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Abstract

In this paper, we explore the possibility to increase the
training examples without laborious data collection and an-
notation for long-tailed instance segmentation. We find that
an abundance of instance segments can potentially be ob-
tained freely from object-centric images, according to two
insights: (i) an object-centric image usually contains one
salient object in a simple background; (ii) objects from the
same class often share similar appearances or similar con-
trasts to the background. Motivated by these insights, we
propose a simple and scalable framework FREESEG for ex-
tracting and leveraging these “free” object segments to fa-
cilitate model training. Concretely, we investigate the simi-
larity among object-centric images of the same class to pro-
pose candidate segments of foreground instances, followed
by a novel ranking of segment quality. The resulting high-
quality object segments can then be used to augment the ex-
isting long-tailed datasets, e.g., by copying and pasting the
segments onto the original training images. Extensive ex-
periments show that FREESEG yields substantial improve-
ments on top of strong baselines and achieves state-of-the-
art accuracy for segmenting rare object categories.

1. Introduction

Recent years have witnessed an unprecedented break-
through in common object detection and instance segmenta-
tion [3,5,7,12,16,30]. Yet, when it comes to rare, less com-
monly seen objects, there is a drastic performance drop due
to insufficient training examples [6, |8, 28]. This challenge
has attracted significant attention lately in how to learn a de-
tection or segmentation model given labeled data of a “long-
tailed” distribution across classes [0, 8, 11, 14, 19-24,29].

In this paper, we investigate the possibility of obtain-
ing more labeled instances (i.e., instance segments of ob-
jects) under a minimal cost, especially for rare objects. We
build upon the recent observation in [26] — many objects
do not appear frequently enough in complex scenes, but
are found frequently alone in object-centric images — to
acquire an abundance of object-centric images (e.g., Ima-
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Figure 1. Motivation of our approach FREESEG. We sample a
rare classes, heron from LVIS v1 [6], and retrieve object-centric
images (the upper row) from the ImageNet dataset [17]. We then
show the discovered object segments (the middle row) and binary
masks (the bottom row) by FREESEG. The abundant object seg-
ments have diverse appearances and poses and can be effectively
used to improve the instance segmentation.

geNet [2] or Google images) for rare classes. In general,
object-centric images mostly contain one salient object in
a relatively simple background than scene-centric images
like those in MSCOCO [12]. Moreover, objects of the same
class usually share similar appearances, shapes, or contrasts
to the background (See Figure | for an example). These
properties open up the opportunity to discover object seg-
ments almost freely from object-centric images of the same
class — by exploring their common salient regions.

To this end, we propose a framework named FREESEG
(Free Object Segments) to take advantage of these proper-
ties. We first extract the common foreground regions from
object-centric images of the same class by off-the-shelf co-
segmentation models [27]. However, directly using all of
these regions, mixed with false positive and noisy segments,
would inevitably introduce a great amount of noise to the
downstream tasks. To address this, we propose a novel seg-
ment ranking approach to mine the most reliable and high-
confident object segments.

One naive way to leverage these instance segments is
to directly train on the object-centric images. Neverthe-
less, these objects mostly show up alone in simple back-
grounds makes them somewhat too simple for the model.
We therefore place these object segments in the context of
complex scene-centric images, via simple copy-paste aug-
mentation [4]. Unlike [4], which merely pastes ground-truth
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Figure 2. Illustration of the FREESEG pipeline. We show a rare class Barge in LVIS vl [0] as the example. We first perform image
co-segmentation on top of the object-centric images of Barge (outside LVIS v1) to obtain raw object segments, followed by segments

refinement. The segments are then scored by a learned ranker (the

boxes in step 2) such that only the high-quality ones would be

used for augmenting data for model training. Finally, we randomly paste the selected object segments (red) onto the original scene-centric

images of LVIS v1 to improve the long-tailed instance segmentation.

segments from one image to another to increase the context
diversity, our approach brings the best of abundant free ob-
ject segments to increase the appearance diversity.
In summary, our main contributions are:
* We demonstrate the possibility to increase the number
of training examples for instance segmentation without
laborious pixel-level data collection and annotation.

* We propose a simple and scalable pipeline for discov-
ering, extracting, and leveraging free object foreground
segments to facilitate long-tailed instance segmentation.

* Our FREESEG framework achieves state-of-the-art per-
formance on the challenging LVIS dataset and demon-
strates a strong compatibility with existing works.

