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Abstract

We design fair sponsored search auctions that achieve a near-optimal tradeo↵ between fair-
ness and quality. Our work builds upon the model and auction design of Chawla and Jagadeesan
[4], who considered the special case of a single slot. We consider sponsored search settings with
multiple slots and the standard model of click through rates that are multiplicatively separa-
ble into an advertiser-specific component and a slot-specific component. When similar users
have similar advertiser-specific click through rates, our auctions achieve the same near-optimal
tradeo↵ between fairness and quality as in [4]. When similar users can have di↵erent advertiser-
specific preferences, we show that a preference-based fairness guarantee holds. Finally, we
provide a computationally e�cient algorithm for computing payments for our auctions as well
as those in previous work, resolving another open direction from [4].

∗This work was supported in part by NSF Award CCF-2008006.



1 Introduction

We study the design of ad auctions under a fairness constraint. Fairness in the context of sponsored
content has received considerable attention in recent years. It has been observed, for example, that
ads on platforms such as Facebook and Google disproportionately target certain demographics,
discriminating across users on the basis of race and gender. Furthermore, standard auction formats
such as highest-bids-win can lead to discrimination even when the input to these algorithms, namely
bids, CTRs, and relevance scores are themselves non-discriminatory.

Chawla et al. [5] initiated the study of optimal auction design under the constraint that the
auction does not add any unfairness beyond what is already present in bids, and proposed a
class of proportional allocation algorithms as a solution that achieves fairness while also providing
an approximation to the optimal social welfare. In a followup work, Chawla and Jagadeesan
[4] designed a class of inverse proportional allocation algorithms and showed that this class of
mechanisms achieves an optimal tradeo↵ between social welfare and fairness. Both of these works
focused on the simple case of a single item auction and left open the problem of designing a fair
and e�cient multi-slot position auction.

In this paper we extend the design of fair auctions from the single item setting to arbitrary
position auction settings. We show that both the proportional allocation and inverse proportional
allocation algorithms can be adapted to the setting of a position auction while inheriting their single-
unit fairness properties as well as their approximation to social welfare. As in [5, 4] our auctions
provide fair solutions when the advertisers’ bids are themselves non-discriminatory. Auctions for
multi-slot settings must take into account both the advertisers’ preferences over users as captured
by per-click values, as well as the users’ preferences over advertisers as captured by click through
rates. We consider two di↵erent models for formalizing fairness in these settings. In the first, we
consider di↵erences of allocation across users that are close both in terms of the values advertisers
assign to them as well as in terms of their own click through rates; we require that such users receive
similar allocations. In the second setting, we consider pairs of users that are similarly qualified as
per advertisers’ values, but have di↵erent preferences (i.e. CTRs). In this case, while the users may
receive di↵erent allocations, we require that allocations are suitably aligned with users’ preferences.
We elaborate on the details of these models below. Finally, we address another open question
in [5, 4] and show how to e�ciently compute supporting prices for both proportional and inverse
proportional allocation.

Formalizing fairness across users. Consider two users Alice and Bob who are similar in most
respects but di↵er in a sensitive demographic such as gender or race. Individual fairness then posits
that Alice and Bob should see similar ad allocations. For example, it would be unfair to show more
employment ads to Bob and more online retail ads to Alice. One potential source of unfairness
in ad allocations is the use of discriminatory targeting by advertisers. However, empirical studies
as well as theoretical analysis shows that unfairness in allocations can persist even in the absence
of discriminatory targeting. The culprit is allocation algorithms that turn minor di↵erences in
advertisers’ bids into large swings in allocation. Suppose, for example, that an employment agency
places a slightly higher value on Bob than on Alice whereas an online retail store places a slightly
higher value on Alice because of minor di↵erences in the users’ profiles. Then the highest-bid-wins
auction would show entirely di↵erent ads to the two users.

To combat this problem, Chawla and Jagadeesan [4] formalize the notion of fairness in auctions
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as a “value stability” constraint. Informally speaking, value stability requires that whenever two
users receive multiplicatively similar values from all advertisers (such as Alice and Bob in the
example above) they must receive close allocations (as measured in terms of the `1 distance between
the respective probability distributions over the ad displayed). Previous work shows that while
optimal auctions do not satisfy value stability, there are simple auction formats that do. In the
Proportional Allocation (PA) mechanism, allocations are proportional to (some increasing function
of) the advertisers’ reported values. In the Inverse Proportional Allocation (IPA) mechanism, the
unallocated amounts, i.e., one minus the probability of allocation, are inversely proportional to
(some increasing function of) the advertisers’ reported values. In both mechanisms, the allocation
is a su�ciently smooth function of the advertisers’ values and therefore satisfies some form of value
stability. We mostly focus on the IPA mechanism in this paper as it provides better tradeo↵s
between fairness and welfare.

Multi-slot extensions. As a simple extension of the single slot setting, consider a setting with
k slots, where each ad and each slot are equally likely to be clicked by the user, so the relative
placement of ads in slots does not matter. In this case, one straightforward way to to extend
the single-slot allocations is to simply multiply them by k; if this provides a valid allocation, the
fairness and welfare guarantees follow immediately from the single-slot case. The problem is that
some ads may receive a total allocation greater than 1 and simply capping allocations at 1 breaks
the fairness guarantee. We propose a di↵erent extension of the IPA. As in the single slot case, we
ensure that the unallocated amounts to advertisers are inversely proportional to (some function of)
the reported values, subject to the total allocation equaling k. The fairness a.k.a. value stability
of this extension follows easily from the single-slot special case. We further show that the social
welfare approximation of multi-slot IPA matches its approximation for the single-item case by
characterizing worst case instances for the approximation factor.

While the above discussion provides a complete story for the case of a multi-unit auction, in
the case of online advertising, we also need to take click through rates into account. Throughout
this paper, we assume that click through rates are multiplicatively separable into ad-specific and
slot-specific components. In other words, the click through rate of an ad i placed in slot j is given by
↵i⇥�j for some parameters ↵ and � specific to each user that are known to the platform/auctioneer.
We further assume that all users weakly prefer earlier slots to later slots. Under these assumptions,
we present an extension of the IPA to the ad auction setting that exactly maintains the social
welfare guarantees of their single- and multi-unit counterparts. In particular, the social welfare
approximation is independent of the number of slots.

Fairness in the context of click through rates is tricky to define, however. As before, we
may assume that if two users are similarly qualified for all ads but di↵er in their sensitive attributes,
then the two users receive multiplicatively similar per-click values from all advertisers. However,
click through rates capture the users’ own preferences and similar users may not have similar click
through rates. What sort of fairness guarantees can we then provide?

We first show that di↵erences in slot-specific CTRs do not impact fairness guarantees.1 In
particular, two users with similar values and similar ad-specific CTRs ↵ receive allocations that are
close in `1 distance. In particular, the probability of assigning any particular slot to any particular

1In fact, the allocations produced by our algorithms do not depend on the slot-specific CTRs, although the
payments made by advertisers necessarily must.
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ad is additively close for the two users. In fact, this additive closeness holds also for the probability
that any particular ad is assigned to slot j or better for any j.

