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Abstract

Causal discovery in the form of a directed acyclic
graph (DAG) for time series data has been widely
studied in various domains. The resulting DAG
typically represents a dynamic Bayesian network
(DBN), capturing both the instantaneous and time-
delayed relationships among variables of interest.
We propose a new algorithm, IDYNO, to learn the
DAG structure from potentially nonlinear times
series data by using a continuous optimization
framework that includes a continuous acyclicity
constraint. The proposed algorithm is designed
to handle both observational and interventional
time series data. We demonstrate the promising
performance of our method on synthetic bench-
mark datasets against state-of-the-art baselines. In
addition, we show that the proposed method can
more accurately learn the underlying structure of
a sequential decision model, such as a Markov
decision process, with a fixed policy in typical
continuous control tasks.

1. Introduction & Related Work

Probabilistic graphical models (Pearl, 1988; Koller & Fried-
man, 2009; Pearl, 2009) have been widely adopted in appli-
cations of artificial intelligence since the 1990s. Dynamic
probabilistic graphical models are particularly applicable in
real-world problems, such as for neuroscience (Rajapakse &
Zhou, 2007), molecular biology (Linzner et al., 2019), and
computer vision (Meng et al., 2018) tasks, since they cap-
ture dynamics in temporal data like time series by explicitly
modeling how variables change over time.

Perhaps the most popular dynamic graphical models in the
literature are dynamic Bayesian networks (DBNs) (Dean &
Kanazawa, 1989; Murphy, 2002), which are discrete-time
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models with an underlying directed acyclic graph (DAG)
structure (e.g. Figure 1). While initial work in DBNs consid-
ered discrete variables, there has been plenty of subsequent
literature on models with continuous variables, which are
more appropriate for time series data involving continuous-
valued measurements. For instance, DBNs can represent
structured vector auto-regressive (SVAR) models from the
statistics and econometrics literature (Reale & Wilson, 2001;
2002; Demiralp & Hoover, 2003; Swanson & Granger,
1997; Lanne et al., 2017; Kilian, 2013; Tank et al., 2019).
Note that there are other related dynamic probabilistic graph-
ical models for (discrete-time) time series data (Eichler,
1999; Dahlhaus, 2000) as well as for a parallel stream of
research on continuous-time graphical models (Nodelman
et al., 2002; Didelez, 2008; Gunawardana et al., 2011; Meek,
2014; Bhattacharjya et al., 2018).

Typical learning tasks for graphical models include pa-
rameter estimation and graph structure discovery. Struc-
ture discovery for both static and dynamic models aims
at learning the graphical structure underlying the proba-
bilistic model, usually in the form of a DAG. Standard
structure learning methods can be categorized as score-
based, constraint-based, or hybrid methods that combine
the approaches. Score-based DAG learning methods find
a graphical model that best fits the data while also control-
ling the complexity of the DAG, according to a scoring
function (Heckerman et al., 1995; Chickering, 2002). On
the other hand, constraint-based methods identify a struc-
ture that conforms to conditional independencies between
variables as gauged by statistical tests (Spirtes et al., 2001;
Tsamardinos et al., 2006; Colombo et al., 2012; Malinsky
& Spirtes, 2019). Structure learning methods of both basic
types are often super-exponential in complexity due to a
combinatorial search over all possible graphs.

To address computational issues, there has been a recent
trend towards score-based approaches for models involv-
ing continuous variables that formulate a more tractable
continuous optimization problem (Zheng et al., 2018). Sev-
eral works have since successfully extended the initially
proposed formulation to nonlinear as well as nonparametric
models (Yu et al., 2019; Lachapelle et al., 2020; Kalainathan
etal., 2018; Ng et al., 2019; Zheng et al., 2020).
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It is well known that structure discovery for DAGs with
observational data alone, i.e. independent and identically
distributed (i.i.d.) samples from a joint distribution over all
random variables, does not necessarily provide the entire
DAG structure (Spirtes et al., 2001; Pearl, 2009; Peters &
Biihlmann, 2014; Oates et al., 2016); the structure can only
be identified up to a Markov equivalence class in general, if
one makes further assumptions.

The gold standard for causal discovery is achieved when
one can perform experiments by intervening in a system and
measuring the ramifications. This results in interventional
data, which provides additional information that could po-
tentially identify the underlying DAG structure. With a
sufficient number of interventions, DAGs are fully identi-
fiable (Eberhardt et al., 2005; Eberhardt, 2012). There is
substantial prior work on identifiability results and structure
learning algorithms that incorporate interventional i.i.d. data
for (static) Bayesian networks (Hauser & Biihlmann, 2012;
Shanmugam et al., 2015; Yang et al., 2018; Brouillard et al.,
2020; Jaber et al., 2020; Ke et al., 2020; Squires et al., 2020).
However, we are not aware of prior work in structure learn-
ing for dynamic Bayes nets that considers interventional
data (potentially along with observational data).

