
Towards a Framework for Comparing the
Complexity of Robotic Tasks

Michelle Ho⋆, Alec Farid⋆, and Anirudha Majumdar

Dept. of Mechanical and Aerospace Engineering, Princeton University
{mtho, afarid, ani.majumdar}@princeton.edu

Abstract. We are motivated by the problem of comparing the com-
plexity of one robotic task relative to another. To this end, we define a
notion of reduction that formalizes the following intuition: Task 1 reduces
to Task 2 if we can efficiently transform any policy that solves Task 2 into
a policy that solves Task 1. We further define a quantitative measure of
the relative complexity between any two tasks for a given robot. We prove
useful properties of our notion of reduction (e.g., reflexivity, transitivity,
and antisymmetry) and relative complexity measure (e.g., nonnegativity
and monotonicity). In addition, we propose practical algorithms for esti-
mating the relative complexity measure. We illustrate our framework for
comparing robotic tasks using (i) examples where one can analytically
establish reductions, and (ii) reinforcement learning examples where the
proposed algorithm can estimate the relative complexity between tasks.

Keywords: reduction, complexity, reinforcement learning

1 Introduction
Consider the following pairs of robotic tasks: (i) an autonomous truck driving
on one side of the road vs. the other side, (ii) an autonomous car driving in one
city vs. another, and (iii) a cartpole balancing the pole upright vs. downward.
Intuitively, the two tasks in (i) are “as hard as each other”, while one task in
(iii) (i.e., balancing upright) is more challenging than the other (i.e., balancing
downward). The tasks in (ii) may be challenging in different ways and thus
may not admit a straightforward ordering. How can we formally compare the
complexity of each pair of tasks?

Despite decades of algorithmic advancements in robotics, we currently lack
precise mathematical foundations for answering such questions. In contrast, com-
putational complexity theory [4] provides a unifying framework and set of tools
for establishing and comparing the difficulty of all computational problems. It
also guides practitioners by setting expectations for the kinds of algorithms that
will solve a given problem. For example, a problem that is as hard as 3-SAT will
not admit a polynomial-time solution (unless P = NP); thus, a practitioner is
motivated to find approximation algorithms for such a problem. We currently
lack such a unifying theory for understanding the complexity of robotic tasks.

Statement of Contributions. Motivated by this challenge, we take a step
towards developing a precise framework for establishing the relative complexity
of robotic tasks. To this end, we make five specific contributions.
⋆ Equal contribution.

2 M. Ho, A. Farid, and A. Majumdar

– Reductions between tasks. Our key insight is to define a notion of re-
duction [4, Ch. 2] between robotic tasks (Definition 4). This definition for-
malizes the following intuition: Task 1 reduces to Task 2 if we can transform
any policy that solves Task 2 into a policy that solves Task 1. The reduction
is “easy” if the transformation is computationally efficient (e.g., polynomial-
time). Crucially, this notion of reduction captures the relative complexity
of tasks in terms of the complexity of online task execution (i.e., how chal-
lenging the two tasks are from the perspective of the robot rather than the
robot’s software designer).

– Quantifying relative complexity. We propose a quantitative measure
(that outputs values in the range [0, 1]) for comparing the complexity of
one robotic task relative to another (Definition 7). One can think of this
measure as a “smoothed” version of our notion of reduction, where this no-
tion of relative complexity can be defined for arbitrary tasks (in contrast
to the definition of reduction, which captures a strict and binary notion of
relative complexity).

– Properties of reduction and relative complexity. We prove basic prop-
erties of our notion of reduction between tasks (e.g., reflexivity, transitivity,
and antisymmetry in Proposition 1) and the relative complexity measure
(e.g., non-negativity and monotonicity in Proposition 5).

– Algorithm. We propose a practical algorithm based on adversarial training
for estimating the relative complexity measure for robotic tasks in reinforce-
ment learning contexts (Algorithm 1).

– Examples. We demonstrate our framework using (i) illustrative examples
where one can analytically establish reductions (Sec. 5), and (ii) numeri-
cal examples based on reinforcement learning problems where we apply our
proposed algorithm for estimating relative complexity (Sec. 8).

2 Related Work
Complexity and robotics. The study of complexity theoretic questions in
robotics has a long history. Early work [28, 9] established the PSPACE-complete-
ness of the general motion planning problem. Other results include PSPACE-
hardness [20, 19, 21, 11, 32] and NP-hardness [26, 6, 7, 18, 17] of various planning
problems. Complexity results for systems with nontrivial (e.g., nonlinear or un-
certain) dynamics have also been explored in control theory [5, 3]. The problem
we consider in this paper is fundamentally different from the ones above. Specif-
ically, the model of computation in the problems mentioned above assumes that
the Turing machine is provided with a complete encoding of the problem on its
tape at the very outset (e.g., rational numbers encoding the linear inequalities
that define polytopic obstacles in the environment); the algorithm’s task is then
to perform a given computation on this fixed encoding. In contrast, we are in-
terested in the computational resources required by a robot as it is performing
a given task. In this model, the robot’s embodiment is of crucial importance;
instead of a fixed encoding of the input, the robot’s sensors provide information
incrementally and interactively based on its control actions and the environment.

Reductions for comparing robots and sensors. The pioneering work
in [12] proposed a formalism for measuring the intrinsic complexity of robotic

Comparing the Complexity of Robotic Tasks 3

tasks in terms of information invariants and a notion of reduction for comparing
different robots. The work presented in [27] has a similar goal, but employs the
notion of information spaces [22, Chapter 11] in order to handle tasks where
sensors only provide partial state information. Notions of reductions for com-
paring the power of different sensors have also been developed [23, 13]. While
our work is inspired by the frameworks above and also uses the idea of reduc-
tions, our focus is distinct. In particular, our goal is to compare different robotic
tasks (instead of different robots). In addition, we propose a measure of relative
complexity between two tasks that goes beyond the strict notion of reduction
and allows one to quantify how complex one task is with respect to another in
terms of online computational resources required by the robot.

Reductions and task complexity in learning. Our definition of reduc-
tion between tasks formally captures the intuition that Task 2 is at least as
complex as Task 1 if any solution (in the form of a control policy) for Task 2 can
be transformed into a solution for Task 1. The idea of transforming solutions for
one task into solutions for another has also been exploited for tackling problems
in machine learning. In particular, [10, 25] propose approaches for composing
previously-learned “modules” in order to speed up the process of learning on a
new problem. In contrast to our work, these approaches do not seek to compare
the difficulty of tasks (their goal is to obtain practical benefits in terms of sample
efficiency and speed of learning). There has also been work on defining (asym-
metric) notions of distance between supervised learning tasks [1, 2, 34] (e.g.,
using techniques from Kolmogorov complexity theory [24]). These approaches
are motivated by problems in transfer learning and attempt to capture how
quickly solutions from one learning problem can be fine-tuned for a new learning
problem. In contrast to these measures, we seek to capture the relative com-
plexity between tasks in terms of the complexity of computations that must be
executed online (instead of the complexity of offline fine-tuning). In addition,
we are motivated by robotic tasks in contrast to supervised learning problems.

