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Abstract

We consider the problem of minimizing a convex function that is evolving in time
according to unknown and possibly stochastic dynamics. Such problems abound in
the machine learning and signal processing literature, under the names of concept
drift and stochastic tracking. We provide novel non-asymptotic convergence guar-
antees for stochastic algorithms with iterate averaging, focusing on bounds valid
both in expectation and with high probability. Notably, we show that the tracking
efficiency of the proximal stochastic gradient method depends only logarithmically
on the initialization quality when equipped with a step-decay schedule.

1 Introduction

Stochastic optimization underpins much of machine learning theory and practice. Significant progress
has been made over the last two decades in the finite-time analysis of stochastic approximation
algorithms; see, e.g., [1, 2, 6, 7, 8, 21, 24, 29, 30]. The predominant assumption in this line of work
is that the distribution generating the data is fixed throughout the run of the process. There is no
shortage of problems, however, where this assumption is grossly violated for reasons beyond the
learner’s control. Indeed, data often shifts and evolves over time for reasons that may be independent
of the learning process.

Two examples are worth highlighting. The first is a classical problem in signal processing related to
stochastic tracking [19, 27], wherein the learning algorithm aims to track over time a moving target
driven by an unknown stochastic process. The second example is the concept drift phenomenon in
online learning [14, 28], wherein the true hypothesis may be changing over time, as in topic modeling
or spam classification. An important goal in online problems, and the one we adopt here, is to track
as closely as possible an unknown sequence of minimizers or minimal values. The tracking error
efficiency of stochastic algorithms in online settings is much less developed than sample complexity
guarantees for static problems.

We present finite-time efficiency estimates in expectation and with high probability for the tracking
error of the proximal stochastic gradient method under time drift. Our results concisely explain
the interplay between the learning rate, the noise variance in the gradient oracle, and the strength
of the time drift. The high-probability results merely assume that the gradient noise and time drift
have light tails. Moreover, none of the results require the objectives to have bounded domains.
While conventional wisdom and previous work recommend the use of constant step sizes under time
drift, we show in an important regime that a significantly better step size schedule is one that is
geometrically decaying to a “critical step size”.
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1.1 Related work

Our current work fits within the broader literature on stochastic tracking, online optimization with
controlled increments, and high-probability guarantees in stochastic optimization. We now survey
the most relevant literature in these areas.

Stochastic tracking. Stochastic gradient-type algorithms for stochastic tracking and filtering have
been the subject of extensive research in the past century. Most works have focused on the so-called
least mean-squares (LMS) algorithm and its variants, which can be viewed as a stochastic gradient
method on a least-squares loss-based objective. Other stochastic algorithms that have been studied
in these settings with a larger cost per iteration include recursive least-squares and the Kalman
filter [12]. Recent works have revisited these methods from a more modern viewpoint [5, 23, 32].
In particular, the paper [23] focuses on (accelerated) gradient methods for deterministic tracking
problems, while [32] analyzes a stochastic gradient method for online problems that is adaptive
to unknown parameters. The paper [5] analyzes the dynamic regret of stochastic algorithms for
time-varying problems, focusing both on lower and upper complexity bounds. Though the proof
techniques in our paper share many aspects with those available in the literature, the results we obtain
are distinct.

Online optimization with controlled increments. Online learning under concept drift was first
considered by [22] and further developed in several papers [3, 17]. In this literature, the data
distribution is typically fixed over time and the rate of variation is stated in terms of the probability of
disagreement of consecutive target functions, which is assumed to be upper bounded. Another line of
work assumes a time partitioning with an expert in each time interval, and the goal is to compete with
the expert in each segment. Closer to this work is [14, 16], where in the framework of online convex
optimization the bounds are stated in terms of maximum regret over any contiguous time interval; see
also [5, 9, 26]. In contrast to these works, in our framework we state our bounds in the same spirit as
in classical stochastic approximation, that is, in terms of distance to optimum and objective function
gap, and we present results holding both in expectation and with high probability.

