Aspis: Robust Detection for Distributed Learning

Konstantinos Konstantinidis and Aditya Ramamoorthy
Department of Electrical and Computer Engineering
Towa State University
Ames, IA 50010
Email: {kostas, adityar}@iastate.edu

Abstract—State-of-the-art machine learning models are rou-
tinely trained on large-scale distributed clusters. Crucially, such
systems can be compromised when some of the computing
devices exhibit abnormal (Byzantine) behavior and return arbitrary
results to the parameter server (PS). This behavior may be
attributed to a plethora of reasons, including system failures and
orchestrated attacks. Existing work suggests robust aggregation
and/or computational redundancy to alleviate the effect of distorted
gradients. However, most of these schemes are ineffective when an
adversary knows the task assignment and can choose the attacked
workers judiciously to induce maximal damage. Our proposed
method Aspis assigns gradient computations to workers using a
subset-based assignment which allows for multiple consistency
checks on the behavior of a worker. Examination of the calculated
gradients and clique-finding in an appropriately constructed graph
by the PS allows for efficient detection and exclusion of adversaries
from the training. We prove the Byzantine resilience guarantees
of Aspis under weak and strong attacks and extensively evaluate
the system on various training scenarios and demonstrate an
improvement of about 30% in accuracy compared to many state-
of-the-art approaches on the CIFAR-10 dataset as well as reduction
of the fraction of corrupted gradients ranging from 16% to 99%.

I. INTRODUCTION

The increased sizes of datasets and associated model com-
plexities have established distributed training setups as the de
facto method for training models at scale. A typical setup
consists of one parameter server (PS) and multiple workers.
The PS coordinates the protocol by communicating parameters
and maintaining the model. The workers compute gradients of
the loss function with respect to the optimization parameters
and transmit them to the PS. The PS then updates the model.
This is an iterative process repeated until convergence.

Despite their speedup benefits, such distributed settings are
prone to so-called Byzantine failures, i.e., when a set of workers
return malicious or erroneous computations. This can happen
on purpose due to adversarial attacks or inadvertently due to
hardware or software failures. For example, [1] showed that bit-
flips in commodity DRAM can happen merely through frequent
data access of the same address. Reference [2] exposes the
vulnerability of neural networks to such failures and identifies
weight parameters that could maximize accuracy degradation.
As a result, the distorted gradients can derail the optimization
and lead to low test accuracy. Devising training algorithms that
are resilient to such failures and which can efficiently aggregate
the gradients has inspired a series of works [3], [4], [5], [6].

Prior work on robust aggregation [5], [6], [7], [8], [9],
[10] provides robustness guarantees up to a constant fraction
of the nodes being adversarial. However, this fraction is

This work was supported in part by the National Science Foundation
(NSF) under grant CCF-1910840 and grant CCF-2115200.

usually very small, and the guarantees are limited (e.g., only
guaranteeing that the output of the aggregator has a positive
inner product with the true gradient [6], [11]). Also, they require
significant asymptotic complexity [10] and strict convexity
assumptions that need to be adjusted for each individual
training algorithm. Redundancy-based schemes assign each
gradient task to more than one node [12], [13], [14], [15],
[16]. Existing techniques are sometimes combined with robust
aggregation [14]. Fundamentally, these methods require a higher
computation load per worker, but they come with stronger
guarantees of correcting the erroneous gradients. Most schemes
in this category can be made to fail by a powerful, omniscient
adversary that can mount judicious attacks [12]. Another line of
work focuses on ranking and/or detection of the adversaries [15],
[17], [18]; the objective is to rank workers using a reputation
score to identify suspicious machines and exclude them or
give them lower weight in the model update. Their theoretical
guarantees require strict assumptions on the smoothness of the
loss and the authors have not used or constructed worst-case
attacks to evaluate the methods in adversarial settings.

A. Contributions

Our scheme Aspis uses a combination of redundancy and
robust aggregation. Unlike previous methods, the redundant
subset-based assignment for gradient computations is judi-
ciously chosen such that the PS can perform global consistency
checks on the workers by examining the returned gradients.
Clique-finding in appropriate graphs is used by the PS for
detection to exclude adversaries from the training.