3 Problem Formulation
Robots, Environments, and Rewards. Let p(st|st−1, at−1) describe a robot’s
dynamics, where st ∈ S represents the combined state of the robot and its envi-
ronment at time-step t, and at ∈ A represents the action. Let p0 denote the initial
state distribution. We denote the robot’s sensor mapping as σ(ot|st). We consider
robotic tasks that are prescribed using reward functions; let

∑
t r(st, at) ∈ R de-

note the cumulative reward over a given (finite or infinite) time horizon.
Policies. Let π : O → A denote a policy for some observation space O and

action space A. We will denote the set of all policies (i.e., all mappings from O
to A) by Π. One can extend the formulation we present to policies with memory
by augmenting the observation space to keep track of memory states (potentially
in a similar way to [29, 30]). We will define the reward achieved by a policy as:

R(π) := min

(
E

p0,p,σ

∑
t

r(st, π(ot)), R
⋆

)
, (1)

where R⋆ is a chosen success threshold and forms an upper bound on R(π).

4 M. Ho, A. Farid, and A. Majumdar

Tasks. A task is formally defined as a partially observable Markov decision
process (POMDP) using the tuple τ := (S,A,O, p, σ, r, p0, R

⋆) which describes
the state space, action space, observation space, dynamics, sensor, reward func-
tion, the distribution over initial states, and the threshold for success. For ex-
ample, a task τ could correspond to a cartpole swinging up and balancing (with
random initial conditions) or a drone navigating through random obstacle envi-
ronments (where the randomness over obstacle placements is defined using p0;
recall that the state st encapsulates the combined state of the robot and its en-
vironment). We will index tasks using ξ and let T = {τξ}ξ denote a set of tasks.
A particular task in T is thus denoted as τξ := (Sξ,Aξ,Oξ, pξ, σξ, rξ, p0,ξ, R

⋆
ξ).

We will say that a policy πξ is admissible on task τξ if Rξ(πξ) = R⋆
ξ . We use

shorthand π⋆
ξ to denote an admissible policy on task τξ. Let Π⋆

ξ ⊆ Πξ be the set
of all admissible policies on task τξ.

Task reduction and relative complexity. Our goal is to introduce notions
which meaningfully and quantitatively compare the complexity of robotic tasks.
First, we aim to develop a binary relation (denoted by “⪯") between two tasks
which will provide a notion of reduction, i.e., if task τ1 reduces to task τ2 (τ1 ⪯
τ2), then task τ2 is at least as complex as task τ1. Second, we aim to formulate a
measure T × T → [0, 1] that compares the relative complexity of one task with
respect to another. The goal is to not only establish if one task is more complex
than another, but the degree to which it is more complex.

4 Task Reduction
We propose a definition of reduction for robotic tasks in order to formalize what
it means for one task to be as hard as another. The idea of reductions comes from
the theory of computational complexity; we review basic definitions in Sec. 4.1
before describing reductions between robotic tasks in Sec. 4.2.

4.1 Background

We begin with the definition of a Turing reduction between two computational
problems. Let A and B be decision problems, i.e., problems where each instance
has a yes/no answer (e.g., 3-SAT). Let OB be an oracle for decision problem B.
This oracle is a blackbox which outputs the solution to any instance b ∈ B.

Definition 1 (Turing Reduction [31]). Decision problem A reduces to B
(written A ⪯T B) if we can compute the solution to all instances of A using an
oracle OB for B.

Intuitively, A reduces to B if one can use an oracle for B as a sub-routine
for solving instances of A, and thus B is at least as complex as A. Note that this
definition does not include reference to the complexity of the resulting function
for solving A. We are specifically interested in efficient reductions. A particular
notion of efficiency is formalized by polynomial-time reductions, as defined below.

Definition 2 (Cook Reduction [31]). Decision problem A is polynomial-time
reducible to B (written A ⪯P

T B) if A ⪯T B and the solution to any instance of
A makes only a polynomial number of calls to OB.

Comparing the Complexity of Robotic Tasks 5

Fig. 1. The transformation of a policy for one task to another using encoders and decoders. An
observation o ∈ O1 from task τ1 is encoded to an observation õ ∈ O2 for τ2. The policy for τ2
outputs an action ã ∈ A2 which is decoded to an action a ∈ A1 for task τ1. Together, the encoder,
policy for τ2, and decoder are a policy for τ1.

Importantly, if OB is efficient (i.e., runs in polynomial time) and we have
A ⪯P

T B, then the resulting function for solving A is also efficient. We aim to
define a notion of reduction for robotic tasks that is inspired by the notions above
for computational problems. In particular, we will leverage the core concept of
using an oracle for one decision problem in order to solve another.

4.2 Task Reduction: Definition and Properties

In this section, we propose a notion of reduction between two robotic tasks and
demonstrate that this defines a partial ordering on a given space T of tasks. Our
notion of reduction captures the following intuition: task τ1 reduces to task τ2 if
we can utilize a policy (“oracle”) for τ2 in order to solve τ1. In order to formalize
this, we first introduce encoders and decoders.

Definition 3 (Encoder and Decoder). Let T be a space of tasks and let
τ1, τ2 ∈ T be two tasks (as defined in Sec. 3). Let O1,O2 and A1,A2 be the
corresponding observation and action spaces. Let H1,2 denote a space of functions
from O1 to O2, and let G2,1 denote a space of functions from A2 to A1. We will
refer to a function h ∈ H1,2 as an encoder and a function g ∈ G2,1 as a decoder.

Intuitively, a task τ1 reduces to τ2 if we can utilize any admissible policy for
τ2 and transform it via an encoder and decoder into a policy that solves τ1; see
Fig. 1 for a visual representation of this transformation. Importantly, none of the
elements which define a task (τ := (S,A,O, p, σ, r, p0, R

⋆)) need to be shared
between the two tasks. We formalize the notion of task reduction below.

Definition 4 (Task Reduction). Task τ1 reduces to task τ2 (written τ1 ⪯ τ2)
if for all admissible policies π⋆

2 ∈ Π⋆
2 , there exists an encoder h ∈ H1,2 and a

decoder g ∈ G2,1 such that:

g ◦ π⋆
2 ◦ h ∈ Π⋆

1 (2)

This definition is illustrated in Fig. 1. This notion of reduction captures the
relative complexity of tasks in terms of the complexity of online task execution.
Thus, we compare the complexity of solutions rather than the complexity of
computing solutions. It is important to note that the definition of reduction calls
for the ability to transform any admissible policy π⋆

2 ∈ Π⋆
2 into an admissible

policy for τ1. We also note that task reductions are conditioned on the selection of

6 M. Ho, A. Farid, and A. Majumdar

H1,2 and G2,1. Intuitively, this corresponds to the “complexity” of the reduction.
For example, if H1,2 and G2,1 only include functions which can be evaluated
in polynomial time, then the reduction τ1 ⪯ τ2 is efficient (analogous to Cook
reductions). Additionally, note that a robot executing the policy g ◦ π⋆

2 ◦ h ∈
Π⋆

1 for task τ1 over a time horizon of T requires T evaluations of π⋆
2 . Thus, if

H1,2 and G2,1 only include efficiently-computable functions and π⋆
2 is efficiently

computable, then the online execution of τ1 is efficient. One can specify different
classes of functions for H1,2 and G2,1 in order to capture different notions of
efficiency (e.g., neural networks with bounded size). Next, we define equivalence
between two tasks.

