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a b s t r a c t 

This paper considers the open challenge of identifying complete, concise, and explainable quantitative 

microstructure representations for disordered heterogeneous material systems. Completeness and con- 

ciseness have been achieved through existing data-driven methods, e.g., deep generative models, which, 

however, do not provide mathematically explainable latent representations. This study investigates rep- 

resentations composed of three-point correlation functions, which are a special type of spatial convolu- 

tions. We show that a variety of microstructures can be characterized by a concise subset of three-point 

correlations (100-fold smaller than the full set), and the identification of such subsets can be achieved 

by Bayesian optimization on a small microstructure dataset. The proposed representation can directly be 

used to compute material properties by leveraging the effective medium theory, allowing the construction 

of predictive structure-property models with significantly less data than needed by purely data-driven 

methods and with a computational cost 100-fold lower than the physics-based model. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

This paper considers the open challenge of identifying quanti- 

ative microstructure representations for disordered heterogeneous 

aterial systems. Microstructures of such a material system can 

e captured as images drawn from a 2D or 3D random field. We 

onsider representations as the encoding of random fields to a 

nite-dimensional Euclidean space, Ideally, this encoding should 

e complete and concise . To explain, a representation is complete 

f there exists a decoder, i.e., a mapping from the representa- 

ion space to the space of random fields, such that the decoded 

andom field matches with the sample distribution of authen- 

ic microstructures used to compute the representation. And the 

epresentation is concise if it has minimal dimensions within all 

omplete representations. Both attributes are desired in a materi- 

ls design context: Completeness ensures that the representation 

an be used for property prediction as it captures the morpho- 

ogical features of the material system. Conciseness enables effi- 

ient search in a low-dimensional representation space for new 

icrostructures that potentially achieve properties beyond exist- 

ng limits. Nonetheless, representations that approximately achieve 

hese two attributes (e.g., learned through deep generative models) 
∗ Corresponding author. 
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o not guarantee explainability of the structure-property predic- 

ive models built upon the representation. And the lack of explain- 

bility hampers the exploitation of existing theories for structure- 

roperty prediction, e.g., effective medium theories. In this paper 

e seek representations that are mathematically explainable , in ad- 

ition to be complete and concise. As a result, our method fa- 

ilitates structure-property prediction with significantly less data 

eeded than purely data-driven methods due to its explainability 

nd near-completeness, and has 100-fold less computational cost 

n executing the prediction than a pure physics-based method. 

To provide a background, a large body of work on represen- 

ation learning exists at the intersection of materials science and 

achine learning. Most of these propose either near-complete 

ut non-explainable, or explainable but incomplete representa- 

ions. The former include purely data-driven generative models, 

.g., restricted Boltzmann machines [1] , variational autoencoders 

VAE) [2] , and generative adversarial networks (GAN) [3,4] , where 

 concise and near-complete representation is learned through mi- 

rostructure samples, yet the encoders of which are composed 

f general-purpose neural networks and are non-explainable. On 

he other hand, statistical models with more explainable, as op- 

osed to learnable, architectures have also been adopted. These in- 

lude Gaussian random fields [5] , geometric descriptors (e.g., for 

rain/particle size and shape distributions) [6–9] , spectral density 

unctions [10–12] , n -point correlation functions [13–28] , among 

https://doi.org/10.1016/j.actamat.2022.117800
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.117800&domain=pdf
mailto:yiren@asu.edu
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Fig. 1. (a) An example of successful reconstruction of a ceramic matrix composite material using the two-point correlation function (b) An example where two-point 

correlations do not sufficiently capture to key features of a particle-reinforced composite. In both cases, the reconstructed correlations have a maximum deviation of less 

than 10 −8 from the authentic ones along r. 
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n

thers. The encoding process of these methods (e.g., statistical 

nference and geometric characterization) are mathematically ex- 

lainable. Yet due to the manual definitions, these representations 

ften have limited capacity to achieve completeness. To elaborate, 

aussian random fields have been used to characterize interpen- 

trating bi-phase morphologies (e.g., rising from the Spinodal de- 

omposition process). This model assumes that the fluctuations in 

he system can be completely specified by second order statis- 

ics, which does not always hold for heterogeneous materials such 

s particle-reinforced composites. Geometric descriptors are typi- 

ally material-specific, which are derived for microstructures com- 

osed of well-defined geometrical objects (e.g., particles/grains). 

he spectral density function is the Fourier transform of the two- 

oint correlation function in the wave-number space, which al- 

ows one to access the large-scale correlations (via small wave- 

umber analysis), yet have difficulty at accurately encoding small- 

cale morphological features that are crucial for structure-property 

rediction. Lastly, the n -point correlation functions encode the oc- 

urrence probabilities of specific n -point configurations in the mi- 

rostructure [29] . The set of correlation functions up to infinite 

rders fully characterizes a random field [29,30] , and is therefore 

symptotically complete . While it is empirically shown that some 

aterial systems can be represented by concise sets of correlation 

unctions, e.g., metallic alloys, ceramic matrix composites, and cer- 

ain porous systems [31–36] ( Fig. 1 a and b), there is currently a

ack of systematic tools for choosing a concise and nearly complete 

et of correlations for any particular material system. 

Within this context, our study investigates the feasibility and 

fficacy of computational tools for identifying material-specific cor- 

elation functions as nearly-complete, concise, and explainable rep- 

esentations of disordered heterogeneous material systems. 