Under weak attacks where the Byzantines act independently,
they will always be detected by the proposed novel clique-
based algorithm. Aspis is resilient to stronger attacks (optimal
collusion) than those considered in prior work. Instead of
simulating a random set of adversaries [14], [15], we have
crafted a non-trivial attack such that the adversaries can evade
our detection and corrupt more gradients.

We provide theoretical guarantees for both weak and strong
attacks on the fraction of corrupted gradients for Aspis.
Comparisons with other methods indicate reductions in the
fraction of corrupted gradients ranging from 16% to 99%.

Finally, we present exhaustive top-1 classification accuracy
results on the CIFAR-10 dataset for a variety of gradient distor-
tion attacks coupled with behavior patterns of the adversarial
nodes. Our results indicate an average 30% accuracy increase
on CIFAR-10 [19] under the most sophisticated attacks.

II. DISTRIBUTED TRAINING FORMULATION

As in typical distributed learning setups, we assume a loss
function [;(w) for the i** sample where w € RY is the

Aggregation

000123000123

T—Yes

Robust aggregation

000123009123

NOJ

Successful
detection?

Fig. 1: Aggregation of gradients on a cluster.

parameter set of the model.! We use mini-batch SGD to
minimize the loss over the entire dataset, i.e.,

. 1

min L(w) = min — Z l;(w)
i=1

where n is the dataset size. Initially, w is randomly set to wq

(wy is the model at the end of iteration t). A random batch B,

of b samples is chosen for the update in the ¢! iteration

1
Wil = Wi =g > Vii(wy) (1
1€ By

where 7, is the learning rate of the tth jteration. The workers,

denoted Uy, Us, ..., Uk, compute gradients on subsets of the
batch. The training is synchronous, i.e., the PS waits for all
workers to return before performing an update. It stores the
dataset and the model and coordinates the protocol.

Task assignment: Each batch B, is split into f disjoint files
{Bt’i}{z_ol, which are then assigned to the workers according to
our placement policy. Redundancy is introduced by assigning
a given file to » > 1 workers. Each worker is responsible
for I = fr/K files (I is the computation load). Let N (Uj;)
be the set of files assigned to worker U; and N/ (B, ;) be
the group of workers assigned file B; ;. In Aspis, N/ (B ;)
uniquely identifies the file B; ;; thus, we will sometimes refer

to the file By, by its group of assigned workers, N/ (B, ;).

The placement algorithm will be presented in Section III.
Adversary model: We assume that at most ¢ workers can be
adversarial. The workers know the data assignment of all nodes,
the parameters w;, and the defense at every iteration (omniscient
attack); they can also collude. The adversarial machines may

change at every single iteration. We will suppose that ¢ < K/2.

We emphasize that our attack setting is more powerful than
random failures considered in related redundancy-based work
[14], [15]. Fpr each assigned file B; ; a worker U; will return

the value gﬁfﬁ to the PS. Then,

g —{ &

where g, ; is the following sum of loss gradients

gt = Z Vi (we)

JEB:;

if U; is honest,
otherwise,

2

and * is any arbitrary vector in R

I'The paper’s heavily-used notation is summarized in [20, Table 6].

Training: We will refer to Figure 1 for this exposition. There
are K = 6 machines and f = 4 distinct files (colored circles)
replicated = 3 times each.?> Each worker is assigned to [= 2
files and computes the sum of gradients (or a distorted value)
on each of them. The “d” ellipses refer to detection operations
the PS performs after receiving all the gradients.