Definition 5 (Task Equivalence). Tasks τ1 and τ2 are equivalent (τ1 ≡ τ2)
if τ1 ⪯ τ2 and τ2 ⪯ τ1.

Note that task reduction and equivalence are both binary relations (over
T ×T). As we show below, these relations satisfy properties that are intuitively
desirable for any definition of reduction (or equivalence) between robotic tasks.
In order to state these properties, we first introduce a notion of function closure.

Definition 6 (Closure under Composition on T). Let g1 ∈ G2,1, g2 ∈
G3,2, h1 ∈ H1,2, and h2 ∈ H2,3. We say that G3,1 and H1,3 are closed under
composition if for any τ1, τ2, τ3 ∈ T , the following are true:

g1 ◦ g2 ∈ G3,1, ∀ g1 ∈ G2,1 ∀ g2 ∈ G3,2, (3)
h2 ◦ h1 ∈ H1,3, ∀ h1 ∈ H1,2 ∀ h2 ∈ H2,3. (4)

When Gζ,ξ and Hξ,ζ are the same for all tuples of tasks (τξ, τζ) ∈ T 2, this
definition simplifies to closure under function composition for Gζ,ξ and Hξ,ζ .

Proposition 1 (Task Reduction is a Non-Strict Partial Ordering Re-
lation). Suppose that ∀ (τξ, τζ) ∈ T 2, Hξ,ζ and Gζ,ξ include the identity and
are closed under composition on T . Then, task reductions satisfy the following
properties and thus define a non-strict partial ordering relation.

Property 1.a. Reflexivity: τ1 ⪯ τ1.

Property 1.b. Antisymmetry: τ1 ≺ τ2 =⇒ ¬(τ2 ⪯ τ1), where τ1 ≺ τ2 is
defined as (τ1 ⪯ τ2) ∧ ¬(τ1 ≡ τ2).

Property 1.c. Transitivity: (τ1 ⪯ τ2) ∧ (τ2 ⪯ τ3) =⇒ τ1 ⪯ τ3.

Proof. A complete proof of these properties is provided in Appendix A.

Additionally, note that strict task reduction τ1 ≺ τ2 is a strict partial ordering
relation. We provide a complete proof of this in Appendix A. These properties
formalize a series of intuitions about task reductions. Task reduction consists
of transforming an admissible policy from one task to another. In the case of
reflexivity, intuition suggest that if the tasks are the same, no transformation will
be required for the policy to work. Thus, G and H must include the identity to
allow for this. Antisymmetry establishes a clear sense of “dominance” between

Comparing the Complexity of Robotic Tasks 7

tasks in terms of complexity — if a task τ1 strictly reduces to another task
τ2, then τ2 should not reduce to τ1. Building on antisymmetry, we also require
transitivity to make a clear chain of increasingly complex tasks. A series of tasks
which reduce to each other cyclically (i.e. τ1 ⪯ τ2 ∧ τ2 ⪯ τ3 ∧ τ3 ⪯ τ1) should
only be possible if all the tasks are equivalent. The following proposition proves
useful properties of task equivalence.

Proposition 2 (Task Equivalence is an Equivalence Relation). Suppose
that ∀ (τξ, τζ) ∈ T 2, Hξ,ζ and Gζ,ξ include the identity and are closed under
composition on T . Then, task equivalence satisfies the following properties and
thus defines an equivalence relation.

Property 2.a. Reflexivity: τ1 ≡ τ1.

Property 2.b. Symmetry: τ1 ≡ τ2 =⇒ τ2 ≡ τ1.

Property 2.c. Transitivity: τ1 ≡ τ2 ∧ τ2 ≡ τ3 =⇒ τ1 ≡ τ3.

Proof. A complete proof of these properties is provided in Appendix A.

5 Examples of Reductions
In this section, we provide two concrete examples of task reductions (Defini-
tion 4) and equivalence (Definition 5). We present an efficient reduction between
navigation tasks with differing goal locations in an environment which has 90
degree rotational symmetry. We then show reduction between a set of tasks (i.e.,
an equivalence class of tasks) for grasping with varying camera viewpoints.

5.1 Navigation to a Goal with Map Rotations

Consider a robot which must navigate to a goal location and avoid obstacles.
Suppose that the robot lives on an [−n, n]× [−n, n] ∈ R2 world and can move a
distance d in a cardinal direction {N,E,S,W} by taking action (d, {0, 1, 2, 3}),
where 0, 1, 2, 3 correspond to N,E,S,W. Additionally, for all tasks in this setting,
assume that m circular obstacles are randomly placed in the environment (while
always allowing for a path to the goal for the robot). Suppose that the robot’s
observation at time t corresponds to a complete map of the grid-world which
consists of a list of locations including obstacle locations, the goal location,
and the robot location. Let oiE = (xi, yi) correspond to the location of the ith

observation in oE. The robot is initialized in a random position and its goal is to
navigate to the goal location. The robot receives a reward of 1 if it successfully
navigates to the goal and a reward of 0 otherwise.

Let task τN (“north”) have goal location at (0, n) and τE (“east”) have goal
location (n, 0). An admissible policy π⋆

N on τN will always successfully navigate
to the goal location (0, n) (regardless of the initial state of the robot and the
locations of the obstacles).

Proposition 3 (τE ⪯ τN). Let GN,E contain functions that can perform addi-
tion modulo 4 and HE,N contain functions which can be evaluated in linear time
(in the size of the observation). Then τE ⪯ τN.

8 M. Ho, A. Farid, and A. Majumdar

Proof. For any observation oE from task τE, let hEN(o
i
E) := (yi,−xi) ∀ i. For

any action aN = (d, i) from π⋆
N, let gNE(d, i) := (d, i+ 1 mod 4). Then we have

that gNE ◦ π⋆
N ◦ hEN ∈ Π⋆

E, ∀ π⋆
N ∈ Π⋆

N.

Intuitively, hEN rotates observations from τE so that they look exactly like
a corresponding observation from τN. Then, any admissible policy π⋆

N must find
an admissible action (i.e., one which ultimately results in solving the task) based
on the rotated observation. The decoder gNE then transforms the output action
to the corresponding one required for task τE. With analogous constructions, we
can show that τN ≡ τE ≡ τS ≡ τE.

5.2 Grasping Objects with Differing Camera Viewpoints

Consider a robotic arm which must grasp one of a set of known objects using an
RGB-D image. A randomly-selected object is placed with a random pose on a
table (which is at height z = 0). A task τ ∈ T will correspond to this grasping
challenge when the RGB-D camera is placed at a particular viewpoint. Assume
that the camera in each task is always pointed at the center of the table (i.e.,
(0, 0, 0)). Additionally, we will require that for each of the possible objects, the
identity of the particular object and its pose are uniquely determinable from the
camera. Further assume that at the beginning of the task, the robot arm does
not occlude the camera’s view of the object. We treat this as a single time-step
task; the robot selects a grasp pose based on the camera observation and then
controls M motors in order to grasp the object. A successful grasp results in a
reward of 1 and 0 otherwise. Let τ(θ,ϕ) correspond to the grasping task with the
camera located at spherical coordinates (1, θ, ϕ).

