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Abstract: Our goal is to perform out-of-distribution (OOD) detection, i.e., to de-
tect when a robot is operating in environments that are drawn from a different
distribution than the environments used to train the robot. We leverage Proba-
bly Approximately Correct (PAC)-Bayes theory in order to train a policy with a
guaranteed bound on performance on the training distribution. Our key idea for
OOD detection then relies on the following intuition: violation of the performance
bound on test environments provides evidence that the robot is operating OOD.
We formalize this via statistical techniques based on p-values and concentration
inequalities. The resulting approach (i) provides guaranteed confidence bounds on
OOD detection, and (ii) is fask-driven and sensitive only to changes that impact
the robot’s performance. We demonstrate our approach on a simulated example
of grasping objects with unfamiliar poses or shapes. We also present both sim-
ulation and hardware experiments for a drone performing vision-based obstacle
avoidance in unfamiliar environments (including wind disturbances and different
obstacle densities). Our examples demonstrate that we can perform task-driven
OOD detection within just a handful of trials. Comparisons with baselines also
demonstrate the advantages of our approach in terms of providing statistical guar-
antees and being insensitive to task-irrelevant distribution shifts.
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1 Introduction

Imagine a drone trained to perform vision-based navigation using a dataset of indoor environments
and deployed in environments with varying wind conditions, obstacle densities, or lighting (Fig. 1).
Similarly, consider a robot arm manipulating a new set of objects or an autonomous vehicle deployed
in a new city. State-of-the-art techniques for learning-based control of robots typically struggle to
generalize to such out-of-distribution (OOD) environments. This lack of OOD generalization is par-
ticularly pressing in safety-critical settings, where the price of failure is high. In this work, we focus
on the problem of autonomously defecting when a robot is operating in environments drawn from a
different distribution than the one used to train the robot. This ability to perform OOD detection has
the potential to improve the safety of robotic systems operating in OOD environments. For example,
a drone operating in a new set of environments could either deploy a highly conservative policy or
cease its operations altogether. In addition, OOD detection can also allow the robot to improve its
policy by re-training using additional data collected from the new environments.

There are two important desiderata that OOD detection approaches for safety-critical robotic sys-
tems should ideally satisfy. First, we would like to develop OOD detection techniques with guar-
anteed confidence bounds. Second, we would like our OOD detectors to be task-driven and only
sensitive to task-relevant changes in the robot’s environment. As an example, consider again the
drone navigation setting in Fig. 1 and suppose that the robot’s policy is insensitive to changes in
color and lighting. Here, the robot’s OOD detector should nof trigger even if the robot is operating
in environments with different color/lighting and should only trigger if there are task-relevant vari-
ations (e.g., variations in the obstacle density). Unfortunately, current approaches (Sec. 2) do not
typically satisfy both desiderata; they are often based on heuristics and not task-driven in general.

Statement of Contributions. We develop task-driven OOD detection techniques with statistical guar-
antees on correctness. To this end, we make three specific contributions (see Fig. 1 for an overview).

*Equal Contribution
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Figure 1: A schematic of our overall approach. We learn policies with guaranteed bounds on expected perfor-
mance on the training distribution. Violation of this bound during deployment implies that the robot is operating

OOD (with high confidence). We present simulation experiments in manipulation and navigation settings, and
hardware experiments for a drone navigating in new environments with varying wind conditions and clutter.

* Given a dataset of environments drawn from an (unknown) training distribution, we develop a
pipeline based on generalization theory for training control policies with a guaranteed bound
on performance (a bound on the expected cost of the policy on the unknown training distribu-
tion). Specifically, we leverage recently-developed derandomized Probably Approximately Cor-
rect (PAC)-Bayes bounds that are well-suited to enable OOD detection (Sec. 4.1).