High-probability guarantees in stochastic optimization. A large part of our work revolves around
high-probability guarantees in stochastic optimization. Classical references on the subject in static
settings and for minimizing regret in online optimization include [4, 15, 20, 25]. There exists a
variety of techniques for establishing high-probability guarantees based on Freedman’s inequality and
doubling tricks; see, e.g., [4, 15]. A more recent line of work [13] establishes a generalized Freedman
inequality that is custom-tailored for analyzing stochastic gradient-type methods and results in best
known high-probability guarantees. Our arguments closely follow the paradigm of [13] based on the
generalized Freedman inequality.

1.2 Outline

The outline of the paper is as follows. Section 2 formalizes the problem setting of time-dependent
stochastic optimization and records the relevant assumptions. Sections 3 and 4 present the main
results of the paper. Specifically, Section 3 focuses on efficiency estimates for tracking the minimizer,
while Section 4 focuses on efficiency estimates for tracking the minimal value. Proofs of the main
results appear in Section 5 of the Supplement, and illustrative numerical results appear in Section 6
of the Supplement.

2 Framework and assumptions

2.1 Stochastic optimization under time drift
We consider the sequence of stochastic optimization problems
min gu(x) = fi(x) + ro(x) ()

indexed by time ¢ € N. We make the standard standing assumption that (i) each function f;: R% —
R is p-strongly convex and C'-smooth with L-Lipschitz continuous gradient for some common
parameters p, L > 0, and (i7) each regularizer r; : R? — R U {oo} is proper, closed and convex. The



minimizer and minimal value of (1) will be denoted by «} and ¢}, respectively. Throughout, || - ||
denotes the £5-norm on R? induced by the dot product (-, -).

As motivation, we describe two classical examples of (1) that are worth keeping in mind and that
guide our framework: stochastic tracking of a drifting target and online learning under a distributional
drift.

Example 2.1 (Stochastic tracking of a drifting target). The problem of stochastic tracking, related to
the filtering problem in signal processing, is to track a moving target ; from observations

bt = Ct(l':) —+ €ty
where ¢;(-) is a known measurement map and ¢, is a mean-zero noise vector. A typical time-dependent
problem formulation takes the form

mIin EE&(bt —ci(x)) + i),

where /,(-) derives from the distribution of ¢; and r(-) encodes available side information about the
target 7. Common choices for 7, are the 1-norm and the squared 2-norm. The motion of the target
xy is typically driven by a random walk or a diffusion [12, 27].

Example 2.2 (Online learning under distributional drift). The problem of online learning under a
distributional drift is to learn while the data distribution may change over time. More formally, one
problem formulation takes the form

min E {(z,w)+r(z).

in B fEw) @)

where D(u;) is a data distribution that depends on an unknown parameter sequence {u;}, which
itself may evolve stochastically. The evolution of u, is often assumed to be piecewise constant in ¢ in
online learning [14, 28].

Algorithm 1 Online Proximal Stochastic Gradient PSG(zo, {m},T)

Input: initial z and step size sequence {n;}7_, C (0, c0)
Stept=0,..., T —1:

Set gt — %ft(l‘t)
Set z;41 = prox,,,, (¢ — Megt)

Return zr

Online proximal stochastic gradient method. The main goal of a learning algorithm for prob-
lem (1) is to generate a sequence of points {x} that minimize some natural performance metric. The
most prevalent performance metrics in the literature are the tracking error and the dynamic regret.
We will focus on two types of tracking error, ||z; — 27 ||? and @ (z¢) — @i (2}).

We make the standing assumption that at every time ¢, and at every query point x, the learner may
obtain an unbiased estimator V f;(x) of the true gradient V f; () in order to proceed with a stochastic
gradient-like optimization algorithm. With this oracle access, the online proximal stochastic gradient
method—recorded as Algorithm 1 above—in each iteration ¢ simply takes a stochastic gradient step
on f; at z; followed by a proximal operation on r:

Tort 1= Prox,,, (v — mege) = argmin {ro(w) + 5 [[u — (e = mg)|}
u€R

The goal of our work is to obtain efficiency estimates for this procedure that hold both in expectation
and with high probability.