We then consider settings with similarly qualified users that have arbitrarily di↵erent ad-specific
and slot-specific CTRs. Observe that in order to achieve any reasonable guarantee for social welfare,
our allocation algorithms must take ad-specific CTRs into account. As a result, it is impossible to
provide a value-stability guarantee in this setting while also providing an approximation to social
welfare. Nevertheless, we show that a form of preference-aligned fairness holds. Specifically, let
Alice and Bob be two users with multiplicatively similar values and let ↵ and ↵0 denote their ad-
specific CTR vectors. Then we show that although the two users’ allocations can be quite far from
each other, Alice receives a higher allocation than Bob for precisely the ads that she is more likely
to click on, and vice versa. Formally, if we sort the advertisers in decreasing order of the ratio
↵i/↵0

i, then for every i, the probability that Alice gets to see an ad with index  i is at least as
large as Bob’s probability of seeing the same set of ads.

Computing payments. We conclude our study with a discussion of payments. It is easy to
observe that both generalized IPA and generalized PA have monotone allocation rules in the adver-
tisers’ reported values. However, computing the supporting prices is not straightforward and was
left open in previous work. Let xi(vi) denote the net allocation (expected probability of click) to
advertiser i for a particular user, when the advertiser reports a per-click value of vi. We show that
xi(vi) is a piecewise rational function with polynomially many pieces and that it is possible to com-
pute the functional form of each piece in polynomial time. Computing payments using Myerson’s
lemma then boils down to computing polynomially many integrals over rational functions.

Organization of the paper. We present our extension of the IPA in Section 3 and prove its social
welfare and fairness guarantees for the setting of similarly qualified users with similar preferences.
In Section 4 we discuss fairness for users that are similarly qualified but have di↵erent preferences.
Section 5 presents our algorithm for computing payments. We extend our results to the PA in
Section 6. Most proofs are deferred to the appendix or removed due to space limitations. 2

Related Work

Journalism and empirical work have revealed the myriad ways in which existing ad auction systems
lead to unfairness and discrimination [2, 10, 11, 12, 14]. One approach to addressing these issues
develops advertiser strategies for bidding in existing auction formats while ensuring statistical parity
between groups [9, 15].

More related to our approach is theoretical work on designing auctions and, more generally,
algorithms that guarantee fairness properties. These fairness properties typically di↵er in two
dimensions: 1) whether they apply to individuals or only to groups as a whole, and 2) whether
they enforce fairness by similarity of treatment or outcome, satisfaction of preferences (e.g., in the
form of envy-freeness), or something bridging the two.

These notions of fairness grew out of the fair classification literature, where Dwork et al. [7]
were the first to propose an individual fairness notion requiring agents who are similar under
some task-specific metric to receive similar classifications. Dwork and Ilvento investigate in [6]

2For the full version, visit https://arxiv.org/abs/2204.04136.
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whether compositions of such classification algorithms that are fair in isolation maintain their
fairness properties.

Kim et al. [13] introduce individual preference-informed fairness by augmenting this notion of
individual fairness with envy-freeness, allowing the allocations of similar users to di↵er in accordance
with their preferences. Similarly, Zafar et al. in [18] develop notions of preference-informed group
fairness by allowing deviations from parity in treatment and impact if the deviations are envy-free.

Our work employs and expands upon a model of individual fairness in sponsored search first
developed by Chawla et al. [5] and based on the multi-category fairness work of Dwork and Ilvento
[6]. An alternate model, also based on [6], was presented by Watts [16], albeit in a Bayesian setting.
A main di↵erence between our work and [16] is that we study the design of auctions that achieve
an optimal tradeo↵ between fairness and welfare, whereas [16] analyzes the fairness and welfare of
two specific mechanisms. Another relevant work is that of Essaidi and Weinberg [8] who study the
fairness-welfare tradeo↵ in a Bayesian setting. [8] draws a connection between individual fairness in
this context and multi-item auctions with an item symmetry constraint, giving simple mechanisms
that achieve a constant-approximation to the revenue-optimal fair mechanism.

There is also some recent work on group-fair ad auctions, such as [17], which shows that con-
straints on advertiser behavior which enforce group fairness notations can actually increase the
profit of the platform. In a Bayesian setting, [3] augments generalized second price auctions with
fair division schemes to achieve good social welfare guarantees while satisfying envy-freeness prop-
erties among advertiser groups.

As far as we know, ours is the first work addressing fairness specifically in the positional auctions
setting where di↵erent users have di↵erent click through rates.

2 Models and Definitions

We consider the following stylized model for online advertising auctions. Let U be the set of users,
n the number of advertisers, and k the number of slots. We use index u for users, i for advertisers
and j for slots. At each point in time, a user u 2 U arrives. Each advertiser i 2 [n] bids a per-click
value vui on that user. This is the value the advertiser receives if the user clicks on their ad. Let
CTRui,j denote the click through rate of advertiser i in slot j, that is, the probability that the user
u will click on the ad i if it is placed in slot j.

A truthful auction decides which ads to display in each of the k slots. The auction receives the
vector v = (vu1 , . . . , v

u
n) as well as the click through rates CTRu. and returns an allocation matrix

a(v) = [aij ]i2[n],j2[k] where aij denotes the probability that ad i is displayed in slot j.3 We omit the
superscript u whenever it is clear from the context that we are discussing a certain user.

Truthfulness. Given an allocation a(v) (where the user u is implicit), advertiser i receives a net
allocation (expected number of clicks) of

P
j CTR

u
i,jaij and a net expected value of vi ·

P
j CTR

u
i,jaij

from the allocation. To ensure truthfulness, there should exist a supporting pricing function pi(v)
for every advertiser i such that bidding truthfully maximizes the advertiser’s net expected utility.
For such a payment function to exist, it is su�cient and necessary that the allocation probabilityP

j CTR
u
i,jaij is monotone non-decreasing in the per-click value vi. All of the mechanisms we discuss

3We require
P

i aij = 1 for all j and
P

j aij  1 for all i. Every matrix a(·) satisfying these matching constraints
can be expressed as a distribution over deterministic assignments of ads to slots.
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in this paper satisfy monotonicity. In Section 5 we discuss how to compute supporting payments
e�ciently.

Separable click through rates. Throughout this paper we assume that the click through rates
CTRui,j are multiplicatively separable into an advertiser-specific component and a slot-specific com-
ponent. This is a standard model (see, for example, [1]).

Definition 2.1 (Separable Click Through Rates). Click through rates are separable if, for every

user u, there exists a advertiser dependent vector ↵u = (↵1, . . . ,↵n) and a slot dependent vector

�u = (�1, . . . ,�k) in which ↵1, . . . ,↵n > 0 and 1 � �1 � �2 � . . . � �k � 0 such that CTRui,j = ↵i�j
for all i 2 [n] and j 2 [k].

Observe that in the separable model the value an advertiser i obtains from slot j is ↵i�jvi. Since
the slot specific components �j are common to all advertisers, the relative values of advertisers are
given by ↵ivi. These relative values are important in the mechanisms we design. We call them the
“e↵ective values” of the advertisers:

Definition 2.2 (E↵ective Value). The e↵ective value of advertiser i is given by v̂i = vi↵i.

We call the above model of online advertising auctions with separable CTRs the Position
Auction Setting.

Prior-free design. As in previous works, the mechanisms we design and analyze in this paper
are prior-free, meaning that the allocation to a user does not depend on the distribution of users
or advertisers’ value vectors or the history of users already served. Besides the well-documented
benefits of prior-free mechanism design, in the context of fairness we get the added benefit that
fairness guarantees hold for all users that are served by the mechanism regardless of whether or
not the auctioneer’s model accounts for them.