We develop two OOD detection techniques with complementary statistical interpretations based
on the following intuition (Sec. 4.2): if the costs incurred when the robot is deployed in new
environments violate the bound on the policy’s performance, then this indicates that the robot is
operating OOD. We formalize this via p-values and concentration inequalities and provide statis-
tical guarantees on the false positive rate of OOD detection. Since our OOD detection scheme
leverages the costs incurred in new environments, it is only triggered by task-relevant changes.

* We demonstrate our approach on two simulated examples (Sec. 5): (i) a robotic manipulator grasp-
ing a new set of objects, and (ii) a drone navigating a new set of environments. Comparisons with
baselines demonstrate the advantages of our approach in terms of providing statistical guarantees
and being insensitive to task-irrelevant shifts. We also present a thorough set of hardware exper-
iments for vision-based drone navigation with varying wind conditions and clutter (Fig. 1). Our
experiments demonstrate the ability of our approach to perform task-driven OOD detection within
just a handful of trials for systems with complex dynamics and rich sensing modalities.

2 Related work

Anomaly/OOD detection in supervised learning. Anomaly detection in low-dimensional signals
has been well-studied in the signal processing literature (see [1] for a review). Recent work in
machine learning has focused on OOD detection for high-dimensional inputs (e.g., images) in su-
pervised learning settings (see [2] for a review). Popular approaches use threshold-based detectors
for the output distribution of a given pre-trained neural classifier [3, 4, 5]. Other methods use a
specific pipeline for training a neural network in order to improve OOD detection on test samples
[6, 7, 8]. However, these methods are often susceptible to adversarial attacks [9]. Thus, approaches
for addressing adversarial data have been developed [10, 9, 11]. Some of these approaches are also
able to provide theoretical guarantees of performance on adversarial data [9, 12, 13]. Other methods
provide PAC-style statistical guarantees [14, 15] or p-values [16]. However, these methods typically
focus on supervised learning settings and often require specific network outputs (e.g., softmax) that
are incompatible with non-classification tasks. In contrast, we focus on OOD detection for policy
learning settings in robotics and do not make assumptions about the specific structure of the policy.

Task-driven OOD detection. The methods above are aimed at detecting any distributional shift in
the data and can be sensitive even to task-irrelevant shifts (i.e., ones that do not impact performance)
as we demonstrate in our experiments (Sec. 5). A recent approach determines an estimate of input



atypicality for pre-trained networks and uses it as an OOD detector in supervised learning settings
[17]. Recent methods have also been developed specifically for reinforcement learning (RL) [18,
19, 20, 21, 22]. In particular, [22] presents a general task-driven approach for OOD detection on
sequential rewards, which is optimal in certain settings. However, neither this method nor others in
the RL context provide statistical guarantees on detection. We propose an OOD detection framework
which is both task-driven and provides statistical guarantees by leveraging generalization theory.

Generalization theory. Generalization theory provides a way to learn hypotheses (in supervised
learning) with a bound on the true expected loss on the underlying data-generating distribution
given only a finite number of training examples. Original frameworks include Vapnik-Chervonenkis
(VC) theory [23] and Rademacher complexity [24]. However, these methods often provide vacu-
ous generalization bounds for high-dimensional hypothesis spaces (e.g., neural networks). Bounds
based on PAC-Bayes generalization theory [25, 26, 27] have recently been shown to provide strong
guarantees in a variety of settings [28, 29, 30, 31, 32, 33], and have been significantly extended and
improved [34, 35, 36, 37, 38, 39]. PAC-Bayes has also recently been extended to learn policies for
robots with guarantees on generalization to novel environments [40, 41, 42, 43]. In the present work,
we leverage recently-proposed derandomized PAC-Bayes bounds [44]; this framework allows us to
train a single deterministic policy with a guaranteed bound on expected performance on the training
distribution (in contrast to [40, 41, 42, 43], which train stochastic neural network policies). This
forms the basis for our OOD detection framework: by observing violations of the PAC-Bayes bound
on test environments, we are able to perform task-driven OOD detection with statistical guarantees.