The algorithm starts with the assignment of files to workers.
Subsequently, each worker U; will compute all [file gradients
that involve its assigned files N'(U;) and return them to the
PS. In every iteration, the PS will initially run our detection
algorithm in an effort to identify the ¢ adversaries and will act
differently depending on the detection outcome.

e Case I: Successful detection. The PS will ignore all detected
faulty machines and keep only the gradients from the remaining
workers. Assume that i workers U;,,U,,,...,U;, have been
identified as honest. For each of the f files, if at least one
honest worker processed it, the PS will pick one of the “honest”
gradient values. The chosen gradients are then averaged for
the update (c¢f. Eq. (1)). For instance, in Figure 1, assume
that Uy, Uy, and Uy have been identified as faulty. During
aggregation, the PS will ignore the red file as all 3 copies have
been compromised. For the orange file, it will pick an honest
copy, i.e., either of Us or Us.

e Case 2: Unsuccessful detection. During aggregation, the PS
will perform a majority vote across the computations of each
file. Recall that each file has been processed by r workers. For
each such file B, ;, the PS decides a majority value m;

m; := majority {g?} :Uj € Nf(Bm-)} . 3)

Assume that 7 is odd and let ' = %1 Under the rule
in Eq. (3), the gradient on a file is distorted only if at least
r’ of the computations are corrupted. Following the majority
vote, we will further filter the gradients using coordinate-wise
median and refer to the combination of these two steps as robust
aggregation. For example, in Figure 1, all returned values for
the red file will be evaluated by majority voting on the PS,
which decides a single output value; the same is done for
the other 3 files. After voting, Aspis applies coordinate-wise
median on the “winning” gradients m;, ¢ =0,1,..., f — 1.

The procedural details are described in [20, Algorithm 1].

Metrics: Our main metrics are the fraction of distorted files
and the top-1 test accuracy of the trained model. We evaluate
these metrics for the various competing methods.

III. TASK ASSIGNMENT

In this section, we propose our technique which determines
the allocation of gradient tasks to workers. If U/ is the set
of workers, Aspis has [U| < f (i.e., fewer workers than
files). To allocate the batch of an iteration, B;, to the K
workers, first, we will partition B; into f = (I:) disjoint
files By o, Bt 1,..., By p—1; recall that r is the redundancy.
Following this, we associate each file with exactly one of
the subsets So,Sl,...,S(K _, of {U1,Us,..., Uk} each of
cardinality r, essentially uglng a bijection. Each file contains
b/ f samples. The details are specified in Algorithm 1, and the
following example showcases its protocol.

2Some arrows and ellipses have been omitted from Figure 1; however, all
files will be going through detection.

Algorithm 1: Aspis subset-based file assignment.

Algorithm 2: Proposed Aspis graph-based detection.

Input: Batch size b, computation load [, redundancy r
and worker set U, [U| = K.
1 PS partitions batch B, into f = (If) disjoint files of
b/ f samples each
Bt:{Btﬂ':i:O,l,...,f—l}.
2 PS constructs all subsets Sp, S1, ..., S(z:)_l of
U={U1,Us,..., Uk} such that Vi, |S;| = r.
3fori=0t f—1do
4 PS identifies all workers in group
S; ={U;,,Uj,,...,U;.} and assigns the file
indexed with ¢ in By to all of them. Formally,
Nv(U;) = NU(U;) U{By;} for j € {j1,...,jr}
5 end

Example 1. Consider K = 7 workers Uy, Us ..., Uy and r = 3.
Based on our protocol, the f = (g) = 35 files of each batch
B, are associated one-to-one with 3-subsets of U, e.g., the
subset So = {Us, Uz, Us} corresponds to file B, and will be
processed by U;, Us, and Us.

IV. ADVERSARIAL DETECTION

The PS will run our detection method in every iteration as
our model assumes that the adversaries can be different across
different steps; for brevity, the iteration index ¢ will be omitted
from most of the notation. Let the current set of adversaries
be A C {U1,Us,...,Ux} with |A] = ¢; also, let H be the
honest worker set. The set A is unknown, but our goal is to
provide an estimate A of it. Ideally, the two sets should be
identical. For each file, there is a group of r workers which
have processed, it and there are (;) pairs of workers in each
group. Each such pair may or may not agree on the gradient
value for the file. For an iteration, let us encode the agreement
of workers Uj;, ,U;, on a common file ¢ of them as

QU2) 1 if ggjl) - gl(jz), @
¢ 0 otherwise.

