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Abstract—State-of-the-art machine learning models are rou-
tinely trained on large-scale distributed clusters. Crucially, such
systems can be compromised when some of the computing
devices exhibit abnormal (Byzantine) behavior and return arbitrary
results to the parameter server (PS). This behavior may be
attributed to a plethora of reasons, including system failures and
orchestrated attacks. Existing work suggests robust aggregation
and/or computational redundancy to alleviate the effect of distorted
gradients. However, most of these schemes are ineffective when an
adversary knows the task assignment and can choose the attacked
workers judiciously to induce maximal damage. Our proposed
method Aspis assigns gradient computations to workers using a
subset-based assignment which allows for multiple consistency
checks on the behavior of a worker. Examination of the calculated
gradients and clique-finding in an appropriately constructed graph
by the PS allows for efficient detection and exclusion of adversaries
from the training. We prove the Byzantine resilience guarantees
of Aspis under weak and strong attacks and extensively evaluate
the system on various training scenarios and demonstrate an
improvement of about 30% in accuracy compared to many state-
of-the-art approaches on the CIFAR-10 dataset as well as reduction
of the fraction of corrupted gradients ranging from 16% to 99%.

I. INTRODUCTION

The increased sizes of datasets and associated model com-

plexities have established distributed training setups as the de

facto method for training models at scale. A typical setup

consists of one parameter server (PS) and multiple workers.

The PS coordinates the protocol by communicating parameters

and maintaining the model. The workers compute gradients of

the loss function with respect to the optimization parameters

and transmit them to the PS. The PS then updates the model.

This is an iterative process repeated until convergence.

Despite their speedup benefits, such distributed settings are

prone to so-called Byzantine failures, i.e., when a set of workers

return malicious or erroneous computations. This can happen

on purpose due to adversarial attacks or inadvertently due to

hardware or software failures. For example, [1] showed that bit-

flips in commodity DRAM can happen merely through frequent

data access of the same address. Reference [2] exposes the

vulnerability of neural networks to such failures and identifies

weight parameters that could maximize accuracy degradation.

As a result, the distorted gradients can derail the optimization

and lead to low test accuracy. Devising training algorithms that

are resilient to such failures and which can efficiently aggregate
the gradients has inspired a series of works [3], [4], [5], [6].

Prior work on robust aggregation [5], [6], [7], [8], [9],

[10] provides robustness guarantees up to a constant fraction

of the nodes being adversarial. However, this fraction is
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usually very small, and the guarantees are limited (e.g., only

guaranteeing that the output of the aggregator has a positive

inner product with the true gradient [6], [11]). Also, they require

significant asymptotic complexity [10] and strict convexity

assumptions that need to be adjusted for each individual

training algorithm. Redundancy-based schemes assign each

gradient task to more than one node [12], [13], [14], [15],

[16]. Existing techniques are sometimes combined with robust

aggregation [14]. Fundamentally, these methods require a higher

computation load per worker, but they come with stronger

guarantees of correcting the erroneous gradients. Most schemes

in this category can be made to fail by a powerful, omniscient
adversary that can mount judicious attacks [12]. Another line of

work focuses on ranking and/or detection of the adversaries [15],

[17], [18]; the objective is to rank workers using a reputation

score to identify suspicious machines and exclude them or

give them lower weight in the model update. Their theoretical

guarantees require strict assumptions on the smoothness of the

loss and the authors have not used or constructed worst-case

attacks to evaluate the methods in adversarial settings.

A. Contributions

Our scheme Aspis uses a combination of redundancy and

robust aggregation. Unlike previous methods, the redundant

subset-based assignment for gradient computations is judi-

ciously chosen such that the PS can perform global consistency
checks on the workers by examining the returned gradients.

Clique-finding in appropriate graphs is used by the PS for

detection to exclude adversaries from the training.

Under weak attacks where the Byzantines act independently,

they will always be detected by the proposed novel clique-

based algorithm. Aspis is resilient to stronger attacks (optimal
collusion) than those considered in prior work. Instead of

simulating a random set of adversaries [14], [15], we have

crafted a non-trivial attack such that the adversaries can evade

our detection and corrupt more gradients.

We provide theoretical guarantees for both weak and strong

attacks on the fraction of corrupted gradients for Aspis.

Comparisons with other methods indicate reductions in the

fraction of corrupted gradients ranging from 16% to 99%.