To elaborate on the challenge, the number of correlation func- 

ions grows exponentially as d n −1 along the correlation order n and 

he dimensionality d of the microstructure sample (usually 2 or 3). 

his causes limited applications of higher-order correlation func- 

ions ( n ≥ 3 ) to material systems [37,38] . On the other hand, high-

rder correlation functions are often required to represent disor- 

ered heterogeneous material systems [39–41] ( Fig. 1 c and d). So 

ar the choice of representative correlations relies on human intu- 

tion [42,43] . 

As a first step towards automated selection of correlations, this 

aper empirically verifies the following hypothesis: A concise and 

early-complete representation composed of 3-point correlations can 

e learned from a dataset of microstructure samples, for which 2- 

oint correlations do not compose a complete representation. To the 
c

2 
uthors’ best knowledge, this study is the first to demonstrate 

he feasibility of representation learning using 3-point correlations. 

he following technical contributions lay the foundation for com- 

utationally tractable learning of higher-order correlations: 

• (i) We show that the encoder, i.e., the computation of n -point 

correlations from microstructure samples, can be modeled as a 

special convolutional neural network, allowing leverage of GPU 

computing and an existing deep learning framework. 

• (ii) We show that the decoder, i.e., the reconstruction of mi- 

crostructures, can be formulated as a topology optimization 

problem, allowing leverage of the state-of-the-art gradient- 

based algorithm which drastically improves the reconstruction 

efficiency from standard stochastic methods such as simulated 

annealing. 

• (iii) Building on top of (i) and (ii), we show that Bayesian Opti- 

mization can effectively identify a concise subset of correlations 

as a nearly-complete representation. 

• (iv) We demonstrate that the representations resulted from (iii) 

can be directly utilized in combination of the effective medium 

theory to make accurate and explainable predictions of physi- 

cal properties of heterogeneous material systems, which further 

supports the claim that they are nearly complete. 

The rest of the paper is organized as follows: Section 2 de- 

cribes the models and algorithms for learning correlation func- 

ions and demonstrates using a toy case. In Section 3 , the proposed 

ethod is applied to five material systems: porous materials (i.e., 

andstone), metal-ceramic composites, metallic alloys, concrete mi- 

rostructure, and particle-reinforced composites, which possess a 

ariety of distinct structural features, including both well separated 

ompact domains with different degrees of size and shape disper- 

ion and interpenetrating phase morphology with varying degrees 

f clustering. In Section 4 , we show that the learned representa- 

ions can provide reasonable estimates of the physical properties of 

he material systems via the effective medium theory. In Section 5 , 

e provide concluding remarks and future directions. 

. Methods 

To overview, our method includes three components: (i) An en- 

oder that computes n -point correlations via image convolution; 

ii) a decoder that performs gradient-based reconstruction of mi- 

rostructures; and (iii) a search algorithm for selecting a small and 

early-complete set of n -point correlations. In the subsequent dis- 

ussion, we describe each component in details, which are further 
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Fig. 2. Visualization of the 3-point correlation set C 3 = { c 1 , c 2 , . . . } , the polytopes 

{ p 1 , p 2 , . . . p 9 } of c 1 , and the configuration-specific vertices { x c 1 
1 

, . . . , x c 1 
3 
} . 

i

r

2

p

t  

x

1  

s  

d

m

t

m

t  

i

Y
s

b

t  

g

2  

d  

C  

t

a

d  

b  

s  

C  

i

s

w

h

o

2

t

n

n

w

w

W

s

S

f

s

w  

p

p

t

2

r

c

t

e

o

y

n

c

r

v

y

w

i  

d  

i

w

p

t

s

S

t

a

i

s  

a

e

2

s

d

d  
llustrated through a toy case of learning 3-point correlations to 

epresent an isosceles triangle. 

.1. Notations and preliminaries 

Notations The following notations will be used throughout the 

aper: The indicator function � ( c ) returns 1 for all elements of 

he Boolean vector c that are true and 0 otherwise. δ(x, a ) = 1 if

 = a or otherwise 0. 1 is a vector with all components equal to 

. || · || p is the l p norm, and | · | measures the size of a countable

et. C (·, ·; l, l ′ ) : A × B → R 

l×l denotes the image convolution that

iscretizes the input a ∈ A and the filter b ∈ B as l-by- l and l ′ -by- l ′ 
atrices, respectively. 

For ease of exposition, we will focus on 2D bi-phase microstruc- 

ures, although the presented method can be extended to 3D 

ulti-phase microstructures. A microstructure sample is an indica- 

or function y : X → { 0 , 1 } where X = [0 , L ] d is the support and L

s its linear size. We denote by Y the space of y , and 

˜ Y = { y i } N i =1 
⊂

a finite dataset that contains N microstructure samples of the 

ame material system. The empirical data distribution is denoted 

y p ˜ Y . 
n -point correlation functions: Given n , an n -point configura- 

ion space C n ∈ R 

m can be constructed, where m = d n −1 is the de-

rees of freedom of the n -point configuration. To explain using 

D examples ( d = 2 ): When n = 2 , C 2 = [0 , ∞ ) × [0 , π) contains all

istance-angle pairs that define line segments in R 

2 ; when n = 3 ,

 3 = [0 , ∞ ) 3 × [0 , π) contains all distances-angle tuples that define

riangles. Note that C n is a subspace of C n +1 . Therefore C ∞ 

contains 

ll correlation configurations. Each correlation configuration c ∈ C ∞ 

efines a set of polytopes P c and each polytope p ∈ P c is defined

y a set of vertices { x p 
1 
, . . . , x 

p 
n } translated from a configuration-

pecific set { x c 
1 
, . . . , x c n } ( Fig. 2 ). Given y , an n -point correlation s :