Proposition 4 (τ(θ1,ϕ1) ⪯ τ(θ2,ϕ2)). For any (θ1, ϕ1) and (θ2, ϕ2), task τ(θ1,ϕ1)

reduces to task τ(θ2,ϕ2) if (θ1, ϕ1) and (θ2, ϕ2) are selected such that the cameras
can view the entire table from either viewpoint.

Proof. Let g be the identity. Assume that the camera placed at (θ1, ϕ1) can view
the entire table. Let h take as input a RGB-D image from viewpoint (1, θ1, ϕ1)
and output the same environmental setup from the perspective of a camera
placed at (1, θ2, ϕ2). Then g ◦ π⋆

(θ2,ϕ2)
◦ h ∈ Π⋆

(θ1,ϕ1)
.

Note that the function h requires a model of the known objects and poten-
tially a simulation of the environment in order to generate the image from a
differing perspective. As such, the reduction with this encoder may not be effi-
cient. A direct consequence of this proposition is that τ(θ1,ϕ1) ≡ τ(θ2,ϕ2) if (θ1, ϕ1)
and (θ2, ϕ2) are selected such that the cameras can view the entire table. Let
Θ be the set of all (θ, ϕ) values which reduce to each other using the reduction
provided in the proposition. The corresponding set of tasks TΘ ⊆ T defines a
class of tasks which are all equivalently complex.

6 Relative Complexity
In general, it may be difficult to establish a reduction between two completely
distinct tasks such as grasping an object and avoiding obstacles; indeed an ar-
bitrary pair of tasks is unlikely to satisfy the notion of reduction introduced

Comparing the Complexity of Robotic Tasks 9

in Sec. 4.2. Additionally, our definition of reduction is a binary one and does
not capture how complex a particular task is relative to another. Motivated by
these observations, we propose a definition of relative complexity that captures
the degree to which one task is more complex than another. This quantity can
be thought of as a “continuous” or “smoothed” version of task reductions (in a
precise sense, which we elucidate below). Note that we will omit the subscripts
on G and H when it is clear which tasks they transform between.

Definition 7 (Relative Complexity). The relative complexity of task τ1 with
respect to task τ2 is

Cτ1/τ2 := sup
π⋆
2∈Π⋆

2

inf
h∈H,g∈G

[
1− R1(g ◦ π⋆

2 ◦ h)
R⋆

1

]
, (5)

where we assume that rewards are nonnegative. We use the notation Cτ1/τ2(H,G)
when we want to highlight dependence on H and G.

Intuitively, if τ1 ⪯ τ2, then this implies that Cτ1/τ2 = 0 (as we show formally
below). If Cτ1/τ2 > 0, then an admissible policy π⋆

2 ∈ Π⋆
2 may not be transformed

into an admissible policy for τ1 using encoders and decoders in H and G. A key
advantage of this definition is that we can compare any two tasks and quantify
the relative complexity of one with respect to another. As with our previous
definitions, we prove a set of useful properties below. Importantly, Properties 5.c
and 5.d will establish a link between the relative complexityand task reduction.

Proposition 5 (Properties of the Relative Complexity.). Relative Com-
plexity satisfies the following properties:

Property 5.a. Nonnegativity and boundedness: Cτ1/τ2 ∈ [0, 1].

Property 5.b. Monotonicity with respect to H and G: If H ⊆ H ′ and G ⊆ G′,
then Cτ1/τ2(H

′, G′) ≤ Cτ1/τ2(H,G).

Assume that the supremum and infimum in Definition 7 are attained by functions
in Π⋆

2 , H,G. Then:

Property 5.c. Equivalence between reduction and 0 relative complexity: Cτ1/τ2 =
0 ⇐⇒ τ1 ⪯ τ2.

Property 5.d. Equivalence between no reduction and positive relative complex-
ity: Cτ1/τ2 ∈ (0, 1] ⇐⇒ ¬(τ1 ⪯ τ2).

Proof. A complete proof of these properties is provided in Appendix A.

7 Algorithmic Approach
We can frame the optimization problem in (5) as a two-player zero-sum game:
an adversary chooses an admissible policy π⋆

2 ∈ Π⋆
2 which maximizes the relative

complexity, and then the player chooses g ∈ G and h ∈ H such that the relative
complexity is minimized. It may not be possible in general to find an optimal
strategy to this game. However, we can still compute a meaningful estimate via
approximate methods.

10 M. Ho, A. Farid, and A. Majumdar

Algorithm 1 Approximating Relative Complexity
1: Input: Learning rates λ1, λ2, adversarial tuning parameter α
2: Input: Function spaces H,G
3: Input: Loss functions L1, L2 for τ1, τ2 respectively
4: Output: Approximate relative complexity C̃τ1/τ2 ≈ Cτ1/τ2

5: while ¬(converged ∧ R2(π2) = R⋆
2) do

6: Step 1: π2 update
7: c1 ← L2(π2)− αL1(g ◦ π2 ◦ h)
8: π2 ← π2 − λ1∇π2c1
9: Step 2: encoder/decoder update

10: c2 ← L1(g ◦ π2 ◦ h)
11: [h, g]← [h, g]− λ2∇[h,g]c2
12: end while
13: C̃τ1/τ2 ←

[
1− R1(g◦π⋆

2◦h)
R⋆

1

]

There are multiple ways to approximate optimal strategies for zero-sum
games such as the one presented in (5); see e.g., [14]. One approach is to use best-
response dynamics, where the players update their strategies in rounds based on
the best response to the opponent’s choice. We parameterize the policies, en-
coders, and decoders with neural networks. Thus, we aim to develop a method
which uses gradient steps to approximate the solution to (5). A technique which
exploits best-response dynamics is the update rule for training generative adver-
sarial networks (GANs) [15], where gradient steps update the players’ strategies
based on batches of data. The algorithm we present has a similar structure.

The resulting approach has two steps and is presented in Algorithm 1. The
first step is to update the policy π2 to maximize the relative complexity. However,
π2 must also eventually succeed on task τ2. Thus, the update for π2 has two
terms: one to train π2 to succeed on τ2 and one to train g ◦ π2 ◦ h to fail on
τ1. We scale the latter with the “adversarial tuning parameter” α which allows
weighting of the terms relative to each other. The second step is to update the
encoder and decoder to minimize the relative complexity. We present Algorithm 1
with general loss functions L1, L2 on tasks τ1, τ2 to allow for specialization to
reinforcement learning techniques (e.g., Q-learning). An example for L1 and L2

based on best-response dynamics is L2(π2) := −R2(π2) and L1(g ◦ π2 ◦ h) :=
1−R1(g ◦ π2 ◦ h)/R⋆

1 since these directly capture the objectives of each player.
In practice, when α is too low, the policy π2 is not adversarial enough and

may not prevent g ◦ π2 ◦ h from succeeding on task τ1. When α is too large, the
policy π2 may not ever succeed on task τ2. As such we increase α as much as
possible while ensuring π2 is admissible at the end of training in order to provide
an estimate of (5). After training is complete, we have π⋆

2 , g, and h which we
use to compute the approximate relative complexity C̃ = 1−R1(g ◦ π⋆

2 ◦ h)/R⋆
1.

