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Abstract

We design fair sponsored search auctions that achieve a near-optimal tradeoff between fair-
ness and quality. Our work builds upon the model and auction design of Chawla and Jagadeesan
[4], who considered the special case of a single slot. We consider sponsored search settings with
multiple slots and the standard model of click through rates that are multiplicatively separa-
ble into an advertiser-specific component and a slot-specific component. When similar users
have similar advertiser-specific click through rates, our auctions achieve the same near-optimal
tradeoff between fairness and quality as in [4]. When similar users can have different advertiser-
specific preferences, we show that a preference-based fairness guarantee holds. Finally, we
provide a computationally efficient algorithm for computing payments for our auctions as well
as those in previous work, resolving another open direction from [4].

*This work was supported in part by NSF Award CCF-2008006.



1 Introduction

We study the design of ad auctions under a fairness constraint. Fairness in the context of sponsored
content has received considerable attention in recent years. It has been observed, for example, that
ads on platforms such as Facebook and Google disproportionately target certain demographics,
discriminating across users on the basis of race and gender. Furthermore, standard auction formats
such as highest-bids-win can lead to discrimination even when the input to these algorithms, namely
bids, CTRs, and relevance scores are themselves non-discriminatory.

Chawla et al. [5] initiated the study of optimal auction design under the constraint that the
auction does not add any unfairness beyond what is already present in bids, and proposed a
class of proportional allocation algorithms as a solution that achieves fairness while also providing
an approximation to the optimal social welfare. In a followup work, Chawla and Jagadeesan
[4] designed a class of inverse proportional allocation algorithms and showed that this class of
mechanisms achieves an optimal tradeoff between social welfare and fairness. Both of these works
focused on the simple case of a single item auction and left open the problem of designing a fair
and efficient multi-slot position auction.

In this paper we extend the design of fair auctions from the single item setting to arbitrary
position auction settings. We show that both the proportional allocation and inverse proportional
allocation algorithms can be adapted to the setting of a position auction while inheriting their single-
unit fairness properties as well as their approximation to social welfare. As in [5, 4] our auctions
provide fair solutions when the advertisers’ bids are themselves non-discriminatory. Auctions for
multi-slot settings must take into account both the advertisers’ preferences over users as captured
by per-click values, as well as the users’ preferences over advertisers as captured by click through
rates. We consider two different models for formalizing fairness in these settings. In the first, we
consider differences of allocation across users that are close both in terms of the values advertisers
assign to them as well as in terms of their own click through rates; we require that such users receive
similar allocations. In the second setting, we consider pairs of users that are similarly qualified as
per advertisers’ values, but have different preferences (i.e. CTRs). In this case, while the users may
receive different allocations, we require that allocations are suitably aligned with users’ preferences.
We elaborate on the details of these models below. Finally, we address another open question
in [5, 4] and show how to efficiently compute supporting prices for both proportional and inverse
proportional allocation.

Formalizing fairness across users. Consider two users Alice and Bob who are similar in most
respects but differ in a sensitive demographic such as gender or race. Individual fairness then posits
that Alice and Bob should see similar ad allocations. For example, it would be unfair to show more
employment ads to Bob and more online retail ads to Alice. One potential source of unfairness
in ad allocations is the use of discriminatory targeting by advertisers. However, empirical studies
as well as theoretical analysis shows that unfairness in allocations can persist even in the absence
of discriminatory targeting. The culprit is allocation algorithms that turn minor differences in
advertisers’ bids into large swings in allocation. Suppose, for example, that an employment agency
places a slightly higher value on Bob than on Alice whereas an online retail store places a slightly
higher value on Alice because of minor differences in the users’ profiles. Then the highest-bid-wins
auction would show entirely different ads to the two users.

To combat this problem, Chawla and Jagadeesan [4] formalize the notion of fairness in auctions



as a “value stability” constraint. Informally speaking, value stability requires that whenever two
users receive multiplicatively similar values from all advertisers (such as Alice and Bob in the
example above) they must receive close allocations (as measured in terms of the £, distance between
the respective probability distributions over the ad displayed). Previous work shows that while
optimal auctions do not satisfy value stability, there are simple auction formats that do. In the
Proportional Allocation (PA) mechanism, allocations are proportional to (some increasing function
of) the advertisers’ reported values. In the Inverse Proportional Allocation (IPA) mechanism, the
unallocated amounts, i.e., one minus the probability of allocation, are inversely proportional to
(some increasing function of) the advertisers’ reported values. In both mechanisms, the allocation
is a sufficiently smooth function of the advertisers’ values and therefore satisfies some form of value
stability. We mostly focus on the IPA mechanism in this paper as it provides better tradeoffs
between fairness and welfare.

Multi-slot extensions. As a simple extension of the single slot setting, consider a setting with
k slots, where each ad and each slot are equally likely to be clicked by the user, so the relative
placement of ads in slots does not matter. In this case, one straightforward way to to extend
the single-slot allocations is to simply multiply them by k; if this provides a valid allocation, the
fairness and welfare guarantees follow immediately from the single-slot case. The problem is that
some ads may receive a total allocation greater than 1 and simply capping allocations at 1 breaks
the fairness guarantee. We propose a different extension of the IPA. As in the single slot case, we
ensure that the unallocated amounts to advertisers are inversely proportional to (some function of)
the reported values, subject to the total allocation equaling k. The fairness a.k.a. value stability
of this extension follows easily from the single-slot special case. We further show that the social
welfare approximation of multi-slot IPA matches its approximation for the single-item case by
characterizing worst case instances for the approximation factor.

While the above discussion provides a complete story for the case of a multi-unit auction, in
the case of online advertising, we also need to take click through rates into account. Throughout
this paper, we assume that click through rates are multiplicatively separable into ad-specific and
slot-specific components. In other words, the click through rate of an ad 4 placed in slot j is given by
a; x 3; for some parameters a and j specific to each user that are known to the platform/auctioneer.
We further assume that all users weakly prefer earlier slots to later slots. Under these assumptions,
we present an extension of the IPA to the ad auction setting that exactly maintains the social
welfare guarantees of their single- and multi-unit counterparts. In particular, the social welfare
approximation is independent of the number of slots.

Fairness in the context of click through rates is tricky to define, however. As before, we
may assume that if two users are similarly qualified for all ads but differ in their sensitive attributes,
then the two users receive multiplicatively similar per-click values from all advertisers. However,
click through rates capture the users’ own preferences and similar users may not have similar click
through rates. What sort of fairness guarantees can we then provide?