 ∞ 

× Y → [0 , 1] for the phase of interest (assumed to be y (·) = 1 )

s defined as 

 (c, y ) = 

1 

|P c | 
∑ 

{ x p 
1 
, ... , x p n }∈P c 

� 

(
y (x 

p 
1 
) = y (x 

p 
2 
) = . . . = y ( x 

p 
n ) = 1 

)
, (1) 

hich is the probability that a uniformly selected polytope p ∈ P c 

as vertices all belonging to the phase of interest [30] . The order 

f s is determined by c. 
3 
.2. Computing n -point correlations through image convolution 

We now show that n -point correlations can be computed 

hrough image convolution, and therefore a standard convolutional 

eural network architecture can be adopted. Let convolution ker- 

els parameterized by an n -point configuration c be a function 

 c : X → { 0 , 1 } : 
 c (x ) = 

∑ 

x i ∈{ x c 
1 
, ... , x c n } 

δ(x, x i ) . (2) 

e can now compute the correlation as 

 (c, y ) = 

1 

T 
� 

(
C (y, w c ; l , l ′ ) ≥ n 

)
1 

l 2 
. (3) 

ince the indicator function is not differentiable, we propose the 

ollowing approximation: 

ˆ 
 (c, y ) = 

1 

T 
(
σ ( C (y, w c ; l , l ′ ) − n + 1) 

)
1 

l 2 
, (4) 

here σ (x ) = x if x > 0 and 0 otherwise, and has differentiable im-

lementations [44] . Note that for bi-phase microstructures, the ap- 

roximation is exact. Lastly, we denote by ˆ s (c, ˜ Y ) = E Y ∼p ˜ Y 

[
ˆ s (c, Y ) 

]
he mean correlation of the dataset with respect to c. 

.3. Gradient-based microstructure reconstruction 

Given a set of correlations ˆ C ∈ C ∞ 

, a dataset ˜ Y , and target cor- 

elations { ̂ s (c, ˜ Y ) } c∈ ̂ C , the reconstruction problem is to find a mi- 

rostructure y with correlations close to the target. With discretiza- 

ion of X and a focus on bi-phase microstructures, y can be consid- 

red as a l -by- l binary matrix. This leads to the following topology 

ptimization problem: 

min 

 ∈{ 0 , 1 } l 2 
L ˆ C (y ) := 

∑ 

c∈ ̂ C 

(
ˆ s (c, y ) − ˆ s (c, ˜ Y ) 

)2 
. (5) 

We solve Eq. (5) using gradient descent with the following tech- 

iques. Relaxation to a continuous problem: Note that Eq. (5) is 

ombinatorial when y is binary. Therefore it is standard to solve a 

elaxed problem by considering y as a soft step function of another 

ariable u : 

 (u ;β) = 

tanh (β/ 2) + tanh (β(u − 1 / 2)) 

2 tanh ( β/ 2) 
, (6) 

here u ∈ R 

l×l . We can then perform gradient-based search us- 

ng the gradient ∇ u L ˆ C (y (u ;β)) = ∇ y L ˆ C (y ) ∇ u y (u ;β) . Avoiding gra-

ient vanishing: The latter part of the gradient, ∇ u y (u ;β) , van-

shes quickly as u moves away from 0 and this issue exacerbates 

ith larger β . On the other hand, large β is necessary for y to ap- 

roach a binary solution. A plausible solution to this dilemma is 

o gradually increase β during the search [45] . Our experiments 

uggest that this scheme for changing β is data dependent (see 

ection 3 ). Removing artifacts in reconstructions: When solving 

opology optimization problems, gradient descent can lead to local 

nd artificial checkerboard patterns in the solution. To address this 

ssue, we apply a Gaussian filter w g to the gradient at every search 

tep, where w g is a 3-by-3 Gaussian kernel with a mean of 0 and

 standard deviation of 3. The standard deviation is set based on 

xperiments. 

.4. A goodness metric for choosing correlations 

Let p ˆ C be the distribution of reconstructed microstructures re- 

ulted from Eq. (5) given a correlation set ˆ C . The randomness is 

ue to the random initialization of u . Here we discuss the proce- 

ure for choosing a concise set ˆ C so that p ˆ is representative of p Y .
C 
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Fig. 3. Bayesian optimization for finding a concise representation of a filled isosceles right triangle in (a) using 3-point correlations. (b) Reconstruction fails with a full set 

of 2-point correlations. (c) Bayesian optimized representations visualized as triangles (along with the volume fraction at the origin) in the 3-point correlation landscape 

spanned by the polytope parameters. (d) Resultant reconstruction based on (c). (e) BO convergence. (f) Bayesian optimized reconstructions with two and four correlations. 
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o start, we propose the following problem: 

in 

ˆ C ⊂C 
L ( ̂  C ) = φ(p ˆ C , p ˜ Y ) , (7) 

here φ(·, ·) measures a distance between two distributions. We 

ote that morphological consistency between p ˆ C and p ˜ Y is of 

igher priority than matching between the distributions, i.e., we 

onsider ˆ C a good representation as long as samples from p ˆ C are 

orphologically similar to ˜ Y , even when the support of p ˆ C does 

ot fully overlap with that of p ˜ Y . With this insight, we choose to

efine φ on the full correlation set C ∞ 

: 

(p 1 , p 2 ) = E y 1 ∼p 1 ,y 2 ∼p 2 

[ 

1 

|C ∞ 

| 
∑ 

c∈C ∞ 
( ̂  s (c, y 1 ) − ˆ s (c, y 2 )) 

2 

] 

. (8) 

owever, Eq. (8) is ill-defined since C ∞ 

is an infinite-dimensional 

pace, and approximating C ∞ 

with large n is intractable. In fact, 

f we discretize each dimension of C n by m levels, there will be 

 

d (n −1) 
correlation values to compute for every y . As practical so- 

utions, in this paper we will introduce task-dependent and com- 

utationally tractable surrogates (denoted by ˆ φ)) as our best effort 

o approximating C ∞ 

(see Section 3 for details). 