3 Problem formulation

Dynamics and environments. Let s;1 1 = fgr(s:,a¢) describe the robot’s dynamics, where
s¢ € S C R™s is the state of the robot at time-step ¢, a; € A C R™= is the action, and FE € £ is the
environment that the robot is operating in. “Environment” here broadly refers to factors that are ex-
ternal to the robot, e.g., a cluttered room that a drone is navigating, disturbances such as wind gusts,
or an object that a manipulator is grasping. The dynamics of the robot may be nonlinear/hybrid. We
denote the robot’s sensor observations (e.g., RGB-D images) by o, € O C R".

Cost functions. The robot’s task is encoded via a cost function and we let Cg(7) denote the cost
incurred by a (deterministic) policy ™ when deployed in environment E over a finite time horizon 7.
The policy 7 € Il is a mapping from (histories of) sensor observations to actions (e.g., parameterized
using a neural network). In the context of obstacle avoidance, the cost could capture how close the
drone gets to an obstacle; in the context of grasping, the cost could be O if the robot successfully lifts
the object or 1 otherwise. We assume that the cost is bounded; without further loss of generality, we
assume Cg () € [0, 1]. We also assume that the robot has access to the cost C'g () after performing
a rollout on E (i.e., at the end of an episode of length T"). This is a relatively benign assumption
in robotics contexts since the cost function often has physical meaning and can be measured by
the robot’s sensors. For example, a drone equipped with a depth sensor can measure the smallest
reported depth value during its operation in an environment, and a manipulator equipped with a
camera and/or force-torque sensor can measure if it successfully grasped an object. We make no
further assumptions on the cost function (e.g., we do not assume continuity, Lipschitzness, etc.).

Training and testing distribution. We assume that the robot has access to a training dataset S =
{E1,..., En} of m environments drawn i.i.d. from a training distribution D, i.e. S ~ D™. After
training, the robot is deployed on environments in S’ = {E1, ..., E/ } drawn from a test distribution
D': S" ~ D'™. Importantly, we do not assume any explicit knowledge of D, D’ or the space £ of
environments. We only have indirect access to D, D’ in the form of the finite training datasets S, S’.

Goal: task-driven OOD detection. After being deployed in (a typically small number of) en-
vironments in S’, the robot’s goal is to detect if these environments were drawn from a different
distribution than the training distribution (i.e., if D’ is different from D). Moreover, our goal is to
perform task-driven OOD detection. In particular, our OOD detector should only trigger if:

Cpr (7‘[‘) = E/INED/CE,(W) > Cp(ﬂ') = EIEDCE(W) . (D)

Thus, our OOD detector should be insensitive to changes in the environment distribution that do
not adversely' impact the robot’s performance. This is a challenging task since we only assume

!The OOD detection scheme we present can also be modified to detect if the expected cost on D’ is smaller
than the expected cost on D; however, we focus on the other case since that is of greater practical interest.



access to a finite number of environments from D and D’. Moreover, our goal is to develop an OOD
detection framework that is broadly applicable in challenging settings involving nonlinear/hybrid
dynamics, rich sensing modalities (e.g., RGB-D), and neural network-based policies.

4 Approach

Our overall approach is illustrated in Fig. 1. First, we train a policy with an associated guarantee
on the expected cost on the training distribution D (Sec. 4.1). We then apply our OOD detection
scheme which formalizes the following intuition: violation of the bound during deployment implies
(with high confidence) that the test distribution D’ is OOD in a task-relevant manner (Sec. 4.2).

4.1 Policy training via derandomized PAC-Bayes bounds

Given a training dataset S = {FEi,...,E,} of m environments drawn i.i.d. from the train-
ing distribution D, our goal is to learn a policy 7 with a guaranteed bound on the expected cost
Cp(m) = EgpCg(m). Since our OOD detection scheme will rely on violations of the bound, it
is important to obtain bounds that are as tight as possible. In this work, we utilize the Probably Ap-
proximately Correct (PAC)-Bayes framework [25, 26, 27] to train policies with strong guarantees.
More specifically, we leverage recently-developed derandomized PAC-Bayes bounds [44], which
are well-suited to the OOD detection setting (as we explain further below).