In this paper, we propose a graph structure learning approach
for time series data, in the form of dynamic Bayesian net-
works, while leveraging interventional data in addition to
standard observational data. Similar to the case of i.i.d. data,
an intervention on time series data requires modifying the
process that generates the random variables over time; this
is achieved when an experimenter changes conditional dis-
tributions of random variables. Note that an intervention
can be made for any variable at any time slice in general.

To utilize interventional data, we formulate learning as a
continuous optimization problem, extending the recent al-
gebraic characterization of DAGs in time series datasets,
known as DYNOTEARS (Pamfil et al., 2020). There are
two crucial innovations: 1) While DYNOTEARS applies
a new (continuous DAG) constraint to observational linear
time series data, we introduce a non-linear objective through
neural models, thereby allowing for nonlinear temporal dy-
namics. 2) We formulate a modified objective and general
solution approach that can handle different distributions on
intervention targets, thereby vastly expanding the scope of
learning to general interventions in time series data.

Our work is closely related to aspects of reinforcement learn-
ing (RL) such as factored MDPs (Boutilier et al., 1995),
which involve optimizing a target node (reward) in a dynam-
ically evolving process with an underlying graphical model
(with partially or fully observable nodes), given control over
a subset of nodes (decision/action nodes). In the context
of offline RL (Levine et al., 2020), action nodes cannot be
actively intervened upon, as only pre-existing data from the

actions (possibly of other agents) are available; however, of-
fline data from multiple policies effectively provides access
to different interventions on fixed targets.

Contributions. Our main contributions are as follows:

* We propose a general DBN structure learning algo-
rithm called IDYNO - an interventional extension of
DYNOTEARS - that is capable of utilizing both observa-
tional and interventional time series data.

* We extend the baseline IDYNO to nonparametric models
for handling potentially complex and nonlinear time series
data. The resulting methods can leverage perfect (hard)
and imperfect (soft) interventions with known targets.

* We present identifiability results around interventional
equivalence classes for our learning approach, under some
specified assumptions.

* Through synthetic as well as simulated offline RL datasets,
we show that our proposed IDYNO outperforms existing
score-based methods by utilizing such interventional data.

2. Background

Consider a set of independent realizations of a stationary
time series, with each individual realization of size 7T in the
form of X; := [z,]%, € R Here t € {0,..., T} repre-
sents the time index, X represents the observed values of all
d number of variables in an observational or interventional
time series dataset, and z; ; denotes the ¢-th component of
X:. We use lower case letters for scalars, upper case letters
for vectors, bold letters for matrices. As typically assumed
in such models, there may exist instantaneous or contempo-
raneous influences as well as a time-delayed impact among
variables. This is illustrated in the simple DBN in Figure 1.

2.1. Basic Notation

A causal graphical model is defined by a distribution Py
over a set of random variables X € R and a directed
acyclic graph (DAG) G = (V, E') with nodes V' and edges
E. Eachnode i € V = {1,...,d} is associated with a
random variable z; and each edge (i, j) € E represents a
direct causal relation from variable z; to x;. With a slight
abuse of notation, we will use X and V interchangeably.
We assume the distribution Py is Markov with respect to
graph G, which enables the factorized joint distribution as
P(X)= H?:l pj(z; |m,r]c) where 7er is the set of parents
of node j in the graph G and x g denotes the instantiations
of a subset of X whose indices are B C V. We also assume
causal sufficiency, i.e., there are no hidden common causes
between any pair of variables in X (Peters et al., 2017).

In time series datasets, there are many possible ways
to model Px. We follow the typical setting in recent
work (Pamlfil et al., 2020), characterizing X through a stan-
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Figure 1. (a) A dynamic Bayesian network (DBN) with 3 nodes: A, B, C. The only intra-slice edges are from A to B and A to C. Note that
C has inter-slice edges from the prior two periods whereas A and B have only single period inter-slice edges. (b) DBN from (a) with soft

and hard interventions for variables B and C respectively.

dard SVAR model (Demiralp & Hoover, 2003; Swanson &
Granger, 1997; Kilian, 2013):

Xt :XtW+Xt—1A1+-~-+Xt—pAp+Zt7 (])

where ¢ € {p, ..., T} with horizon T', p is the autoregressive
order, and Z, € R%is a vector of noise variables drawn from
any continuous distribution. We assume Z; is independent
of Zy, and of Xy for all ¢’. The d x d matrices W and
A, i€ {1,..,p}, represent weighted adjacency matrices
for the intra-slice and inter-slice edges in G, respectively,
and model the contemporaneous and time-lagged causal
relations. As is typical in dynamic Bayesian networks, W
and A; are constrained to ensure that the underlying graph
is acyclic; note that inter-slice edges are such that there are
only edges from the previous time slice to the current time
slice. Eq. 1 can be written in matrix form:

X=XW+Y A1 +..+Y,Ap+Z (2

where X € R™*4 is a matrix whose rows are X;, Z €
R™*4 is a matrix formed similarly by Z;, and Yj, j €
{1, ...p}, are time lagged versions of X. The number n is the
effective sample size, whichisequalto T —p+ 1. Let Y =
[Y1,..., Y] be a matrix with size n X pd concatenation
of time-lagged data, A = [A;7, ..., A,7]T be a matrix
with size pd X d, then the formulation takes the structural
equation model (SEM) form:

X=XW+YA+7Z 3)

We refer to such a data transformation as time-lagged, so
that it has the same matrix form as i.i.d. data.