8 Examples

We implement Algorithm 1 on two reinforcement learning examples using Q-
learning and Soft Actor-Critic (SAC). On the OpenAI Gym [8] Cartpole, we

Comparing the Complexity of Robotic Tasks 11

Fig. 2. The approximate relative complexity of task τ↑ with respect to τ↓ (circles) and τ↓ with
respect to τ↑ (triangles) for varied adversarial tuning parameter α. For large enough α (≥ 10),
the relative complexity of τ↑ with respect to τ↓ is consistently close to 1. In contrast, the relative
complexity of τ↓ with respect to τ↑ is consistently close to 0 regardless of the choice of α. The plots
suggest that τ↑ is more complex than τ↓. We plot the mean and standard deviation (shaded region)
across 5 seeds for each α.

compare the complexity of balancing the pole upright relative to balancing it
downwards. Using the Mujoco [33] 2D walker, we compare the complexity of
walking at various speeds. We demonstrate that our estimates of relative com-
plexity correspond to intuitive notions of complexity for these tasks.

8.1 Cartpole Balancing Task

Overview. We use the OpenAI Gym [8] Cartpole environment to define two
tasks: balancing the friction-less cart’s pole against gravity τ↑ (at the unstable
equilibrium) and balancing the cart’s pole with gravity τ↓ (at the stable equilib-
rium). Equivalently, one can think of τ↑ and τ↓ being specified by the direction
in which gravity acts (−y and +y). The initial state of the system is randomized
close to the equilibrium for each task. The policy receives the system’s state vec-
tor as input and can apply forces on the cart using three actions: {no force, push
left, push right}. A task runs for 200 time steps and the policy receives a reward
of 1 for each time step that the pole stays balanced (within 24◦ of the equilib-
rium). Since we only switch the direction of gravity, the states which achieve a
reward of 1 are consistent between tasks. A reward of 0 is given if the pole falls
beyond 24◦ of the equilibrium or the cart strays too far from the start position;
the trial is then stopped. A policy for either task is admissible if it successfully
balances the pole for the entire 200 time-step trial, i.e., R⋆

↓ = R⋆
↑ = 200.

Policy, Encoder, Decoder, and Training. The policy, encoder, and de-
coder all consist of few-layer neural networks. We apply Algorithm 1 using Q-
learning to approximate the relative complexities Cτ↑/τ↓ and Cτ↓/τ↑ . Note that
we can directly apply Q-learning to Algorithm 1 by letting the loss functions
L1 and L2 correspond to a Q-learning loss (see Appendix B for further details).
In our experiments, we vary the adversarial tuning parameter to examine its
effect and also vary the number of layers in encoder h and decoder g to approx-
imate the relative complexity given varying complexity of H and G. The result

12 M. Ho, A. Farid, and A. Majumdar

Fig. 3. The approximate relative complexity for varied H and G complexity. (Top) There is little
or no change in the relative complexity for varied H. (Bottom) We see significant decrease in Cτ↓/τ↑
and a slight decrease in Cτ↑/τ↓ for increasing G complexity. This suggest that reduction τ↓ ⪯ τ↑ is
not possible when G includes only linear neural networks. We plot the mean of 5 trials for each α
value and the standard deviation is shaded.

of training is an admissible policy π⋆, encoder g, and decoder h; these allow us
to compute the estimated relative complexity C̃.

Results: Sensitivity to Adversarial Tuning Parameter. We compute
the approximate relative complexity for a wide range of the adversarial tuning
parameter α: [10−5, 104], and plot the results in Fig. 2. We choose g to be a
neural network with a single hidden layer and h to have two hidden layers.
When approximating the relative complexity of task τ↑ with respect to τ↓ we
see that when α is large enough, the value settles at approximately 0.8. This
suggests that ¬(τ↑ ⪯ τ↓) by Property 5.d. Additionally, note that a decrease in
α corresponds to decreased weight on minimizing R↑(g ◦ π↓ ◦ h). As such, when
α is too small, π↓ cannot reliably ensure that g ◦ π↓ ◦ h fails on τ↑. In the case
of approximating the relative complexity of task τ↓ with respect to τ↑, we see
that for all values of α, a low relative complexity is achieved. The plot suggests
that τ↓ ⪯ τ↑ by Property 5.c. This suggests that the task of balancing at a
stable equilibrium τ↓ is less complex than the task of balancing at an unstable
equilibrium τ↑, which is consistent with our intuition.

Results: Sensitivity to H and G Model Complexity. We also approx-
imate the relative complexity for different H and G with varying model com-
plexity (achieved by varying the number of hidden layers). In all experiments,
the neural network architecture for the (inner) policy π is kept consistent. When
varying the complexity of H, we choose g to be a neural network with a single
hidden layer; when varying G, we choose h to be a neural network with two hid-
den layers. The results are plotted in Fig. 3. We see that there is no significant
change in the approximate relative complexity when H increases in complex-
ity. However, when the complexity of G is increased, we see a clear decrease in
C̃τ↓/τ↑ indicating that (i) ¬(τ↓ ⪯ τ↑) when G only contains the identity or a sin-

Comparing the Complexity of Robotic Tasks 13

Fig. 4. Reduction from the task of walking at speed v1 (τv1) to walking at 1.0 m/s (τ1.0). The
estimated relative complexity C̃τv1

/τ1.0
may be larger when v1 < 1.0 m/s as compared with v1 ≥ 1.0

m/s. Thus, it is possible that a policy for walking at 1.0 m/s cannot directly be transformed to
a policy for walking at 0.6 or 0.8 m/s. We plot the mean over 15 seeds for each v1; the standard
deviation is shaded.

gle linear layer, and (ii) τ↓ ⪯ τ↑ for more complex G. We see a slight decrease in
C̃τ↑/τ↓ for increasing complexity of G. By Property 5.b, the relative complexity
is monotonic with respect to H and G; specifically, increasing the complexity of
H and G should result in a monotonic decrease in the relative complexity. This
is consistent with the results in Fig. 3.

8.2 Mujoco 2D Walker at varied speeds

Overview. Using the Mujoco [33] Walker2D-v2 environment in OpenAI Gym
[8], we create a set of tasks τv with the goal of walking at a particular speed
v (from 0.6 m/s to 1.4 m/s). Thus, the maximum reward on τv is achieved
when the robot travels at v. The policy receives a 17-dimensional observation
vector (corresponding to joint angles and velocities) and outputs a 6-dimensional
action vector (corresponding to joint torques) to control the 2D walking robot.
The task runs for at most 1000 time steps. The reward at time t is 1− |vt − v|,
where vt is the speed at the current time step. Note that to help with training,
we also provide a reward for staying upright and a reward which penalizes large
policy outputs to help with training. When evaluating C̃, we lower-bound the
reward by 0 to ensure that the reward is non-negative. If the robot falls over,
a reward of 0 is given and the trial stops. Since the challenge of maintaining a
particular speed may differ between tasks, the threshold for success may vary.
Thus, to find R⋆

v, we first train an individual policy to travel at speed v. We
then let R⋆

v = 0.95 × (individual policy reward on τv).
Policy, Encoder, Decoder and Training. As in Sec. 8.1, the policy, en-

coder, and decoder all consist of neural networks with 3 hidden layers. However,
since the action space is continuous and 6-dimensional, we use soft actor-critic
(SAC) [16]. This requires a modification to Algorithm 1 for training critics for
τv1 and τv2 (see Appendix B for the algorithm and additional experimental de-
tails). The result of training is an admissible policy π∗

2 and the encoder/decoder
h/g; these are used to calculate the approximate relative complexity C̃.