Definition 2.3 (Scale-Free). A mechanism is scale-free if it has the property that multiplying the

input values by a uniform constant does not change the resulting allocation.

2.1 Social Welfare

The goal of this work, as in [4, 5], is to achieve a tradeo↵ between fairness and social welfare for
the mechanisms we design. The social welfare of an allocation a(v) is defined to be the sum of all
of the advertisers’ net expected values:

SW (a(v)) =
X

i2[n],j2[k]

viCTR
u
i,jai,j

We compare this social welfare to the maximum achievable by any feasible allocation. When
click through rates are separable, the maximum social welfare is achieved by the allocation that
assigns advertisers to slots in decreasing order of v̂i, the e↵ective values. We call the allocation
sorted by e↵ective values the Unfair-Opt and also use the same term to denote the social welfare
of this allocation.
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Formally, if ⇡ is the order of advertisers where v̂⇡1 � v̂⇡2 � . . . � v̂⇡n , then the (unfair) optimal
social welfare is given by:

Unfair-Opt(v,↵,�) =
kX

j=1

↵⇡jv⇡j�j

Since it is generally impossible to achieve optimal social welfare and fairness simultaneously, we
look for mechanisms that guarantee our fairness notions while giving a good approximation to the
optimal social welfare.

Definition 2.4 (Social Welfare Approximation). We say mechanism A(·) achieves an ⌘-approximation

to social welfare for ⌘  1, if for all instances (v,↵,�), we have SW (A(v,↵,�)) � ⌘·Unfair-Opt(v,↵,�).

2.2 Fairness

[4] formalized fairness in ad auctions as a value stability condition based on the notion of individual
fairness. Individual fairness requires that the auction assign similar allocations to similar users. [4]
defined similarity between two users on the basis of closeness between the value vectors assigned to
them by the advertisers. Informally speaking, if two users receive similar values from all advertisers,
then they should also receive similar allocations. In order for the definition to be scale-free with
respect to values, similarity between values is defined in multiplicative terms.

In the context of a single item auction, allocations are probability vectors. Similarity in al-
locations is therefore defined based on some notion of distance between probability vectors. [4]
formalized similarity in terms of the `1 distance between the probability vectors whereas [5] used
total variation or `1 distance. We state the value stability definition from [4] below.

Definition 2.5 (Definition 2.1 from [4], Value Stability). An allocation mechanism a(·) is value

stable with respect to function f : [1,1]! [0, 1] if the following condition is satisfied for every pair

of value vectors v and v0:

|ai(v)� ai(v
0)|  f(�) for all i 2 [n], where � = max

i2[n]

✓
max

⇢
vi
v0i
,
v0i
vi

�◆
.

In this definition, the function f , called the value stability constraint, governs the strength of
the value stability condition. We assume f to be non-decreasing, with f(0) = 0 and f(1) = 1.
Following [4], we focus on the family of constraints f`(�) = 1� ��2`. [4] argue that this family of
stability constraints captures the entire spectrum of possible fairness conditions in the context of
allocation algorithms.

In order to extend these fairness definitions to the position auctions setting, we need to extend
the notion of closeness in allocations to multi-dimensional allocation matrices M as well as extend
the notion of closeness in values to click through rates.

Let us consider the latter issue first. A straightforward manner of extending closeness over value
vectors to the separable setting is to require that two similar users are assigned similar values, as well
as have similar click through rates. But this notion of closeness is too restrictive. Values capture
how advertisers perceive users as potential customers; whereas click through rates capture how
users perceive the relevance of ads to their needs and how users behave in perusing ads on a search
page. Two users that are similarly qualified for a set of ads may nevertheless exhibit very di↵erent
behavior in responding to ads on a search page. Ideally the fairness guarantees an allocation
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algorithm provides should hinge only on the closeness between values vi and not on the closeness
between click through rates CTRi,j . However, in order to obtain good social welfare, allocations
necessarily need to depend on the advertiser specific click through rates ↵i. We accordingly define
closeness between users in terms of their e↵ective values ↵ivi (while ignoring dissimilarity in slot
specific CTRs, �). In Section 4 we extend our fairness definitions and guarantees to settings where
closeness is defined only in terms of the values vi, ignoring dissimilarity in ↵ and �.

Let us now consider closeness over probability matrices. We consider three notions. The first
is `1 distance, the maximum di↵erence of allocations in any one entry (i, j) of the corresponding
matrices.

Definition 2.6 (Value Stability for Position Auctions). An allocation mechanism A(·) is value stable

with respect to function f : [1,1]! [0, 1] if the following condition is satisfied for every set of value

and CTR vectors v, v0, ↵, ↵0
and �:

|Mi,j �M 0
i,j |  2f`(�) for all i 2 [n], j 2 [k] where � is defined as max

i2[n]

✓
max

⇢
↵ivi
↵0
iv

0
i

,
↵0
iv

0
i

↵ivi

�◆

and M = A(v,↵,�) and M 0 = A(v0,↵0,�).

Suppose, as an example, for a particular advertiser i, user u has an allocation of a = (.1, .1, .1, .1).
Consider two possible allocation vectors for some v close to u: a0 = (.15, .15, .15, .15) and a00 =
(.15, .05, .15, .05). In some sense, allocation a0 is much more unfair than a00 because in a0 the entry-
wise di↵erences from a compound while in a00 they o↵set each other. Weak value stability cannot
distinguish these two cases because it is concerned only with the absolute di↵erences. Our next
definition, ordered value stability is intended to allow a00 but not a0.

To do this, we bound the absolute di↵erences in the total allocation of an advertiser across all
columns, weighted by a vector hi,j . This vector represents the utility the first user receives from
seeing advertisement i in slot j. Since we assume the slots are in decreasing order of salience, this
should be weakly decreasing in j.

Definition 2.7 (Ordered Value Stability for Position Auctions). An allocation mechanism A(·) is
ordered value stable with respect to function f : [1,1]! [0, 1] if the following condition is satisfied

for every set of value and CTR vectors v, v0, ↵, ↵0
and �, as well as for any advertiser i and any

decreasing vector hi with 1 � hi,1 � . . . � hi,k � 0:

������

kX

j=1

hi,j
�
Mi,j �M 0

i,j

�
������
 f`(�) where � is defined as max

i2[n]

✓
max

⇢
↵ivi
↵0
iv

0
i

,
↵0
iv

0
i

↵ivi

�◆

where M = A(v,↵,�) and M 0 = A(v0,↵0,�).

The previous two definitions are concerned only with a single advertiser. In some instances,
however, there are meaningful subsets of advertisers and bounding the di↵erences of the allocations
each advertiser individually may not be su�cient to ensure fairness overall. For example, if there
are several di↵erent ads giving information about registering to vote, the total volume of voter
registration ads a user sees is more important from a fairness perspective than the amount they see
any particular voter registration ad. Therefore, the last notion we consider is a combination of `1
and `1 distance: we consider, for any subset of advertisers, the total variation distance between the
allocations of these advertisers to one slot, and bound the maximum over all slots of this distance.
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Definition 2.8 (Total Variation Value Stability for Position Auctions). A mechanism A(·) with

satisfies total variation value stability with respect to a function f : [1,1] ! [0, 1] if the following

condition is satisfied for every set of value and CTR vectors v, v0, ↵, ↵0
and �, as well as every

subset of advertisers S ✓ [n] and for every column j:

�����
X

s2S
A(v̂)s,j �

X

s2S
A(v̂)s,j

�����  f(�) where � is defined as max
i2[n]

✓
max

⇢
↵ivi
↵0
iv

0
i

,
↵0
iv

0
i

↵ivi

�◆

and where M = A(v,↵,�) and M 0 = A(v0,↵0,�).