2.2. Interventions

An intervention on a variable x; in a DAG G corresponds
to replacing its factored conditional distribution p;(z; \ijc)
with another distribution p; (x; |937rJG ). The intervention can
be performed on multiple variables simultaneously with a
set of interventional targets I C V. Denote the interven-
tional family by Z := (1, ..., [ ), where K is the number

of interventions. The joint likelihood for the kth intervention
can be written as:

PP x) = T p @slane) TT 257 @ilane) @)

J€1k j€lk

The typical intervention on the data from Eq. 4 is referred
to as an imperfect (or soft) intervention. An intervention
can also be perfect (or hard), if it completely removes the
dependencies of a node x; on its parents,! for example
by setting pgk)(mj\ijg) = pgk)(xj), Vj € Ix. Real-world
examples of these types of interventions include gene knock-
outs/knockdowns in biology or performing a fixed action
for a decision variable with a deterministic policy in a rein-
forcement learning environment.

We note that while existing work can handle multiple in-
terventional families, they focus on only one interventional
target at a time (Brouillard et al., 2020). Our method in
comparison allows for multiple interventions at any time.

2.3. Causal Structure Learning

The goal of typical causal structure learning tasks is to
recover the DAG G using samples from Px and/or from the
interventional distributions. The exact recovery of the graph
is typically costly, due to the super-exponential search space
in number of nodes, and may not always be identifiable.
In Section 1, we mentioned some prior literature on the
subject.

The most relevant work here is the following continuous
constrained optimization re-formulation for DAG learning
that uses a continuous DAG constraint, (W) = 0 on the
weighted adjacency matrix W to avoid the combinatorial
search on the feasible solutions W (Zhang et al., 2019):

gl‘izl‘[} Ly(X; W) = AQO, W) st. h(W)=0, ()
where Ly is the loss function and # indicates parameters
other than W, (6, W) is a regularization term on model

' A hard intervention in this sense can be stochastic, and does
not necessarily imply deterministically fixing the value of a node.
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parameters and/or the edge complexity in W with a tunable
regularization parameter A. Zhang et al. (2019) propose
h(W) = Tr(eW) — d, where Tr represents the matrix trace,
and shows the graph is acyclic if and only if the constraint
h(W) = 0. Typically, the loss fy can be the least square
loss (Zhang et al., 2019) in linear structured equation models
(SEM), or evidence lower bound (Yu et al., 2019), among
other losses (Kalainathan et al., 2018). The problem is then
approximately solved using an augmented Lagrangian pro-
cedure. Many extensions to the method have been proposed
(Lachapelle et al., 2020; Ng et al., 2019).

For time series datasets, DYNOTEARS (Pamfil et al., 2020)
extends the continuous optimization framework to DBN’s
by explicitly modeling the intra- and inter-slice adjacency
matrices separately with a linear SEM model. Namely:

minA Lo(X; W, A) — \Q(O, W) st. (W) =0, (6)

)

where W is the matrix for intra-slice edges and A is the
matrix for inter-slice connections, and Ly(X; W, A) =
LIIX — XW — YA|[%. Here n is the total sample size,
and || - || F is the Frobenius norm. To distinguish with the
Frobenius norm, we use |- ||2 to denote the (vector) I3 norm.

3. IDYNO: Structure Learning from
Interventional Time Series Data

We make two major improvements of the existing graph
learning algorithms in the proposed algorithm, IDYNO.
First, we propose a new DAG learning method and algo-
rithm that can handle both observational and interventional
time series data. Second, we propose to use a more com-
plex nonparametric family of models to capture arbitrary
distribution Px more accurately.