.5. Search of representations 

Since computing p ˆ C relies on the reconstruction, which is chal- 

enging to be differentiated, we propose to solve Eq. (7) using grid 

earch and Bayesian optimization (BO). For both algorithms, we 

x the subset size | ̂  C | . Grid search enumerates over all combina- 

ions of correlations using a discretized C n ; BO actively samples 

uch combinations without full enumeration. Both algorithms suf- 

er from the curse of dimensionality. To alleviate this challenge in 

he material cases in Section 3 , we define ˆ C as drawn from a distri-

ution on C ∞ 

, and search only for the low-dimensional parameters 

f this distribution. 
4 
.6. A toy case 

Here we use a toy case to walk through the algorithmic settings 

or the encoding, decoding, and Bayesian optimization. It should be 

oted that same details, including the parameterization of ˆ C and 

he choice of ˆ φ are case-dependent. Case setup : Let the dataset 

e 2D binary images, where each image y ∈ { 0 , 1 } 12 ×12 contains a

lled isosceles right triangle. The goal is to find a subset of correla- 

ions that reconstruct the triangles. Since correlations are invariant 

o linear translation, it is sufficient to keep a single image as the 

ataset ( Fig. 3 a). While primitive, this case demonstrates the need 

or higher-order correlations for reconstruction: Fig. 3 b shows the 

nferior reconstruction result using the full set of 2-point correla- 

ions. Reconstruction : We initialize a deterministic reconstruction 

rocess by setting the initial guess to y (·) = 0 , and increase β from

 to 15 with an interval of 2. β is increased for every 20 0 0 iter-

tions of gradient descent on the relaxed version of Eq. (5) . The 

tep size for gradient descent is set to 20 0 0 for β ≤ 11 and 10 0 0

or larger β . Parameterization of the correlation space : For the 

oy case, we choose to use a subset of three 3-point correlations 

or this toy study: ˆ C = { c 1 , c 2 , c 3 } , with the following parameteri-

ation. First, we set c 1 as the volume fraction (i.e., with all three 

ertices overlap). For c 2 and c 3 , we fix one vertex and allow the 

ther two to move in the horizontal and vertical directions, re- 

pectively, within a 18-by-18 box. This yields a 4-dimensional con- 

inuous and bounded space where ˆ C will be searched from. Cri- 

erion for choosing correlations : For the toy case, we replace C ∞ 

ith C 3 in Eq. (8) , based on the empirical evidence to be presented

hat 3-point correlations are sufficient for reconstructing the tri- 

ngle. Bayesian optimization : We start the search with 100 sam- 

les from the four dimensional search space where the samples 

re drawn using a Latin Hypercube sampler. Each sample defines 

 correlation set from which 

ˆ φ can be computed. With this data, 

 Gaussian process model can be built on the search space, which 
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Fig. 4. Material microstructures for case studies. From left to right: Sandstone, metal-ceramic composites, Pb–Sn alloys, concrete, and particle-reinforced composite. 

Fig. 5. (a) Reconstructions of sandstone with different numbers of correlations k and maximum correlation length scales. Sample means and standard deviations of pore-size 

distribution function values are reported based on 25 randomly drawn correlation sets from the corresponding (k, l) . Unit: ×10 −2 . (b–d) The pore-size distribution, l 1 loss, 

and weighted l 1 loss on the (k, l) grid. (e) Convergence of Bayesian optimization. (f, g) Reconstructions by random initial guesses and random correlation sets drawn from 

the optimal (k, l) , respectively. (h) Correlation landscape and the optimal maximum length scale l. 
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llows prediction of ˆ φ values and their uncertainties for any corre- 

ation set. With this, we search for a new correlation set that has 

he maximum expected improvement in 

ˆ φ from the current sam- 

les. Once sampled, this new data point is added to the existing 

ataset to update the Gaussian process model. This process con- 

inues for 150 iterations. 

Results and remarks : Fig. 3 b–e summarizes the resultant ˆ C , the 

orresponding reconstruction, and the BO loss history. Due to the 
5 
robabilistic nature of the algorithm, loss variances are estimated 

ver five independent BO trials. The results suggest that a subset of 

hree 3-point correlations is nearly complete for reconstructing the 

iven sample. To show that the resultant representation is concise, 

e compare the reconstruction results from using two, three, and 

our 3-point correlations in Fig. 3 d and f. The correlations are cho- 

en by BO in all cases. This toy case demonstrates that a concise 

ubset of 3-point correlations can be used to reconstruct images. 

n the next section, we apply this idea to material microstructures. 
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(

. Experimental results 

We test five material systems, including sandstone, metal- 

eramic composites, Pb-Sn alloys, concrete, and particle-reinforced 

omposite. These material systems possess a variety of distinct 

tructural features, including both well separated compact domains 

ith different degrees of size and shape dispersion and interpen- 

trating phase morphology with varying degrees of clustering. Our 

xperiments suggest that a rich variety of morphologically consis- 

ent microstructure samples can be reconstructed using the pro- 

osed method, even when a single microstructure sample is used 

or computing the representations. Therefore, all experiments will 

e based on a single microstructure sample from each of the ma- 

erial systems. We will focus on sandstone to elaborate on the al- 

orithmic settings. 