3 Inverse Proportional Allocation

In this section, we present a generalization of the mechanism first introduced in [4] as IPA to the
position auction setting. We show that the generalization retains a constant approximation to
the optimal social welfare and an appropriate generalization of the value stability condition. In
Section 3.1 we describe the generalization of the mechanism from k = 1 to general k. In Section 3.2
we show that two di↵erent value stability conditions hold and in Section 3.3 we show that the exact
same guarantee in [4] holds for the generalization as well. Some of the proofs in this section are
deferred to Appendix A.

3.1 Generalized IPA

In [4], IPA was presented as a mechanism for the single item auction. An interpretation of this
mechanism is as follows: start with an infeasible allocation of 1 unit to each advertiser (for a total
allocation of n) and then gradually decrease the allocations until the total allocation reaches 1. The
rate of this decrease is determined by a function g of the reported values. The IPA with parameter
` uses g(x) = x�`. [4] also presents an algorithmic interpretation of the mechanism. The following
is the generalization of this mechanism to the position auctionsetting.

First, as a warm-up, we generalize IPA to a special case of the position auctionsetting where
� =
�!
1 . Our algorithm allocates a total of k units to the advertisers, with each advertiser receiving

an allocation ai 2 [0, 1] such that
P

i ai = k.
We follow the same intuition as for the case of k = 1. The mechanism first allocates 1 to each

advertiser, then decreases the allocations until the total allocation reaches k rather than 1. See
Appendix A for an algorithmic interpretation of this mechanism. Note that setting k = 1 gives
the exact same mechanism as in [4]. Algorithm 3 is scale free and produces allocations that are
non-decreasing in k. Furthermore, the allocation to advertiser i, namely ai, is non-decreasing in v̂i
and non-increasing in v̂�i.

We now extend the k-unit setting to the position auction setting. The resulting allocation
algorithm is called Generalized IPA. The algorithm assigns to every slot j a distribution over
advertisers given by the di↵erence in the j-unit and j � 1-unit allocations produced by k-unit IPA.

Feasibility. We observe that the allocation produced by the generalized IPA algorithm is feasible.
That is, there exists a distribution over matchings from advertisers to slots, for which the total
probability that advertiser i is allocated a slot is equal to M .
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ALGORITHM 1: Generalized IPA
Input: Vector v of non-negative advertiser bids for user u; CTRs ↵1, · · · ,↵n and �1, · · · ,�k; number
of slots k; function g : R�0 ! (0,1] with g(0) =1 and limx!1 g(x) = 0;

for h 2 [k] do
Set a(h)  the output of the IPA k-unit algorithm on input (v,↵, h, g)

end
for j 2 [k] do

Set M·,j = a(j) � a(j�1)

end
return M

Note that the generalized IPA algorithm is scale-free and independent of �.

3.2 Fairness

We now prove the value stability of the Generalized IPA mechanism.

Theorem 3.1. The Generalized IPA mechanism with parameter ` > 0 and for any number of

advertisers n is value stable with respect to any function f satisfying f(�) � f`(�) = 1 � ��2`
for

all � 2 [1,1), as in Definition 2.6.

Our proof has two parts. First, give a bound on the deviation between allocations given by the
k-unit IPA mechanism to similar users. Then, we use the bound to show that Generalized IPA
achieves value stability.

Lemma 3.2. For the k-unit IPA mechanism with parameter ` run on any k and any bid vectors v
and v0 with � = maxi2[n]{v̂i/v̂0i, v̂0i/v̂i}, for all indices i, |ai(v)� ai(v0)|  f`(�).

Next, we show that Generalized IPA satisfies ordered value stability.

Theorem 3.3. Generalized IPA with parameter ` satisfies ordered value stability with respect to

f`(�). That is, for every set of value and CTR vectors v, v0, ↵, ↵0
and �, as well as for any

advertiser i and any decreasing vector h with 1 � h1 � . . . � hk � 0:

������

kX

j=1

hj
�
Mi,j �M 0

i,j

�
������
 f`(�) where � is defined as max

i2[n]

✓
max

⇢
↵ivi
↵0
iv

0
i

,
↵0
iv

0
i

↵ivi

�◆

where M = A(v,↵,�) and M 0 = A(v0,↵0,�).

3.3 Social Welfare

We now show that Generalized IPA achieves a good approximation to the optimal social welfare
Unfair-Opt.

Theorem 3.4. The IPA algorithm for the separable case, Algorithm 1, run with parameter ` > 0

and any number of advertisers n achieves a

⇣
1� ``

(1+`)`+1

⌘
-approximation the social welfare of the

unfair optimum.

To do so, we first show an approximation result for the special case of ~� = 1, the k�unit
algorithm.
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Lemma 3.5. The IPA algorithm for the k�unit case, Algorithm 3, run with parameter ` and any

number of advertisers n achieves a

⇣
1� ``

(1+`)`+1

⌘
-approximation to the social welfare of the unfair

optimum.

We use Lemma 3.5 and extend definition of Generalized IPA allocation vector based on k�unit
vectors to show Theorem 3.4. The proof is deferred to Appendix A. The approximation factor is 3

4
at ` = 1 and as `!1, the approximation factor goes to 1.

Remark 3.6. The approximation factor in Lemma 3.5 is tight for IPA mechanism.

Proof. Consider the following example. Fix a user u and let the bidding vector of the advertisers
be:

(1, . . . , 1| {z }
k

,
n�kz }| {

✏, . . . , ✏)

where 1 > ✏ =
�5k+

q
25k2�16(n�k) k2

n�k�4�4(n�k)

8(n�k > 0. Let ` = 1 and n > 2k. We get:

SW (Alg) = k(1� n� k

(n� k)✏�1 + k
) + (n� k)✏(1� (n� k)

✏�1

(n� k)✏�1 + k
), Unfair-Opt = k

For the aforementioned value of ✏, we will have SW (Alg)
Unfair-Opt

= 3
4 . Note that this example fits the

maxima point we found in the proof of Lemma 3.5.

4 Fairness for users with di↵erent preferences

So far we have assumed that similar users are similar in all aspects – the values advertisers assign
to them as well as the rates at which the users click on di↵erent ads. However, these two sets of
parameters are asymmetric. Values capture advertisers’ preferences over users whereas CTRs cap-
ture users’ preferences over advertisers. We will now distinguish between similarity in qualification

(i.e. values) from similarity in user preferences (i.e. CTR).
A myopic viewpoint might suggest that two users that are similarly qualified should be treated

similarly by the auction no matter their preferences. However, this is fundamentally at odds with
the objective of maximizing the social welfare4 a.k.a. the collective value of the advertisers, as the
latter are contingent upon clicks. Consequently, the outcome of the auction cannot be completely
independent of user preferences and we look towards a notion of fairness that is appropriately
preference aligned.