Minimizer drift. The guarantees we obtain allow both the iterates x; and the minimizers x} to
evolve stochastically. This is convenient for example when tracking a moving target ; whose motion
may be governed by a stochastic process such as a random walk or a diffusion (see Example 2.1).
Throughout, we define the minimizer drift at time ¢ to be the random variable

Ay = [laf = @il



Clearly, an efficiency estimate for Algorithm 1 must take into account the variation of the functions
ft in time ¢. Two of the most popular metrics for measuring such variations are the minimizer drift
Ay and the gradient variation sup,, ||V fi(z) — V fi+1(2)]|. Given identical regularizers, a bound on
the gradient variation always implies a bound on the minimizer drift.

Lemma 2.3 (Gradient variation vs. minimizer drift). Suppose i,t > 0 are such that the regularizers
r; and ¢ are identical. Then we have

plle = zf ]| < IV filzh) — V()]
2.2 Running assumption on the stochastic process

Setting the stage, given {x;} and {g;} as in Algorithm 1 we let
2t = Vft(iﬁt) — Gt

denote the gradient noise at time t and we impose the following assumption modeling stochasticity
in the online problem throughout Sections 3 and 4.

Assumption 2.4 (Stochastic framework). There exists a filtered probability space ({2, F,F,P) with
filtration F = (F):>0 such that 7o = {), 2} and the following holds for all ¢ > 0:

() z¢, 27 Q — R? are F;-measurable,
(i) 2z:: Q — R%is F;,1-measurable with E[z; | 7] = 0.

The first item of Assumption 2.4 simply says that z; and x} are fully determined by information up
to time ¢. The second item of Assumption 2.4 asserts that the gradient noise z; is fully determined
by information up to time ¢ + 1 and has zero mean conditioned on the information up to time ¢; for
example, this holds naturally in Example 2.2 if we take g, = V{(xy, w;) with w; ~ D(u;) provided
the loss £(-,w;) is C1-smooth.

3 Tracking the minimizer with the last iterate

In this section, we present bounds on the tracking error ||, — x7||? that are valid both in expectation
and with high probability under light-tail assumptions. Further, we show that a geometrically decaying
learning rate schedule may be superior to a constant learning rate in terms of efficiency.

3.1 Bounds in expectation

We begin with bounding the expected value E|z; — x7]|?

following standard one-step improvement guarantee.

. The starting point for our analysis is the

Lemma 3.1 (One-step improvement). For all x € R, the iterates {x;} produced by Algorithm 1
with n, < 1/L satisfy the bound:

2
20:(pe(er1) — @e(@)) < (1= pme) e — 2l* = |lzeer — 2 + 20620, 20 — ) + 21261

For simplicity, we state the main results under the assumption that the second moments E [Af] and

[E||2¢||? are uniformly bounded; more general guarantees that take into account weighted averages of
the moments and allow for time-dependent learning rates follow from Lemma 3.1 as well.

Assumption 3.2 (Bounded second moments). There exist constants A, o > 0 such that the following
holds for all ¢ > 0.

(i) (Drift) The minimizer drift A, satisfies E[A7] < A2,
(ii) (Noise) The gradient noise z; satisfies E||z||? < o2.

The following theorem establishes an expected improvement guarantee for Algorithm 1, and serves
as the basis for much of what follows; see Section 5.1 of the Supplement for the precise statements
and proofs of the present section.



Theorem 3.3 (Expected distance). Suppose that Assumption 3.2 holds. Then the iterates produced
by Algorithm 1 with constant learning rate n < 1/2L satisfy the bound:

no? AN
Bl — o1 S (L= feo — g+ 27+ (2

noise drift

optimization

Interplay of optimization, noise, and drift. Theorem 3.3 states that when using a constant
learning rate, the error E||z; — 7 ||? decays linearly in time ¢, until it reaches the “noise+drift” error
no?/p + (A/un)?. Notice that the “noise+drift” error cannot be made arbitrarily small. This is
perfectly in line with intuition: a learning rate that is too small prevents the algorithm from catching
up with 7. We note that the individual error terms due to the optimization and noise are classically
known to be tight for PSG; tightness of the drift term is proved in [23, Theorem 3.2].