3.1. Time Series Data with Interventions

First, we develop a method that can handle both interven-
tional and observational data together, based on a similar
idea from i.i.d. datasets (Brouillard et al., 2020). The main
idea is to learn a DAG from interventional data by con-
sidering a separate distribution family for the intervened
nodes (in the cases of perfect intervention, removing in-
tervened nodes) in the log-likelihood objective. Specifi-
cally, in a standard SVAR model, let a binary indicator
matrix R* = [r{;] € {0,1}"*? encode the interventional
family Z, such that r%j = 1 when z; is an intervened tar-
get in [ and O otherwise. For each interventional fam-
ily k, we use Wy € R™? and Ay € RP to de-
note the corresponding weighted adjacency matrices, and
W .= {W(l), ...,W(K)}, A = {A(l), ,A(K)} repre-
sent the collection matrices of all interventional families.
The loss function Ly (X; W) in Eq (6) considers both ob-

servational and interventional data, namely:

K d
Lo(X; W, A) =33 Li(X; Wy, Ay
k=1 j=1
+ Lj(X; Wy, A(k))rfj (7)

where L; denotes the loss associated with the jth compo-
nent. Then, the optimization becomes:

K d
o1 2(1-r%;)
min — > (I1(X = XW) = YAq), 5"

k=1j=1
27"@
1 (X = XWg = YAg), ;™) +A0(60)
st. Tr(eW)—d=0 (8)

Then the final estimated graph structure would be W 1) and
A1), indicating the underlying graph structures under no
interventions.

In the case of perfect or hard interventions, intervened nodes
no longer depend on W or A, and hence their loss can be
removed from the objective without affecting the minimiza-
tion with respect to W and A.

3.2. Nonlinear Time Series Data

Nonlinear Observational Time Series Data In practice,
the relationships among variables can be highly nonlinear,
increasing the difficulty in modeling. To alleviate this issue,
we first adapt the nonlinear relationships in the continuous
constrained optimization DAG learning framework for time
series data to the IDYNO framework, with a nonparametric
model such as the neural network based NOTEARS method
(Zheng et al., 2020). In this class of models, there may not
be parameters directly representing the weighted adjacency
matrices W and A.

We assume that there exist functions f; : R¢ — R and
g; : R — R such that:

Elz;lere] = g;(f;(X), [7(Y)), E[f;(X)]=0 (9

where f;(z1,...,24) does not depend on x, if z) & &,
and ff is the time-lagged function. We assume g; follows a
generalized linear model (GLM) with possible non-additive
noise terms. In this work, we study the link function g; as
the sum of two terms. In this setting, we seek to learn f =
(f1, .., fa) such that the DAG from f, W(f), represents
the same DAG over the data X. The overall objective can
be written as:

min Ly(f) = A20) st. W(f)isaDAG  (10)

where Lg(f) = 2?21 L(X;, f;(X), f7(Y)).
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However, it is not straightforward to directly use a W and
A in the parametrization of the neural network, since neural
networks do not contain them, and the continuous acyclicity
constraint h(W) requires W explicitly. To remedy this
problem, we extend the nonparametric acyclicity to time
series datasets by using partial derivatives to measure the
dependence of each function f; on the gth variable.

Let HY(R?) C Ly(R?) be the Sobolev space of square-
integrable functions whose derivatives are also square inte-
grable. Let f; € H'(R?) and 9, f; be the partial derivative
with respect to x,. It can be shown that f; is independent of
x4 if and only if ||0, f;||z, = 0, where || - ||, is the usual
Lo-norm. Then each entry of W(f) = W(fi,..., fa) €
R?*4 can be defined as:

[(W(Nlaj = 1194 illL

To use a neural network to approximate f; , we define f;,
for each j, as a multi-layer perceptron (MLP) with h hidden
layers and activation o : R — R, given by

MLP(U;M® . M®) = o(M®o(.MPe(MV1)))

where M is the (matrix) weight of each layer in MLP. If
the gth column of the first layer weight M(1) consists of
all zeros, then M LP(U; M™) ... M®) is independent of
U, the gth component of U.

The above analysis focuses on one variable x; at a time.
Let 0; = (M;l),...,M;h)) denote parameters for the
the jth MLP, and 6 = (61,..,64). Let [W(8)],; =
|| gth-column (M ;1))||2 and A4, A\, as the regularization pa-
rameters for A and W, respectively. Then the overall ob-

jective becomes:

1 d

. 1
i, = Z; L;(X, MLP (X; 05, W, A) + Mol [A{V[| 11
j:

+ >\u1||W7§1)||171 s.t. W is acyclic

where MLP(X;6;, W, A) produces the estimate Xj.
Since there are two adjacency matrices W and A to
be learned, we use separate MLPs for them and con-
catenate the output from each MLP via a third MLP.
In other words, we set MLP(X;0;, W,A) as the
combination of separate MLPs for W and A, ie.,
MLP(MLP,(X; A, 604), MLP3(X; W,0}V);0;). A®)
and W) are first layer parameters for W and A networks.

Solving the continuous program can be done with any off-
the-shelf solver. As typical in the continuous acyclic formu-
lation, the standard augmented Lagrangian transforms the
problem into a series of unconstrained objectives;

min L(6) + £[h(W(6))* + ah(W(6))

F AN g + Al W A

To solve the unconstrained /; -penalized smooth minimisa-
tion problem above, a number of possible optimizers could
be used. A natural choice would be the L-BFGS-B algo-
rithm (Byrd et al., 1995). Since Eq (11) is a nonconvex
program due to the acyclicity constraint, only a stationary
solution can be guaranteed.