Case setup A sandstone microstructure sample y ∈ { 0 , 1 } 128 ×128 

s composed of the rock (shown in black) and the pore phase 

shown in white). Fig. 4 a shows 2D slices of a 3D sandstone sample

btained via X-ray tomography [46] . It can be seen that the sedi- 

ented rock grains possess a wide shape and size dispersion, lead- 

ng to complex morphology of the pore space. The material pos- 

esses a statistically homogeneous and isotropic microstructure so 

hat 3-point correlation information extracted from the 2D images 

re also representative of the full 3D system [38] . 

Reconstruction We gradually increase the shape parameter using 

∈ { 7 , 9 , 11 , 17 } , and for each β , we use 5k, 5k, 4k, and 2k gradi-

nt descent steps. The step size for each step is set to 10,0 0 0,0 0 0.

he initial guess is randomized by sampling each pixel value from 

 Bernoulli distribution parameterized by the volume fraction of 

he given microstructure. 

Parameterization of the search space To define a search space of 

orrelations, we hypothesize that both the number and the length 

cales of correlations affect the reconstruction quality. Specifically, 

iven a maximum length scale (denoted as l), more correlations 

eads to better reconstruction, yet we expect that the benefit of 

dding more correlations diminishes. On the other hand, for a 

xed number of correlations (denoted as k ), there exists an opti- 

al maximum length scale within which the correlations are rep- 

esentative. 

To define the search space spanned by l and k , we examine the 

andscape of averaged 3-point correlations over a range of length 

cales, as shown in Fig. 5 h. Here we parameterize the polytope p

sing the lengths of its two sides r 1 and r 2 with fixed angle θ =
 deg in between. Each grid point in Fig. 5 h represents the average 

orrelation value over all orientations of the polytope defined by 

 1 and r 2 . 

From the figure, the correlation landscape has larger varia- 

ion when the length scale is small and flattens beyond a length 

cale of 37 pixels. This suggests that representative correlations lie 

ithin this length scale. As a result, we set the maximum cor- 

elation length scale to four levels as l ∈ { 13 , 21 , 29 , 37 } . To de-

ne the search scope of the number of correlations, we con- 

ucted preliminary experiments that suggest that good reconstruc- 

ion quality (see next paragraph for the definition) can usually 

e achieved with less than 10 0 0 correlations. We then conjec- 

ure that the actual number of correlations needed is related to 

he characteristic length scale of the material, and therefore de- 

ided to associate k with some length scale. Again from Fig. 5 h, 

e see that the variation of correlations is mostly concentrated 

ithin l = 21 , within which the total number of unique corre- 

ations that can be computed (on the discretized pixels) is K = 

381 . Based on these empirical findings, we choose to set k ∈ 

 

1 
64 K , 1 

32 K , 1 
16 K , 1 

10 K , 1 8 K} . 
With these settings, each grid point (k, l) defines a random set 

f k correlations that are uniformly sampled from the full set with 

 maximum length scale of l. 
6 
Criterion for choosing correlations From experimental results, we 

ropose to evaluate the reconstruction results using the pore-size 

istribution function P (r; y ) as a surrogate. Specifically, P (r ; y ) dr 

rovides the probability that a spherical “cavity” of radius r can be 

ntirely inserted into the phase of interest centered at a randomly 

elected point in that phase of y [30] . P (r; y ) was originally intro-

uced to quantify the void phase in porous materials and was sub- 

equently generalized as a generic statistical descriptor to quan- 

ify disordered heterogeneous materials. Since the porous phase 

s hosting all transport processes such as fluid flow and chemi- 

al diffusion in the porous media, the function P (r; y ) is shown to 

uantitatively related to a variety of transport properties includ- 

ng effective diffusivity, fluid permeability and mean-survival time 

f chemicals [30] . Moreover, P (r; y ) essentially provides a spherical 

easure of the clustering information in the phase of interest and 

hus encodes information on higher-order correlations [47] . In this 

tudy, we set r ∈ { 0 , . . . , 63 } pixels and define 

ˆ (p 1 , p 2 ) = E y 1 ∼p 1 ,y 2 ∼p 2 

[ 

1 

64 

∑ 

r∈{ 0 , ... , 63 } 
| P (r; y 1 ) − P (r; y 2 ) | 

] 

. (9) 

Bayesian optimization Since we have a relatively small candidate 

et, BO is started with five configurations of (k, l) . For each con- 

guration, we compute ˆ φ following Eq. (9) with five draws of cor- 

elations from the uniform distribution specified by (k, l) . BO ter- 

inates with nine samples. See Fig. 5 e for BO convergence, where 

oss variances are estimated over five independent BO trials. A full 

rid search is performed to verify the efficacy of BO. See Fig. 5 a for

econstruction results and pore-size values from sampled correla- 

ions for all (k, l) configurations and the same initial guess. Stan- 

ard deviations are estimated from five correlation sets drawn in- 

ependently based on the corresponding (k, l) . The Bayesian opti- 

ized configuration is consistent with the grid search. 