We first show that differences in slot-specific CTRs do not impact fairness guarantees.! In
particular, two users with similar values and similar ad-specific CTRs « receive allocations that are
close in ¢, distance. In particular, the probability of assigning any particular slot to any particular

n fact, the allocations produced by our algorithms do not depend on the slot-specific CTRs, although the
payments made by advertisers necessarily must.



ad is additively close for the two users. In fact, this additive closeness holds also for the probability
that any particular ad is assigned to slot j or better for any j.

We then consider settings with similarly qualified users that have arbitrarily different ad-specific
and slot-specific CTRs. Observe that in order to achieve any reasonable guarantee for social welfare,
our allocation algorithms must take ad-specific CTRs into account. As a result, it is impossible to
provide a value-stability guarantee in this setting while also providing an approximation to social
welfare. Nevertheless, we show that a form of preference-aligned fairness holds. Specifically, let
Alice and Bob be two users with multiplicatively similar values and let o and o’ denote their ad-
specific CTR vectors. Then we show that although the two users’ allocations can be quite far from
each other, Alice receives a higher allocation than Bob for precisely the ads that she is more likely
to click on, and vice versa. Formally, if we sort the advertisers in decreasing order of the ratio
a;/a, then for every i, the probability that Alice gets to see an ad with index < i is at least as
large as Bob’s probability of seeing the same set of ads.

Computing payments. We conclude our study with a discussion of payments. It is easy to
observe that both generalized IPA and generalized PA have monotone allocation rules in the adver-
tisers’ reported values. However, computing the supporting prices is not straightforward and was
left open in previous work. Let x;(v;) denote the net allocation (expected probability of click) to
advertiser ¢ for a particular user, when the advertiser reports a per-click value of v;. We show that
x;(v;) is a piecewise rational function with polynomially many pieces and that it is possible to com-
pute the functional form of each piece in polynomial time. Computing payments using Myerson’s
lemma then boils down to computing polynomially many integrals over rational functions.

Organization of the paper. We present our extension of the IPA in Section 3 and prove its social
welfare and fairness guarantees for the setting of similarly qualified users with similar preferences.
In Section 4 we discuss fairness for users that are similarly qualified but have different preferences.
Section 5 presents our algorithm for computing payments. We extend our results to the PA in
Section 6. Most proofs are deferred to the appendix or removed due to space limitations. 2

Related Work

Journalism and empirical work have revealed the myriad ways in which existing ad auction systems
lead to unfairness and discrimination [2, 10, 11, 12, 14]. One approach to addressing these issues
develops advertiser strategies for bidding in existing auction formats while ensuring statistical parity
between groups [9, 15].

More related to our approach is theoretical work on designing auctions and, more generally,
algorithms that guarantee fairness properties. These fairness properties typically differ in two
dimensions: 1) whether they apply to individuals or only to groups as a whole, and 2) whether
they enforce fairness by similarity of treatment or outcome, satisfaction of preferences (e.g., in the
form of envy-freeness), or something bridging the two.

These notions of fairness grew out of the fair classification literature, where Dwork et al. [7]
were the first to propose an individual fairness notion requiring agents who are similar under
some task-specific metric to receive similar classifications. Dwork and Ilvento investigate in [6]

“For the full version, visit https://arxiv.org/abs/2204.04136.



whether compositions of such classification algorithms that are fair in isolation maintain their
fairness properties.

Kim et al. [13] introduce individual preference-informed fairness by augmenting this notion of
individual fairness with envy-freeness, allowing the allocations of similar users to differ in accordance
with their preferences. Similarly, Zafar et al. in [18] develop notions of preference-informed group
fairness by allowing deviations from parity in treatment and impact if the deviations are envy-free.

Our work employs and expands upon a model of individual fairness in sponsored search first
developed by Chawla et al. [5] and based on the multi-category fairness work of Dwork and Ilvento
[6]. An alternate model, also based on [6], was presented by Watts [16], albeit in a Bayesian setting.
A main difference between our work and [16] is that we study the design of auctions that achieve
an optimal tradeoff between fairness and welfare, whereas [16] analyzes the fairness and welfare of
two specific mechanisms. Another relevant work is that of Essaidi and Weinberg [8] who study the
fairness-welfare tradeoff in a Bayesian setting. [8] draws a connection between individual fairness in
this context and multi-item auctions with an item symmetry constraint, giving simple mechanisms
that achieve a constant-approximation to the revenue-optimal fair mechanism.

There is also some recent work on group-fair ad auctions, such as [17], which shows that con-
straints on advertiser behavior which enforce group fairness notations can actually increase the
profit of the platform. In a Bayesian setting, [3] augments generalized second price auctions with
fair division schemes to achieve good social welfare guarantees while satisfying envy-freeness prop-
erties among advertiser groups.

As far as we know, ours is the first work addressing fairness specifically in the positional auctions
setting where different users have different click through rates.

2 Models and Definitions

We consider the following stylized model for online advertising auctions. Let U be the set of users,
n the number of advertisers, and k the number of slots. We use index u for users, i for advertisers
and j for slots. At each point in time, a user u € U arrives. Each advertiser ¢ € [n] bids a per-click
value v;* on that user. This is the value the advertiser receives if the user clicks on their ad. Let
CTR;; denote the click through rate of advertiser ¢ in slot j, that is, the probability that the user
U wﬂl click on the ad ¢ if it is placed in slot j.

A truthful auction decides which ads to display in each of the k slots. The auction receives the
vector v = (v},...,v}) as well as the click through rates CTR* and returns an allocation matrix
a(v) = [aijlien),jej) Where a;; denotes the probability that ad 4 is displayed in slot j 3 We omit the
superscript u whenever it is clear from the context that we are discussing a certain user.

Truthfulness. Given an allocation a(v) (where the user w is implicit), advertiser ¢ receives a net
allocation (expected number of clicks) of Z CTR{;a;; and a net expected value of v; - Z CTR} ;a4
from the allocation. To ensure truthfulness, there should exist a supporting pricing functlon pi(v)
for every advertiser 4 such that bidding truthfully maximizes the advertiser’s net expected utility.
For such a payment function to exist, it is sufficient and necessary that the allocation probability
> j CTR; ;aij is monotone non-decreasing in the per-click value v;. All of the mechanisms we discuss

¥We require 3, a;; = 1 for all j and >_;ai; <1 for all i. Every matrix a(-) satisfying these matching constraints
can be expressed as a distribution over deterministic assignments of ads to slots.



in this paper satisfy monotonicity. In Section 5 we discuss how to compute supporting payments
efficiently.

Separable click through rates. Throughout this paper we assume that the click through rates
CTR;fj are multiplicatively separable into an advertiser-specific component and a slot-specific com-
ponent. This is a standard model (see, for example, [1]).