Finally, we present exhaustive top-1 classification accuracy

results on the CIFAR-10 dataset for a variety of gradient distor-

tion attacks coupled with behavior patterns of the adversarial

nodes. Our results indicate an average 30% accuracy increase

on CIFAR-10 [19] under the most sophisticated attacks.

II. DISTRIBUTED TRAINING FORMULATION

As in typical distributed learning setups, we assume a loss

function li(w) for the ith sample where w ∈ R
d is the
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Fig. 1: Aggregation of gradients on a cluster.

parameter set of the model.1 We use mini-batch SGD to

minimize the loss over the entire dataset, i.e.,

min
w

L(w) = min
w

1

n

n∑
i=1

li(w)

where n is the dataset size. Initially, w is randomly set to w0

(wt is the model at the end of iteration t). A random batch Bt

of b samples is chosen for the update in the tth iteration

wt+1 = wt − ηt
1

|Bt|
∑
i∈Bt

∇li(wt) (1)

where ηt is the learning rate of the tth iteration. The workers,

denoted U1, U2, . . . , UK , compute gradients on subsets of the

batch. The training is synchronous, i.e., the PS waits for all

workers to return before performing an update. It stores the

dataset and the model and coordinates the protocol.

Task assignment: Each batch Bt is split into f disjoint files

{Bt,i}f−1
i=0 , which are then assigned to the workers according to

our placement policy. Redundancy is introduced by assigning

a given file to r > 1 workers. Each worker is responsible

for l = fr/K files (l is the computation load). Let Nw(Uj)
be the set of files assigned to worker Uj and N f (Bt,i) be

the group of workers assigned file Bt,i. In Aspis, N f (Bt,i)
uniquely identifies the file Bt,i; thus, we will sometimes refer

to the file Bt,i by its group of assigned workers, N f (Bt,i).
The placement algorithm will be presented in Section III.

Adversary model: We assume that at most q workers can be

adversarial. The workers know the data assignment of all nodes,

the parameters wt, and the defense at every iteration (omniscient
attack); they can also collude. The adversarial machines may

change at every single iteration. We will suppose that q < K/2.

We emphasize that our attack setting is more powerful than

random failures considered in related redundancy-based work

[14], [15]. For each assigned file Bt,i a worker Uj will return

the value ĝ
(j)
t,i to the PS. Then,

ĝ
(j)
t,i =

{
gt,i if Uj is honest,
∗ otherwise,

(2)

where gt,i is the following sum of loss gradients

gt,i =
∑

j∈Bt,i

∇lj(wt)

and ∗ is any arbitrary vector in R
d.

1The paper’s heavily-used notation is summarized in [20, Table 6].

Training: We will refer to Figure 1 for this exposition. There

are K = 6 machines and f = 4 distinct files (colored circles)

replicated r = 3 times each.2 Each worker is assigned to l = 2
files and computes the sum of gradients (or a distorted value)

on each of them. The “d” ellipses refer to detection operations

the PS performs after receiving all the gradients.

The algorithm starts with the assignment of files to workers.

Subsequently, each worker Ui will compute all l file gradients

that involve its assigned files Nw(Ui) and return them to the

PS. In every iteration, the PS will initially run our detection

algorithm in an effort to identify the q adversaries and will act

differently depending on the detection outcome.

• Case 1: Successful detection. The PS will ignore all detected

faulty machines and keep only the gradients from the remaining

workers. Assume that h workers Ui1 , Ui2 , . . . , Uih have been

identified as honest. For each of the f files, if at least one

honest worker processed it, the PS will pick one of the “honest”

gradient values. The chosen gradients are then averaged for

the update (cf. Eq. (1)). For instance, in Figure 1, assume

that U1, U2, and U4 have been identified as faulty. During

aggregation, the PS will ignore the red file as all 3 copies have

been compromised. For the orange file, it will pick an honest

copy, i.e., either of U5 or U6.

• Case 2: Unsuccessful detection. During aggregation, the PS

will perform a majority vote across the computations of each

file. Recall that each file has been processed by r workers. For

each such file Bt,i, the PS decides a majority value mi

mi := majority
{
ĝ
(j)
t,i : Uj ∈ N f (Bt,i)

}
. (3)

Assume that r is odd and let r′ = r+1
2 . Under the rule

in Eq. (3), the gradient on a file is distorted only if at least

r′ of the computations are corrupted. Following the majority

vote, we will further filter the gradients using coordinate-wise

median and refer to the combination of these two steps as robust
aggregation. For example, in Figure 1, all returned values for

the red file will be evaluated by majority voting on the PS,

which decides a single output value; the same is done for

the other 3 files. After voting, Aspis applies coordinate-wise

median on the “winning” gradients mi, i = 0, 1, . . . , f − 1.