2. FREESEG for Data Augmentation

Figure 2 illustrates the pipeline, which consists of three
major steps: (i) segment generation and refinement, (ii) seg-
ment ranking, and (iii) data synthesis for model training.

segments indicate the original objects in scene-centric images.

2.1. Generating Object Segments

Bootstrap object-centric images collection. We first col-
lect object-centric images for each class of interest. As dis-
cussed in [26], we use the unique WordNet synset ID [13] to
match the categories between ImageNet-22K [17] and LVIS
v1 [6]. We are able to match 997 LVIS classes (1,242, 180
images from ImageNet). Because ImageNet images are
nearly balanced by design (with around 1K images/class),
the imbalance situation in LVIS can be largely reduced. We
further retrieve images via Google by querying with class
names provided by LVIS. Such a search returns hundreds
of iconic images and we take top 500 for each class.

Segments generation and refinement. Given images from
the same class, we then apply image co-segmentation tech-
niques [27] to extract their common foreground regions. We
also threshold [9, 1 0] the map and apply erosion and dilation
to smooth the boundary. Finally, we remove small, likely
false positive segments by only keeping the largest con-
nected component in the binary map (Step 1 of Figure 2).
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Figure 3. Comparison of metrics for ranking segments. We
show four examples of the class wine glasses. The red masks are
by our method; boxes are by LORE. In (a) and (d), IoU ranks
the segments well, when the box locations are precise. However,
in (b), the poor box location leads to a small IoU, even if the seg-
ment is precise. In (c), IoU fails due to the specific shape of wine
glasses, even if the segment is precise. FREESEG score is able to

take all above into account to faithfully rank segments.

2.2. Learning to Rank the Segments

Ranking by learning a classifier. How can we determine
if the segment truly covers the target object? Here, we take
one intuition [26]: if a segment covers the target object, then
by removing it from the image, an image classifier' will un-
likely classify the manipulated image correctly. The authors
in [26] developed “localization by region removal (LORE)”,
which sequentially removes bounding box regions from an
image till the image classifier fails to predict the right class.
Those removed bounding boxes are then treated as pseudo
bounding boxes for the target object class. We thus adopt
the idea of LORE to rank our object segments. Instead of
removing the discovered segments and checking the clas-
sifier’s failure, we directly compare our object segments to
the bounding boxes selected by LORE. In essence, if the
LORE boxes and our segments are highly overlapped, then
the segments are considered high-quality.

Segments ranking. The most common way to characterize
the overlap/agreement between two masks/boxes is inter-
section over union (IoU). However, this metric is not suit-
able as: (i) both boxes and segments may be noisy, and sim-
ply measuring the IoU between them fails to rank good seg-
ments when the boxes are poor; (ii) object shapes are not
always convex, and IoU may underestimate the agreement.
As shown in Figure 3, IoU fails to recall true positives.

We make one mild assumption: either the object box
or the segment is trustable, and introduce two metrics: in-
tersection over bounding box (IoB) and intersection over
mask (IoM). While they share the same numerator with in-
tersection over union (IoU), they have different denomina-
tors. IoM implies that the bounding box is precise and mea-
sures how much portion of the mask is inside the box, and
vice versa for IoB. We take both into account by averag-

'We have image labels for object-centric images and thus we can train
an image classifier upon them.

ing them as FREESEG score. We jointly use (i) FREESEG
score and (ii) the classifier’s relative confidence drop for the
target class before and after LORE box removal, to rank
the object-centric images and their co-segmentation seg-
ments. We keep those with both scores larger than 0.5 as
the high-quality segments. As shown in Figure 2 (Step 2),
our method effectively keeps the good segments in the pool.

2.3. Putting the Segments in the Context

We adopt copy-paste [4] to randomly (i) sample several
object-centric images, (ii) re-scale and horizontally flip the
object segments, and (iii) paste them onto the scene-centric
images from the original training set. The synthesized im-
ages can be used to improve model training (Step 3 in Fig-
ure 2). See the supplementary material for more details.

3. Experiments

3.1. Setup

Dataset and evaluation metrics. We validate FREESEG
on LVIS vl instance segmentation benchmark [6]. The cat-
egories follow a long-tailed distribution and are divided into
three groups: rare (1-10 images), common (11-100 images),
and frequent (>100 images). We adopt the standard mean
average precision (AP) metric. We denote the AP for rare,
common, and frequent classes as AP,, AP., and APy, re-
spectively. We also report AP for bounding boxes (i.e.,
AP), predicted by the same instance segmentation models.