Definition 2.1 (Separable Click Through Rates). Click through rates are separable if, for every
user u, there exists a advertiser dependent vector on, = (a1,...,an) and a slot dependent vector
Bu = (B1,...,Bk) in which ai,...,cn, >0 and 1> 1 > By > ... > B >0 such that CTR; = a;3;
for alli € [n] and j € [K].

Observe that in the separable model the value an advertiser ¢ obtains from slot j is a;/3;v;. Since
the slot specific components 3; are common to all advertisers, the relative values of advertisers are
given by a;v;. These relative values are important in the mechanisms we design. We call them the
“effective values” of the advertisers:

Definition 2.2 (Effective Value). The effective value of advertiser i is given by v; = viqy.

We call the above model of online advertising auctions with separable CTRs the Position
Auction Setting.

Prior-free design. As in previous works, the mechanisms we design and analyze in this paper
are prior-free, meaning that the allocation to a user does not depend on the distribution of users
or advertisers’ value vectors or the history of users already served. Besides the well-documented
benefits of prior-free mechanism design, in the context of fairness we get the added benefit that
fairness guarantees hold for all users that are served by the mechanism regardless of whether or
not the auctioneer’s model accounts for them.

Definition 2.3 (Scale-Free). A mechanism is scale-free if it has the property that multiplying the
input values by a uniform constant does not change the resulting allocation.

2.1 Social Welfare

The goal of this work, as in [4, 5], is to achieve a tradeoff between fairness and social welfare for
the mechanisms we design. The social welfare of an allocation a(v) is defined to be the sum of all
of the advertisers’ net expected values:

SW(a(v))= > vCTR!;a;;
i€[n],j€[k]

We compare this social welfare to the maximum achievable by any feasible allocation. When
click through rates are separable, the maximum social welfare is achieved by the allocation that
assigns advertisers to slots in decreasing order of ©¥;, the effective values. We call the allocation
sorted by effective values the UNFAIR-OPT and also use the same term to denote the social welfare
of this allocation.



Formally, if 7 is the order of advertisers where v, > 0, > ... > 0, , then the (unfair) optimal
social welfare is given by:

k
UNFAIR-OPT(v, o, B) = Z O Ur; B
j=1

Since it is generally impossible to achieve optimal social welfare and fairness simultaneously, we
look for mechanisms that guarantee our fairness notions while giving a good approximation to the
optimal social welfare.

Definition 2.4 (Social Welfare Approximation). We say mechanism A(-) achieves an n-approzimation
to social welfare forn < 1, if for all instances (v, a, B), we have SW (A(v, a, 3)) > n-UNFAIR-OPT(v, o, 3).

2.2 Fairness

[4] formalized fairness in ad auctions as a value stability condition based on the notion of individual
fairness. Individual fairness requires that the auction assign similar allocations to similar users. [4]
defined similarity between two users on the basis of closeness between the value vectors assigned to
them by the advertisers. Informally speaking, if two users receive similar values from all advertisers,
then they should also receive similar allocations. In order for the definition to be scale-free with
respect to values, similarity between values is defined in multiplicative terms.

In the context of a single item auction, allocations are probability vectors. Similarity in al-
locations is therefore defined based on some notion of distance between probability vectors. [4]
formalized similarity in terms of the ¢, distance between the probability vectors whereas [5] used
total variation or ¢; distance. We state the value stability definition from [4] below.

Definition 2.5 (Definition 2.1 from [4], Value Stability). An allocation mechanism a(-) is value
stable with respect to function f : [1,00] — [0, 1] if the following condition is satisfied for every pair
of value vectors v and v':

/
2;(v) — a;(v")| < f(X) for alli € [n], where A = max (max {Uj, vl}) .
i€[n] v; Y4

In this definition, the function f, called the value stability constraint, governs the strength of
the value stability condition. We assume f to be non-decreasing, with f(0) = 0 and f(co0) = 1.
Following [4], we focus on the family of constraints fy(\) = 1 — A~2¢. [4] argue that this family of
stability constraints captures the entire spectrum of possible fairness conditions in the context of
allocation algorithms.

In order to extend these fairness definitions to the position auctions setting, we need to extend
the notion of closeness in allocations to multi-dimensional allocation matrices M as well as extend
the notion of closeness in values to click through rates.

Let us consider the latter issue first. A straightforward manner of extending closeness over value
vectors to the separable setting is to require that two similar users are assigned similar values, as well
as have similar click through rates. But this notion of closeness is too restrictive. Values capture
how advertisers perceive users as potential customers; whereas click through rates capture how
users perceive the relevance of ads to their needs and how users behave in perusing ads on a search
page. Two users that are similarly qualified for a set of ads may nevertheless exhibit very different
behavior in responding to ads on a search page. Ideally the fairness guarantees an allocation



algorithm provides should hinge only on the closeness between values v; and not on the closeness
between click through rates CTR; ;. However, in order to obtain good social welfare, allocations
necessarily need to depend on the advertiser specific click through rates a;;. We accordingly define
closeness between users in terms of their effective values o;v; (while ignoring dissimilarity in slot
specific CTRs, ). In Section 4 we extend our fairness definitions and guarantees to settings where
closeness is defined only in terms of the values v;, ignoring dissimilarity in « and f.

Let us now consider closeness over probability matrices. We consider three notions. The first
is oo distance, the maximum difference of allocations in any one entry (7, j) of the corresponding
matrices.

Definition 2.6 (Value Stability for Position Auctions). An allocation mechanism A(-) is value stable
with respect to function f : [1,00] — [0, 1] if the following condition is satisfied for every set of value
and CTR vectors v, v, a, o and B3:

v, alv!
|Mij — M ;| < 2fi(X) for alli € [n],j € [k] where X is defined as max (max{awl Qil })

i€[n] vl oy
and M = A(v,«, 8) and M' = A(v', &/, B).

Suppose, as an example, for a particular advertiser 7, user v has an allocation of a = (.1,.1,.1,.1).
Consider two possible allocation vectors for some v close to w: o’ = (.15,.15,.15,.15) and o” =
(.15,.05,.15,.05). In some sense, allocation a’ is much more unfair than a” because in @’ the entry-
wise differences from a compound while in a” they offset each other. Weak value stability cannot
distinguish these two cases because it is concerned only with the absolute differences. Our next
definition, ordered value stability is intended to allow a” but not a’.

To do this, we bound the absolute differences in the total allocation of an advertiser across all
columns, weighted by a vector h; ;. This vector represents the utility the first user receives from
seeing advertisement ¢ in slot j. Since we assume the slots are in decreasing order of salience, this
should be weakly decreasing in j.