The procedural details are described in [20, Algorithm 1].

Metrics: Our main metrics are the fraction of distorted files

and the top-1 test accuracy of the trained model. We evaluate

these metrics for the various competing methods.

III. TASK ASSIGNMENT

In this section, we propose our technique which determines

the allocation of gradient tasks to workers. If U is the set

of workers, Aspis has |U| ≤ f (i.e., fewer workers than

files). To allocate the batch of an iteration, Bt, to the K
workers, first, we will partition Bt into f =

(
K
r

)
disjoint

files Bt,0, Bt,1, . . . , Bt,f−1; recall that r is the redundancy.

Following this, we associate each file with exactly one of

the subsets S0, S1, . . . , S(Kr )−1 of {U1, U2, . . . , UK} each of

cardinality r, essentially using a bijection. Each file contains

b/f samples. The details are specified in Algorithm 1, and the

following example showcases its protocol.

2Some arrows and ellipses have been omitted from Figure 1; however, all
files will be going through detection.



Algorithm 1: Aspis subset-based file assignment.

Input: Batch size b, computation load l, redundancy r
and worker set U , |U| = K.

1 PS partitions batch Bt into f =
(
K
r

)
disjoint files of

b/f samples each

Bt = {Bt,i : i = 0, 1, . . . , f − 1} .
2 PS constructs all subsets S0, S1, . . . , S(Kr )−1 of

U = {U1, U2, . . . , UK} such that ∀i, |Si| = r.

3 for i = 0 to f − 1 do
4 PS identifies all workers in group

Si = {Uj1 , Uj2 , . . . , Ujr} and assigns the file

indexed with i in Bt to all of them. Formally,

Nw(Uj) = Nw(Uj) ∪ {Bt,i} for j ∈ {j1, . . . , jr}.
5 end

Example 1. Consider K = 7 workers U1, U2 . . . , U7 and r = 3.

Based on our protocol, the f =
(
7
3

)
= 35 files of each batch

Bt are associated one-to-one with 3-subsets of U , e.g., the

subset S0 = {U1, U2, U3} corresponds to file Bt,0 and will be

processed by U1, U2, and U3.

IV. ADVERSARIAL DETECTION

The PS will run our detection method in every iteration as

our model assumes that the adversaries can be different across

different steps; for brevity, the iteration index t will be omitted

from most of the notation. Let the current set of adversaries

be A ⊂ {U1, U2, . . . , UK} with |A| = q; also, let H be the

honest worker set. The set A is unknown, but our goal is to

provide an estimate Â of it. Ideally, the two sets should be

identical. For each file, there is a group of r workers which

have processed, it and there are
(
r
2

)
pairs of workers in each

group. Each such pair may or may not agree on the gradient

value for the file. For an iteration, let us encode the agreement

of workers Uj1 , Uj2 on a common file i of them as

α
(j1,j2)
i :=

{
1 if ĝ

(j1)
i = ĝ

(j2)
i ,

0 otherwise.
(4)

Then, across all files, let us denote the total number of

agreements between a pair of workers Uj1 , Uj2 by

α(j1,j2) :=
∑

i∈Nw(Uj1
)∩Nw(Uj2

)

α
(j1,j2)
i . (5)

Since the placement is known, the PS can always perform

the above computation. Next, we form an undirected graph

G whose vertices correspond to all workers {U1, U2, . . . , UK}.

An edge (Uj1 , Uj2) exists in G only if the computed gradients

of Uj1 and Uj2 match in all their
(
K−2
r−2

)
common groups.

A clique in an undirected graph is defined as a subset of

vertices in which there is an edge between any pair of them.

A maximal clique is one that cannot be enlarged by adding

additional vertices to it. A maximum clique is one such that there

is no clique with more vertices in the given graph. The set of

honest workers H will pair-wise agree everywhere; hence, the

subset H forms a clique (of size K − q) within G. The clique

containing the honest workers may not be maximal. However,

it will have a size of at least K − q. Let the maximum clique

on G be MG. Any worker Uj with deg(Uj) < K − q − 1
will not belong to a maximum clique and can straight away be

eliminated as a “detected” adversary.

Algorithm 2: Proposed Aspis graph-based detection.

Input: Computed gradients ĝ
(j)
t,i , i = 0, 1, . . . , f − 1,

j = 1, 2, . . . ,K, redundancy r and empty graph

G with worker vertices U .