14 M. Ho, A. Farid, and A. Majumdar

Results: Relative Complexity for Increasing Speed. We compute the
approximate relative complexity of the task of walking at speeds v1 ∈ [0.6, 1.4]
m/s with respect to the task of walking at 1.0 m/s (τ1.0). We sweep through
a wide range of the adversarial tuning parameter α = [10−6, 10], and for each
C̃ computation, choose the largest α which results in an admissible policy on
task τ1.0. The results are presented in Fig. 4. The choice of H and G is kept
consistent for all relative complexity computations. We see that C̃τv1/τ1.0

may
be larger when v1 < 1.0 m/s as compared with v1 ≥ 1.0 m/s. Importantly,
these results are conditioned on the choice of H, and G. The plot suggests that
there exists an admissible policy for walking at 1.0 m/s which cannot be directly
transformed to walk at 0.6 or 0.8 m/s but no such policy exists which prevents
a transformation to a policy for walking faster.

9 Conclusion

We have presented a framework for comparing the complexity of robotic tasks.
In order to achieve this, we defined a notion of reduction between two tasks
that captures the ability of a robot to solve one task given a policy for another.
We also presented a measure of relative complexity that quantifies how complex
one task is relative to another. Our theoretical results establish basic properties
satisfied by these notions and also establish the relationship between reductions
and relative complexity. We presented a practical algorithm for estimating the
relative complexity between tasks and demonstrated this using reinforcement
learning tasks. Our results demonstrate consistency with intuitive notions of
hardness for these tasks and empirical correspondence to theoretical properties.

The work presented here opens up a number of exciting directions for future
research. We begin by discussing some of the limitations of this framework as
motivation. One such limitation is the slow convergence of the computation for
approximating the relative complexity (which required longer to converge than
learning a policy for either individual task). We also need admissible policies
for both τ1 and τ2 to compute the relative complexity. Additionally, the results
we present are conditioned on the choice of encoder H and decoder G spaces.
The value and interpretability of the relative complexity measure thus depend
on how easily one can interpret the expressiveness of H and G.

On the theoretical front, it would be interesting to devise more general no-
tions of reductions than the one presented here, e.g., allowing the policy from
one task to be used as an oracle to solve another task in a more general manner
(instead of the specific encoder-policy-decoder architecture we utilize). Another
research direction is to use our notion of reduction to establish equivalences
between broad classes of tasks (similar to complexity classes P and NP in com-
putational complexity). It may also be of practical interest to define relative
complexity in terms of different metrics such as data efficiency or difficulty of
finding a policy instead of the notion of complexity we use, which is based on
the complexity of online execution of policies.

On the algorithmic front, it would be of practical interest to develop different
techniques for estimating the relative complexity. One could potentially use other
algorithms (beyond best-response dynamics) for approximately solving games

[14]. Finally, a particularly exciting direction would be to draw inspiration from
cryptography and turn statements about the complexity of certain tasks into
statements about robustness for a robot. This could potentially be achieved by
establishing the hardness of an adversary’s task of foiling our robot.

Acknowledgements

The authors are grateful to the anonymous reviewers for their helpful feedback and
suggestions on this work. Funding: NSF CAREER Award [#2044149] and Office of
Naval Research [N00014-21-1-2803, N00014-18-1-2873].

Bibliography

[1] Achille, A., Mbeng, G., Soatto, S.: Dynamics and reachability of learning tasks.
arXiv:1810.02440 (2019)

[2] Achille, A., Paolini, G., Mbeng, G., Soatto, S.: The information complexity of
learning tasks, their structure and their distance. Information and Inference: A
Journal of the IMA 10(1), 51–72 (2021)

[3] Ahmadi, A.A., Majumdar, A., Tedrake, R.: Complexity of ten decision problems
in continuous time dynamical systems. Proceedings of the American Control Con-
ference (ACC) pp. 6376–6381 (2013)

[4] Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY (2009)

[5] Blondel, V., Tsitsiklis, J.: A survey of computational complexity results in systems
and control. Automatica 36(9), 1249–1274 (2000)

[6] Borie, R., Tovey, C., Koenig, S.: Algorithms and complexity results for pursuit-
evasion problems. International Joint Conference on Artificial Intelligence (IJCAI)
9, 59–66 (2009)

[7] Borie, R., Tovey, C., Koenig, S.: Algorithms and complexity results for graph-
based pursuit evasion. Autonomous Robots 31(4), 317–332 (2011)

[8] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. arXiv:1606.01540 (2016)

[9] Canny, J.: The Complexity of Robot Motion Planning. MIT press, Cambridge,
MA (1988)

[10] Chang, M.B., Gupta, A., Levine, S., Griffiths, T.L.: Automatically composing
representation transformations as a means for generalization. Proceedings of the
International Conference on Learning Representations (2019)

[11] Culberson, J.: Sokoban is PSPACE-complete. Tech. Rep. TR 97-02, University of
Alberta, Edmonton, Alberta, Canada (1997)

[12] Donald, B.R.: On information invariants in robotics. Artificial Intelligence 72(1),
217–304 (1995)

[13] Erdmann, M.: Understanding action and sensing by designing action-based sen-
sors. The International Journal of Robotics Research (IJRR) 14(5), 483–509
(1995)

[14] Fudenberg, D., Drew, F., Levine, D.K.: The theory of learning in games, vol. 2.
MIT press, Cambridge, MA (1998)

[15] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in Neural
Information Processing Systems 27 (2014)

16 M. Ho, A. Farid, and A. Majumdar

[16] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. Proceedings of
the International Conference on Machine Learning pp. 1861–1870 (2018)

[17] Han, S., Stiffler, N., Krontiris, A., Bekris, K., Yu, J.: High-quality tabletop rear-
rangement with overhand grasps: Hardness results and fast methods. Proceedings
of Robotics: Science and Systems (RSS) (2017)

[18] Hauser, K.: The minimum constraint removal problem with three robotics ap-
plications. The International Journal of Robotics Research (IJRR) 33(1), 5–17
(2014)

[19] Hopcroft, J., Joseph, D., Whitesides, S.: Movement problems for 2-dimensional
linkages. SIAM Journal on Computing (SICOMP) 13(3), 610–629 (1984)

[20] Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for
multiple independent objects; PSPACE-hardness of the Warehouseman’s Problem.
The International Journal of Robotics Research (IJRR) 3(4), 76–88 (1984)

[21] Joseph, D., Plantings, W.H.: On the complexity of reachability and motion plan-
ning questions. Proceedings of the Symposium on Computational Geometry pp.
62–66 (1985)

[22] LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, MA
(2006)