Definition 2.7 (Ordered Value Stability for Position Auctions). An allocation mechanism A(-) is
ordered value stable with respect to function f : [1,00] — [0, 1] if the following condition is satisfied
for every set of value and CTR vectors v, v', o, o and 3, as well as for any advertiser i and any
decreasing vector h; with 1 > h;1 > ... > h;j > 0:

b v o)
Zh@j (M” — M{j) < fe(X) where X\ is defined as max (max{ s Z})
j=1

i€[n]
where M = A(v,«, 8) and M' = A(v',d/, B).

The previous two definitions are concerned only with a single advertiser. In some instances,
however, there are meaningful subsets of advertisers and bounding the differences of the allocations
each advertiser individually may not be sufficient to ensure fairness overall. For example, if there
are several different ads giving information about registering to vote, the total volume of voter
registration ads a user sees is more important from a fairness perspective than the amount they see
any particular voter registration ad. Therefore, the last notion we consider is a combination of ¢;
and £, distance: we consider, for any subset of advertisers, the total variation distance between the
allocations of these advertisers to one slot, and bound the maximum over all slots of this distance.



Definition 2.8 (Total Variation Value Stability for Position Auctions). A mechanism A(-) with
satisfies total variation value stability with respect to a function f :[1,00] — [0,1] if the following
condition is satisfied for every set of value and CTR vectors v, v', a, o and 3, as well as every
subset of advertisers S C [n] and for every column j:

v Al
Z‘A(@)SJ — ZA@)SJ < f(X) where X is defined as max <maX {afvf, azvz})

i€[n]

and where M = A(v,«, B) and M' = AV, B).

3 Inverse Proportional Allocation

In this section, we present a generalization of the mechanism first introduced in [4] as IPA to the
position auction setting. We show that the generalization retains a constant approximation to
the optimal social welfare and an appropriate generalization of the value stability condition. In
Section 3.1 we describe the generalization of the mechanism from k& = 1 to general k. In Section 3.2
we show that two different value stability conditions hold and in Section 3.3 we show that the exact
same guarantee in [4] holds for the generalization as well. Some of the proofs in this section are
deferred to Appendix A.

3.1 Generalized IPA

In [4], IPA was presented as a mechanism for the single item auction. An interpretation of this
mechanism is as follows: start with an infeasible allocation of 1 unit to each advertiser (for a total
allocation of n) and then gradually decrease the allocations until the total allocation reaches 1. The
rate of this decrease is determined by a function g of the reported values. The IPA with parameter
¢ uses g(x) = x~*. [4] also presents an algorithmic interpretation of the mechanism. The following
is the generalization of this mechanism to the position auctionsetting.

First, as a warm-up, we generalize IPA to a special case of the position auctionsetting where
B = 1. Our algorithm allocates a total of k units to the advertisers, with each advertiser receiving
an allocation a; € [0,1] such that ), a; = k.

We follow the same intuition as for the case of k = 1. The mechanism first allocates 1 to each
advertiser, then decreases the allocations until the total allocation reaches k rather than 1. See
Appendix A for an algorithmic interpretation of this mechanism. Note that setting k = 1 gives
the exact same mechanism as in [4]. Algorithm 3 is scale free and produces allocations that are
non-decreasing in k. Furthermore, the allocation to advertiser ¢, namely a;, is non-decreasing in ¥
and non-increasing in v_;.

We now extend the k-unit setting to the position auction setting. The resulting allocation
algorithm is called Generalized TPA. The algorithm assigns to every slot j a distribution over
advertisers given by the difference in the j-unit and j — 1-unit allocations produced by k-unit IPA.

Feasibility. We observe that the allocation produced by the generalized IPA algorithm is feasible.
That is, there exists a distribution over matchings from advertisers to slots, for which the total
probability that advertiser ¢ is allocated a slot is equal to M.



ALGORITHM 1: Generalized IPA

Input: Vector v of non-negative advertiser bids for user u; CTRs aq, -+, a, and By, -+, Bx; number
of slots k; function g : R=% — (0, o00] with g(0) = oo and lim, . g(x) = 0;

for h € [k] do
| Set al®) < the output of the IPA k-unit algorithm on input (v, a, h, g)

end

for j € [k] do
| Set M.; =al) —ali=1)

end

return M

Note that the generalized IPA algorithm is scale-free and independent of 3.

3.2 Fairness
We now prove the value stability of the Generalized IPA mechanism.

Theorem 3.1. The Generalized IPA mechanism with parameter £ > 0 and for any number of
advertisers n is value stable with respect to any function f satisfying f(N) > fe(A) = 1 — X72¢ for
all A € [1,00), as in Definition 2.6.

Our proof has two parts. First, give a bound on the deviation between allocations given by the
k-unit IPA mechanism to similar users. Then, we use the bound to show that Generalized IPA
achieves value stability.

Lemma 3.2. For the k-unit IPA mechanism with parameter £ run on any k and any bid vectors v
and v" with X = max;e ), {0:/0}, 0;/0i}, for all indices i, [a;(v) — a;i(v')] < fo(N).

1) e
Next, we show that Generalized IPA satisfies ordered value stability.
Theorem 3.3. Generalized IPA with parameter ¢ satisfies ordered value stability with respect to

fe(N). That is, for every set of value and CTR wvectors v, v', o, o' and B, as well as for any
advertiser © and any decreasing vector h with 1 > hy > ... > hi > 0:

u v o)
Z hj (Mij — Mj ;)| < fo(X) where X is defined as max <max{ —, ”})
j=1

i€[n]

where M = A(v,a, ) and M' = A(v', &, B3).

3.3 Social Welfare

We now show that Generalized ITPA achieves a good approximation to the optimal social welfare
UNFAIR-OPT.

Theorem 3.4. The IPA algorithm for the separable case, Algorithm 1, run with parameter £ > 0

and any number of advertisers n achieves a (1 1 -

W) -approximation the social welfare of the

unfair optimum.

To do so, we first show an approximation result for the special case of 5 = 1, the k—unit
algorithm.



Lemma 3.5. The IPA algorithm for the k—unit case, Algorithm 3, run with parameter £ and any
number of advertisers n achieves a (1 — %) -approzimation to the social welfare of the unfair
optimum.

We use Lemma 3.5 and extend definition of Generalized IPA allocation vector based on k—unit

vectors to show Theorem 3.4. The proof is deferred to Appendix A. The approximation factor is %

at £ =1 and as £ — oo, the approximation factor goes to 1.
Remark 3.6. The approzimation factor in Lemma 3.5 is tight for IPA mechanism.