Nonlinear Interventional Time Series Data With the
above proposal nonparametric model for time series data,
we propose a neural network version of IDYNO, denoted
as IDYNO-nn, to handle potentially complex nonlinear in-
terventional time series data. The main difference from the
observational data is the use of interventional loss functions
for each interventional family.

K d

1 s
min =3 Y Li(X, MLP(X; 0, Aq), W) ™

k=1 j=1

Ly (X, MLP(X; 6;, Ao, W)™
Al AN 1+ Al WD (12)
s.t. Tr(ew) —d=0 (13)

Eqgs (12)-(13) can be solved similarly as (11), to achieve
stationary point solutions.

3.3. Identifiability

Identifiability of the DAG structures for observational time
series data has been established (Pamfil et al., 2020), where
the inter-slice edges represented by A are identified from
standard results in vector autoregressive (VAR) models,
whereas the intra-slice edges W can be identified under
two special cases: 1) the errors Z are non-Gaussian, as a
well-known consequence of Marcinkiewicz’s theorem and
independent component analysis (Pamfil et al., 2020), or 2)
all errors Z are standard Gaussian with zero mean and equal
variance (Peters & Biihlmann, 2014). For linear time series
interventional datasets with known targets, identifiability re-
sults have been studied in the i.i.d. case (Chen et al., 2018).
Specifically, if each variable is affected by a unique set
of intervened variables, the resulting model is identifiable.
For time series data, under the (linear) SVAR parametric
distribution assumption, one could establish the same iden-
tification results, since the reformulation with time-lagged
data can be seen as equivalent to an i.i.d. formulation.

With nonlinear interventional data, the identification results
above may not apply anymore. However, without further
distributional assumptions, Brouillard et al. (2020) estab-
lishes identifiability of the Z-Markov equivalent class in
i.i.d. data. These results can be extended to IDYNO-nn for
time series data in the following fashion.

First, we define a generalized version of Z-Markov equiv-
alence from prior work (Hauser & Biihlmann, 2012; Yang
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et al., 2018) for graphs within a (domain or problem-
dependent) subset of DAGs rather than all DAGs:

Definition 3.1. ((Z,D)-Markov Equivalence Class).
Given a set of interventions Z on a DAG G in a subset D of
all possible DAGs over a set of variables, we define (Z, D)-
MEC(G) as the subset of graphs in D which are Z-Markov
equivalent to G.

As such, (Z,D)-MEC(G) is simply the intersection of
D with the Z-Markov equivalence class of G, i.e. D N
(Z)-MEC(G). We also define the negative score func-
tion —S%(G) of a model graph G as the expectation
Ex|(pt},0+ [Lreg (X)] — where Ly is the regularized loss
being minimized in Eq. (12) with the losses L; being nega-
tive log-likelihoods — over data X generated from the true
graph G* with interventional distributions p(*) for each
I, € 7.2 With these definitions, the following result holds:
(Please see the proof and related discussion in Appendix A.)

Theorem 3.2. For a graph G € D, where D C DAG, if
Ge argmaxge p 4 Sz(G), and furthermore if (i) the den-
sity model, i.e. functions {g;, f;, fjp } along with noise terms,
has sufficient capacity to exactly represent the ground truth
distribution Px, (ii) a given set of interventions L satisfies
ZI-faithfulness for the true graph and distributions (G*, Px),
(iii) the density models are strictly positive, and (iv) the
ground truth densities p*)(X) have finite differential en-
tropy, then Gis (Z,D)-Markov equivalent to G*, for small
enough A, Ay

Setting D to be the subset Dy of DAGs which correspond
to stationary dynamics with constant-in-time inter-slice and
intra-slice conditional distributions (see Appendix A for
details), Theorem 3.2 takes the following form:

Corollary 3.3. For a graph G e D, and given the as-
sumptions mentioned in Theorem 3.2, G is (Z,D)-Markov
equivalent to G*, for small enough Aq, \y,.

Here, restricting to DAGs in D, while allowing interven-
tions in Z to change over time reduces the size of the equiv-
alence class (Z, D, )-MEC(G*).

4. Empirical Evaluation

We compare the proposed IDYNO methods, including both
linear/nonlinear and soft/hard regimes, with baseline meth-
ods for time series interventional datasets to show the supe-
rior performance of the proposed methods. We first com-
pare different methods on synthetic datasets and then apply
them to control tasks to discover the underlying structures.
Since there are no known structure learning algorithms for
interventional dynamic data, we compare our method to
implementations of various state-of-the-art observational
baselines, including DYNOTEARS (Pamfil et al., 2020),

2We omit the constraint, Eq. (13), since the theoretical analysis
applies to the space of DAGs, and does not consider cyclic graphs.

standard vector autoregressive models (VAR) (Johansen,
1991), and i.i.d. differential interventional method DCDI
(Brouillard et al., 2020). We need to transform time series
data for DCDI’s usage. We use the following 2-step proce-
dure: 1) fit VAR to compute the residual e = Z(I — W)~1
and B = A(I — W)~ and 2) use DCDI to learn W over
the residual data e = eW + Z. This two step approach
can learn both the W and A = B(I — W), although errors
can propagate via estimation of earlier steps (Pamfil et al.,
2020). All experiments are done in Python on a machine
with 3.7GHz CPU and 16GB memory.

