barrier thickness
of 1 nm. The thickness in the transverse directions are
considered to be infinite.

II.2. Device Operation

Figure 1 (b-d) illustrate the position of the Dirac cones
of the surface states of both the slabs at different applied
bias (Vpn). Fig. 1(b), shows the Dirac cones when no
bias is applied (Vpn=0). In Fig. 1(c), the Dirac cone of
the top slab shifts down due to an applied bias 0 < Vpn<
∆EF. With an applied bias, a finite tunneling current
flows between the slabs as indicated by the red arrow.
The tunneling occurs between the surface states of the n-
doped and p-doped slabs. Fig. 1(d), shows the case when
the applied bias equals the Fermi level difference (Vpn=
∆EF), the Dirac cones of the surface states now match

perfectly. However, the surface states have opposite spin-
momentum locking which will make the tunneling current
vanish. Momentum and energy can be conserved but spin
can not because of the opposite spin-polarization of both
surface states.

II.3. Electronic Structure of Slabs

We model the TIs and the tunnel barriers using a k ·p
Hamiltonian to describe the TI device performance. We
use the Bi2Se3 Hamiltonian from Ref. [28],

H(k) = ε0(k)I +

M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)


(1)

where k± = kx±iky, ε0(k) = C+D1k
2
z+D2(k2

x+k2
y), I is

a 4×4 identity matrix, andM(k) = M−B1k
2
z−B2(k2

x+
k2
y). The directions x, y are defined as being in-plane

with the TI surface and have rotational symmetry in the
k ·p Hamiltonian. The z direction is defined as being the
out-of-plane direction. kx, ky, and kz are the wave-vector
components in the x, y, and z directions. The parameters
B1, B2, C, D1, D2, and M are presented in Table I and
were previously determined for Bi2Se3 in Ref. [28] by
fitting to the bulk Bi2Se3 band structure obtained from
ab initio DFT calculations. These parameters give us the
slab Hamiltonian HTI,p and HTI,n.

We use vacuum as the interface tunnel barrier as
Bi2Se3 is a Van der Waals material. To model the Hamil-
tonian of this tunnel barrier, HT, we set parameters to
that of a free electron with a 1 eV on-site potential [3]
to mimic a tunnel barrier with a 1 eV barrier. The pa-
rameters D1=D2=3.8 eV·Å2 = ~2/(2me), where ~ is the
reduced Planck constant, are chosen to give the electron
the free electron mass in the tunnel barrier.

To apply a Fermi shift of ∆EF, we add a term ∆EF to
the diagonal elements of the Hamiltonian in Eq. (1). We
apply a bias by subtracting Vpn from ∆EF and treating
this as the new effective Fermi shift for HTI,p.

In Fig. 2, we show the band structure of a TI slab. The
left side of Fig. 2 represents the bottom, n-doped, slab
without any Fermi level shift, while the right side repre-
sents the top, p-doped, slab with a Fermi level shift of
0.10 eV at zero applied bias. The p-doped and n-doped
Fermi levels are represented by dotted lines. It can be
observed that doping has created a difference between
the p-doped and n-doped Fermi levels. To compute the
wave functions in the out-of-plane direction, z, we con-
vert kz to i ddz , and discretize the Hamiltonian in Eq. (1)
using finite differences as detailed in Sec. VI.1. The spin-
polarized surface states of the top and bottom slab have
different energies because of the 0.1 eV relative Fermi
level difference.
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Bi2Se3 Tunnel barrier

M 0.28 eV 0 eV

A1 2.2 eV· Å 0 eV· Å

A2 4.1 eV· Å 0 eV· Å

B1 10 eV· Å2 0 eV· Å2

B2 56.6 eV·Å2 0 eV·Å2

C -0.0068 eV 1 eV

D1 1.3 eV·Å2 3.8 eV·Å2

D2 19.6 eV·Å2 3.8 eV·Å2

TABLE I: k · p parameters for Bi2Se3 [28] and the
tunnel barrier. These values are used unless noted

otherwise.

 

 

 

VI.II rewrite: 

To calculate the bandstructure of a TI slab we start with the kdotp Hamiltonian from equation (1). 