1 for each pair (Uj1 , Uj2), j1 	= j2 of workers do
2 PS computes the number of agreements α(j1,j2) of

the pair Uj1 , Uj2 on the gradient value.

3 if α(j1,j2) =
(
K−2
r−2

)
then

4 Connect vertex Uj1 to vertex Uj2 in G.

5 end
6 end
7 PS enumerates all k maximum cliques

M
(1)
G ,M

(2)
G , . . . ,M

(k)
G in G.

8 if there is a unique maximum clique MG (k = 1) then
9 PS determines the honest workers H = MG and the

adversarial machines Â = U −MG.
10 else
11 PS declares unsuccessful detection.

12 end

(a) Unique max-clique,
detection succeeds.

(b) Two max-cliques,
detection fails.

Fig. 2: Detection graph G for K = 7 workers among which

U1, U2 and U3 are the adversaries.

The essential idea of our detection is to run a clique-finding

algorithm on G (Algorithm 2). If we find a unique maximum

clique, we declare it to be the set of honest workers; the

gradients from the detected adversaries are ignored. If there

is more than one maximum clique, we resort to the robust

aggregation discussed in Section II. Let us denote the number

of distorted tasks upon Aspis detection and aggregation by

c(q) and its maximum value (under the worst-case attack) by

c
(q)
max. The distortion fraction is ε := c(q)/f . Clique-finding

is an NP-complete problem [21]. Nevertheless, there are fast,

practical algorithms with excellent performance on graphs even

up to hundreds of nodes [22], [23]. We utilize the algorithm of

[23] which is optimal in enumerating all maximal cliques. Our

extensive experimental evidence suggests that clique-finding

is not a bottleneck for the size and structure of the graphs

that Aspis uses, and even for K = 100 workers and r = 5
took approximately 15 milliseconds. In [20, Section A.1], the

asymptotic complexity of the entire protocol is discussed.

A. Weak Adversarial Strategy

We first consider a class of weak attacks where the Byzantine

nodes attempt to distort the gradient on any file they participate

in. It is clear that each Byzantine node will disagree with at

least K − q honest nodes, and thus, the degree of the node in

G will be at most q− 1 < K − q− 1 and it will not be part of



the maximum clique. The algorithm will detect all adversaries,

declare the (unique) maximum clique as honest, and proceed to

aggregation (cf. Section II). The only files that can be distorted

are those that consist exclusively of adversaries.

Figure 2a (corresponding to Example 1) shows a cluster of

size K = 7. The q = 3 adversaries are A = {U1, U2, U3} and

the remaining workers are honest with H = {U4, U5, U6, U7}.

The unique maximum clique is MG = H , and detection is

successful. Under this attack, the distorted tasks are those whose

all copies have been compromised, i.e., c(q) =
(
q
r

)
.

B. Optimal Adversarial Strategy

Our second scenario is strong and involves adversaries which

collude in the “best” way possible while knowing the full details

of our algorithm. We provide an upper bound on the number

of files that can be corrupted and demonstrate a strategy that

the adversarial workers can follow to achieve this upper bound,

also referred to as an optimal strategy.

Let us index the q adversaries in A = {A1, A2, . . . , Aq}
and the honest workers in H . We say that two workers Uj1

and Uj2 disagree if there is no edge between them in G. The

non-existence of an edge between Uj1 and Uj2 only means

that they disagree on at least one of the
(
K−2
r−2

)
files that they

jointly participate in. To corrupt the gradients, each adversary

has to disagree on the computations with a subset of the honest

workers. Let Di denote the set of disagreement workers for

adversary Ai, i = 1, 2, . . . , q, where Di can contain members

from A and H .

Upon the formation of G, a worker Uj will be flagged

as adversarial if deg(Uj) < K − q − 1. Therefore to avoid

detection, a necessary condition is |Dj | ≤ q. We fall back to

robust aggregation in case of more than one maximum clique

in G. Then, a gradient can only be corrupted if most of its

assigned workers are adversarial and agree on a wrong value.