Proof. Consider the following example. Fix a user u and let the bidding vector of the advertisers
be:

n—k
(1,...,1,6...,¢)
k
_ 2_16(n—k) %> _4—4(n—
where 1 > € = 5k+\/25k 1655(”_]2"*’6 A > (. Let £=1 and n > 2k. We get:
SW(ALG) = k(1— — =K ) k)e(1 = (n— k:);) UNFAIR-OPT = k
N (n—k)et+k (n—k)et+ k7 N
For the aforementioned value of €, we will have % = %. Note that this example fits the
maxima point we found in the proof of Lemma 3.5. O

4 Fairness for users with different preferences

So far we have assumed that similar users are similar in all aspects — the values advertisers assign
to them as well as the rates at which the users click on different ads. However, these two sets of
parameters are asymmetric. Values capture advertisers’ preferences over users whereas CTRs cap-
ture users’ preferences over advertisers. We will now distinguish between similarity in qualification
(i.e. values) from similarity in user preferences (i.e. CTR).

A myopic viewpoint might suggest that two users that are similarly qualified should be treated
similarly by the auction no matter their preferences. However, this is fundamentally at odds with
the objective of maximizing the social welfare* a.k.a. the collective value of the advertisers, as the
latter are contingent upon clicks. Consequently, the outcome of the auction cannot be completely
independent of user preferences and we look towards a notion of fairness that is appropriately
preference aligned.

To motivate our definitions, consider the following example. We have two users Alice and
Bob, two advertisers A and B, and a single slot to display an ad. The users look identical to the
advertisers: A places a value of $1 on a click from either user and B places a value of $10 from
either click. However the users behave differently when they view ads. Bob clicks both ads with
certainty. Alice clicks A’s ad with certainty but B’s ad with probability only 1%. The platform
should clearly display ad A for Alice and ad B for Bob. Although these outcomes are different,

4Social welfare is a misnomer in this context, as it does not take into account the benefit or value users derive
from viewing the ad.
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both users are happy: Bob is essentially indifferent between A and B, while Alice greatly prefers
A. In this case, any differences in allocation are aligned with user preferences.

Can we always expect this to be the case? Formally, consider a single slot auction with n
advertisers, and two users with identical value vectors v = v’. Let a and a’ denote their respective
allocation vectors. Can we ensure that any allocation mass that is moved between advertisers in a’
relative to a is moved from low CTR advertisers to high CTR advertisers?

Unfortunately, we cannot ensure this property while also maintaining a reasonable approxima-
tion for social welfare. To see this, consider the above example with Alice and Bob once again
and suppose that Bob’s CTR for advertiser B changes to 20%. In order to obtain a good social
welfare, the auction must continue to display ad B for Bob. However, now Bob gets to see much
more of ad B and much less of ad A than Alice even though he greatly prefers ad A to ad B. The
key observation here is that the allocation mass in B’s allocation shifts to an advertiser with high
relative CTR, when measured relative to the CTRs of Alice.

Motivated by this example, we propose the following new preference-aligned definition of fairness
for identically valued users. Underlying this definition is a relative ordering of advertisers for two
users u and v with advertiser specific CTR vectors a,, = (af,---,af) and ap, = (af,---,ab).
We will assume that advertisers are ordered in (weakly) decreasing order of the ratio o/, and
require that allocation mass for user v is shifted from advertisers that appear later in the ordering
to those that appear earlier in the ordering.

Definition 4.1 (Value Stability for Identically-Valued Users with Heterogeneous Preferences). An
allocation mechanism A(-) is value-stable for identical users with heterogeneous preferences if for
every pair of users with identical value vectors v; CTR wvectors o, o, 3, and B'; any ordering over
advertisers that is weakly decreasing in a/o; and for every advertiser i € [n] and slot j € [k]:

i i
ZZMt7S > Z ZMAS, where M = A(v,«, ) and M' = A(v,’, 3').

t=1 s=1 t=1 s=1

Similar users: The above definition extends in a straightforward manner to pairs of users that
are similarly rather than identically qualified, and again have different preferences over advertisers
as expressed through CTRs. Once again we require that allocation mass shifts from advertisers with
low relative CTR to those with higher relative CTR, but we allow for additive errors in allocation
that grow with the dissimilarity in the users’ values.

Definition 4.2 (Value Stability for Similarly-Valued Users with Heterogeneous Preferences). An
allocation mechanism A(-) is value-stable for users with heterogeneous preferences with respect to
function fo: [1,00] — [0,1] if for every pair of users with value vectors v and v'; CTR vectors a, o,
B, and B'; any ordering over advertisers that is weakly decreasing in o/a/; and for every advertiser
i € [n] and slot j € [k]:

(3

SN M =SS T MY —ife(N)

t=1 s=1 t=1 s=1
where M = A(v, @, 5), M/ = A@W',o/, §') and A = mas {max {5, 241,
1€n it

Comparing Definition 4.1 and Definition 4.2, note that if v = v’ then A = 1 and, as discussed
in [4], a proper f function has the property of f(1) = 0. Therefore, Definition 4.1 is exactly
Definition 4.2 in the special case of v = v'.
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4.1 Fairness of IPA and PA for heterogeneous users

We show that both the Generalized IPA and Generalized PA mechanisms satisfy Definition 4.1 and
more generally Definition 4.2.

To begin, we show that any mechanism for the k-unit case satisfying certain mild conditions
also satisfies Definition 4.1. Both k-unit IPA and k-unit PA satisfy these conditions and hence are
value-stable for identically qualified users with heterogeneous preferences.

Lemma 4.1. Let a(v) be a scale-free k-unit allocation algorithm such that a;(v) is weakly increasing
in v;. Suppose further that for all t # i, a;(v) is weakly decreasing in vi. Then a(v) satisfies
Definition 4.1.

Proof. Fix i and scale o/ so that a; = of. Since the advertisers are sorted, we now know that for
all t < i, ay > o and for all ¢ > i, oy < a.

We proceed by two cases and then use a transitivity argument to show the theorem holds in
general.
=dvforallt<i
< cdvforallt>i

Therefore, since the allocation a; is weakly decreasing in v, for all s # ¢, we have that for all
t <1, alav) > a(a’v). Hence, Yi_, ai(aw) > Si_, ay(a/v), as desired.