However, since we are calculating the bandstructure of the slab with a connected dielectric, we must 

modify this Hamiltonian. To do this, we augment the total Hamiltonian as shown in eq… for the p-doped 

slab and eq… for the n-doped slab. These Hamiltonians contains the slab and dielectric Hamiltonians and 

connection terms in the off-diagonal terms. To get a slab bandstructure as opposed to a bulk, we 

discretize in the out-of-plane direction by replacing kz with d/dz. To find the bandstuctures numerically 

we use the finite difference method.  

The finite difference method replaces … by … and … by … where … is the step size. In our case, we took a 

step size of 1 A. This leads to 96 in the TI slab and 114 steps in the dielectric. So solve the Hamiltonian 

numerically, for both the slab and dielectric Hamiltonians, we take a kroneker product of the matrix and 

an identity matrix of dimensions of 96X96 for the slab and 114X114 for the dielectric. These matrices 

once again form the diagonal blocks of our discretized matrix. In order for our final system Hamiltonian 

to still be a square matrix, the dimensions of the connection terms are set such that the final matrix has 

FIG. 2: Band structure of a TI slab of 10 nm thickness
plotted in the x and y directions transverse to

tunneling. The left hand side has no Fermi level shift,
while the right hand side has a Fermi level shift ∆EF of

0.1 eV. The dotted lines represent the effective Fermi
level of the p-doped and n-doped slabs with this Fermi

level shift.

II.4. Tunneling Current

We use the Bardeen transfer Hamiltonian method [29]
to calculate the tunneling current between the TI slabs.
The Bardeen transfer Hamiltonian follows from time-
dependent perturbation theory [30], which treats the
Hamiltonian of the intervening barrier as a perturbation.

We sum over the intersecting pairs of bands µj and
ηj with band index j. By integrating over the 1D first
Brillouin zone and by requiring energy conservation, the
current is determined by the intersection of Epµ(k) and
Enη(k). Summing over pairs of intersecting bands with
index µ and η leads to the probability of transition be-
tween the p-doped and n-doped slabs

P =
2π

~
∑
j

∫ ∫
dkx
2π

dky
2π
|Mj |2δ(Enµj (k)− Epηj (k))

(2)

where

|Mj | = |Ψnµj (κj)
dΨpηj (κj)

dz − Ψpηj (κj)
dΨnνj (κj)

dz | is the
transition matrix element corresponding to the transition
between the wave functions of bands Epµ(k) and Enη(k)

for k =
√
k2
x + k2

y.

Since our Hamiltonian exhibits in-plane rotational
symmetry, we convert to a polar coordinate system where
kx = k cos(θ) and ky = k sin(θ). We use k2 = k2

x + k2
y

and dkxdky = kdkdθ to arrive at:

P =
1

~
∑
j

∫
kdk|Mj |2δ(Enµj − Epηj ) (3)

to integrate over k we change δ(Epµ − Enη) to
a function of k using δ(Enµ − Epη) = δ(knµ −

kpη)

∣∣∣∣d((Epµ(k))−(Enη(k)))
dk

∣∣∣∣−1

.

Evaluating the integral in Eq. (4):

P =
1

~
∑
j

κj

∣∣∣∣d(Epµj(k)− Enηj(k))

dk

∣∣∣∣−1

k=κj

|Mj |2 (4)

where κj is the k value at the intersection point.

To model the current density resulting from this trans-
mission probability, we multiply by the electron charge q
and the difference in the Fermi-Dirac distribution func-
tions f(En)− f(Ep):

J =
q

~
∑
j

κj |Mj |2
∣∣∣∣d(Epµj

(k)− Enηj(k))

dk

∣∣∣∣−1

k=κj

(f(Epµj (κj)− Vpn)− f(Enηj (κj))) (5)

where Vp and Vn are the n-doped and p-doped voltages,
respectively, whose difference is Vpn.