Then, across all files, let us denote the total number of
agreements between a pair of workers U;, ,U;, by

a(jl’jz) = Z

1ENY(Uj)NDN® (Uj,)

Ozz(-jl’h). 5)

Since the placement is known, the PS can always perform
the above computation. Next, we form an undirected graph
G whose vertices correspond to all workers {Uy, Us, . .
An edge (Uj,,Uj,) exists in G only if the computed gradients
of U;, and Uj, match in all their (If:f) common groups.

A cligue in an undirected graph is defined as a subset of

vertices in which there is an edge between any pair of them.

A maximal clique is one that cannot be enlarged by adding
additional vertices to it. A maximum clique is one such that there
is no clique with more vertices in the given graph. The set of
honest workers H will pair-wise agree everywhere; hence, the
subset H forms a clique (of size K — ¢) within G. The clique
containing the honest workers may not be maximal. However,
it will have a size of at least K — ¢. Let the maximum clique
on G be Mg. Any worker U; with deg(U;) < K —¢q—1
will not belong to a maximum clique and can straight away be
eliminated as a “detected” adversary.

Uk}

Input: Computed gradients gi{}, i=0,1,...,f—1,
7=1,2,..., K, redundancy r and empty graph
G with worker vertices U.
for each pair (Uj,,Uj,), j1 # ja of workers do
PS computes the number of agreements a(71:72) of
the pair Uj;,, U;, on the gradient value.
if aU1:72) = (X7 then
Connect vertex Uj, to vertex Uj, in G.

S

end
PS enumerates all £ maximum cliques
ME M2, MP inG.
8 if there is a unique maximum cligue Mg (k = 1) then
9 PS determines the honest workers H = Mg and the
adversarial machines A = U — Mg.

3
4
5 end
6
7

10 else
11 ‘ PS declares unsuccessful detection.
12 end

(b) Two max-cliques,
detection fails.

(a) Unique max-clique,
detection succeeds.

Fig. 2: Detection graph G for K = 7 workers among which
U, Uy and Uj are the adversaries.

The essential idea of our detection is to run a clique-finding
algorithm on G (Algorithm 2). If we find a unique maximum
clique, we declare it to be the set of honest workers; the
gradients from the detected adversaries are ignored. If there
is more than one maximum clique, we resort to the robust
aggregation discussed in Section II. Let us denote the number
of distorted tasks upon Aspis detection and aggregation by
(9 and its maximum value (under the worst-case attack) by
cf{{;x. The distortion fraction is € := @) / f. Clique-finding
is an NP-complete problem [21]. Nevertheless, there are fast,
practical algorithms with excellent performance on graphs even
up to hundreds of nodes [22], [23]. We utilize the algorithm of
[23] which is optimal in enumerating all maximal cliques. Our
extensive experimental evidence suggests that clique-finding
is not a bottleneck for the size and structure of the graphs
that Aspis uses, and even for K = 100 workers and r = 5
took approximately 15 milliseconds. In [20, Section A.1], the
asymptotic complexity of the entire protocol is discussed.

A. Weak Adversarial Strategy

We first consider a class of weak attacks where the Byzantine
nodes attempt to distort the gradient on any file they participate
in. It is clear that each Byzantine node will disagree with at
least K' — g honest nodes, and thus, the degree of the node in
G will be at most ¢ —1 < K — ¢ — 1 and it will not be part of

the maximum clique. The algorithm will detect all adversaries,
declare the (unique) maximum clique as honest, and proceed to
aggregation (cf. Section II). The only files that can be distorted
are those that consist exclusively of adversaries.

Figure 2a (corresponding to Example 1) shows a cluster of
size K = 7. The ¢ = 3 adversaries are A = {Uy, U, Us} and

the remaining workers are honest with H = {Uy, Us, Ug, U7 }.