[23] LaValle, S.M.: Sensing and Filtering: A Fresh Perspective Based on Preimages
and Information Spaces. Publishers Inc., Hanover, MA (2012)

[24] Li, M., Vitányi, P., et al.: An introduction to Kolmogorov complexity and its
applications, vol. 3. Springer, New York, NY (2008)

[25] Li, Y., Wu, Y., Xu, H., Wang, X., Wu, Y.: Solving compositional reinforcement
learning problems via task reduction. Proceedings of the International Conference
on Learning Representations (2021)

[26] Murrieta-Cid, R., Monroy, R., Hutchinson, S., Laumond, J.P.: A Complexity re-
sult for the pursuit-evasion game of maintaining visibility of a moving evader.
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA) pp. 2657–2664 (2008)

[27] O’Kane, J.M., LaValle, S.M.: Comparing the Power of Robots. The International
Journal of Robotics Research (IJRR) 27(1), 5–23 (2008)

[28] Reif, J.: Complexity of the mover’s problem and generalizations. Symposium on
Foundations of Computer Science pp. 421–427 (1979)

[29] Saberifar, F.Z., Ghasemlou, S., Shell, D.A., O’Kane, J.M.: Toward a language-
theoretic foundation for planning and filtering. The International Journal of
Robotics Research (IJRR) 38(2-3), 236–259 (2019)

[30] Shell, D.A., O’Kane, J.M.: Reality as a simulation of reality: robot illusions, fun-
damental limits, and a physical demonstration. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA) pp. 10327–10334 (2020)

[31] Sipser, M.: Introduction to the Theory of Computation. Cengage Learning,
Boston, MA (2013)

[32] Solovey, K., Halperin, D.: On the hardness of unlabeled multi-robot motion plan-
ning. The International Journal of Robotics Research (IJRR) 35(14), 1750–1759
(2016)

[33] Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control.
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) pp. 5026–5033 (2012)

[34] Tran, A.T., Nguyen, C.V., Hassner, T.: Transferability and hardness of supervised
classification tasks. Proceedings of the IEEE/CVF International Conference on
Computer Vision pp. 1395–1405 (2019)

Comparing the Complexity of Robotic Tasks 17

Appendix

A Proof of Properties

Proposition 1 (Task Reduction is a Non-Strict Partial Ordering Relation).
Suppose that ∀ (τξ, τζ) ∈ T 2, Hξ,ζ and Gζ,ξ include the identity and are closed under
composition on T . Then, task reductions satisfy the following properties and thus define
a non-strict partial ordering relation.

Property 1.a. Reflexivity: τ1 ⪯ τ1.

Property 1.b. Antisymmetry: τ1 ≺ τ2 =⇒ ¬(τ2 ⪯ τ1), where τ1 ≺ τ2 is defined as
(τ1 ⪯ τ2) ∧ ¬(τ1 ≡ τ2).

Property 1.c. Transitivity: (τ1 ⪯ τ2) ∧ (τ2 ⪯ τ3) =⇒ τ1 ⪯ τ3.

Proof. Property 1.a: τ1 ⪯ τ1 =⇒ ∃ g ∈ G1,1, h ∈ H1,1 such that

g ◦ π⋆
1 ◦ h ∈ Π⋆

1 . (6)

If g and h are the identity function, then g ◦ π⋆
1 ◦ h = π⋆

1 ∀ π⋆
1 ∈ Π⋆

1 . Thus, τ1 ⪯ τ1
when G1,1 and H1,1 include their respective identity functions.

Property 1.b: Suppose τ1 ≺ τ2 and thus (τ1 ⪯ τ2) ∧ ¬(τ1 ≡ τ2). Note that
¬(τ1 ≡ τ2) =⇒ ¬

(
(τ1 ⪯ τ2) ∧ (τ2 ⪯ τ1)

)
=⇒ ¬(τ1 ⪯ τ2) ∨ ¬(τ2 ⪯ τ1). We assumed

(τ1 ⪯ τ2), so we must have that ¬(τ2 ⪯ τ1).
Property 1.c: Suppose τ1 ⪯ τ2 and τ2 ⪯ τ3. By Definition 4, ∃ g1 ∈ G2,1,

g2 ∈ G3,2, h1 ∈ H1,2, and h2 ∈ H2,3 such that g1 ◦ π⋆
2 ◦ h1 ∈ Π⋆

1 ∀ π⋆
2 ∈ Π⋆

2 and
g2 ◦ π⋆

3 ◦ h2 ∈ Π⋆
2 ∀ π⋆

3 ∈ Π⋆
3 . Consider

g1 ◦

∈Π⋆
2︷ ︸︸ ︷

g2 ◦ π⋆
3 ◦ h2 ◦h1︸ ︷︷ ︸

∈Π⋆
1

(7)

for all π⋆
3 ∈ Π⋆

3 . Let g3 := g1 ◦ g2 and h3 := h2 ◦ h1 so that g3 ◦ π⋆
3 ◦ h3 ∈ Π⋆

1 for
all π⋆

3 ∈ Π⋆
3 . If G3,1 and H1,3 are closed under composition on T , then g3 ∈ G3,1 and

h3 ∈ H1,3 and τ1 ⪯ τ3. Thus, task reductions are transitive if G3,1 and H1,3 are closed
under composition on T .

Proposition 6 (Strict Task Reduction is a Strict Partial Ordering Relation).
Suppose that ∀ (τξ, τζ) ∈ T 2, Hξ,ζ and Gζ,ξ include the identity and are closed under
composition on T . Then, strict task reductions satisfy the following properties and thus
define a strict partial ordering relation.

Property 6.a. Irreflexivity: ¬(τ1 ≺ τ1).

Property 6.b. Asymmetry: τ1 ≺ τ2 =⇒ ¬(τ2 ≺ τ1).

Property 6.c. Transitivity: τ1 ≺ τ2 ∧ τ2 ≺ τ3 =⇒ τ1 ≺ τ3.

Proof. Property 6.a: Suppose τ1 ≺ τ1 =⇒ τ1 ⪯ τ1∧¬(τ1 ≡ τ1). τ1 ≡ τ1 by Property
2.b.⇒⇐ =⇒ ¬(τ1 ≺ τ1) when H1,1 and G1,1 include their respective identity functions.

Property 6.b: τ1 ≺ τ2 =⇒ ¬(τ2 ⪯ τ1) by Property 1.b, since τ1 ≺ τ2 =⇒
¬(τ1 ≡ τ2). ¬(τ2 ⪯ τ1) ⇐⇒ ¬(τ2 ⪯ τ1) ∨ τ2 ≡ τ1 =⇒ ¬

(
τ2 ⪯ τ1 ∧ ¬(τ2 ≡ τ1)

)
=⇒

¬(τ2 ≺ τ1).
Property 6.c: τ1 ≺ τ2 ∧ τ2 ≺ τ3 =⇒ τ1 ⪯ τ2 ∧ τ2 ⪯ τ3 ∧ ¬(τ1 ≡ τ2) ∧ ¬(τ2 ≡

τ3) =⇒ τ1 ⪯ τ3 ∧ ¬(τ1 ≡ τ3) by Properties 1.c and 2.c. =⇒ τ1 ≺ τ3 when H1,3 and
G3,1 are closed under composition on T .