Remarks 

1) How much time does the reconstruction cost? On a workstation 

with a single NVIDIA Tesla V100, For each reconstruction prob- 

lem, we run stochastic gradient descent for 16,0 0 0 iterations. 

The worst-case wall-clock run time of the reconstruction is less 

than 400 s. See reconstruction convergence in Fig. 6 . Note that 

switching the shape parameter β causes reformulation of the 

reconstruction problem, thus increase in the loss. Table 1 sum- 

marizes sample run time for all combinations of (k, l) . 

2) How much is the variance in reconstruction quality due to the ran- 

dom initialization and the random sampling of correlations? We 

draw 25 initial guesses of u from independent Bernoulli dis- 

tributions parameterized by the volume fraction of the given 
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Fig. 7. (a) Reconstructions of new materials using the optimal (k, l) from sandstone (b) Increasing the maximum length scale for concrete improves its reconstruction quality 

(measured by the pore-size distribution function). 

Table 1 

Samples of wall-clock run time for all combinations of (k, l) (unit: second) . 

115 230 461 738 922 

13 147.0 180.4 248.1 328.5 394.7 

21 154.5 185.1 252.8 330.0 396.0 

29 156.2 181.6 249.8 330.0 394.9 

37 153.7 181.3 251.0 327.6 389.4 
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sandstone sample. The sample variance in reconstruction qual- 

ity is 3.31e −3. Fig. 5 f shows five sample reconstructions. Since 

the variance is small, we do not use multiple random initializa- 

tion for reconstruction during BO. 

Fig. 5 a reports variances in reconstruction quality for all (k, l) 

configurations due to random sampling of correlations. Vari- 

ances are estimated based on 25 random draws of correlations 

for each grid point using the same initialization of u . While 

the variances are not negligible, they are small enough so that 

an optimal configuration ( k = 738 and l = 21 ) can be identi-

fied with statistical significance. We demonstrate reconstruction 

from five randomly drawn correlation sets for the optimal con- 

figuration in Fig. 5 g. 

3) Is pore-size distribution a good surrogate of φ? Visual compari- 

son in Fig. 5 a supports the use of pore-size distribution: The 

optimal configuration achieves reconstruction quality no worse 

than others. We provide a second evidence by comparing the 

pore-size results with those from alternatives that are based 

on the full set of 3-point correlations with a maximum length 

scale of 41. Minimal variations in correlations are observed 

beyond this length scale. With minor abuse of notation, we will 

denote this set by C 3 , and 3-point correlation vector of an input 

y by c(y ) = [ c 1 (y ) , . . . , c |C 3 | (y )] , where c i (y ) is the correlation

of y according to the i th element of C 3 . The alternatives are

based on the l 1 norm ( Fig. 5 c) and the weighted l 1 norm of

c(y ) − c(y ′ ) , where y and y ′ are the microstructure sample 

and its reconstruction, respectively. We notice that the sizes 

of subsets of c i (y ) corresponding to different length scales in- 

creases along the length scale, i.e., there are more correlations 

evaluated on large triangles than small ones in c(y ) . Since 

correlations asymptotically approach zero as the length scale 

increases, c(y ) will increasingly be dominated by zero elements 

when the maximum length scale increases, making reconstruc- 

tion qualities less distinguishable between two choices of k 

when using l 1 norm as a metric (See Fig. 5 c). To address this,

we introduce a weighted norm as 
∑ |C 3 | 

i =1 
w i | c i (y ) − c i (y ′ ) | , where

w i is the proportion of the subset of correlations of the length 

scale where c belongs. This leads to an optimal representation 
i 

7 
consistent with that from using the pore-size distribution 

function ( Fig. 5 d). However, the choice of reweighting is not 

grounded in theory and can potentially be case dependent. 

4) Is the chosen representation explainable? The grid search results 

supports the hypothesis that there is a critical length scale 

within which correlations are representative. This is because 

when we choose larger ls, some of the randomly drawn cor- 

relations will have larger length scales that are not represen- 

tative, effectively reducing the number of representative corre- 

lations and lowering the reconstruction quality (see rows for 

l = 29 and 37 in Fig. 5 a and b). In addition, the optimal rep-

resentation with l = 21 is consistent with Fig. 5 h as variation 

of the average correlation happens primarily within this length 

scale. 

5) Can the chosen representation be generalized to other material 

systems? We now test whether the learned representation for 

sandstone can be applied to other binary-phase material sys- 

tems. From (3), we hypothesize that the representation may 

fail on a new material system if its microstructure has a dif- 

ferent characteristic length scale from sandstone. Results on 

metal-ceramic composite, Pb–Sn alloy, concrete, and particle- 

reinforced composite are summarized in Fig. 7 a. The recon- 

struction quality is acceptable for all material systems except 

for concrete. We conjecture that this is because metal-ceramic 

composite, Pb-Sn alloy, and particle-reinforced composite pos- 

sess similar morphology features as those for sandstone, e.g., 

distinct local (short-range) correlations mainly determined by 

the shape and size of local structural elements (e.g., particles) 

and their short-range ordering, which then quickly decay to 

the average asymptotic values. Concrete, on the other hand, has 

larger characteristic length scale than that of sandstone. This 

hypothesis is empirically tested in Fig. 7 b where we show that 

increasing l improves the reconstruction quality of concrete. 