The unique maximum clique is Mg = H, and detection is
successful. Under this attack, the distorted tasks are those whose

all copies have been compromised, i.e., ¢(9) = (g)

B. Optimal Adversarial Strategy

Our second scenario is strong and involves adversaries which
collude in the “best” way possible while knowing the full details
of our algorithm. We provide an upper bound on the number
of files that can be corrupted and demonstrate a strategy that
the adversarial workers can follow to achieve this upper bound,
also referred to as an optimal strategy.

Let us index the ¢ adversaries in A = {4y, As,..., A4}
and the honest workers in H. We say that two workers Uj,
and U, disagree if there is no edge between them in G. The
non-existence of an edge between U;, and U;, only means
that they disagree on at least one of the (%) files that they
jointly participate in. To corrupt the gradients, each adversary
has to disagree on the computations with a subset of the honest
workers. Let D; denote the set of disagreement workers for
adversary A;,i =1,2,...,q, where D; can contain members
from A and H.

Upon the formation of G, a worker U; will be flagged
as adversarial if deg(U;) < K — g — 1. Therefore to avoid
detection, a necessary condition is |Dj| < q. We fall back to
robust aggregation in case of more than one maximum clique
in G. Then, a gradient can only be corrupted if most of its
assigned workers are adversarial and agree on a wrong value.

For a given file F, let A’ C A with |A’| > 1’ be the set of
“active adversaries” in it, i.e., A” C I consists of Byzantines
that collude to create a majority that distorts its gradient. The
remaining workers in F' belong to N;c 4 D;, where |N;c 4/ D;| <
g.Let X;,j =7r",7"+1..., 7 denote the subset of files with j
active adversaries; note that X; depends on the disagreement
sets D;,i =1,2,...,q. Formally,

X] = {FE'AIQAQF7|A/|:-]7

and V Uj eEF \ A/,Uj S mieA/Di}. (6)

Then, for a given choice of disagreement sets, the number
of files that can be corrupted is given by | Uj_,, X;|. We
obtain an upper bound on the maximum number of corrupted
files by maximizing this quantity with respect to the choice of
D;i=1,2,...,q,ie,

OB max

/ Ut X 7
max Di,lDilgq,z‘:Lz.».,q‘ j=r Xil ™

where the maximization is over the choices of the disagreement
sets D1, Do, ..., D,. An intuitive strategy based on Eq. (6) is
to maximize the set [),c 4,y Di for every possible file F; for
all groups F', the adversaries need to fix a subset of ¢ non-
adversaries, say D C H, to be the set of workers with which
all adversaries will disagree, i.e., D; = D fort=1,2,...,q.
We present our main theorem (proved in [20, Section A.2]).

o
©
o
3

o . =
p —— Baseline - ——Baseline pd
< —4—Aspis 2094 —4—Aspis e
=06 DETOX = DETOX e
] ° /
2 2 e
5 £03 o
204 i P
2 202 e
S})) pd
g0% Soip
g) S s ‘M,A"
[l L glvssssssssssssst?
0 5 10 15 20 25 0 5 10 15 20 25

Number of adversaries (q) Number of adversaries (q)

(a) Optimal attacks. (b) Weak attacks.

Fig. 3: Distortion fraction of optimal and weak attacks for
(K,r) = (50, 3) and comparison.

Theorem 1. In a training cluster of K workers and ¢ adversaries
using Algorithm 1 to assign the f = (If) files, and Algorithm
2 for detection, an optimal adversary model can corrupt at most

1/2
(@ _ L[4

files. Furthermore, this upper bound can be achieved if all
adversaries fix a set D C H of honest workers with which they
will consistently disagree on the gradient (by distorting it).

One such attack is carried out in Figure 2b for Example 1.
The adversaries A = {U;, Uz, Us} consistently disagree with
the workers in D = {U4,Us,Us} C H. The ambiguity as
to which of the two maximum cliques ({Uy,Us, Us, U7} or
{U4,Us, Ug, Uz}) is the honest one makes an accurate detection
impossible; robust aggregation will be performed instead.