To motivate our definitions, consider the following example. We have two users Alice and
Bob, two advertisers A and B, and a single slot to display an ad. The users look identical to the
advertisers: A places a value of $1 on a click from either user and B places a value of $10 from
either click. However the users behave di↵erently when they view ads. Bob clicks both ads with
certainty. Alice clicks A’s ad with certainty but B’s ad with probability only 1%. The platform
should clearly display ad A for Alice and ad B for Bob. Although these outcomes are di↵erent,

4Social welfare is a misnomer in this context, as it does not take into account the benefit or value users derive
from viewing the ad.
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both users are happy: Bob is essentially indi↵erent between A and B, while Alice greatly prefers
A. In this case, any di↵erences in allocation are aligned with user preferences.

Can we always expect this to be the case? Formally, consider a single slot auction with n
advertisers, and two users with identical value vectors v = v0. Let a and a0 denote their respective
allocation vectors. Can we ensure that any allocation mass that is moved between advertisers in a0

relative to a is moved from low CTR advertisers to high CTR advertisers?
Unfortunately, we cannot ensure this property while also maintaining a reasonable approxima-

tion for social welfare. To see this, consider the above example with Alice and Bob once again
and suppose that Bob’s CTR for advertiser B changes to 20%. In order to obtain a good social
welfare, the auction must continue to display ad B for Bob. However, now Bob gets to see much
more of ad B and much less of ad A than Alice even though he greatly prefers ad A to ad B. The
key observation here is that the allocation mass in B’s allocation shifts to an advertiser with high
relative CTR, when measured relative to the CTRs of Alice.

Motivated by this example, we propose the following new preference-aligned definition of fairness
for identically valued users. Underlying this definition is a relative ordering of advertisers for two
users u and v with advertiser specific CTR vectors ↵u = (↵u

1 , · · · ,↵u
n) and ↵v = (↵v

1, · · · ,↵v
n).

We will assume that advertisers are ordered in (weakly) decreasing order of the ratio ↵v
i /↵

u
i , and

require that allocation mass for user v is shifted from advertisers that appear later in the ordering
to those that appear earlier in the ordering.

Definition 4.1 (Value Stability for Identically-Valued Users with Heterogeneous Preferences). An
allocation mechanism A(·) is value-stable for identical users with heterogeneous preferences if for

every pair of users with identical value vectors v; CTR vectors ↵, ↵0
, �, and �0

; any ordering over

advertisers that is weakly decreasing in ↵/↵0
; and for every advertiser i 2 [n] and slot j 2 [k]:

iX

t=1

jX

s=1

Mt,s �
iX

t=1

jX

s=1

M 0
t,s, where M = A(v,↵,�) and M 0 = A(v,↵0,�0).

Similar users: The above definition extends in a straightforward manner to pairs of users that
are similarly rather than identically qualified, and again have di↵erent preferences over advertisers
as expressed through CTRs. Once again we require that allocation mass shifts from advertisers with
low relative CTR to those with higher relative CTR, but we allow for additive errors in allocation
that grow with the dissimilarity in the users’ values.

Definition 4.2 (Value Stability for Similarly-Valued Users with Heterogeneous Preferences). An

allocation mechanism A(·) is value-stable for users with heterogeneous preferences with respect to

function f` : [1,1]! [0, 1] if for every pair of users with value vectors v and v0; CTR vectors ↵, ↵0
,

�, and �0
; any ordering over advertisers that is weakly decreasing in ↵/↵0

; and for every advertiser

i 2 [n] and slot j 2 [k]:
iX

t=1

jX

s=1

Mt,s �
iX

t=1

jX

s=1

M 0
t,s � if`(�)

where M = A(v,↵,�), M 0 = A(v0,↵0,�0) and � = max
i2[n]

n
max

n
vi
v0i
,
v0i
vi

oo
.

Comparing Definition 4.1 and Definition 4.2, note that if v = v0 then � = 1 and, as discussed
in [4], a proper f function has the property of f(1) = 0. Therefore, Definition 4.1 is exactly
Definition 4.2 in the special case of v = v0.
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4.1 Fairness of IPA and PA for heterogeneous users

We show that both the Generalized IPA and Generalized PA mechanisms satisfy Definition 4.1 and
more generally Definition 4.2.

To begin, we show that any mechanism for the k-unit case satisfying certain mild conditions
also satisfies Definition 4.1. Both k-unit IPA and k-unit PA satisfy these conditions and hence are
value-stable for identically qualified users with heterogeneous preferences.

Lemma 4.1. Let a(v) be a scale-free k-unit allocation algorithm such that ai(v) is weakly increasing

in vi. Suppose further that for all t 6= i, ai(v) is weakly decreasing in vt. Then a(v) satisfies

Definition 4.1.

Proof. Fix i and scale ↵0 so that ↵i = ↵0
i. Since the advertisers are sorted, we now know that for

all t < i, ↵t � ↵0
t and for all t > i, ↵t  ↵0

t.
We proceed by two cases and then use a transitivity argument to show the theorem holds in

general.

Consider the case where for all t  i, ↵t = ↵0
t. Then ↵v

(
= ↵0v for all t  i

 ↵0v for all t > i
.

Therefore, since the allocation at is weakly decreasing in vs for all s 6= t, we have that for all
t  i, a(↵v) � a(↵0v). Hence,

Pi
t=1 at(↵v) �

Pi
t=1 at(↵

0v), as desired.

Now, consider the case where for all t � i, ↵t = ↵0
t. Then ↵v

(
� ↵0v for all t < i

= ↵0v for all t � i
.

Therefore, since the allocation at is weakly decreasing in vs for all s 6= t, we have that for all t > i,
a(↵v)  a(↵0v) and hence

Pn
t=i+1 at(↵v) 

Pn
t=i+1 at(↵

0v). But
Pi

t=1 at(↵v) = k �
Pn

t=i+1 at(↵v)

and likewise
Pi

t=1 at(↵
0v) = k�

Pn
t=i+1 at(↵

0v). Therefore,
Pn

t=i+1 at(↵v) 
Pn

t=i+1 at(↵
0v) impliesPi

t=1 at(↵v) �
Pi

t=1 at(↵
0v), as desired.

We now argue that the theorem holds in general. Let ↵00
t :=

(
↵t if t  i

↵0
t if t > i

. By the first

case,
Pi

t=1 at(↵v) �
Pi

t=1 at(↵
00v), and by the second case

Pi
t=1 at(↵

00v) �
Pi

t=1 at(↵
0v). Hence,Pi

t=1 at(↵v) �
Pi

t=1 at(↵
0v), as desired.

Corollary 4.2. The k-unit IPA and k-unit PA mechanisms satisfy Definition 4.1.

Because our generalized mechanisms are defined in terms of telescoping di↵erences of the k-unit
allocations, Theorem 4.3 follows directly from Corollary 4.2.

Theorem 4.3. The Generalized IPA and Generalized PA mechanisms satisfy Definition 4.1.

Next, we show Generalized IPA and Generalized PA are value-stable for similarly-valued users
with heterogeneous preferences. The only thing changing from Definition 4.1 to Definition 4.2
is that we need to keep track of small changes between the two allocations, which leads to the
following theorem. The proof is deferred to Appendix B.

Theorem 4.4. The Generalized IPA and Generalized PA mechanisms A(·) with parameter ` are

value-stable for similarly-valued users with heterogeneous preferences.
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5 Computing payments

In this section we develop an algorithm for computing supporting payments for the generalized IPA
and generalized PA allocation rules. Our main observation is that the allocation functions of IPA
and PA are piecewise rational functions with polynomially many pieces where each piece can be
computed in polynomial time. With these pieces in hand, and using Myerson’s lemma, computing
payments amounts to computing polynomially many integrals of rational functions.