PAC-Bayes applies to settings where one chooses a distribution over policies (e.g., a distribution over
weights of a neural network), and learning algorithms that have the following structure: (1) choose a
“prior” distribution Py over the policy space II before observing any data (this can be used to encode
domain/expert knowledge); (2) obtain a training dataset .S and choose a posterior distribution P over
the policy space II. Let P be the output of an algorithm A which takes Py and .S as input. Denote the
cost incurred by a policy 7 on the training environments in S as Cs(7) := & > . o Cp(7). The
following result is our primary theoretical tool for training policies with bounds on performance.

Theorem 1 For any distribution D, prior distribution Py, § € (0, 1), cost bounded in [0,1], m > 8,
and deterministic algorithm A which outputs the posterior distribution P, we have the following:

P Cp(r) < Cs(m,S)| >1-6 , )

(S,m)~ (D™ x P)

where Cs(m,S) = Cs(r) + VR, R := (Dy(P||P,) + ln%)/(%n), and Dy is the Rényi

Divergence for o = 2 defined as: Dy(P||Py) = In (E,Wpo [(%)Q] )

Proof. The proof is in App. A.1. We use [44, Theorem 2], a general pointwise PAC-Bayes bound.
We perform the reduction from supervised learning to policy learning presented in [40]. O

This result allows us to obtain policies with guaranteed bounds on the expected cost. In particular, we
can search for a posterior P in order to minimize the sum of the training cost and the “regularizer”
VR. We describe such training methods via backpropagation and blackbox optimization below.
Sampling from the resulting posterior P provides a policy with a bound on C'p(7) that holds with
high probability (over the sampling of the training dataset .S and the policy ).

Recent work has demonstrated the effectiveness of PAC-Bayes to provide strong bounds for deep
neural networks [28, 31, 33] and specifically for policy learning [40, 41, 42, 43]. However, the
bounds used by these approaches do not provide a viable approach for performing OOD detection.
The approaches are based on traditional PAC-Bayes bounds, where a distribution P over policies
(e.g., a distribution over neural network weights) is chosen; the resulting bound is on E,. pCp(7)
instead of Cp (7). Thus, given a test dataset S’ of environments, many policies from the distribution
P must be sampled in order to evaluate/bound the expected cost on S’. This is not feasible in an
OOD detection setting, where there is single execution on the test environments. Our use of the
derandomized PAC-Bayes bound in Theorem 1 avoids this issue since we can bound Cp () for a
particular policy sampled from P.

We provide approaches for optimizing the bound provided in Theorem 1 using backpropagation
(App. A.4) and Evolutionary Strategies (ES) [45] (App. A.5). Since Theorem 1 requires a deter-
ministic training algorithm, we fix the random seed for stochastic training methods. This makes the
algorithm deterministic as the same input will always produce the same output. We choose multi-
variate Guassian distributions with diagonal covariance diag(s), i.e., P = N(u, diag(s)), for the



posterior P and prior Py distributions. Further, let ¢ := (u,log s); we use the shorthand Ny, for
N (s, diag(s)). We denote 7, with weights w ~ N, as a parameterization of the robot’s policy (e.g.,
neural networks with weights w). After training, we sample and fix a w from the trained posterior

for deployment on test environments. We then compute the PAC-Bayes upper bound Cs(, S).

4.2 Task-driven OOD detection with statistical guarantees

We now tackle the problem of OOD detection as defined in Sec. 3. The PAC-Bayes training pipeline
from Sec. 4.1 produces a policy 7 and an associated bound Cs(7, S) on the expected cost C'p ()
that holds with probability 1 — § over the sampling of the training dataset S ~ D™ and the policy
7 ~ P. Our key idea for OOD detection is that if our PAC bound Cs(, S) is violated by 7 in the test
environments S’ (drawn from the test distribution D’), then this indicates that the test environments
are OOD. We formalize this intuition below using two popular frequentist statistical inference tools
— hypothesis testing via p-value and confidence interval overlap.