For a given file F , let A′ ⊆ A with |A′| ≥ r′ be the set of

“active adversaries” in it, i.e., A′ ⊆ F consists of Byzantines

that collude to create a majority that distorts its gradient. The

remaining workers in F belong to ∩i∈A′Di, where |∩i∈A′Di| ≤
q. Let Xj , j = r′, r′ +1 . . . , r denote the subset of files with j
active adversaries; note that Xj depends on the disagreement

sets Di, i = 1, 2, . . . , q. Formally,

Xj = {F : ∃A′ ⊆ A ∩ F, |A′| = j,

and ∀ Uj ∈ F \A′, Uj ∈ ∩i∈A′Di}. (6)

Then, for a given choice of disagreement sets, the number

of files that can be corrupted is given by | ∪r
j=r′ Xj |. We

obtain an upper bound on the maximum number of corrupted

files by maximizing this quantity with respect to the choice of

Di, i = 1, 2, . . . , q, i.e.,

c(q)max = max
Di,|Di|≤q,i=1,2,...,q

| ∪r
j=r′ Xj | (7)

where the maximization is over the choices of the disagreement

sets D1, D2, . . . , Dq . An intuitive strategy based on Eq. (6) is

to maximize the set
⋂

i∈A′∩F Di for every possible file F ; for

all groups F , the adversaries need to fix a subset of q non-

adversaries, say D ⊂ H , to be the set of workers with which

all adversaries will disagree, i.e., Di = D for i = 1, 2, . . . , q.

We present our main theorem (proved in [20, Section A.2]).
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(b) Weak attacks.

Fig. 3: Distortion fraction of optimal and weak attacks for

(K, r) = (50, 3) and comparison.

Theorem 1. In a training cluster of K workers and q adversaries

using Algorithm 1 to assign the f =
(
K
r

)
files, and Algorithm

2 for detection, an optimal adversary model can corrupt at most

c(q)max =
1

2

(
2q

r

)
(8)

files. Furthermore, this upper bound can be achieved if all

adversaries fix a set D ⊂ H of honest workers with which they

will consistently disagree on the gradient (by distorting it).

One such attack is carried out in Figure 2b for Example 1.

The adversaries A = {U1, U2, U3} consistently disagree with

the workers in D = {U4, U5, U6} ⊂ H . The ambiguity as

to which of the two maximum cliques ({U1, U2, U3, U7} or

{U4, U5, U6, U7}) is the honest one makes an accurate detection

impossible; robust aggregation will be performed instead.

V. DISTORTION FRACTION EVALUATION

We have performed simulations of the fraction of distorted

files (defined as ε = c(q)/f ) incurred by Aspis and competing

aggregators. The main motivation is that our deep learning

experiments (cf. Section VI-B) as well as our prior work [12]

show that ε serves as a surrogate of the model’s convergence

with respect to accuracy. In addition, our simulations show that

Aspis enjoys values of ε, which are as much as 99% lower for

the same q compared to other techniques, and this attests to our

theoretical robustness guarantees. This comparison involves our

work and state-of-the-art schemes under the best- and worst-

case choice of the q adversaries in terms of the achievable value

of ε. We compare our work with baseline approaches that do

not involve redundancy or majority voting. Their aggregation

is applied directly to the K gradients returned by the workers

(f = K, c
(q)
max = q and ε = q/K).

Let us discuss optimal attacks. For Aspis, we used the

proposed attack from Section IV-B and the corresponding

computation of c(q),Aspis of Theorem 1. DETOX in [14]

employs redundancy followed by majority voting and offers

robustness guarantees which crucially rely on a “random choice”

of the Byzantines. In prior work [12], we have observed

that redundancy is not sufficient to yield Byzantine resilience

dividends and proposed an optimal choice of the q Byzantines

that maximizes εDETOX , which we used in our experiments

and incurs c(q),DETOX = � q
r′ � and εDETOX = � q

r′ � × r/K.

We also compare with the distortion fraction of ByzShield

[12] under a worst-case scenario. For this scheme, there is

no known optimal attack, and we performed an exhaustive

combinatorial search to find the q adversaries that maximize

εByzShield among all options. The reader can refer to Figure
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Fig. 4: ALIE distortion under optimal attack scenarios (CIFAR-10), K = 15.

3a and [20, Tables 1,2,3] for our results. Aspis achieves major

reductions in ε; for instance, εAspis is reduced by up to 99%

compared to both εBaseline and εDETOX in Figure 3a.

We will next introduce the utilized weak attacks (cf. Figure

3b). For our scheme, we will make an arbitrary choice of q
adversaries which carry out the method introduced in Section

IV-A, i.e., they will distort all files, and a successful detection

is possible. As discussed, the fraction of corrupted gradients

is εAspis =
(
q
r

)
/
(
K
r

)
in that case. For DETOX, a simple

benign attack is used. Let the K/r files of DETOX be

Bt,0, Bt,1, . . . , Bt,K/r−1 (cf. [14]). Initialize A = ∅ and choose

the q Byzantines as follows: for i = 0, 1, . . . , q − 1, among

the remaining workers in {U1, U2, . . . , UK} −A add a worker

from the group Bt,i mod K/r to the adversarial set A. Then,

c(q),DETOX =

{
q − K

r (r
′ − 1) if q > K

r (r
′ − 1),

0 otherwise.