V. DISTORTION FRACTION EVALUATION

We have performed simulations of the fraction of distorted
files (defined as € = c¢(9) / f) incurred by Aspis and competing
aggregators. The main motivation is that our deep learning
experiments (cf. Section VI-B) as well as our prior work [12]
show that € serves as a surrogate of the model’s convergence
with respect to accuracy. In addition, our simulations show that
Aspis enjoys values of €, which are as much as 99% lower for
the same ¢ compared to other techniques, and this attests to our
theoretical robustness guarantees. This comparison involves our
work and state-of-the-art schemes under the best- and worst-
case choice of the ¢ adversaries in terms of the achievable value
of €. We compare our work with baseline approaches that do
not involve redundancy or majority voting. Their aggregation
is applied directly to the K gradients returned by the workers
(f =K, cfgix =g and ¢ = ¢/K).

Let us discuss optimal attacks. For Aspis, we used the
proposed attack from Section IV-B and the corresponding
computation of ¢(@-45Pis of Theorem 1. DETOX in [14]
employs redundancy followed by majority voting and offers
robustness guarantees which crucially rely on a “random choice”
of the Byzantines. In prior work [12], we have observed
that redundancy is not sufficient to yield Byzantine resilience
dividends and proposed an optimal choice of the ¢ Byzantines
that maximizes e?F79X | which we used in our experiments
and incurs ¢(9)PETOX — | &] and PETOX = | 4| x r/K.
We also compare with the distortion fraction of ByzShield
[12] under a worst-case scenario. For this scheme, there is
no known optimal attack, and we performed an exhaustive
combinatorial search to find the ¢ adversaries that maximize
eByzShicld among all options. The reader can refer to Figure

~
S)
~
=]

Median, q =2
Median, q = 4
60 [—A—Aspis, g =2
—A— Aspis, q =4
DETOX-MoM, q
q

2
—— DETOX'M'JMW

—A—Aspis, q =2
—A— Aspis, q = 4

@
S

o
S

Top-1 test accuracy (%)
5
S
I’
o

Top-1 test accuracy (%)

w
S

n
o

Bulyan,q=2

Multi-Krum, q =2
Multi-Krum, q = 4
—A— Aspis, q = 2
—A—Aspis, q =4

Top-1 test accuracy (%)
S
o

0 2 4 6 8 10 12 14 16
Iterations

o

2 4 6

(a) Median-based defenses.

Iterations

(b) Bulyan-based defenses.

10 12 14 16 0 2 4 6 8 10 12 14 16
Iterations

(c) Multi-Krum-based defenses.

Fig. 4: ALIE distortion under optimal attack scenarios (CIFAR-10), K = 15.

3a and [20, Tables 1,2,3] for our results. Aspis achieves major
reductions in e; for instance, e4*P* is reduced by up to 99%
compared to both eBes¢line and P ETOX in Figure 3a.

We will next introduce the utilized weak attacks (cf. Figure
3b). For our scheme, we will make an arbitrary choice of ¢
adversaries which carry out the method introduced in Section
IV-A, i.e., they will distort all files, and a successful detection
is possible. As discussed, the fraction of corrupted gradients
is eAsPis = (9) /(%) in that case. For DETOX, a simple
benign attack is used. Let the K/r files of DETOX be
Bi0,Bi 1, ..., By i/r—1 (cf. [14]). Initialize A = () and choose
the ¢ Byzantines as follows: for ¢ = 0,1,...,¢g — 1, among
the remaining workers in {Uy, Us, ..., Uk} — A add a worker
from the group By ; mod k/r to the adversarial set A. Then,

a),DETOX _) 4~ Ew—1) ifg>E0" -1),
0 otherwise.

VI. LARGE-SCALE DEEP LEARNING EXPERIMENTS
A. Experiment Setup

We evaluated the performance of all compared techniques
on Amazon EC2. The project is written in PyTorch [24] and
uses the MPICH library for communication. We worked with
the CIFAR-10 dataset [19] using the ResNet-18 [25] model.
We used clusters of K = 15 and 21 workers and redundancy
r = 3. We simulated values of ¢ = 2,4, 6 during training.