4.1. Synthetic Dynamic Datasets

We first evaluate different approaches on synthetic time
series data. We simulate the data according to the SEM
from Eq (3), mostly following the setup and code from
Pamfil et al. (2020) for ease of comparison. The generating
process consists of 3 steps:

1. Generating weighted graphs in the form W and A.

2. Generating data matrices X and corresponding Y per
W and A.

3. Generating interventional data with random targets and
different distributions.

We repeat each experiment 5 times and compare the struc-
tural Hamming distance (SHD) between the learned graph
and the estimated graph (the lower, the better). We report
the mean and the standard error for each case. We generate
linear datasets first and then more complex datasets under
more difficult settings.

Table 1. SHD Results for Synthetic Linear Datasets

Dataset DYNOTEARS ‘ IDYNO
Observational 2.0+ 0.0 [ 2.0+ 0.0
Interventional 32404 | 19+0.3

Linear Synthetic Interventional Datasets In the linear
setting, we use the following steps and hyper-parameters to
generate the data.

* For step 1), we use the Erdos-Renyi model to generate
intra-slice graph W with degree of 3 for a total d = 10
nodes, with its weights sampled uniformly at random
from U ([—2.0, —0.5]U[0.5, 2.0]). We use the same Erdos-
Renyi model to generate inter-slice graph A with degree
of 3, with its weights sampled uniformly at random from
U([-0.5,—-0.3] U [0.3,0.5]).

* For step 2), we focus on data with first autoregressive
order, i.e., p = 1, where data only depends on the previous
time slice. We generate 5 sequences with 500 time slices
each with standard Gaussian noises. We estimated one
graph from each sequence and report the average SHD
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along with its standard error.

* For step 3), to generate interventional data, we flip a fair
coin to decide whether to intervene at any time slice, in
which case we sample one node uniformly to be the in-
tervened node. Here we deploy a perfect intervention,
setting the choosing the values of intervened nodes from
{0.25,0.5,0.75, 1} randomly. The number of interven-
tion families K is therefore 2. We also compare methods
for purely observational data (Obs).

As shown in Table 1, the proposed IDYNO method achieves
similar accuracy as DYNOTEARS on the observational
dataset, validating it can handle observational data. For
the interventional dataset, IDYNO significantly outperforms
DYNOTEARS, achieving almost half of the SHD.

Nonlinear Interventional Datasets Next we test
IDYNO-nn, along with all other baselines, on nonlinear
synthetic dynamic datasets. The data generating process is
similar to the linear setting, except the underlying function
between a node and its parents becomes a two-layer MLP
with a sigmoid activation function. In the MLP setting,
the weights of the MLPs are sampled uniformly from
U([-2.0,—-0.5] U [0.5,2.0]), and then weights in the first
layer are updated by the parental weights from W and
A structures. We also test the effect of varying sizes of
node d, from 5 to 20. The interventional data is generated
again with the same hard intervention regime as described
previously.

As shown in Figure 2, IDYNO and DYNOTEARS suffer
due to their linearity assumptions; IDYNO-nn is the most
accurate, performing much better than both linear models.

war
t=GFCI
dynotear
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idyno_nn
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1

100 -
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Figure 2. SHD Results for Nonlinear Hard-Intervention Datasets.

Nonlinear Soft-Interventional Datasets Lastly, we also
test the methods under soft interventional regimes. We
follow the same nonlinear dynamic data generating process
as above, with two exceptions: 1) we increase the number of
potential interventions at each time slice, and 2) we sample

intervened nodes’ values from another distribution. We
assume every node has a probability of 0.1 to be intervened
upon at each time slice (hence up to d instead of 1), and if a
node is chosen, the soft intervention comes from a different
2-layer MLP, depending on the values of its parent nodes
per its graph. This soft intervention distribution can be very
different from the observation distribution.

As shown by the results in Figure 3, we compare the soft
version of the IDYNO-nn, or IDYNO-nn-soft, with all other
methods, for d = {5,10,20}. The results confirm that
IDYNO-nn is consistently better than DYNOTEARS and
IDYNO. IDYNO-nn-soft achieves much better performance
than IDYNO-nn, showing that the soft intervention loss
function might be necessary in these settings. tsGFCI ranks
2nd, with mean SHD 42.0 against IDYNO-nn-soft 39.0 at
d = 20.
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Figure 3. SHD Results for Nonlinear Soft-Intervention Datasets.