With Theorem 3.3 in hand, we are led to define the following asymptotic tracking error of Algorithm 1
corresponding to |z, — x7||?, together with the corresponding optimal step size:

2 A2 1 [2a2\'/3
£:= min n7- + () and 7, :=min<{ —, () .
ne(0,1/2L] | p un 2L \ po?

Plugging 7, into the definition of £, we see that Algorithm 1 exhibits qualitatively different behaviors
in settings corresponding to high or low drift-to-noise ratio A /o, explicitly given by

2
o2 LA e A I
o T\ if 2>/ 1613

2\ 2/3 )
(A“’2 ) otherwise.

Two regimes of variation are brought to light by the above computation: the high drift-to-noise regime
A/o > \/u/16L3, and the low drift-to-noise regime A/o < \/u/16L3. The high drift-to-noise
regime is uninteresting from the viewpoint of stochastic optimization because the optimal learning
rate is as large as in the deterministic setting, 1, = 1/2L. In contrast, the low drift-to-noise regime is
interesting because the optimal learning rate 77, = (2A2/po?)'/? is smaller than 1/2L and exhibits
a nontrivial scaling with the problem parameters.

Learning rate vs. rate of variation. A central question is to find a learning rate schedule that
achieves a tracking error E||z; — 2} ||? that is within a constant factor of £ in the shortest possible
time. The answer is clear in the high drift-to-noise regime A /o > +/11/16L3. Indeed, in this case,
Theorem 3.3 directly implies that Algorithm 1 with the constant learning rate 7, = 1/2L will find a
point ; satisfying E||z; —z}[|? < Eintime t < (L/p)log(||zo —2§]|?/€). Notice that the efficiency
estimate is logarithmic in 1/&; intuitively, the reason for the absence of a sublinear component is that
the error due to the drift A dominates the error due to the variance o2 in the stochastic gradient.

The low drift-to-noise regime A/o < +/p/16L3 is more subtle. Namely, the simplest strategy is to
execute Algorithm 1 with the constant learning rate 7, = (2A2%/uo?)'/3. Then a direct application
of Theorem 3.3 yields the estimate E|z;, — z}||? < € in time t < (02/u?E)log(||zo — x3]|?/E).
This efficiency estimate can be significantly improved by gradually decaying the learning rate using a
“step-decay schedule”, wherein the algorithm is implemented in epochs with the new learning rate
chosen to be the midpoint between the current learning rate and 7,.. Such schedules are well known
to improve efficiency in the static setting, as was discovered in [10, 11], and can be used here. The
end result is the following theorem (see Theorem 5.5 of the Supplement for the precise statement).

Theorem 3.4 (Time to track in expectation, informal). Suppose that Assumption 3.2 holds. Then
there is a learning rate schedule {n;} such that Algorithm I produces a point x satisfying

L lzo — x§]|? o?
Ellz, — 27?2 < & aftertime t< =log| ——"00 ) 4+ ——.
lon il S € aftersine 5 og (10 -

Remarkably, the efficiency estimate in Theorem 3.4 looks identical to the efficiency estimate in the
classical static setting [20], with &£ playing the role of the target accuracy €. Theorems 3.3 and 3.4
provide useful baseline guarantees for the performance of Algorithm 1. Nonetheless, these guarantees



are all stated in terms of the expected tracking error E||x; — x7||?, and are therefore only meaningful
if the entire algorithm can be repeated from scratch multiple times. There is no shortage of situations
in which a learning algorithm is operating in real time and the time drift is irreversible; in such
settings, the algorithm may only be executed once. Such settings call for efficiency estimates that

hold with high probability, rather than only in expectation.

3.2 High-probability guarantees
We next present high-probability guarantees on the tracking error ||z, — x}||?. To this end, we make
the following standard light-tail assumptions on the minimizer drift and gradient noise [13, 20, 24].

Assumption 3.5 (Sub-Gaussian drift and noise). There exist constants A, o > 0 such that the
following holds for all ¢ > 0.

(i) (Drift) The square drift A? is sub-exponential conditioned on F; with parameter A
E[exp(AA7) | F] < exp(AA?) forall 0 <A< A2

(ii) (Noise) The noise z; is norm sub-Gaussian conditioned on F; with parameter o /2:

P{||z|| > 7| F} < 2exp(—27%/0?) forall 7> 0.