There are two different adversarial dimensions we evaluate:

1) Choice/orchestration of the adversaries: the different ways
adversaries are chosen and work together to inflict damage (cf.
weak and optimal attacks in Section IV).
2) Gradient distortion methods: the method an adversary uses
to distort the gradient value. We use a variety of state-of-the-art
methods for distorting the computed gradients, including ALIE
[26], Fall of Empires (FoE) [27] and reversed gradient, which
returns —cg, ¢ > 0 instead of the true gradient g.

Competing methods: We compare against the baseline im-
plementations of median-of-means [28], Bulyan [11], and Multi-
Krum [6]. If cf{fe)lx is the number of adversarial computations,
then Bulyan and Multi-Krum require at least 4051(112”(+ 3 and
ZCEI(QX + 3 total number of computations, respectively. These
constraints make these methods inapplicable for larger values
of q. We also compare with DETOX [14], which can easily fail
under malicious scenarios for large g. We compare with median-
based techniques since they originate from robust statistics and
are the base for many aggregators. DETOX is the most related
redundancy-based work that is based on coding theory. Finally,

Multi-Krum is a highly-cited aggregator that combines majority-
based and squared-distance-based methods.

B. Experimental Results

1) Comparison under optimal attacks: Figure 4a com-
pares our scheme Aspis with the baseline implementation
of coordinate-wise median (¢ = 0.133,0.267 for ¢ = 2,4,
respectively) and DETOX with median-of-means (¢ = 0.2,0.4
for ¢ = 2,4, respectively) under the ALIE attack. Aspis
converges faster and achieves at least a 35% average accuracy
boost (at the end of the training) for both values of ¢
(e°P%s = (.004,0.062 for q = 2, 4, respectively).’ In Figures
4b and 4c, we observe similar trends in our experiments with
Bulyan and Multi-Krum, where Aspis significantly outperforms
these techniques. For the current setup, Bulyan is not applicable
for ¢ = 4 since K = 15 < 405321)(+ 3 =4q+ 3 = 19. Also,
neither Bulyan nor Multi-Krum can be paired with DETOX for
q > 1 since the inequalities f > 4c§ff2lx +3and f > QCfﬁ’ix +3
cannot be satisfied (cf. [6], [11]). Also, note that the accuracy
of most competing methods fluctuates more than in the results
presented in the corresponding papers [14] and [26]. This is
expected as we consider stronger attacks than those papers,
i.e., optimal deterministic attack on DETOX and, in general,
up to 27% adversarial workers in the cluster. The results for
the reversed gradient attack are shown in [20, Figures Sa,
5b, 5c]. Given that this is a much weaker attack [12], [14],
all schemes are expected to perform well. Under the Fall of
Empires (FoE) distortion (c¢f. [20, Figure 6]) our method still
enjoys an accuracy advantage over the baseline and DETOX
schemes which becomes more important as the number of
Byzantines in the cluster increases.

2) Comparison under weak attacks: For baseline schemes,
the discussion of weak versus optimal choice of the adversaries
is not very relevant as any choice of the ¢ Byzantines can
overall distort at most ¢ out of the K gradients. Hence, for
weak scenarios, we chose to compare mostly with DETOX.
The accuracy is reported in [20, Figures 7, 8] according to
which Aspis shows an improvement under attacks on the more
challenging end of the spectrum (ALIE). The results are in line
with the theoretical distortion fraction, which is esP%s = (0.044
while eBeseline — (0.4 and PETOX = (.2 for ¢ = 6.

Our experiments on a larger cluster of KX = 21 workers
under the ALIE attack can be found in [20, Figure 9].

3Please refer to [20, Tables 1, 2] for the values of the distortion fraction
¢ each scheme incurs.

[1]

[2]

[3]

[4

=

[5]

[6

=

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in Proceeding of
the 41st Annual International Symposium on Computer Architecuture,
June 2014, pp. 361—372.

A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network
with progressive bit search,” in 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019, pp. 1211-1220.

N. Gupta and N. H. Vaidya, “Byzantine fault-tolerant parallelized stochas-
tic gradient descent for linear regression,” in 2019 57th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
September 2019, pp. 415-420.