We use 4500 k-points to calculate the band structure
of the slabs. We take a step size of ∆z = 1 Ȧ. We model
the performance of our TI device at room temperature.
We consider the eight energy bands closest to the Fermi
level in the calculation of the current as these bands give
the largest contribution to tunneling current. Because of
the bands considered, we only encounter, at most, one
intersection between any two bands. In the case of mul-
tiple intersections a summation over a different κ would
be required. Calculating additional bands gives addi-
tional possibilities for tunneling and thus increases the
current, but this increase does not change the shape of
the J-V curves we will see in the next section and is neg-
ligible for additional considered bands beyond eight. A
more detailed examination of the change in the current
which results from calculating additional bands can be
seen in VI.2.
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FIG. 3: Current density of our proposed TI NDR device
with Fermi level shift ∆EF = 0.05 eV, ∆EF = 0.10 eV,

and ∆EF = 0.15 eV. The black dots represent bias
points for which the band structure and wave functions

are calculated in Fig. 4

III. RESULTS AND DISCUSSION

III.1. Current Density

Figure 3 shows the calculated current density J as a
function of Vpnwith Fermi level shifts (∆EF) of 0.05 eV,
0.10 eV, and 0.15 eV on the top slab. We observe that
the current initially increases linearly with the applied
Vpn. However, at Vpn ≈ ∆EF/3, the current peaks and
starts decreasing and goes to almost zero at Vpn=∆EF,
resulting in NDR behavior. Interestingly, we find that
unlike conventional NDR devices whose trough current
remains finite [20], because of the very small trough cur-
rent, the peak to trough ratio is very high. For bias
Vpn>∆EF, the current starts to increase again. We also
observe from Fig. 3 that the maximum current and the
trough bias are both determined by the difference in the
Fermi level between the TI slabs.

To further analyze the device characteristics, we show
the band structure and the wave function of the top and
the bottom TI slab at Vpn= 0 eV, 0.05 eV, 0.15 eV, and
0.18 eV in Fig. 4(a), (b), (c), and (d), respectively. We
choose a ∆EF = 0.15 eV , which corresponds to the red
dotted curve in Fig. 3. The wave functions on the right
are calculated at an intersection point between the two
bands for each bias point.

Figure 4(a) shows the band structure and the wave
functions at Vpn= 0 eV. Although there are states avail-
able for tunneling, the zero bias causes the tunneling cur-
rent to remain zero (first black dot in Fig. 3). Figure 4(b)
shows the band structure and the wave functions at a bias
Vpn= 0.05 eV which corresponds to the second black dot
in Fig. 3. We now have two, same-spin surface states
intersecting shown by the red dots in Fig. 3(c) (band
structure). We see that the wave functions of the same
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FIG. 4: Band structure of Bi2Se3 for different applied
biases Vpn. The red dot indicates a chosen intersection
for consideration and the wave functions calculated at

that intersection point are plotted to the right. (a)
Vpn= 0 eV we have two bulk state intersections and no

current. (b) Vpn= 0.05 eV we have two same-spin
surface state intersections and finite tunneling current.

(c) Vpn= 0.15 eV we have two opposite-spin surface
state intersections and nearly zero tunneling current.

(d) Vpn= 0.18 eV we have two same-spin surface states
intersections and finite tunneling current.

spin overlap results in a finite tunneling current. We see
in Fig. 3 that the tunneling current increases from zero
bias up until a bias which is approximately one third of
the Fermi level difference between the two slabs.

Figure 4(c) shows the band structure and the wave
functions at a bias Vpn= 0.15 eV. This corresponds to the
third black dot in Fig. 3. Now, we have two opposite-spin
surface states intersecting. Although the wave functions
of the top and the bottom slab have a significant spatial
overlap, their opposite spin causes the tunneling current
to become very low (as shown in the third black dot in
Fig. 3), resulting in a very low trough current for the
device. Figure 4(d) shows the band structure and the
wave functions at a bias Vpn= 0.18 eV. This corresponds
to the final black dot in Fig. 3. We see that the wave
functions of the same spin overlap resulting in a finite
tunneling current.
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FIG. 5: (a) Current density of our propsed TI NDR device for tunnel barrier thicknesses of t=1.0 nm, 1.5 nm, and
2.0 nm. The magnitude of the current decreases while the shape remains constant as barrier width increases (b)

Current density of the NDR device with tunnel barrier heights of Vonsite=1.0 eV, 1.1 eV and 1.2 eV. The magnitude
of the current decreases while the shape remains constant with increasing barrier height (c) Current density for the

NDR device with band gaps Eg=0.28 eV, 0.30 eV, and 0.32 eV. Changing the bandgap has little impact on the
current density.