We focus on the generalized IPA; the argument for generalized PA is similar. Formally, for a
fixed and implicit user u, and a fixed and implicit advertiser i, let xi(v) denote the net allocation
to the advertiser, a.k.a. the expected number of clicks the advertiser receives from the user. If the
user is assigned allocation M = A(v,↵,�) then we have xi(v) =

P
j Mi,j↵i�j . Let a(j) denote the

cumulative allocation to the user in the first j slots as in the description of Algorithm 2 and recall

that Mi,j = a(j)i � a(j�1)
i . Accordingly we get:

xi(v) = ↵i

X

j

a(j)i (�j � �j+1) (1)

In other words, xi(v) is a linear combination of the functions a(j)i (v).

We will now argue that for all i, j, the function a(j)i (v), as defined in Algorithm 1, is piecewise
rational in vi. Consider the following equivalent formulation of Algorithm 1. Given the values
v1, · · · , vn, ad-specific CTRs ↵1,↵2, · · · ,↵n, and decreasing function g, we find a parameter t such
that

X

i0

min(1, t · g(↵i0vi0)) = n� j (2)

The allocation a(j)i is then given by 1�min(1, t · g(↵ivi)).
Suppose without loss of generality that i receives a non-zero allocation at value vi (otherwise

a(j)i is trivially piecewise rational at values  vi). We can then rewrite Equation (2) as:

t · g(↵ivi) +
X

i0 6=i

min(1, t · g(↵i0vi0)) = n� j (3)

Now, the expression
P

i0 6=imin(1, tg(↵i0vi0)) is independent of vi and piecewise linear in t with
at most n pieces. Given the values v�i and CTRs ↵�i, we can e�ciently compute the linear pieces
in this function. Substituting any particular linear piece with t in the range [t1, t2] in Equation (3)
then gives us an equation of the following form with appropriate parameters x and y:

t · g(↵ivi) + xt = y

leading to the solution

a(j)i (vi) = 1� g(↵ivi) ·
y

g(↵ivi) + x
for vi 2


1

↵i
g�1

✓
y � xt2

t2

◆
,
1

↵i
g�1

✓
y � xt1

t1

◆�
.

Observe that the RHS in the above equation is a rational function as the function g in the definition
of IPA is also rational.
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Summarizing, we first compute the piecewise rational form of the function a(j)i (vi) for all slots
j. Each of these functions has at most n pieces. We then use Equation (1) to express xi(vi) as a
piecewise rational function with at most nk pieces. Finally, we use Myerson’s lemma and compute
per-impression payments as

pi(vi) = vixi(vi)�
Z vi

z=0
xi(z) dz.

6 Proportional Allocation

In this section, we present a generalization of the mechanism first introduced in [5] as Proportional
Allocation (PA) to the position auction setting. We show that the generalization retains the same
approximation ratio to the optimal social welfare and an appropriate generalization of the total
variation value stability condition. This is a stronger fairness guarantee than that of Generalized
IPA, but comes at the cost of a weaker approximation to the optimal social welfare. For a detailed
discussion of the trade-o↵s between the single-unit versions these methods, see [4]. Some of the
proofs in this section are deferred to Appendix C.

6.1 Generalized PA

In contrast to IPA, PA can be thought of as initially assigning each advertiser an allocation of 0
and then increasing the allocations in proportion to (some function of) the bid amounts until the
total allocation reaches 1. [5] analyzes this mechanism for the single unit case. In particular, they
prove value stability with respect to the total variation distance on the allocations, rather than with
respect to the `1 distance as with IPA. However, in exchange, the social welfare approximation
achieved by PA degrades as the number of advertisers increases.

Just like the previous section, we start with a warm-up case in which we consider a special
case of position auctionwhere � =

�!
1 . For this case, we will attempt to allocate proportionally,

assigning k · g(vi)P
t g(vt)

to each bidder i. If this allocation is more than 1 for any advertiser, we cap

their allocation at 1 and divide the additional mass proportionally among the remaining advertisers.
See Algorithm 4 in Appendix C for an algorithmic interpretation of this mechanism. Note that
the function g in this mechanism is di↵erent than the one in Section 3, as it is a continuous,
super-additive and increasing function.

The extension of this algorithm to the position auctioncase is similar to the extension we saw
in Section 3 for IPA, and works as follows:

ALGORITHM 2: Generalized PA
Input: Vector v of non-negative advertiser bids for user u; CTRs ↵1, · · · ,↵n and �1, · · · ,�k; number
of slots k; function g : R�0 ! [0,1] with g a continuous, super-additive, increasing function and
g(0) = 0;

for h 2 [k] do
Set p(h)  the output of the PA k-unit algorithm on input (v,↵, h, g)

end
for j 2 [k] do

Set P·,j = p(j) � p(j�1)

end
return P

14



Observe that Generalized PA is scale-free, independent of �, and produces feasible allocations
by essentially the same argument as in ??.

6.2 Fairness

First, we prove the fairness guarantees of our mechanism. We begin by showing the total variation
value stability of PA, which as we’ve discussed is the main advantage of PA over IPA.

Theorem 6.1. The Generalized PA mechanism with parameter g(x) = x` satisfies definition 2.8

Total Variation Value Stability for Position Auctions with respect to f`(�). That is, for all pairs of

e↵ective value vectors v̂, v̂0, subsets of advertisers S ✓ [n], and slots j,
�����
X

s2S
Ps,j(v̂)�

X

s2S
Ps,j(v̂

0)

�����  2f`(�)

The proof of Theorem 6.1 uses the following key lemma, which shows a similar property holds
for k-unit PA mechanism.

Lemma 6.2. The k-unit PA mechanism with parameter g(x) = x` satisfies the property that, for

all pairs of e↵ective value vectors v̂, v̂0 and subsets of advertisers S ✓ [n],
�����
X

s2S
as(v̂)�

X

s2S
as(v̂

0)

����� 
�` � 1

�` + 1
 f`(�).

We now show that Generalized PA also satisfies the same ordered value stability property as
IPA. The proof is essentially identical as the proof of Theorem 3.3 except in that it uses the total
variation value stability of PA instead the value stability of IPA. For the full proof, see Appendix C.

Theorem 6.3. Generalized PA with parameter ` satisfies ordered value stability with respect to

f`(�). That is, for every set of value and CTR vectors v, v0, ↵, ↵0
and �, as well as for any

advertiser i and any decreasing vector h with 1 � h1 � . . . � hk � 0:

������

kX

j=1

hj
�
Pi,j � P 0

i,j

�
������
 f`(�) where � is defined as max

i2[n]

✓
max

⇢
↵ivi
↵0
iv

0
i

,
↵0
iv

0
i

↵ivi

�◆

where P = A(v,↵,�) and P 0 = A(v0,↵0,�).

6.3 Social Welfare

Finally, we give our guarantee on the social welfare approximation ratio achieved by Generalized
PA relative to Unfair-Opt. The proof relies on a lemma showing the same approximation result
for the special case of ~� = 1, k-unit PA.

Theorem 6.4. The Generalized PA mechanism with parameter ` achieves a
�
n�k
n (n� k)�1/` + 1/n

�
-

approximation to the optimal social welfare for any instance with n advertisers and k slots.