> /v forallt < i

Consider the case where for all ¢ < i, ay = aj. Then av

Now, consider the case where for all t > i, oy = «j. Then av .
=ca/vforallt>;

Therefore, since the allocation a; is weakly decreasing in v for all s # ¢, we have that for all ¢ > i,
a(aw) < a(a’v) and hence Y 7 1 ag(aw) < 30 ag(@'v). But 330 ag(av) =k =300, a(aw)
and likewise Z;Zl'at(o/v) = k=1~ at('v). Therefore, Y1, ar(av) < D77, ai(a’v) implies
oiogar(av) > > ai(a’v), as desired.

oy ift <
We now argue that the theorem holds in general. Let of := ¢ ~ . By the first

! of if t >
case, S at(aw) > S ai(a’v), and by the second case S°_ a;(a’v) > S°!_ a;(a’v). Hence,
Yoieqat(av) > >0 ar(a'v), as desired. O

Corollary 4.2. The k-unit IPA and k-unit PA mechanisms satisfy Definition 4.1.

Because our generalized mechanisms are defined in terms of telescoping differences of the k-unit
allocations, Theorem 4.3 follows directly from Corollary 4.2.

Theorem 4.3. The Generalized IPA and Generalized PA mechanisms satisfy Definition 4.1.

Next, we show Generalized IPA and Generalized PA are value-stable for similarly-valued users
with heterogeneous preferences. The only thing changing from Definition 4.1 to Definition 4.2
is that we need to keep track of small changes between the two allocations, which leads to the
following theorem. The proof is deferred to Appendix B.

Theorem 4.4. The Generalized IPA and Generalized PA mechanisms A(-) with parameter { are
value-stable for similarly-valued users with heterogeneous preferences.
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5 Computing payments

In this section we develop an algorithm for computing supporting payments for the generalized IPA
and generalized PA allocation rules. Our main observation is that the allocation functions of ITPA
and PA are piecewise rational functions with polynomially many pieces where each piece can be
computed in polynomial time. With these pieces in hand, and using Myerson’s lemma, computing
payments amounts to computing polynomially many integrals of rational functions.

We focus on the generalized IPA; the argument for generalized PA is similar. Formally, for a
fixed and implicit user u, and a fixed and implicit advertiser i, let x;(v) denote the net allocation
to the advertiser, a.k.a. the expected number of clicks the advertiser receives from the user. If the
user is assigned allocation M = A(v, v, 8) then we have z;(v) = >, M; jo;f3;. Let a9 denote the
cumulative allocation to the user in the first j slots as in the description of Algorithm 2 and recall

that M; ; = al(j) - al(j_l). Accordingly we get:

zi(v) = oy a? (B; — Bi11) (1)
j

In other words, x;(v) is a linear combination of the functions a,g] )(v).

We will now argue that for all 4, j, the function al(-j )(U), as defined in Algorithm 1, is piecewise
rational in v;. Consider the following equivalent formulation of Algorithm 1. Given the values
V1, , Uy, ad-specific CTRs aq, a9, -+ , ay, and decreasing function g, we find a parameter ¢ such

that

Zmin(17t‘9(ai'1}z‘/)) =n—j (2)

7//

The allocation agj) is then given by 1 — min(1,t - g(a;v;)).
Suppose without loss of generality that ¢ receives a non-zero allocation at value v; (otherwise
()

a;”’ is trivially piecewise rational at values < v;). We can then rewrite Equation (2) as:
t-glaw) + > min(1,t- glagvy)) =n—j (3)
i

Now, the expression ), £i min(1,tg(a;vy)) is independent of v; and piecewise linear in ¢ with
at most n pieces. Given the values v_; and CTRs a_;, we can efficiently compute the linear pieces
in this function. Substituting any particular linear piece with ¢ in the range [t1, 2] in Equation (3)
then gives us an equation of the following form with appropriate parameters z and y:

t-glaw) tat=y

leading to the solution

@y, -1— ). Yy f ) i—l ?/—33752 ifl y—$t1
(Uz) g<azvz) g(aivi) Nups or v; € Otig t > aig i .

a;

Observe that the RHS in the above equation is a rational function as the function g in the definition
of IPA is also rational.

13



Summarizing, we first compute the piecewise rational form of the function agj ) (v;) for all slots
j. Each of these functions has at most n pieces. We then use Equation (1) to express z;(v;) as a
piecewise rational function with at most nk pieces. Finally, we use Myerson’s lemma and compute

per-impression payments as
v

pi(vi) = vizi(vi) — / ri(2) dz.

z=0
6 Proportional Allocation

In this section, we present a generalization of the mechanism first introduced in [5] as Proportional
Allocation (PA) to the position auction setting. We show that the generalization retains the same
approximation ratio to the optimal social welfare and an appropriate generalization of the total
variation value stability condition. This is a stronger fairness guarantee than that of Generalized
IPA, but comes at the cost of a weaker approximation to the optimal social welfare. For a detailed
discussion of the trade-offs between the single-unit versions these methods, see [4]. Some of the
proofs in this section are deferred to Appendix C.

6.1 Generalized PA

In contrast to IPA, PA can be thought of as initially assigning each advertiser an allocation of 0
and then increasing the allocations in proportion to (some function of) the bid amounts until the
total allocation reaches 1. [5] analyzes this mechanism for the single unit case. In particular, they
prove value stability with respect to the total variation distance on the allocations, rather than with
respect to the £*° distance as with IPA. However, in exchange, the social welfare approximation
achieved by PA degrades as the number of advertisers increases.

Just like the previous section, we start with a warm-up case in which we consider a special
case of position auctionwhere 8 = 1. For this case, we will attempt to allocate proportionally,

assigning k - <Z (1) _ 4 each bidder i. If this allocation is more than 1 for any advertiser, we cap
Zt Q(Ut)

their allocation at 1 and divide the additional mass proportionally among the remaining advertisers.
See Algorithm 4 in Appendix C for an algorithmic interpretation of this mechanism. Note that
the function g in this mechanism is different than the one in Section 3, as it is a continuous,
super-additive and increasing function.

The extension of this algorithm to the position auctioncase is similar to the extension we saw
in Section 3 for IPA, and works as follows:

ALGORITHM 2: Generalized PA

Input: Vector v of non-negative advertiser bids for user u; CTRs a1, -+ ,a, and S, - -, Bx; number
of slots k; function g : RZ% — [0, 0o] with g a continuous, super-additive, increasing function and
9(0) = 0;

for h € [k] do
| Set p(™ <« the output of the PA k-unit algorithm on input (v, av, h, g)

end

for j € [k] do
| Set P_j = pl) —pl—1)

end

return P

14



Observe that Generalized PA is scale-free, independent of 3, and produces feasible allocations
by essentially the same argument as in 77.

6.2 Fairness

First, we prove the fairness guarantees of our mechanism. We begin by showing the total variation
value stability of PA, which as we’ve discussed is the main advantage of PA over IPA.