To quantify the overlap, we inspect the transition ele-
ment for different bias conditions. For a bias of 0.05 eV,
the transition element |M |2 = 2.32×106 (eV)

2
. At the

point where Vpn=∆EF=0.15 eV the transition element is

significantly lower at |M |2 = 1.10 (eV)
2
. At Vpn = 0.18

eV, significantly larger than ∆EF, the transition element
has once again increased to be on the same order as for
0.05 eV bias at |M |2 = 1.76 ×106 (eV)

2
. The transition

element in the case of Vpn = 0.18 eV being lesser gives
rise to lower current as compared to Vpn = 0.05 eV as
can be seen in comparing the values of the current at the
second and fourth black dots in Fig. 3. Both Vpn = 0.05
eV and 0.18 eV have a significantly higher M value than
the value at Vpn=∆EF.

III.2. Parametric Device Analysis

When studying the NDR tunneling current, there are
several parameters of interest. The first of these param-
eters is the relative Fermi level of the two slabs. The
second parameter is the barrier height and barrier thick-
ness. The final parameter is the bandgap of the slabs,
the range of energy between the surface states and the
first bulk states.

Figure 5(a) shows the current density as a function of
applied bias for tunnel barrier thickness t=1.0 nm, t=1.5
nm, and t=2.0 nm. The shape of the current density
remains the same, as does the biases at which the peak
and trough currents occur. However, as the thickness of
the tunnel barrier between the slabs increases, the mag-
nitude of the current rapidly decreases. This is expected
as increasing the gap between the TI slabs decreases the
tunneling probability.

Figure 5(b) shows the current density for the tunnel
barrier on-site potentials Vonsite=1 eV, 1.1 eV, and 1.2
eV. The magnitude of the current density decreases with
increasing tunnel barrier on-site potential. The increas-
ing potential increases the tunnel barrier. Since the TIs
are unaltered, only the magnitude is affected, not the

shape of the J-V curve.
Figure 5(c) shows how the current density changes

when the TI bandgap Eg= 0.28 eV, 0.30 eV, or 0.32
eV. Eg sets the value of M in the TI Hamiltonian. Al-
tering the bandgap means that our k · p Hamiltonian ei-
ther models Bi2Se3 under chemical or mechanical strain,
or a different hypothetical 3D TI. The small divergence
from the results for Bi2Se3 show that another 3D TI will
yield J-V characteristics similar to the ones we calculated
for Bi2Se3 and the small dependence of the J-V on TI
bandgap. The peak current increases when the bandgap
increases from 0.28 eV to 0.32 eV. The relatively small
change suggests that changing the TI of both slabs has
little impact on the overall current density as long as the
Dirac cone is maintained in the bandgap.

IV. CONCLUSION

We have presented a NDR device based on 3D Bi2Se3

slabs sandwiching a tunnel barrier material. The pre-
sented device utilizes the spin-momentum locking of the
surface states of 3D TIs resulting in a spin-dependent
tunneling. We used the Bardeen Transfer Hamilto-
nian method, we calculated the tunneling current be-
tween the two slabs. We have shown that the pre-
sented NDR device, unlike conventional NDR devices,
can have a trough current almost zero resulting in a
very high peak to trough ratio. Recent devices, such as
van der Waals nanostructures and InAs/Gasb Core-Shell
Nanowires [31, 32] show peak to trough ratios of 4 and
8.69 respectively. This is significantly lower the peak to
trough ratio of our device. While the ideal system tested
here presents a very low trough current, impurities in a
real device may cause the current in a real device to be
higher. Nevertheless, this device still has lower trough
current than other devices. The Vpn at which the trough
occurs can be tuned by tuning the Fermi level shift be-
tween both slabs. We have seen that the peak of these
J-V curves occurs at Vpn≈ ∆EF/3. Moreover, we have
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shown that changing the TI material does not have a sig-
nificant impact on the shape of the J-V curve the device
produces. The two-terminal architecture of the presented
3D tunnel diodes makes our proposed device easy to man-
ufacture [26] and conduct experiments on as compared to
other novel NDR devices such as graphene nanoribbons
and graphene quantum dots. The proposed device can
be fabricated using molecular beam epitaxy [33, 34] [35].
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VI. APPENDIX