Note that the first item of Assumption 3.5 is equivalent to asserting that the minimizer drift A; is
sub-Gaussian conditioned on F;. Clearly Assumption 3.5 implies Assumption 3.2 with the same
constants A, o. It is worthwhile to note some common settings in which Assumption 3.5 holds; the
claims in Remark 3.6 follow from standard results on sub-Gaussian random variables [18, 31].

Remark 3.6 (Common settings for Assumption 3.5). Fix constants A, o > 0. If A; is bounded by
A, then clearly A? is sub-exponential (conditioned on F;) with parameter A%, Similarly, if ||z | is
bounded by o, then z; is norm sub-Gaussian (conditioned on F;) with parameter o /2 (by Markov’s
inequality). Alternatively, if the increment =} — x}, ; is mean-zero sub-Gaussian conditioned on

F; with parameter A/v/d, then x} — z} 1 is mean-zero norm sub-Gaussian conditioned on J; with
parameter 2v/2 - A and hence A? is sub-exponential conditioned on F; with parameter c - A2 for
some absolute constant ¢ > 0. Similarly, if z; is sub-Gaussian conditioned on JF; with parameter
0 /4+/2d, then z; is norm sub-Gaussian conditioned on J; with parameter /2.

The following theorem shows that if Assumption 3.5 holds, then the expected bound on ||z; — ||

derived in Theorem 3.3 holds with high probability.

Theorem 3.7 (High-probability distance tracking). Suppose that Assumption 3.5 holds and let {x;}
be the iterates produced by Algorithm 1 with constant learning rate n < 1/2L. Then there is an
absolute constant ¢ > 0 such that for any specified t € N and § € (0, 1), the estimate

N ’ N o? AN e
wxm2§@-’ffmo%W+c<”%())kg(g

I )
holds with probability at least 1 — 0.

The proof of Theorem 3.7 employs a technique used in [13]. The main idea is to build a careful
recursion for the moment generating function of ||z; — 27|, leading to a one-sided sub-exponential
tail bound. As a consequence of Theorem 3.7, we can again implement a step-decay schedule in
the low drift-to-noise regime to obtain the following efficiency estimate with high probability; see
Section 5.2 of the Supplement for the formal statements and proofs.

Theorem 3.8 (Time to track with high probability, informal). Suppose that Assumption 3.5 holds

and that we are in the low drift-to-noise regime AJo < \/u/16L3. Then there is a learning rate
schedule {n:} such that for any specified 6 € (0, 1), Algorithm 1 produces a point x satisfying

&
e — 72 S €1og (5)



with probability at least 1 — K0 after time
/3
L |zo — 232 o? 1 (0%’
tgulog(g —l—ﬁ, where K < log, 7\ Az .

4 Tracking the minimal value

The results outlined so far have focused on tracking the minimizer «}. In this section, we present
results for tracking the minimal value ;. These two goals are fundamentally different. Generally
speaking, good bounds on the function gap along with strong convexity imply good bounds on
the distance to the minimizer; the reverse implication is false. To this end, we require a stronger
assumption on the variation of the functions f; in time ¢: rather than merely controlling the minimizer
drift A;, we will assume control on the gradient drift

Gy = sup IV fi(z) = Vfi(2)]-

Our strategy is to track the minimal value along a running average &, of the iterates x; produced
by Algorithm 1, as defined in Algorithm 2 below. The reason behind using this particular running
average is brought to light in Section 5.3 of the Supplement, where we apply a standard averaging
technique to a one-step improvement along z; to obtain the desired progress along ;.

Algorithm 2 Averaged Online Proximal Stochastic Gradient PSG(xo, pt, {m:}, T)

Input: initial 79 =: %, strong convexity parameter 1, and step size sequence {n; }7_, C (0,21~ 1)
Stept=0,..., T —1:

Set gt — %ft(l‘t)
Set z¢41 = prox,,,, (¢ — nege)

- (1 _ e\ pne
Set Tiy1 = (1 27,“%)3'375 + 2—

Tt41

Return zr

4.1 Bounds in expectation

We begin with bounding the expected value E[p;(Z:) — ¢}]. Analogous to Assumption 3.2, we make
the following assumption regarding drift and noise.