Method 1: Hypothesis testing

In accordance with our notion of task-driven OOD detection (1) described in Sec. 3, let Hy be the
null-hypothesis which claims that Cp/ (1) < Cp(w) and let H; be the alternate hypothesis which
claims that Cp/ () > Cp(n) for a given policy 7. Then, to perform a hypothesis test, we compute
the p-value and check if it drops below a significance level o € (0, 1), which is chosen before
looking at the data. The p-value bounds the probability of drawing test environments with average
cost larger than the observed test cost C's/ (), assuming that the null-hypothesis holds. In the event
that the p-value is smaller than «, we can conclude that under the null-hypothesis the observed test
dataset S’ had a very small probability of being drawn; therefore, the null-hypothesis Hy can be
rejected. A mathematically precise definition of the p-value is given as follows.

Definition 1 (adapted from [46]) Let D’ be the test distribution and S’ ~ D™ be an observed
dataset. Let T be the robot’s control policy. Then, the p-value is defined as:

p(S') = JB [Cs(m) = Csi(m) | Hol - 3)

Note that S is any dataset of cardinality n drawn i.i.d. from the test distribution D, while S’
is the observed test dataset which we must use for inference. We present an upper bound on the
p-value by leveraging the PAC-Bayes generalization bound (Theorem 1). This upper bound holds
with probability 1 — ¢ (over the sampling of S and 7).

Theorem 2 Let D be the training distribution and P be the posterior distribution on the space of
policies obtained through the training procedure described in Sec. 4.1. Let S’ ~ D'™ be a test
dataset, p(S’) be the p-value for S’ defined in Definition 1, and § € (0,1). Then,

! < _ = 2 > _
oo P8 S exp(-2nm (S = 15 @)

where 7(S) := max{Cg (7) — Cs(r, S),0}.
Proof. The proof relies on Hoeffding’s inequality and is provided in App. A.2. O
Theorem 2 provides an upper bound on the p-value which holds with high confidence. If the upper

bound is below the significance level «, then with high confidence we can say that the p-value is
below «; thereby, Theorem 2 facilitates OOD detection through hypothesis testing.

Method 2: Confidence interval on the difference in expected train and test costs

We now present another method for performing task-driven OOD detection (Sec. 3 and Eq. (1)) by
lower bounding Cp (7) — Cp(7) with high probability. If the lower bound is positive, then with
high confidence we can conclude that the robot is operating in (task-relevant) OOD environments as
the test cost is larger than the train cost. Furthermore, this lower bound serves as a measure of how
“far” the two distributions are from the perspective of the task.

Theorem 3 Ler D be the training distribution, D' be the test distribution, and P be the posterior
distribution on the space of policies obtained through the training procedure described in Sec. 4.1.

Let 6,8 € (0,1) such thar§ + 6" < 1, v := 4/ %, and AC := Cs/(mt) —y — Cs(, S). Then,

/ — > >1-—6-0" .
(SmS/)N(g”mewm)[Cp (m) = Cp(r) > AC] >1-6—-4§ (5)



Proof. A detailed proof of this theorem is provided in App. A.3. O

To use Theorem 3 for detecting if a test dataset S’ is OOD, we first choose ¢ and ¢’ to obtain a
desired confidence level 1 — & — ¢’ for our OOD detector. Using these constants and the policy 7
drawn from P trained using the PAC-Bayes upper bound, we then compute AC. If AC' > 0, then
with confidence at least 1 — § — &’ we can claim that C'pr > Cp, and therefore, with the same
level of confidence the test dataset S’ must be OOD according to our task-relevant notion in (1).
Furthermore, we obtain a guaranteed upper bound of § + ¢’ on the false positive rate of our OOD
detector, i.e., the rate at which our detector will misclassify training distribution data as OOD.