Lemma 6.5. The k-unit PA subroutine with parameter ` achieves a
�
n�k
n (n� k)�1/` + 1/n

�
-

approximation to the optimal social welfare for any instance with n advertisers and k slots.
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A Deferred Proofs from Section 3

Below is the algorithmic description of position auctionin the case of ~� = 1:

ALGORITHM 3: k-unit IPA
Input: Vector v of non-negative advertiser bids for user u; ad-specific CTRs ↵1, · · · ,↵n; number of
slots k; function g : R�0 ! (0,1] with g(0) =1 and limx!1 g(x) = 0;

Initialization: Determine e↵ective values, v̂i = vi↵i for all i;
WLOG assume v̂1 � . . . � v̂n;
if k = 0 then

return a(v) =
�!
0

end
if v̂1  0 then

Set ai =
k
n for all i 2 [n], return a(v);

end
Set s max{i 2 [n] : v̂i > 0};
while (s� k)g(v̂s) �

Ps
i=1 g(v̂i) do

s s� 1;
end
For i > s: set ai = 0;

For i  s set ai = 1� (s� k) g(v̂i)Ps
t=1 g(v̂t)

;

return a(v)

Theorem 3.3. Generalized IPA with parameter ` satisfies ordered value stability with respect
to f`(�). That is, for every set of value and CTR vectors v, v0, ↵, ↵0 and �, as well as for any
advertiser i and any decreasing vector h with 1 � h1 � . . . � hk � 0:

������

kX

j=1

hj
�
Mi,j �M 0

i,j

�
������
 f`(�) where � is defined as max

i2[n]

✓
max

⇢
↵ivi
↵0
iv

0
i

,
↵0
iv

0
i

↵ivi

�◆

where M = A(v,↵,�) and M 0 = A(v0,↵0,�).

Proof. Fix some vectors v, v0,↵,↵0, and �, and the corresponding allocation matrices M and M 0.
Consider some advertiser i. We begin by using the definition Generalized IPA and then rearranging
terms. Note that we define hk+1 := 0 for notational simplicity.

������

kX

j=1

hj
�
Mi,j �M 0

i,j

�
������
=

������

kX

j=1

hj
⇣
(a(j)i � a(j�1)

i )� (a(j)i0 � a(j�1)
i0 )

⌘
������

=

������

kX

j=1

⇣
hj(a

(j)
i � a(j�1)

i )� hj(a
(j)
i0 � a(j�1)

i0 )
⌘
������
=

������

kX

j=1

⇣
a(j)i � a(j�1)

i0

⌘
(hj � hj+1)

������

Now, observe that because h1  1 and the coe�cients (hj � hj+1) telescope, the sum of these
coe�cients is at most 1. Since the expression is a weighted sum over columns of the di↵erences in
allocation at that column, the expression is bounded by the maximum di↵erence in any column.
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But because Generalized IPA satisfies value stability (by Lemma 3.2), this is bounded by f`(�), as
desired.

������

kX

j=1

hj
�
Mi,j �M 0

i,j

�
������
=

������

kX

j=1

⇣
a(j)i � a(j�1)

i0

⌘
(hj � hj+1)

������
=

����max
j

⇣
a(j)i � a(j�1)

i0

⌘����  f`(�)

Theorem 3.4. The IPA algorithm for the separable case, Algorithm 1, run with parameter ` > 0

and any number of advertisers n achieves a
⇣
1� ``

(1+`)`+1

⌘
-approximation the social welfare of the

unfair optimum.

Proof. Suppose the k-unit IPA mechanism attains an ⌘ approximation to the optimal social welfare
in the k-unit setting. Then the Generalized IPA mechanism attains the same approximation factor
⌘ in the position auctionwhen run with the k-unit IPAmechanism as a subroutine. In order to
prove this, we consider the social welfare attained by the Generalized IPA mechanism. Since

�k+1 = 0 and a(0)i = ~0,

SW (Alg) =
nX

i=1

kX

j=1

↵ivi�jMij =
nX

i=1

kX

j=1

v̂i�j
h
a(j)i � a(j�1)

i

i
=

nX

i=1

kX

j=1

v̂i(�j � �j+1)a
(j)
i

Since for all j 2 [k],
P

i v̂ia
(j)
i � ⌘(v̂1 + · · ·+ v̂j), then:

SW (Alg) =
kX

j=1

(�j��j+1)

 
nX

i=1

v̂ia
(j)
i

!
� ⌘

kX

j=1

(�j��j+1) (v̂1 + · · ·+ v̂j) = ⌘
kX

j=1

v̂j�j = ⌘Unfair-Opt

Finally, we know by Lemma 3.5 that the k-unit IPA mechanism is an ⌘ =
⇣
1� ``

(1+`)`+1

⌘
-approx

-imation to the optimal k-unit social welfare. Replacing ⌘ by
⇣
1� ``

(1+`)`+1

⌘
concludes the proof.

B Deferred Proofs from Section 4

Theorem 4.4 The Generalized IPA and Generalized PA mechanisms A(·) with parameter ` are
value-stable for similar users with heterogeneous preferences.

Proof. Fix users with user-dependent CTR vectors ↵ and ↵0 and value vectors v and v0. Also fix
slot-dependent CTR vector �, advertiser i, and column j. LetM = A(v,↵,�) andM 0 = A(v,↵0,�),
where at =

Pj
s=1Mt,s, and a0t =

Pj
s=1M

0
t,s. Finally, fix a permutation ⇡ on advertisers for which

↵⇡1
↵0
⇡1
� . . . � ↵⇡n

↵0
⇡n

.

Since A(·) is envy-free, we know that
Pi

s=1

Pj
t=1Mst(↵v) �

Pi
s=1

Pj
t=1Mst(↵0v). Therefore,

it su�ces to show
Pi

s=1

Pj
t=1Mst(↵0v) �

Pi
s=1

Pj
t=1Mst(↵0v0) � if(�). Consider the di↵erencePi

s=1

Pj
t=1Mst(↵0v0) �

Pi
s=1

Pj
t=1Mst(↵0v). Since

Pj
t=1Mst(↵v) = ajs(↵v), we can simplify this

to:
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iX

s=1

ajs(↵
0v0)�

iX

s=1

ajs(↵
0v) 

�����

iX

s=1

ajs(↵
0v0)�

iX

s=1

ajs(↵
0v)

����� =

�����

iX

s=1

ajs(↵
0v0)� ajs(↵

0v)

�����


iX

s=1

��ajs(↵0v0)� ajs(↵
0v)
�� 

iX

s=1

f(�) = i ⇤ f(�)

Simply combining this with the previous inequality gives the desired result.