D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gradient de-
scent,” in Advances in Neural Information Processing Systems, December
2018, pp. 4618-4628.

Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 1, no. 2, pp.
1-25, December 2017.

P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in
Advances in Neural Information Processing Systems, December 2017, pp.
119-129.

G. Damaskinos, E. M. El Mhamdi, R. Guerraoui, A. H. A. Guirguis, and
S. L. A. Rouault, “AggreGathor: Byzantine machine learning via robust
gradient aggregation,” in Conference on Systems and Machine Learning
(SysML), March 2019, p. 19.

D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Defending against
saddle point attack in Byzantine-robust distributed learning,” in Proceed-
ings of the 36th International Conference on Machine Learning, June
2019, pp. 7074-7084.

——, “Byzantine-robust distributed learning: Towards optimal statistical
rates,” in Proceedings of the 35th International Conference on Machine
Learning, July 2018, pp. 5650-5659.

C. Xie, O. Koyejo, and I. Gupta, “Generalized Byzantine-tolerant SGD,”
March 2018. [Online]. Available: https://arxiv.org/abs/1802.10116

E. M. El Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnerability
of distributed learning in Byzantium,” in Proceedings of the 35th
International Conference on Machine Learning, July 2018, pp. 3521—
3530.

K. Konstantinidis and A. Ramamoorthy, “ByzShield: An efficient and
robust system for distributed training,” in Machine Learning and Systems
3 (MLSys 2021), April 2021.

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security and privacy,” April 2019. [Online]. Available:
https://arxiv.org/abs/1806.00939

S. Rajput, H. Wang, Z. Charles, and D. Papailiopoulos, “DETOX:
A redundancy-based framework for faster and more robust gradient
aggregation,” in Advances in Neural Information Processing Systems,
December 2019, pp. 10320-10330.

L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “DRACO:
Byzantine-resilient distributed training via redundant gradients,” in
Proceedings of the 35th International Conference on Machine Learning,
July 2018, pp. 903-912.

D. Data, L. Song, and S. N. Diggavi, “Data encoding for Byzantine-
resilient distributed gradient descent,” in 2018 56th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
October 2018, pp. 863-870.

J. Regatti, H. Chen, and A. Gupta, “ByGARS: Byzantine SGD with
arbitrary number of attackers,” December 2020. [Online]. Available:
https://arxiv.org/abs/2006.13421

C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in Proceedings of the 36th
International Conference on Machine Learning, June 2019, pp. 6893—
6901.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

K. Konstantinidis and A. Ramamoorthy, “Aspis: Robust detection
for distributed learning,” January 2022. [Online]. Available: https:
/larxiv.org/abs/2108.02416

R. M. Karp, Reducibility among Combinatorial Problems.
Springer US, 1972.

F. Cazals and C. Karande, “A note on the problem of reporting maximal
cliques,” Theoretical Computer Science, vol. 407, no. 1, pp. 564-568,
November 2008.

Boston, MA:

[23]

[24]

[25]

[26]

[27]

[28]

T. Etsuji, T. Akira, and T. Haruhisa, “The worst-case time complexity
for generating all maximal cliques and computational experiments,”
Theoretical Computer Science, vol. 363, no. 1, pp. 28—42, October 2006.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, December 2019, pp. 8024-8035.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770-778.

G. Baruch, M. Baruch, and Y. Goldberg, “A Little Is Enough: Circumvent-
ing defenses for distributed learning,” in Advances in Neural Information
Processing Systems, December 2019, pp. 8635-8645.

C. Xie, O. Koyejo, and I. Gupta, “Fall of Empires: Breaking byzantine-
tolerant sgd by inner product manipulation,” in 35th Conference on
Uncertainty in Artificial Intelligence, UAI 2019, July 2019, pp. 6893—
6901.

S. Minsker, “Geometric median and robust estimation in Banach spaces,”
Bernoulli, vol. 21, no. 4, pp. 2308-2335, November 2015.