S Examples

We demonstrate the ability of our approach to perform task-driven OOD detection with guar-
anteed confidence bounds on two simulated examples: a manipulator grasping a new set
of objects and a drone navigating a new set of environments. For the navigation task,
we compare our methods with popular OOD detection baselines. Our code is available at:
https://github.com/irom-lab/Task Relevant 00D Detection

5.1 Robotic grasping

Overview. We use the Franka Panda arm (Fig. 2(a)) for grasping objects in the PyBullet simulator
[47] and build upon the open-source code provided in [42]. The robot employs a vision-based control
policy that uses a depth map of the object obtained from an overhead camera and returns an open-
loop action a := (x,y, z,0) which corresponds to the desired grasp position and yaw orientation of
the gripper. We train the manipulator to grasp mugs placed in SF(2) poses drawn from a specific
distribution. Then, we demonstrate the efficacy of our OOD detection framework by (i) gradually
modifying the distribution on the mug poses and (ii) changing the objects from mugs to bowls.

Control policy. The control policy is a deep neural network (DNN) which inputs a 128 x 128 depth
map of the object and a latent state z € R'" sampled from a multivariate Gaussian distribution Ay,
with a diagonal covariance, and outputs an open-loop grasp action a; see Fig. 4 in App. A.6.1 for
the policy. In [42], the distribution Ny, on the latent space encodes prior domain/expert knowledge.

Training. Mugs from the ShapeNet dataset [48] are randomly scaled in all dimensions to generate
a training dataset S of 500 mugs. If the robot is able to lift the mug by 10 cm and the gripper palm
does not contact it, then we consider the rollout successful and assign a cost of 0; otherwise the cost
is set to 1. In training, we optimize the distribution ;, on the latent space to minimize the PAC-
Bayes upper bound provided in Theorem 1 using Alg. 2, while the weights of the CNN and MLP
networks in Fig. 4 in App. A.6.1 remain fixed. The prior Ny, is chosen as the normal distribution
with zero mean and identity covariance. A policy 7 is sampled from the trained posterior NV, and

the PAC-Bayes bound for this policy is computed as Cs(7, S) = 0.1 with § = 0.01.

OOD detection results. We perform OOD detection using the two methods presented in Theorem 2
and Theorem 3. For detection with p-value, we choose a significance level = 95%, while, for
detection using AC we choose a confidence level of 95%, i.e., § + ¢’ = 0.05, which ensures that the
false-positive rate of our detector is no greater than 5%. We perform two experiments to demonstrate
the efficacy of our approach for OOD detection. First, we make the distribution on the mug’s initial
placement progressively more challenging; see App. A.6.1 for the exact distributions. For each
distribution, we sample 20 test datasets of cardinality 10 and compute our OOD indicators: (i) the
lower bound on 1 — p (where p is the p-value) and (ii) AC using Theorem 3. Fig. 2(b) plots the
mean (dashed line) and a one standard deviation spread (shaded region) for the OOD indicators as
a function of Cpr — Cp (estimated via exhaustive sampling). Note that we plot AC' + 0.95 so that
the OOD threshold is the same (0.95) for both methods. As the cost of the policy deteriorates on test
distributions our OOD indicators reliably increase, capturing the shift of the test distributions away
from the training distribution. In the second experiment, we change the objects that the manipulator
must grasp from mugs to bowls. Fig. 2(c) shows that with a small test dataset S’ of cardinality 5,
both our approaches detect OOD when bowls are used (red curves). As expected, our OOD detectors
are not triggered for mugs (blue curves), which are drawn from the training distribution.