18 M. Ho, A. Farid, and A. Majumdar

Proposition 2 (Task Equivalence is an Equivalence Relation). Suppose that
∀ (τξ, τζ) ∈ T 2, Hξ,ζ and Gζ,ξ include the identity and are closed under composition
on T . Then, task equivalence satisfies the following properties and thus defines an
equivalence relation.

Property 2.a. Reflexivity: τ1 ≡ τ1.

Property 2.b. Symmetry: τ1 ≡ τ2 =⇒ τ2 ≡ τ1.

Property 2.c. Transitivity: τ1 ≡ τ2 ∧ τ2 ≡ τ3 =⇒ τ1 ≡ τ3.

Proof. Property 2.a: τ1 ≡ τ1 =⇒ τ1 ⪯ τ1 by Property 1.a when G1,1 and H1,1

include the identity. Thus, task equivalence is reflexive if G1,1 and H1,1 include the
identity.

Property 2.b: τ1 ≡ τ2 =⇒ (τ1 ⪯ τ2) ∧ (τ2 ⪯ τ1) by Definition 5 =⇒ (τ2 ⪯
τ1) ∧ (τ1 ⪯ τ2) =⇒ τ2 ≡ τ1.

Property 2.c: (τ1 ≡ τ2)∧(τ2 ≡ τ3) =⇒ (τ1 ⪯ τ2)∧(τ2 ⪯ τ3)∧(τ3 ⪯ τ2)∧(τ2 ⪯ τ1)
by Definition 5. (τ3 ⪯ τ2) ∧ (τ2 ⪯ τ1) =⇒ (τ3 ⪯ τ1) by Property 1.c when G3,1 and
H1,3 are closed under composition on T . Similarly, (τ1 ⪯ τ2)∧(τ2 ⪯ τ3) =⇒ (τ1 ⪯ τ3).
Thus (τ1 ⪯ τ3)∧ (τ3 ⪯ τ1) =⇒ τ1 ≡ τ3. Thus task equivalence is transitive if G3,1 and
H1,3 are closed under composition on T .

Proposition 5 (Properties of the Relative Complexity). Relative Complexity
satisfies the following properties:

Property 5.a. Nonnegativity and boundedness: Cτ1/τ2 ∈ [0, 1].

Property 5.b. Monotonicity with respect to H and G: If H ⊆ H ′ and G ⊆ G′, then
Cτ1/τ2(H

′, G′) ⪯ Cτ1/τ2(H,G).

Assume that the supremum and infimum in Definition 7 are attained by functions in
Π⋆

2 , H,G. Then:

Property 5.c. Equivalence between reduction and 0 relative complexity: Cτ1/τ2 =
0 ⇐⇒ τ1 ⪯ τ2.

Property 5.d. Equivalence between no reduction and positive relative complexity:
Cτ1/τ2 ∈ (0, 1] ⇐⇒ ¬(τ1 ⪯ τ2).

Proof. Property 5.a: R1(g◦π⋆
2 ◦h) ∈ [0, R⋆

1]. Therefore, R1(g◦π⋆
2 ◦h)/R⋆

1 ∈ [0, 1] =⇒
Cτ1/τ2 ∈ [0, 1] for any H,G.

Property 5.b: Consider H,H ′ such that H ⊆ H ′ and G,G′ such that G ⊆ G′.
For any function f , the following is true ∀π⋆

2 :

inf
h∈H′,g∈G′

f(h, g, π⋆
2) ≤ inf

h∈H,g∈G
f(h, g, π⋆

2). (8)

This implies the following:

sup
π2∈Π⋆

2

inf
h∈H′,g∈G′

[
1− R1(g ◦ π⋆

2 ◦ h)
R⋆

1

]
≤ sup

π⋆
2∈Π⋆

2

inf
h∈H,g∈G

[
1− R1(g ◦ π⋆

2 ◦ h)
R⋆

1

]
. (9)

Property 5.c: Assume Cτ1/τ2 = 0 for some H and G ⇐⇒ for any π⋆
2 ∈ Π⋆

2 ∃ g ∈
G and h ∈ H such that R1(g ◦ π⋆

2 ◦ h) = R⋆
1. R1(π1) = R⋆

1 ⇐⇒ π1 ∈ Π⋆
1 . Thus, for all

π⋆
2 ∈ Π⋆

2 ∃ g ∈ G and h ∈ H such that g ◦ π⋆
2 ◦ h ∈ Π⋆

1 ⇐⇒ τ1 ⪯ τ2.
Property 5.d: The contrapositive of Property 5.c is ¬(τ1 ⪯ τ2) ⇐⇒ Cτ1/τ2 ̸=

0. By Property 5.a, the complexity measure is Cτ1/τ2 ∈ [0, 1], therefore, Cτ1/τ2 ∈
(0, 1] ⇐⇒ Cτ1/τ2 ̸= 0. Thus Cτ1/τ2 ∈ (0, 1] ⇐⇒ ¬(τ1 ⪯ τ2).

Comparing the Complexity of Robotic Tasks 19

B Additional Experimental Details

Approximating Relative Complexity using Q-learning. We apply Q-learning to
Algorithm 1 by letting the loss functions L1 and L2 correspond to a Q-learning loss:
Lξ(πξ) = − 1

B

∑B
b=1[Q

πξ (sb, ab) log p(ab)], where p(ab) corresponds to the probability
of an action for policy πξ (which may be a transformation of another policy such
as πξ = g ◦ πζ ◦ h), Qπξ (sb, ab) are the Q-values, and B is the batch size. We run
Algorithm 1 for 1000 iterations and use a batch size B of 1000 transitions.

Approximating Relative Complexity using SAC. We modify Algorithm 1 to
use SAC for approximating the relative complexity. Let Qπ2

2 be a critic of π2 on task
τ2 and Qg◦π2◦h

1 be a critic of g ◦ π2 ◦ h on task τ1. We add an additional step to the
algorithm for updating the critics on task τ1 and τ2. The critics are then used in the
updates for the policy π2 and the encoder/decoder. The resulting method is presented
in Algorithm 2. We run Algorithm 2 for 50,000 iterations and use a batch size of 200
transitions.

Algorithm 2 Approximating Relative Complexity using SAC
1: Input: Learning rates λ1, λ2, adversarial tuning parameter α
2: Input: Function spaces H,G
3: Input: Q-functions Q,Q loss functions for τ1, τ2 respectively
4: Output: Approximate relative complexity C̃τ1/τ2 ≈ Cτ1/τ2

5: while ¬(converged ∧ R2(π2) = R⋆
2) do

6: Step 0: critic update
7: Update critic Qπ2

2

8: Update critic Qg◦π2◦h
1

9: Step 1: π2 update
10: π2 ← π2 + λ1∇π2 [Q

π2
2 − αQg◦π2◦h

1]
11: Step 2: encoder/decoder update
12: [h, g]← [h, g] + λ2∇[h,g][Q

g◦π2◦h
1]

13: end while
14: C̃τ1/τ2 ←

[
1− R1(g◦π⋆

2◦h)
R⋆

1

]

	Towards a Framework for Comparing the Complexity of Robotic Tasks