C Deferred Proofs from Section 6

Below is the algorithmic description of position auctionin the case of ~� = 1:

ALGORITHM 4: k-unit PA
Input: Vector v of non-negative advertiser bids for user u; ad-specific CTRs ↵1, · · · ,↵n; number of
slots k; function g : R�0 ! [0,1] with g a continuous, super-additive, increasing function and
g(0) = 0;

Initialization: Determine e↵ective values, WLOG assume v̂1 � . . . � v̂n;
if k = 0 then

return p(v) =
�!
0

end
if v̂1  0 then

Set pi =
k
n for all i 2 [n], return p(v);

end
Set s max{i 2 [n] : v̂i > 0};
Set r = 1;

while k.g(v̂r)
sP

t=r
g(v̂t)

� 1 do

pr = 1;
r  r + 1;

end

For i � r: set pi =
(k�r).g(v̂i)

sP
t=r

g(v̂t)
;

return p(v);

Theorem 6.3. Generalized PA with parameter ` satisfies ordered value stability with respect to
f`(�). That is, for every set of value and CTR vectors v, v0, ↵, ↵0 and �, as well as for any
advertiser i and any decreasing vector h with 1 � h1 � . . . � hk � 0:

������

kX

j=1

hj
�
Pi,j � P 0

i,j

�
������
 f`(�) where � is defined as max

i2[n]

✓
max

⇢
↵ivi
↵0
iv

0
i

,
↵0
iv

0
i

↵ivi

�◆

where P = A(v,↵,�) and P 0 = A(v0,↵0,�).
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Proof. Fix some vectors v, v0,↵,↵0, and �, and the corresponding allocation matrices P and P 0.
Consider some advertiser i. We begin by using the definition of Generalized PA and then rearranging
terms. Note that we define hk+1 := 0 for notational simplicity.

������

kX

j=1

hj (Pi,j � Pi,j)

������
=

������

kX

j=1

hj
⇣
(p(j)i (v̂)� p(j�1)

i (v̂))� (p(j)i (v̂0)� p(j�1)
i (v̂0))

⌘
������

=
���
Pk

j=1

⇣
hj(p

(j)
i (v̂)� p(j�1)

i (v̂))� hj(p
(j)
i (v̂0)� p(j�1)

i (v̂0))
⌘��� =

���
Pk

j=1

⇣
p(j)i (v̂)� p(j�1)

i (v̂0)
⌘
(hj � hj+1)

���
Now, observe that because h1  1 and the coe�cients (hj � hj+1) telescope, the sum of these co-
e�cients is at most 1. Since the expression is a weighted sum over columns of the di↵erences in
allocation at that column, the expression is bounded by the maximum di↵erence in any column.
But because Generalized PA satisfies total variation value stability (by Lemma 6.2), this is bounded
by f`(�) for all subsets of advertisers, including the singleton i, as desired.

������

kX

j=1

hj
�
Pi,j � P 0

i,j

�
������
=

������

kX

j=1

⇣
p(j)i (v̂)� p(j�1)

i (v̂0)
⌘
(hj � hj+1)

������
=

����max
j

⇣
p(j)i (v̂)� p(j�1)

i (v̂0)
⌘����  f`(�)

Lemma 6.2 The k-unit PA mechanism with parameter g(x) = x` satisfies the property that, for
all pairs of e↵ective value vectors v̂, v̂0 and subsets of advertisers S ✓ [n],

�����
X

s2S
as(v̂)�

X

s2S
as(v̂

0)

����� 
�` � 1

�` + 1
 f`(�).

Proof. Fix some pairs of e↵ective value vectors v̂, v̂0 and a subset of advertisers S ✓ [n]. Define E
to be

P
s2S as(v̂) �

P
s2S as(v̂0) and assume without loss of generality that E � 0. We want to

upper bound E by f`(�).
First, we reduce the general case to that where the while loop never executes. That is, we modify

the given instance so that the while loop never executes while only increasing E and decreasing
�. First, we can assume that i 2 S if ai(v̂) > ai(v̂0) and i 62 S if ai(v̂) < ai(v̂0), since that those
choices maximize E (and do not e↵ect �). We also assume that for all i, v̂i � v̂0i and therefore
� = maxi{v̂i/v̂0i}. If this is violated for i 2 S, then raising v̂i to v̂0i cannot decrease E (it can only
increase

P
s2S as(v̂)) and cannot increase �. Similarly, if the assumption violated for i 62 S, then

lowering v̂0i to v̂i cannot decrease E (it can only decrease
P

s2S as(v̂0)) and cannot increase �.

Now, suppose there exists some i 2 S such that k·g(v̂i)Pn
t=s g(v̂t)

> 1. Then we can reduce v̂i so that
k·g(v̂i)Pn
t=s g(v̂t)

= 1 since this doesn’t change E but potentially decreases �. Finally, suppose there exists

some i 2 S such that
k·g(v̂0i)Pn
t=s g(v̂

0
t)

> 1. Then consider lowering v̂0i so that
k·g(v̂0i)Pn
t=s g(v̂

0
t)

= 1 and then

scaling v̂00 so that v̂0i has its original value. This does not change E and potentially decreases �.
Therefore, we’ve successfully reduced to an instance in which the while loop never executes.

We now assume without loss of generality that the while loop never executes. The remaining
argument follows closely from [5].
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Define ↵ :=
P

s2S g(v̂s) and � :=
P

s 62S g(v̂s), and define ↵0 and �0 analogously. Note now that
the while loop never executes, we have that for all i, ai(v̂) = g(v̂i)/

Pn
i=1 g(v̂s), and similarly for

ai(v̂0). Therefore we can write

E =
↵

↵+ �
� ↵0

↵0 + �0 = 1� �

↵+ �
� ↵0

↵0 + �0 .

Let R↵ := ↵/↵0 and R� := �0/�. Note that R↵  g(�) because for any s 2 S, v̂s/v̂0s  � so
g(v̂s)/g(v̂0s)  g(�). Similarly, R�  g(�). Observe also that our expression for E can be upper
bounded by the case that these inequalities for R↵ and R� are tight.

E  1� ↵ · g(�)
↵ · g(�) + �0 �

↵

↵+ � · g(�) =
↵�0(g(�)2 � 1)

(↵+ �0g(�))(g(�)↵+ �0)
=

↵�0(g(�)2 � 1)

g(�)↵2 + g(�)�02 + ↵�0(g(�)2 + 1)

 ↵�0(g(�)2 � 1)

2g(�)↵�0 + ↵�0(g(�)2 + 1)
=

g(�)2 � 1

2g(�) + g(�)2 + 1
=

g(�)� 1

g(�) + 1

Finally, we observe that g(�)�1
g(�)+1  f`(�), as desired:

E  �` � 1

�` + 1
= 1� 2(�` + 1)�1  1� 2(�` + �`)�1 = 1� ��`  1� ��2` = f`(�)

Theorem 6.4. The Generalized PA mechanism with parameter ` achieves a�
n�k
n (n� k)�1/` + 1/n

�
-approximation to the optimal social welfare for any instance with n

advertisers and k slots.

Proof. First, we consider the social welfare attained by the Generalized PA mechanism. Since

�k+1 = 0 and p(0)i = ~0,

SW (Alg) =
nX

i=1

kX

j=1

↵ivi�jMij =
nX

i=1

kX

j=1

v̂i�j
h
p(j)i � p(j�1)

i

i

=
nX

i=1

kX

j=1

v̂i(�j � �j+1)p
(j)
i =

kX

j=1

(�j � �j+1)

 
nX

i=1

v̂ip
(j)
i

!

Lemma 6.5 proves the approximation ratio of the k-unit PA mechanism. Observe that this ratio

is decreasing in k. Therefore, for any j,
⇣Pn

i=1 v̂ip
(j)
i

⌘
is at least an ⌘ =

�
n�k
n (n� k)�1/` + 1/n

�

fraction of Unfair-Opt. Therefore, we have

SW (Alg) =
kX

j=1

(�j��j+1)

 
nX

i=1

v̂ia
(j)
i

!
� ⌘

kX

j=1

(�j��j+1) (v̂1 + · · ·+ v̂j) = ⌘
kX

j=1

v̂j�j = ⌘Unfair-Opt
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