Theorem 6.1. The Generalized PA mechanism with parameter g(z) = x* satisfies definition 2.8
Total Variation Value Stability for Position Auctions with respect to fo(X\). That is, for all pairs of
effective value vectors 0,0’ subsets of advertisers S C [n], and slots j,

D P (o) = > Py(i)

SES sES

< 2fe(N)

The proof of Theorem 6.1 uses the following key lemma, which shows a similar property holds
for k-unit PA mechanism.

Lemma 6.2. The k-unit PA mechanism with parameter g(x) = x* satisfies the property that, for
all pairs of effective value vectors v,0" and subsets of advertisers S C [n],

D as(d) =) as(®)

seS seSs

No—1
<l "~ < .
<3y S

We now show that Generalized PA also satisfies the same ordered value stability property as
IPA. The proof is essentially identical as the proof of Theorem 3.3 except in that it uses the total
variation value stability of PA instead the value stability of IPA. For the full proof, see Appendix C.

Theorem 6.3. Generalized PA with parameter £ satisfies ordered value stability with respect to
fe(N). That is, for every set of value and CTR vectors v, v/, a, o and B, as well as for any
advertiser i and any decreasing vector h with 1 > hy > ... > hp > 0:

b v !
Z hj (Pij — Pi”j) < fe(X) where X is defined as max (max{omjZ Qil })
j=1

i€[n] alvl’ oy
where P = A(v,a, B) and P' = AV, d, B).

6.3 Social Welfare

Finally, we give our guarantee on the social welfare approximation ratio achieved by Generalized
PA relative to UNFAIR-OPT. The proof relies on a lemma showing the same approximation result

for the special case of 5 =1, k-unit PA.
Theorem 6.4. The Generalized PA mechanism with parameter { achieves a ("T_k(n — k)4 1/n)-

approximation to the optimal social welfare for any instance with n advertisers and k slots.

Lemma 6.5. The k-unit PA subroutine with parameter { achieves a (”T_k(n—k)_l/ejL 1/n)-
approximation to the optimal social welfare for any instance with n advertisers and k slots.
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A Deferred Proofs from Section 3

Below is the algorithmic description of position auctionin the case of E =1

ALGORITHM 3: k-unit TPA
Input: Vector v of non-negative advertiser bids for user u; ad-specific CTRs ay, - - - , a,; number of
slots k; function g : R=% — (0, o] with ¢(0) = 0o and limg_e g(z) = 0;
Initialization: Determine effective values, ¥; = v;«; for all 7;
WLOG assume 01 > ... > Op;
if £k =0 then
_)
‘ return a(v) = 0
end
if 91 <0 then
‘ Set a; = % for all i € [n], return a(v);
end
Set s <— max{i € [n] : 0; > 0};
while (s — k)g(i,) > Y5, g(6;) do
‘ s+ s—1;
end
For ¢ > s: set a; = 0;

Forigssetaizl—(s—k)%;
t=1 t

return a(v)

Theorem 3.3. Generalized IPA with parameter £ satisfies ordered value stability with respect
to fe(M\). That is, for every set of value and CTR vectors v, v/, o, o/ and 3, as well as for any
advertiser ¢ and any decreasing vector h with 1 > hy > ... > h; > O:

k
Z hj (M;j — M{j) < fe(X) where X is defined as max (max { aivi Qg })

icn] vl oy
where M = A(v,a, 8) and M’ = A(v',d/, B).

Proof. Fix some vectors v,v’, o, o/, and 3, and the corresponding allocation matrices M and M’.
Consider some advertiser 5. We begin by using the definition Generalized IPA and then rearranging
terms. Note that we define hgy1 := 0 for notational simplicity.

k k
>y (= M) = 300 (e =) = 6 7))
j=1 j=1
k ) ) k
=13 (Y —al V) = mial —a ™)) = |3 (a7 —af V) (s — i)
j=1 j=1

Now, observe that because hy < 1 and the coefficients (h; — hj11) telescope, the sum of these
coefficients is at most 1. Since the expression is a weighted sum over columns of the differences in
allocation at that column, the expression is bounded by the maximum difference in any column.
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But because Generalized IPA satisfies value stability (by Lemma 3.2), this is bounded by f¢()\), as
desired.

k

>y (g = ML) =32 (3 =) )| = e (57 —o) | < et

: ]:1
0

Theorem 3.4. The IPA algorithm for the separable case, Algorithm 1, run with parameter ¢ > 0
and any number of advertisers n achieves a (1 — ﬁ)—approxima‘cion the social welfare of the

unfair optimum.

Proof. Suppose the k-unit IPA mechanism attains an 7 approximation to the optimal social welfare
in the k-unit setting. Then the Generalized IPA mechanism attains the same approximation factor
7 in the position auctionwhen run with the k-unit IPAmechanism as a subroutine. In order to
prove this, we consider the social welfare attained by the Generalized IPA mechanism. Since

Br+1 = 0 and a(o) = ()

ALG ZzalvlﬁjMZ] = ZZU’L/BJ |: a,; i )] = ZZ@Z(/B ﬁ]-ﬁ-l) (J)
i=1 j=1 i=1 j=1 i=1 j=1
Since for all j € [k], >, tia; ) > n(v1 + -+ 4 0;), then:
k k
SW(ALG) = Z(ﬁjfﬁjﬂ) (Z” a ”) > 772 —Bjt1) (01 4+ +05) = an;jﬁj = 1 UNFAIR-OPT
j=1 i=1 j=1

Finally, we know by Lemma 3.5 that the k-unit IPA mechanism is an n = (1 — ﬁ)—approx

-imation to the optimal k-unit social welfare. Replacing n by (1 - #) concludes the proof. [

B Deferred Proofs from Section 4

Theorem 4.4 The Generalized IPA and Generalized PA mechanisms A(-) with parameter ¢ are
value-stable for similar users with heterogeneous preferences.