VI. LARGE-SCALE DEEP LEARNING EXPERIMENTS

A. Experiment Setup

We evaluated the performance of all compared techniques

on Amazon EC2. The project is written in PyTorch [24] and

uses the MPICH library for communication. We worked with

the CIFAR-10 dataset [19] using the ResNet-18 [25] model.

We used clusters of K = 15 and 21 workers and redundancy

r = 3. We simulated values of q = 2, 4, 6 during training.

There are two different adversarial dimensions we evaluate:

1) Choice/orchestration of the adversaries: the different ways

adversaries are chosen and work together to inflict damage (cf.
weak and optimal attacks in Section IV).

2) Gradient distortion methods: the method an adversary uses

to distort the gradient value. We use a variety of state-of-the-art

methods for distorting the computed gradients, including ALIE
[26], Fall of Empires (FoE) [27] and reversed gradient, which

returns −cg, c > 0 instead of the true gradient g.

Competing methods: We compare against the baseline im-

plementations of median-of-means [28], Bulyan [11], and Multi-

Krum [6]. If c
(q)
max is the number of adversarial computations,

then Bulyan and Multi-Krum require at least 4c
(q)
max + 3 and

2c
(q)
max + 3 total number of computations, respectively. These

constraints make these methods inapplicable for larger values

of q. We also compare with DETOX [14], which can easily fail

under malicious scenarios for large q. We compare with median-

based techniques since they originate from robust statistics and

are the base for many aggregators. DETOX is the most related

redundancy-based work that is based on coding theory. Finally,

Multi-Krum is a highly-cited aggregator that combines majority-

based and squared-distance-based methods.

B. Experimental Results

1) Comparison under optimal attacks: Figure 4a com-

pares our scheme Aspis with the baseline implementation

of coordinate-wise median (ε = 0.133, 0.267 for q = 2, 4,

respectively) and DETOX with median-of-means (ε = 0.2, 0.4
for q = 2, 4, respectively) under the ALIE attack. Aspis

converges faster and achieves at least a 35% average accuracy

boost (at the end of the training) for both values of q
(εAspis = 0.004, 0.062 for q = 2, 4, respectively).3 In Figures

4b and 4c, we observe similar trends in our experiments with

Bulyan and Multi-Krum, where Aspis significantly outperforms

these techniques. For the current setup, Bulyan is not applicable

for q = 4 since K = 15 < 4c
(q)
max + 3 = 4q + 3 = 19. Also,

neither Bulyan nor Multi-Krum can be paired with DETOX for

q ≥ 1 since the inequalities f ≥ 4c
(q)
max +3 and f ≥ 2c

(q)
max +3

cannot be satisfied (cf. [6], [11]). Also, note that the accuracy

of most competing methods fluctuates more than in the results

presented in the corresponding papers [14] and [26]. This is

expected as we consider stronger attacks than those papers,

i.e., optimal deterministic attack on DETOX and, in general,

up to 27% adversarial workers in the cluster. The results for

the reversed gradient attack are shown in [20, Figures 5a,

5b, 5c]. Given that this is a much weaker attack [12], [14],

all schemes are expected to perform well. Under the Fall of

Empires (FoE) distortion (cf. [20, Figure 6]) our method still

enjoys an accuracy advantage over the baseline and DETOX

schemes which becomes more important as the number of

Byzantines in the cluster increases.

2) Comparison under weak attacks: For baseline schemes,

the discussion of weak versus optimal choice of the adversaries

is not very relevant as any choice of the q Byzantines can

overall distort at most q out of the K gradients. Hence, for

weak scenarios, we chose to compare mostly with DETOX.

The accuracy is reported in [20, Figures 7, 8] according to

which Aspis shows an improvement under attacks on the more

challenging end of the spectrum (ALIE). The results are in line

with the theoretical distortion fraction, which is εAspis = 0.044
while εBaseline = 0.4 and εDETOX = 0.2 for q = 6.

Our experiments on a larger cluster of K = 21 workers

under the ALIE attack can be found in [20, Figure 9].

3Please refer to [20, Tables 1, 2] for the values of the distortion fraction
ε each scheme incurs.
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