Assumption 4.1 (Bounded second moments). The regularizers r; = r are identical for all times ¢
and there exist constants A, o > 0 such that the following properties hold for all 0 < i < ¢:

(i) (Drift) The gradient drift G, ; satisfies E[G7,| < (uAli —t])2.
(ii) (Noise) The gradient noise 2; satisfies E||2;||? < 0% and E(2;, z}) = 0.

These two assumptions are natural indeed. Taking into account Lemma 2.3, it is clear that Assump-
tion 4.1 implies the earlier Assumption 3.2 with the same constants A, . The assumption on the drift
intuitively asserts that gradient drift G; ; can grow only linearly in time |i — ¢| (in expectation). In
particular, returning to Example 2.2, suppose that the distribution map D(-) is y-Lipschitz continuous
in the Wasserstein-1 distance, the loss £(-, w) is C' smooth for all w, and the gradient V{(x, -) is
[B-Lipschitz continuous for all z. Then the Kantorovich-Rubinstein duality theorem directly implies
E[G?,] < (v8)?Ellu; — u||. Therefore, as long as the second moment E||u; — u||* scales quadrat-
ically in |é — t|, the desired drift assumption holds. The assumption on the noise requires a uniform
bound on the second moment [E||z;||? and for the condition E(z;, 2}) = 0 to hold. The latter property
confers a weak form of uncorrelatedness between the gradient noise z; and the future minimizer x;,
and holds automatically if the gradient noise and the minimizers evolve independently of each other,
as would typically be the case for instance in Example 2.2.

The following theorem provides an expected improvement guarantee for Algorithm 2; for the full
statement and proof, see Corollary 5.12 of the Supplement.



Theorem 4.2 (Expected function gap). Suppose that Assumption 4.1 holds, and let {3} be the
iterates produced by Algorithm 2 with constant learning rate n < 1/2L. Then the following bound
holds for allt > 0:
; ¥ < un )t « 2, A°
E[‘Pt(l’t) - @t} ~ ( - 7) (800(530) - 800) +no” + W
optimization noise \/
drift

The “noise+drift” error term in Theorem 4.2 coincides with p times the corresponding error term in
Theorem 3.3, as expected due to p-strong convexity. With Theorem 4.2 in hand, we are led to define
the following asymptotic tracking error of Algorithm 2 corresponding to E[p:(Z:) — ¢}F]:

, A2
= 5 = 1 e .
gi=up ne(0,1,/21] {770 - /mQ}

The corresponding asymptotically optimal choice of 7 is again given by 7),, and the dichotomy
governed by the drift-to-noise ratio A /o remains:

o2 (LA)? .. A I
Tt it 22\ 1

g = Aoz \2/3 )
ﬂ( ;2 ) otherwise.

In the high drift-to-noise regime A/o > +/u/16L3, Theorem 4.2 directly implies that Algorithm 2
with the constant learning rate n, = 1/2L finds a point &, satisfying E[p;(%:) — ¢}] < G in time
t < (L/w)log((po(xo) — ¢§)/G). In the low drift-to-noise regime A/o < +/u/16L3, another
direct application of Theorem 4.2 shows that Algorithm 2 with the constant learning rate 7, =
(2A2%/u0?)/3 finds a point 2, satisfying E[p;(#;) — 7] < G intime t < (02 /uG) log((wo(zo) —
©§)/G). As before, this efficiency estimate can be significantly improved by implementing a step-
decay schedule. The end result is the following theorem; see Theorem 5.13 of the Supplement for the
formal statement and proof.

Theorem 4.3 (Time to track in expectation, informal). Suppose that Assumption 4.1 holds. Then
there is a learning rate schedule {n;} such that Algorithm 2 produces a point & satisfying

Ak 2
Elpi(3:) — ;] S G aftertime t < glog <W) + Z—g.