5.2 Vision-based obstacle avoidance with a drone

Overview. In both the simulation and hardware portions of this example, we aim to avoid an obstacle
field with the Parrot Swing drone; this is an agile quadrotor/fixed-wing hybrid drone shown in Fig. 1.


https://github.com/irom-lab/Task_Relevant_OOD_Detection

1.4 4 1.0 _ g,
e n I
512 o S os{ *ug”
Lo — -—‘::'A _____ A—A | 2 . “.___."_.__..._»..--7-0"-0
Los = L o0 » &
T A © ~
Sos6 & # < os o —— OOD threshold
Q. & a --A- Mug:1-p
) e —— OOD threshold o 10 --@-- Mug: AC +0.95
O o2 e -A- 1-p o -#@- Bowl: 1-p
0.0{ &7 -@- AC+0.95 -15 -~ Bowl: AC +0.95
0.0 .0.2 0.4 0.6 0.8 1 2 3 4 5 6 7 8 9 10
Estimated Cp/(m) — Cp(n) Cardinality of Test Data
(b) ©

Figure 2: OOD detection for grasping. (a) Franka Panda arm in PyBullet grasping a mug (left) and a bowl
(right). (b) Performance of our OOD detectors for different distributions on mug placement. Both our ap-
proaches perform similarly and the OOD indicators increase monotonically with C'ps (7) — Cp (7). (¢) Com-
parison of our OOD detectors for grasping mugs and grasping bowls. Both our approaches detect OOD using
a small number of test environments (just 4) for bowls and do not detect OOD for mugs (as expected).

We train a DNN control policy in a simulation setup based on the hardware system shown in Fig. 1.
The policy takes in a 50 x 50 depth image and outputs a softmax corresponding to a set of pre-
computed motion primitives with the goal of avoiding obstacles by the largest distance. Since we
designed the simulation portion of this example with application to hardware in mind, we have
created motion primitives by capturing (with a Vicon motion tracking system) the trajectories of
open-loop control inputs, which result in different maneuvers; the two images in Fig. 1 represent
two of these trajectories. The use of motion primitives allows us to perform accurate sim-to-real
transfer (since the motion primitives are recorded directly from the hardware system).

Training. Environments consist of a set of randomly placed cylindrical obstacles. We record the
minimum distance dp;, from the obstacles (as recorded by the robot’s 120° field of view depth
sensor) and assign a cost of max (0,1 — 3‘é"gr"n). Using 10,000 training environments .S, we train a
prior to assign larger values to motion primitives which achieve a larger distance from obstacles. See
App. A.6.2 for further details on the training procedure for the prior. We then use another 10,000
environments to train the posterior distribution using Alg. 1. We sample a policy 7 from the trained

posterior and compute the PAC-Bayes bound C's(7, S) = 0.222 for § = 0.01.

Simulation Results

We compare our task-driven OOD detection approach with two baselines: (i) maximum softmax
probability (MSP) [3] (an effective and popular baseline for OOD detection), and (ii) MaxLogit
[5] (a recent state-of-the-art OOD detection baseline). We note that these baselines are specifically
designed for networks which output categorical distributions, and thus provide strong benchmarks.
We determine the threshold for detection for the baselines by choosing a false positive rate of 5%
for the training environments. However, note that the baselines do not provide any guarantees; they
may violate the false positive rate even on new environments drawn from the training distribution (as
we observe in our experiments). We select a p-value of 0.05 as the indication that an environment is
OOD, and a guaranteed false-positive rate of § + 6’ = 5% for the confidence interval method. Each
method receives a dataset S’ of 10 environments. We use the average outputs of the baselines on
the 10 environments for OOD detection. We generate OOD environments of varying difficulty by
changing the number of obstacles and the maximum or minimum gap-size between obstacles.

Varied environment difficulty. We sample 2000 datasets S’ (of size 10) for each setting and plot
the proportion of these detected as OOD for all methods in Fig. 3(a). At 0 on the x-axis of this plot,
we draw datasets from the training distribution. All other environments are OOD. We note that the
p-value and confidence interval-based methods perform similarly. The plot demonstrates our ability
to perform task-driven OOD detection. In particular, we only detect the “harder” distributions (i.e.,
environments with higher increased cost) as OOD, while the baselines are triggered even for the
easier distributions. In addition, neither baseline provides any guarantees and both violate the 5%
false-positive rate on the training distribution. Our methods have a low false positive rate, albeit at
the cost of conservatism for moderate distribution shifts.