4.2. Network Administration Experiments

We consider a network administration example from the
factored MDP literature where conditions of computers de-
teriorate probabilistically based on the underlying network
topology (Guestrin et al., 2001). The problem can be mod-
eled as a DBN where the state of each computer depends on
its prior state as well as those of its parents in the network
and the binary repair action. We consider the continuous
state version of the problem where computer conditions are
in [0, 1] (Hauskrecht, 2004; Kveton et al., 2006). Details
about data generation are in Appendix B. Figure 4 compares
results for structure learning of the DBN for a ring network
topology with varying number of computers (d). IDYNO-
nn performs best on this task since it is a hard-intervention
dataset; it is better than DYNOTEAR and IDYNO. tsGFCI’s
performance is closely behind (for example, mean SHD
35.0 against 32.4 at d = 20), possibly due to the limited
amount of interventional data.
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Figure 4. SHD Results for Network Administration Experiments

4.3. Continuous Control Experiments

For these experiments, we apply the proposed methods to a
reinforcement learning environment, where data is provided
by RL agent actions. We work in the offline RL setting
where data trajectories are generated in advance by multiple
unknown policies (intervention families k) and are used
for structure learning without online acquisition of more
data (Sutton & Barto, 2018; Levine et al., 2020).

We use the continuous version of the Lunar Lander en-
vironment in OpenAl Gym (Brockman et al., 2016), as
DYNOTEARS handles only continuous variables. Lunar
Lander is a mini-game where an agent tries to land a lunar
lander safely in a desired location without crashing. Let
us denote the state and action space dimensionalities as
(ds,ds) = (6,2). States 1 through 7 are the lander’s
horizontal position, horizontal velocity, vertical position,
vertical velocity, angular orientation, and angular velocity,
respectively. Actions 31 and (35 are the forces from the main
engine and orientation engine. We omit two binary state
variables indicating whether the lander legs have landed.

State-action dynamics take the following form:?

An%t) = Tnét) Anét) =7 ét)/M (14)
Any? =l anf) =78 /M —g) (15
Agl) =l anl =7 p(8",8),  (6)

where Angt) = nf*” - ngt) and f(31,82) is a function

which evaluates angular torque on the lander.

Note that the actions’ parents (which determine the pol-
icy in RL) are missing from the above dynamics, which
changes depending on the different learned parents. NN-
based agents typically take all states as input in policy net-
works, hence all states are the parents of each action. In

3M, g, and T are fixed parameters.

addition, since the MDP generally contains no intra-slice
connection W, we purposely introduce them by removing
observed states (keeping only actions) at every other time
t—1,t+1,..., and then treating pairs of adjacent timesteps
(t,t + 1) as a single timestep. In practice, intra-slice con-
nections could occur if data is missing at some times, such
that variables at multiple times must be aggregated to form
a complete set of nodes. Hence, there are a total of 4 action
variables {6?), ét), ,Bi”l), Bétﬂ)} at a given time. At a
given coarse-grained timestep, all state nodes are still par-
ents of each action node. From the above equation, we
can construct the ground truth DBN structure governing the
MDP at a fixed policy in this setting.

We use one of the state-of-the-art learners, Deep Determin-
istic Policy Gradient (DDPG) (Lillicrap et al., 2016), for the
policy learning agents. We use two DDPG agents: a ran-
domly initialized DDPG agent (intervention family k = 1),
and a fully trained agent with 2e5 total time steps (k = 2).
We then save 10 different episodes performed by both agents
with 1000 time steps as the interventional data. If the lander
touched down early, we then remove redundant data with
maximal reward values (R = 1). To use the time-lagged
transformation, we combine one sequence from each agent
to form the data matrix.

Table 2. Continuous Lunar Lander (with Latent States) Results

Alg. || sGFcI DYNOTEAR  IDYNO IDYNO-nn-soft

SHD H 276 +£0.1 326+02 322+£01 274+0.1

We only show selected results in Table 2 due to page restic-
tions. IDYNO-nn-soft performs best here, with tsGFCI
slightly behind. For other baselines not shown in the table,
IDYNO-nn has SHD of 31.2, DCDI 46.4, and VAR 34.8.