4.2 High-probability guarantees

Our next result is an analogue of Theorem 4.2 that holds with high probability. Naturally, such a result
should rely on light-tail assumptions on the gradient drift G; ; and the norm of the gradient noise
||z |l. We state the guarantee under the assumption that G, ; and ||z;|| are conditionally sub-Gaussian
(Assumption 4.4). In particular, we require for the first time that the gradient noise z; is mean-zero
conditioned on the o-algebra

]:i7t = O'(.Fi7 .’17:)

for all 0 < i < t; the property E[z; | F; ] = 0 would follow from independence of the gradient noise
z; and the future minimizer } and is reasonable in light of Examples 2.1 and 2.2.

Assumption 4.4 (Sub-Gaussian drift and noise). The regularizers r; = r are identical for all times ¢
and there exist constants A, o > 0 such that the following properties hold for all 0 < i < ¢.

(i) (Drift) The square gradient drift G7 , is sub-exponential with parameter (uAl[i — t])*:
E[exp (AG7,)] < exp (A(pAli —t])?) forall 0< X< (uAli—t])~>

(ii) (Noise) The gradient noise z; is mean-zero norm sub-Gaussian conditioned on F; ; with
parameter 0 /2, i.e., E[z; | F; ;] = 0 and

P{||z]| > 7| Fis} < 2exp(—27%/0?) forall 7> 0.



Clearly the chain of implications holds:

Assumption 4.4 => Assumption 4.1 = Assumption 3.2.

Example 4.5 (Sub-Gaussian feature model). In the setting of logistic regression, sub-Gaussian
gradient noise naturally arises from sampling from a sub-Gaussian feature model. Indeed, in this case
the objective takes the form f(z) =E4[Y i, log(1 + exp(a;, z)) — (Az,b)] and drawing (A, b)
yields the sample gradient V f(x) = AT (S(Az) — b), where A € R"*? has rows ay, ...,a, € R?
and S denotes the sigmoid function. Being that S' and b are bounded, it therefore follows that if the
rows of A are sub-Gaussian, then so is the gradient noise V f(z) — V f(x).

The following theorem shows that if Assumption 4.4 holds, then the expected bound on ¢ (&) — ¢}
derived in Theorem 4.2 holds with high probability.

Theorem 4.6 (Function gap with high probability). Suppose that Assumption 4.4 holds, and let {3}
be the iterates produced by Algorithm 2 with constant learning rate n < 1/2L. Then there is an
absolute constant ¢ > 0 such that for any specified t € N and 6 € (0, 1), the estimate
2
e

A * L t * A
oi(2) —pr <c¢ (( — &) (po(zo) — @§) +no® + W) log (5>

holds with probability at least 1 — 0.

The proof of Theorem 4.6 is based on combining the generalized Freedman inequality of [13]
with careful control on the drift and noise in improvement guarantees for the proximal stochastic
gradient method. The key observation is that although we do not have simple recursive control on
the moment generating function of ¢;(#;) — ¢} (as we do with ||z; — x}||?), we can control the
tracking error (&) — ¢} by leveraging control on the martingale Zz;é (zi,2; — 7)1, where
¢ = 1—pun/(2 — pn). This martingale is self-regulating in the sense that its total conditional variance
is bound by the history of the process; the generalized Freedman inequality is precisely suited to
bound such martingales with high probability.

With Theorem 4.6 in hand, we may implement a step-decay schedule as before to obtain the following
efficiency estimate; see Section 5.4 of the Supplement for the formal statements and proofs.

Theorem 4.7 (Time to track with high probability, informal). Suppose that Assumption 4.4 holds

and that we are in the low drift-to-noise regime A/o < \/u/16L3. Fix 6 € (0,1). Then there is a
learning rate schedule {n;} such that Algorithm 2 produces a point & satisfying

@i() — ¢f S Glog (g)

with probability at least 1 — K after time
1/3
L wo(wo) =95\ |, o° e I
tﬁﬁlog (go +E10g (1og (5)), where K < log, 7 \ Az .

5 Conclusion

We presented finite-time efficiency estimates in expectation and with high probability for the tracking
error of the proximal stochastic gradient method under time drift. Through our investigation of the
interplay between the learning rate, the noise variance in the gradient oracle, and the strength of the
time drift, we uncovered two regimes of interest, each suggesting a different choice of learning rate.
The high-probability guarantees extend recent results to the time-dependent setting.
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