Task-irrelevant shift. We also compare the baselines with our methods on a distribution where
environments consist of 4 (uniformly) randomly located obstacles. In this setting, the control policy
achieves a near-identical expected cost Cp/ (1) (as estimated by exhaustive sampling of environ-
ments) to the expected training cost Cp(w) (in particular, C'p/(7) - Cp(m) = —0.02). For this
setting, MSP [3] classified 95.7% of test datasets as OOD and MaxLogit [5] classified 50.9% as
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Figure 3: OOD Detection on settings of variable difficulty. (a) Comparison of the performance of our OOD
detectors with baselines MSP [3] and MaxLogit [5]. Both our methods do not detect OOD when Cp (7) <
Cp(m) whereas the baselines detect these task-irrelevant shifts in the environment. For C'p/ () > Cp(7) the
baselines detect a higher proportion of datasets as OOD for smaller values of C'p/ (1) — C'p () compared to our
methods. (b) Comparison of our OOD detectors on the Parrot Swing hardware for increasing wind disturbance.
Both OOD indicators increase monotonically with Cp/ (7) — C'p () and are able to detect OOD at 100% wind.

OOD. Thus, the baselines are triggered by a task-irrelevant shift in the distribution. In contrast, our
methods had an OOD detection rate of 0.1% in this setting.

Hardware Results

We use a Parrot Swing drone for the hardware experiments (Fig. 1). We simulate a depth sensor
for the drone (as if the sensor was mounted on the drone) by generating a synthetic depth image
using the positions of objects from the Vicon motion capture system. We do not provide any other
information to the policy (e.g., obstacle positions). We generate each environment the same way as
in simulation, and then place the real-world obstacles in the generated locations.

Varied environment difficulty and wind disturbances. We deploy the policy trained in simu-
lation on three kinds of OOD environments in hardware: (i) environments with a smaller num-
ber of obstacles (“easier” environments), (ii) environments with smaller gaps between obstacles
(i.e., “harder” environments), and (iii) environments with wind generated using a fan (Fig. 1
right) with the same obstacle distribution as training. Videos from each setting are available at
https://youtu.be/VxKCAjaih8M. For each setting, we run 10 trials on the hardware and use this
for OOD detection. As expected, our OOD detectors are not triggered by the easier environments.
For the harder environments, we compute 1 — p > 0.81 and AC = —0.11. Results from the windy
environments are shown in Fig. 3(b) for increasing values of wind (up to about 5 m/s). We note that
the sim-to-real distribution shift (corresponding to the zero wind case) is not viewed as being OOD
in a task-relevant manner by our approaches. Both our approaches assign increasingly high confi-
dence as the wind speed is increased. We note that disturbances such as wind cannot be detected via
the depth image given to the robot’s policy. Thus any OOD detection technique which relies solely
on the output of the policy, such as MSP [3] and MaxLogit [5], would be unable to detect these
environments as OOD.

6 Conclusion

We have presented a framework for performing task-driven OOD detection with statistical guaran-
tees. Our approach uses PAC-Bayes theory to train a policy with a bound on the expected cost on
the training distribution. We then perform OOD detection on test environments by checking for vi-
olations of the bound (using p-values and concentration inequalities). Our simulated and hardware
experiments demonstrate the ability of our approach to perform OOD detection within a handful of
trials. Comparisons with baselines also demonstrate two advantages: our OOD detectors (i) are only
sensitive to task-relevant distribution shifts, and (ii) provide statistical guarantees on detection.

Challenges and future work. The approach we present here allows us to bound the false positive
rate. An interesting theoretical question is whether we can also bound the false negative rate. It
would also be of practical interest to extend our approach to settings where the robot encounters
environments in an online manner (instead of the batch setting we consider here). Another partic-
ularly exciting direction is to develop versions of our approach that are more proactive; instead of
having to incur costs on the test environments, one could potentially perform OOD detection based
on predicted costs (thus avoiding the need to potentially fail on the test environments).


https://youtu.be/VxKCAjaih8M
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