. Property predictions via optimized correlations 

In this section, we show that the optimized representations 

an directly provide reasonable estimates of the physical proper- 

ies of the material systems. This is achieved by employing the ef- 

ective medium theory, in particular, the so-called strong contrast 

xpansion (SCE) formalism which allows one to analytically express 

aterial properties such as elastic modulus and thermal/electrical 

onductivity as an infinite series of integrals of n -point correlation 

unctions convoluted with the proper field kernels [4 8,4 9] , given 

he properties of individual material phases. It has been shown 

hat the SCE formalism possess superior convergence behavior 

uch that truncation of the infinite series at relatively lower order 
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Fig. 8. (a) Pore-size distribution reproduced from Fig. 5 b. (b, c) Averaged relative prediction errors from the true bulk and shear moduli in Table 3 , respectively, for sandstone. 

Table 2 

Individual phase properties ( K i and G i ) for the heterogeneous material systems in- 

vestigated in this work. The unit for the bulk and shear modulus are GPa. 

Materials K 1 G 1 K 2 G 2 

Sandstone (rock & void) 35.8 10.2 0 0 

Metal-ceramic Composite (SiC & Al) 180 110 68 24 

Pb–Sn Alloy 42 14 45.8 4.9 

Concrete (cement & rock) 32 9 38 11.5 

Particle-reinforced Composite (Al & SiC) 68 24 180 110 
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 can already yield very accurate estimates of the physical proper- 

ies of interest for many heterogeneous material systems [50] . 

Here, we focus on mechanical properties, including the overall 

or effective) bulk modulus K e and the shear modulus G e , which 

re well defined for all of the material systems investigated here. 

n particular, the 3-point SCE approximation obtained by truncat- 

ng the SCE series at n = 3 for the effective bulk modulus K e is

iven by 

2 
κ21 

κe 1 

= 1 − (d + 2)(d − 1) G 1 κ21 μ21 

d(K 1 + 2 G 1 ) 
φ1 χ (10) 

imilarly, the 3-point SCE approximation obtained by truncating 

he SCE series at the n = 3 for the effective shear modulus G e is

iven by 

2 
μ21 

μe 1 

= 1 − 2 G 1 κ21 μ21 

d(K 1 + G 1 ) 
φ1 χ − 2 G 1 κ21 μ21 

d(K 1 + 2 G 1 ) 
φ1 χ

− 1 

2 d 

[
dK 1 + (d − 2) G 1 

K 1 + 2 G 1 

]2 

μ2 
21 φ1 η2 (11) 

here φ1 and φ2 are respectively the volume fraction of the black 

“matrix”) and the white (“inclusion”) phases; d is the spatial di- 

ension of the material system; K p and G p are respectively the 

ulk and shear modulus of phase p; the scalar parameters κpq and 

pq ( p, q = 1 , 2 , e ) are respectively the bulk and shear modulus po-

arizability, defined as 

pq = 

K p − K q 

K q + 

2(d−1) 
d 

G q 

(12) 

nd 

pq = 

G p − G q 

G q 

1 

1 + 

d 
2 K q + (d+1)(d−2) 

d 
G 1 

K q +2 G q 

; (13) 

nd χ and η2 are the microstructural parameters associated with 

he phases of interest incorporating the 3-point correlations s 3 as 

ell as 2-point correlation correlations s (which are certain subset 
2 

8 
f s 3 ), i.e., 

= 

9 

2 φ1 φ2 

∫ ∞ 

0 

dr 

r 

∫ ∞ 

0 

ds 

s 

∫ 1 

−1 

d( cos θ ) P 2 ( cos θ ) 

[
s 3 (r, s, t) − s 2 (r) s 2 (t) 

φ2 

]
(14) 

nd 

2 = 

5 

21 

χ + 

150 

7 φ1 φ2 

∫ ∞ 

0 

dr 

r 

∫ ∞ 

0 

ds 

s 

∫ 1 

−1 

d( cos θ ) P 4 ( cos θ ) 

×
[

s 3 (r, s, t) − s 2 (r) s 2 (t) 

φ2 

]
, (15) 

here t = (r 2 + s 2 − 2 rs cos θ ) 1 / 2 , and P 2 and P 4 are respectively

he Legendre polynomials of order two and four, i.e., 

 2 (x ) = 

1 

2 

(3 x 2 − 1) , P 4 (x ) = 

1 

8 

(35 x 4 − 30 x 2 + 3) . (16)

Method The elastic modulus K e and G e for samples from five 

aterial systems are respectively estimated using Eqs. (10) and 

11) by computing the 3-point microstructural parameters χ and 

2 using the optimized distribution of 3-point correlations ob- 

ained from the previous section. The properties of individual 

hases for each material system are given in Table 2 . For each ma- 

erial system, 5 sets of 3-point statistics are independently sampled 

ased on the optimized distribution, and used to compute the es- 

imated properties using the corresponding SCE. The 2-point cor- 

elations are computed by using the same set of distances defined 

y edge length of the sampled triangular kernels. The averaged K e 

nd G e are give in Table 3 , which are compared to the Hashin–

htrikman bounds [51] , as well as the “ground truth” values, which 

re computed from SCE using the complete set of 3-point correla- 

ions. It can be seen from the table that the estimated elastic prop- 

rties using the reduced set of 3-point representations are within 

he theoretical bounds and can provide reasonable estimates of the 

ctual material properties. 

Remarks 

1) What are the advantages of the proposed method compared with 

purely data-driven models for structure-property prediction? We 

highlight two advantages below. 