5. Conclusion

In this paper, we have proposed IDYNO — an approach
for learning the DAG structure of a dynamic Bayesian net-
work from (dynamic) time series data. IDYNO can handle
linear and nonlinear dependencies, observational and inter-
ventional data, and perfect and imperfect interventions. To
the best of our knowledge, IDYNO is the first such pro-
posed algorithm. We show that under standard assumptions,
the underlying graph can be identified at least up to the
interventional Markov equivalent class. On various syn-
thetic datasets as well as on a continuous control task, we
show that IDYNO consistently outperforms its purely ob-
servational counterpart, exhibiting great potential to handle
interventional datasets. We have considered passive inter-
ventional data in this paper but future work could potentially
explore active intervention strategies as well as connections
to online RL, based on the proposed approach.
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A. Identifiability

In this section we clarify the quantities and notation used in Section 3.3 to establish conditions for identifiability of
the “unrolled,” temporally extended DAG which includes all variables at all timesteps. We define X € R"*¢ (where
n =T —p+ 1) — as in the main text — as the matrix whose elements form the set of random variables in a DAG G* = (V, E),
where V' = {z,,;} fori € {1,...,d} and ¢t € {1,...,n} is the set of indices for d variables across n timesteps, and
(xt is T/, j) € Eif x4 ; is an element of the parent nodes 7rg ; of 2y ;. Due to the acyclicity of intra-slice connections and
the forward-in-time direction of inter-slice connections, g* is directed and acyclic.

We assume that the inter-slice and intra-slice edges in G* are constant in time, in the sense that (i) inter-slice edges connecting
a given pair of variables (z;, z¢ ;) with a given time lag p = t' — ¢ are either elements of E for all p < ¢, < n or for no
t2, and (ii) intra-slice edges (x4, Ty, j) connecting a pair of variables at time ¢ are either elements of F for all ¢ or for no .
Furthermore, we assume that the distribution Px over variables in this graph is invariant across time. That is, we restrict the
conditional distribution p; (z; ;|7 ) for any x; to be independent of the time index ¢. We will denote the subset of all
DAGs that can be partitioned in thls way into a directed sequence of a repeated subgraph as D;, in reference to the fact that
repetition of the same conditional distributions and edges over time corresponds to stationary or fixed dynamics.

We consider a family of interventions Z on the temporally extended graph G*. An intervention I;, € Z need not modify
conditional distributions in the same way at all times, but may modify conditional distributions for any subset of edges
(e, x4, j) € E. (Our algorithm IDYNO assumes a smaller subset of interventions which are constant in time, and can thus
be viewed as a special choice of Z.)

With these definitions, along with those given in Section 3.3, our dynamical graphical setting reduces to the non-dynamical
graphical setting of Brouillard et al. (2020) and we can apply their Theorem 1 to the DAG G* as follows.

Proof of Theorem 1. We refer the reader to Brouillard et al. (2020) for precise statements of assumptions (i)-(iv) as stated
in Theorem 3.2. When these assumptions ho9ld, Theorem 1 of Brouillard et al. (2020) applies. Thus, as long as A, Ay
are sufficiently close to zero (such that the score S7(G) is equivalent to the log-likelihood score in Eq. (8) of Brouillard
et al. (2020) in the A — 0 limit), Q is Z-Markov equivalent to G*. Since furthermore Q € D, then by Definition 3.1, Q is
(Z, D)-Markov equivalent to G*.

B. Network Administration Example

In the network administration example from the factored MDP literature (Guestrin et al., 2001), a cluster of computers are
connected together in some underlying network topology such that failures of these computers propagate probabilistically
through network connections. The administrator can prevent failure propagation by fixing computers that have failed. The
problem can be modeled as a DBN where there is a variable X; for every computer ¢ in the network. X; at any epoch
depends on its state at the previous period, its parent computer states in the underlying topology (representing the physical
dependencies in the network) as well as the binary action performed for the computer, i.e. whether it is repaired or not. At
most one computer can be repaired at any epoch due to resource constraints.

In the original version of the problem, variables X; are binary such that 0 and 1 represent failure and operational states
respectively. We consider the continuous state version of the problem where the states of each computer are values between
0 and 1; a lower value indicates a poorer condition (Hauskrecht, 2004; Kveton et al., 2006).

We consider the ring network topology involving d computers, similar to prior work, where there are only edges from
computer ¢ to computer ¢ + 1,7 = 1,--- ,d — 1 as well as an edge from computer d to computer 1. We note that our data
generation applies to any network topology in general. Our approach for the DBN sampling follows prior work (Hauskrecht,
2004; Kveton et al., 2006), described as follows.

Action A, is 1 if the computer indexed i is fixed at any epoch; otherwise it is 0. For the experiments, we consider the
realistic policy where only the worst state computer from the previous epoch is fixed. The transition model captures the
propagation of failures in the network and is encoded locally by beta distributions with parameters a and b. Specifically,
when A; = 1, the state X; is generated from a beta distribution with the parameters a = 20 and b = 2. In contrast, when
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A; = 0, X, depends on variables from the previous epoch with the following beta distribution parameters:

a=2+13z; — | 22 Z x| b=10—2x; — | 2] Z |,

jE€Pa(X;) JjeEPa(X;)

where z; is the state of computer ¢ from the previous epoch, x; is the state of computer j from the previous epoch, and
Pa(X;) are the parents of X; in the network topology. We also enforce non-negativity constraints on the beta parameters
above. In this fashion, failures are propagated when a computer is not fixed.