Proof. Fix users with user-dependent CTR vectors o and o/ and value vectors v and v'. Also fix
slot-dependent CTR vector 3, advertiser ¢, and column j. Let M = A(v,a, 8) and M’ = A(v, o/, B),

where a; = >>1_) My, and aj = »_7_, M. Finally, fix a permutation 7 on advertisers for which
S>>0
aﬂ'l - - ™

Since A(-) is envy-free, we know that St S77_ st(av) > St S My (/v). Therefore,
it suffices to show S Zt 1 Mi(a/v) > S Z Mg (a/v") —if(N). Con81der the difference

ZS 1 Zt 1 My (o) — 25:1 thl st(a’v). Since thl Mg (av) = ag(av), we can simplify this

to:
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= Z —al(a'v)

Zag(o/v/) —Zag(o/v) < Zag( Za] a'v)
s=1 s=1 s=1 =
; .
< S l) o] < 00 = 0
s=1 s=1

Simply combining this with the previous inequality gives the desired result. O

C Deferred Proofs from Section 6

Below is the algorithmic description of position auctionin the case of E =1:

ALGORITHM 4: k-unit PA

Input: Vector v of non-negative advertiser bids for user u; ad-specific CTRs ag, - - - , a,; number of
slots k; function g : R20 [0, 0] with g a continuous, super-additive, increasing function and
9(0) =0;

Initialization: Determine effective values, WLOG assume 01 > ... > Op;

if kK =0 then

%
‘ return p(v) = 0
end

if 97 <0 then
‘ Set p; = £ for all i € [n], return p(v);
end
Set s « max{i € [n] : O; > 0};
Set r =1;
while %90 > 1 do
tgrg(f)t)
pr=1;
r<—r+1;
end
For i > r: set p; = £=r)-9(%).
tgrg(f)t)

return p(v);

Theorem 6.3. Generalized PA with parameter ¢ satisfies ordered value stability with respect to
fe(N\). That is, for every set of value and CTR vectors v, v/, a, &' and 3, as well as for any
advertiser ¢ and any decreasing vector h with 1 > hy > ... > hi > O:

k R,
Z — P/;)| < fe(X) where X is defined as max (max { ajvj, O‘Z‘vz' })

i€[n]

where P = A(v,, 8) and P' = A(v',d/, B).
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Proof. Fix some vectors v,v’,a,’, and 3, and the corresponding allocation matrices P and P’.
Consider some advertiser i. We begin by using the definition of Generalized PA and then rearranging
terms. Note that we define hgy1 := 0 for notational simplicity.

k

Z P,y - P.y) Z (0P @) = @) - @) - V@)

=[S (6P @) =70 @) = by @) =PV | = | Sh (PP @) = 2V @) (g = By
Now, observe that because hy < 1 and the coefficients (h; — hj1) telescope, the sum of these co-
efficients is at most 1. Since the expression is a weighted sum over columns of the differences in
allocation at that column, the expression is bounded by the maximum difference in any column.

But because Generalized PA satisfies total variation value stability (by Lemma 6.2), this is bounded

by f¢(\) for all subsets of advertisers, including the singleton ¢, as desired.

J=1

S (R = P2)| = 32 (860) —6) O~ )| = ]m;mx (pE”(@)—pEj‘”(ﬁ'))‘ < fe()
j=1

Lemma 6.2 The k-unit PA mechanism with parameter g(z) = 2¢ satisfies the property that, for
all pairs of effective value vectors 0, 9" and subsets of advertisers S C [n],

as(0) Zas(f))

seS seS

Mo—1
<2 "< .
_/\hrl_ftz()\)

Proof. Fix some pairs of effective value vectors 0,?" and a subset of advertisers S C [n]. Define E
to be Y gas(0) — > cgas(?') and assume without loss of generality that E > 0. We want to
upper bound E by f;()).

First, we reduce the general case to that where the while loop never executes. That is, we modify
the given instance so that the while loop never executes while only increasing E and decreasing
A. First, we can assume that ¢ € S if a;(0) > a;(?') and i € S if a;(0) < a;(?'), since that those
choices maximize E (and do not effect A\). We also assume that for all i, v; > 17; and therefore
A = max;{0;/0}}. If this is violated for i € S, then raising o; to ¥} cannot decrease E (it can only
increase ) g as(0)) and cannot increase A. Similarly, if the assumption violated for i ¢ .S, then
lowering ©; to 0; cannot decrease E (it can only decrease ) ¢ as(0’)) and cannot increase .

Now, suppose there exists some ¢ € S such that Ek g (”Z() y > 1. Then we can reduce v; so that
t=s9

% = 1 since this doesn’t change E but potentially decreases A. Finally, suppose there exists
t=s
k-g(07)

some 7 € S such that NG (U

scaling 9" so that ¢ has its original value. This does not change E and potentially decreases .
Therefore, we’'ve successfully reduced to an instance in which the while loop never executes.

We now assume without loss of generality that the while loop never executes. The remaining
argument follows closely from [5].

. . ~f k-g(0})
y > 1. Then consider lowering 0; so that ST = = 1 and then
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Define o := 3 g g(0s) and 8 := > 45 g(0s), and define o’ and 5" analogously. Note now that
the while loop never executes, we have that for all ¢, a;(0) = g(0;)/>_1, g(0s), and similarly for
a;(0"). Therefore we can write

E:a_o/zl_ﬁ_o/.
a+pB o+p a+pB o+p

Let Ry == a/a’ and Rg = f'/5. Note that R, < g(\) because for any s € S, 05/0, < X so
9(0s)/g(v) < g(A). Similarly, Rz < g(X). Observe also that our expression for E can be upper
bounded by the case that these inequalities for R, and Rg are tight.

pe1_ 29N a _ af'(g(N)* —1) _ af'(g(N)? - 1)
T agHB a+ B9 (@t BgN)gNa+ ) g(N)a? +g(A)B? + af (g(N)? +1)
af'(g(N)? —1) g -1 gy -t

29N +af(g(N)? +1) 29N +9(N)2+1 g(A) +1

Finally, we observe that E ; 1 S fe(N), as desired:

=12\ 4D P<1—2f M) =12t <122 = f(0)

Theorem 6.4. The Generalized PA mechanism with parameter ¢ achieves a
(”Tfk(n — k)" V1) n)—approximation to the optimal social welfare for any instance with n
advertisers and k slots.

Proof. First, we consider the social welfare attained by the Generalized PA mechanism. Since
By =0and p” =0,

W (ALG) Zza i3 M, ZZ%BJ [ Pi Z] 1)}

n

=1 j=1 =1 j=1

n k k n

Z Z 0i(B; — Bj+1)p (j) = Z(ﬁj — Bj+1) (Z ﬁwﬁ”)
=1 j=1 j=1 i=1

Lemma 6.5 proves the approximation ratio of the k-unit PA mechanism. Observe that this ratio
is decreasing in k. Therefore, for any 7, (Z?:l ingj)> is at least an n = (”T_k(n — k)4 l/n)
fraction of UNFAIR-OPT. Therefore, we have

k

k
SW(ALG) = Z(ﬁj*ﬁj+1) (ZU a ])> > 772 B]+1 01+ -+ @j) = UZQA}]'BJ' = HUNFAIR—OPT

i=1 j=1

O
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