(i) Low data complexity: Our method essentially learns a 

reduced-order representation of the microstructure which then 

accelerates the computation of a physics-based structure- 

property model. Here we make a comparison with Cang 

et al. [2] , which also used sandstones as a case study. Specif- 

ically, Cang et al. [2] achieved a prediction performance of R 2 ≈
90% using 10 0 0 pairs of sandstone samples and their Young’s 
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Table 3 

Comparison of the estimated elastic properties ( ̄K e and Ḡ e ) for the heterogeneous material systems using the reduced 

set of 3-point representations to the corresponding Hashin–Shtrikman bounds ( K U , K L and G U , G L ), as well as the 

ground truth values ( K e and G e ) computed from SCE using the complete set of 3-point correlations. The unit for the 

bulk and shear modulus are GPa. 

Materials K L K̄ e K e K U G L Ḡ e G e G U 

Sandstone 0 16.7 ± 0.9 17.3 19.3 0 5.1 ± 0.8 5.5 7.1 

Metal-ceramic Composite 132.2 134 ± 3.8 136.9 141.0 68.4 70 ± 1.7 74.3 78.8 

Pb–Sn Alloy 41.5 43 ± 0.8 43.02 43.1 9.6 10.3 ± 0.7 10.4 10.8 

Concrete 31.4 33.8 ± 0.7 34.0 34.4 9.1 9.8 ± 0.4 9.9 10.2 

Particle-reinforced Composite 86.9 87 ± 2.9 89.2 96.3 37.9 38 ± 1.5 38.8 44.7 

 

(

 

5

a

r

o

fi

g

t

s

i

i

c

m

s

e

o

c

o

h

n

c

H

s

b

s

f

s

c

e

D

D

c

i

A

v

P

R

 

 

 

 

modulus for training (see Fig. 8 a of Cang et al. [2] ). For the

same test dataset of 200 samples, we achieve a comparable 

performance of R 2 = 90 . 7% using the optimal representation 

learned in Section 2 and the property computation method ex- 

plained in Section 3 , where we average the modulus with 20 

random draws of correlation sets. On the other hand, given the 

microstructure image size, the complete set of 3-point correla- 

tions we used to compute the ground truth (i.e., elastic moduli) 

contains over 90k correlations (i.e., different triangular shapes 

within the microstructure image). Therefore, with a subset of 

l = 738 correlations, our method reduces the dimensionality of 

the microstructure representation and thus the computational 

cost of structure-property prediction by more than 100 folds. 

(ii) The importance of explainability: The higher-order 

correlation-based representations possess clear physical in- 

terpretation, i.e, they provide the probability of finding specific 

n -point configurations in the phases of the materials of inter- 

est, which systematically quantify local morphological features. 

This explainability of the representations allows one to identify 

crucial morphological features in the material system in forms 

of spatial-correlations, and importantly, to easily map these 

correlations to understandable and intuitive structural fea- 

tures. This is in contrast to purely data-driven representations 

which do not corresponds to any physical features of the 

microstructure. In addition, correlation-based representations 

are analytically connected to mechanical modulus and linear 

transport properties of materials (including thermal/electrical 

conductivities, diffusivity, and permitivity, etc.) via extract 

contrast expansion formalism. This is not possible for purely 

data-driven representations. 

2) How sensitive is the property prediction performance to the choice 

of the representation? To provide an empirical answer, we ex- 

tend the study in Table 3 to the entire space of (l, k ) . Fig. 8 a

and b summarizes the averaged relative prediction errors from 

the true sandstone bulk and shear moduli, respectively. The re- 

sults show that the prediction performance is affected by the 

choice of the representation. In addition, we show that the 

prediction and reconstruction performance are positively corre- 

lated. More specifically, the correlation between the reconstruc- 

tion quality and the prediction quality of bulk (shear) modu- 

lus is 0.74 (0.85). This result supports the use of reconstruction 

quality to inform representation learning. 

. Conclusion and discussions 

We introduced a method to learn concise, nearly-complete, 

nd explainable representations of complex heterogeneous mate- 

ial systems based on 3-point correlations. The key components of 

ur method include a convolutional network architecture for ef- 

cient computation of 3-point correlations, and an algorithm for 

radient-based microstructure reconstruction. Bayesian optimiza- 

ion or grid search is subsequently applied to obtain the optimal 

ubset or distribution of 3-point correlations based on physics- 

nspired reconstruction quality metrics. The utility of our method 
9 
s demonstrated in detail via the quantification, modeling and re- 

onstruction of heterogeneous material systems, each with distinct 

orphological features and degrees of clustering. Moreover, we 

howed that the learned representations, in combination with the 

ffective medium theory, can be used to estimate elastic properties 

f these material systems. 

Although the example material systems used here are statisti- 

ally homogeneous and isotropic two-phase systems, we note that 

ur general procedure can be readily generalized to anisotropic, in- 

omogeneous and multi-phase material systems. This is because 

either the convolution-based encoder nor the gradient-based de- 

oder depends on the isotropy and homogeneity assumptions. 

owever, Bayesian optimization would be challenging as the kernel 

pace for the n -point correlations might not be easily characterized 

y a single parameter distribution. To address this challenge, a pos- 

ible solution is to formulate the encoder-decoder process as a dif- 

erential network, which allows direct optimization on the kernel 

pace. In our future work, we will explore this approach, as well as 

onstructing spatial-temporal correlations to represent dynamics of 

volving material systems. 
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