VI.1. Calculating Band Structure and Wave
Functions for a TI Slab

To calculate the band structure of a TI slab we start
with the k · p Hamiltonian from equation (1). To get a
slab band structure as opposed to a bulk band structure,
we discretize in the out-of-plane direction by replacing
kz with -i ddz , employing the treatment described by Qi
et al.[36]. To find the band structures numerically we

use finite differences so that df
dz ≈

f(z+∆z)−f(z−∆z)
2∆z and

d2f
dz2 ≈

f(z+∆z)−2f(z)+f(z−∆z)
(∆z)2 where ∆z is the step size.

In our case, we took a step size of ∆z = 1 Ȧ. This leads to
nTI=100 discrete steps in the TI slab and nB=110 steps
in the tunnel barrier. The systems of the p-doped and
n-doped slabs are overlaid, meaning the effective barrier
size is equal to the total system size minus 2 times the
TI slab size. To solve the Hamiltonian numerically, for
both the slab and tunnel barrier Hamiltonians, we take a
Kroneker product of theHTI and an identity matrix of di-
mensions of 100×100 for the slab and a Kroneker product
of HD and identity matrix of dimensions 110×110 for the
tunnel barrier. Note that prior to accounting for tran-
sitions using the Bardeen Transfer Hamiltonian, when
considering the n-slab, the p-slab is modeled using the
tunnel barrier Hamiltonian and vice versa.

However, since we are calculating the band structure of
the slab with a connected tunnel barrier, we must com-
bine our slab and tunnel barrier Hamiltonians to account
for a single system. We define Hamiltonians for each TI
slab with a tunnel barrier as shown in Eq. (6) for the
p-doped slab and Eq. (7) for the n-doped slab

Hp =

(
HD WT,D

WB,TI HTI

)
(6)

Hn =

(
HTI WT,TI

WB,D HD

)
(7)

0.00 0.05 0.10 0.15 0.20
Vpn (eV)

0.00
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m
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cm
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4 bands
6 bands
8 bands

FIG. 6: Current density for a TI slab with increasing
number of calculated bands.

Here the numerically evaluated Hamiltonians contain
the slab and tunnel barrier Hamiltonians as the diago-
nal elements and connection terms W as the off-diagonal
elements.

The dimensions of the connection terms 4nTI × 4nD.
The connection terms are zero matrices with the excep-
tion of 4 elements in the bottom left corner for WT,TI

and WT,D and the top left corner for WB,TI and WB,D.
The exact form of WT can be seen in Eq. (8) with WB

being the adjoint of WT.

WT =
−D1

(∆z)2
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(8)

WB = W †T (9)

VI.2. Change in Current Density with Increasing
Calculated bands

In Fig. 6 we can see the current density plotted for 4
bands, 6 bands, and 8 bands calculated at ∆EF = 0.15
eV. We see that the magnitude of the current is affected,
but there is no impact on the shape. The change in
current is relatively small. For a change between four
bands and six bands, the maximum divergence is ≈ 5%.
The change in current with increasing considered bands
decreases as we consider additional bands. For example,
the difference in current for a calculation accounting for
six versus eight bands is only ≈ 0.3%.



7

VII. REFERENCES

[1] M. J. Gilbert, Communications Physics 4, 70 (2021).
[2] W. G. Vandenberghe and M. V. Fischetti, Nature com-

munications 8, 1 (2017).
[3] S. Tiwari, M. L. V. de Put, B. Sorée, and W. G. Van-

denberghe, 2D Materials 6, 025011 (2019).
[4] A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J.

Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E.-A.
Kim, N. Samarth, and D. C. Ralph, Nature 511, 449
(2014).

[5] N. H. D. Khang, Y. Ueda, and P. N. Hai, Nature Mate-
rials 17, 808 (2018).

[6] M. He, H. Sun, and Q. L. He, Frontiers of Physics 14, 1
(2019).

[7] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren,
M. Segev, D. N. Christodoulides, and M. Khajavikhan,
Science 359 (2018).

[8] H. Wu, F. Groß, B. Dai, D. Lujan, S. A. Razavi, P. Zhang,
Y. Liu, K. Sobotkiewich, J. Förster, M. Weigand,
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