Base models. We using two base models for instance seg-
mentation, i.e., Mask R-CNN [7] and MosaicOS [26]. Mask
R-CNN is trained with the LVIS v1 training set, following
the standard training procedure [6]. MosaicOS [26] is one
of the state-of-the-art models which is further pre-trained
with balanced object-centric images from ImageNet-22K
and Google Images.

Training and optimization. Given the base instance seg-
mentation model, we first fine-tune the model for 90K it-
erations with FREESEG segments, using all the loss terms
in Mask R-CNN. We then fine-tune the model again for an-
other 90K iterations using the original LVIS training im-
ages. The rationale of training with multiple stages is to
prevent the augmented instances from dominating the train-
ing process and it is shown to be effective in [26].

3.2. Results and Analyses

Main results. We compare to state-of-the-art methods for
long-tailed instance segmentation in Table 1. The pro-
posed FREESEG method achieves comparable or even bet-
ter results, especially for rare categories. We further apply
post-processing calibration [15] on top the model trained
with FREESEG and show results in Table 1 (FREESEG x).
Surprisingly, FREESEG can boost the performance of rare



Table 1. State-of-the-art comparison on LVIS v1 instance seg-
mentation. FREESEG are initialized with MosaicOS [26] as the
base model. 2x: Seesaw applies a stronger 2x training sched-
ule while other methods are with 1x schedule. *: with post-
processing calibration introduced by [15].

Method AP AP, AP. APy AP?
Mask R-CNN with ResNet-50 FPN
RES [6] 22.58 1230 21.28 28.55 23.25
BaGS [11] 23.10 13.10 22.50 28.20 25.76
RIO [1] 23770 1520 2250 28.80 24.10
EQL v2 [19] 2370 1490 22.80 28.60 24.20
FASA [25] 24,10 17.30 22.90 28.50 -

Seesaw [21[ 2640 1960 2610 2980 2740
MosaicOS [26] 2445 18.17 23.00 28.83 25.05
_WFREESEG 2519 2023 2380 2892 2598

MosaicOS [26] x  26.76 23.86 25.82 29.10 27.77
w/ FREESEG * 27.34 2511 2629 2949 2847

Mask R-CNN with ResNet-101 FPN

RES [6] 24.82 15.18 23.71 30.31 2545

FASA [25] 2630 19.10 25.40 30.60 -

Seesaw [21]2 28.10 20.00 28.00 31.90 28.90
" MosaicOS [26] 2673 20.52 25.78 30.53 24.41

w/ FREESEG 27.54 23.00 2648 30.72 28.63

MosaicOS [26] «  29.03 26.38 28.15 31.19 29.96
w/ FREESEG * 29.72 28.69 28.67 31.34 31.11

RESTOl 2667 17.60 2558 31.89 27.35
MosaicOS [26] ~ 2829 2175 2722 3235 2885
w/FREESEG ~ 28.86 23.34 2777 3249 29.98

MosaicOS [26] «  29.81 25.73 28.92 3259 30.56
w/ FREESEG * 30.37 26.43 29.63 3292 31.81

classes to be similar to common classes. This indicates that
by introducing more while not so perfect training instances,
FREESEG dramatically overcomes the long-tailed problem.

Does segments ranking help? We conduct experiments
with and without ranking on object segments in Table 2.
We are able to collect 1,830K segments from ImageNet-
22k and Google Images, while only 966K of them are left
after filtering with FREESEG. While both versions outper-
form the baseline models, segments ranking does help more
(row 4 vs. row 2 in Table 2). Since filtering by ranking gives
higher quality but fewer data than that without ranking, we
surmise that this somehow limits the gain. Thus, we ran-
domly sample segments to have the same number as those
after filtering by ranking, and train a model with them. We
see a bigger gain by filtering (row 4 vs. row 3 in Table 2),
justifying the effectiveness of ranking.

Ranking metrics. We compare the results using different
ranking metrics in Table 3. FREESEG score can take differ-
ent scenarios into account and successfully select confident
segments from noisy ones.

Comparison to pasting ground-truth segments. We com-

Table 2. Ablation study on segments ranking. We evaluate the
model trained with and without ranking (Rank) mechanism or ran-
domly (Rand) sampled the segments by FREESEG.

Method Rand Rank #Img AP AP, AP. APy

MosaicOS [26] 24.45 18.17 23.00 28.83
1,830K 24.87 19.13 23.55 28.86
966K 24.50 18.68 23.18 28.52

v 966K 25.19 20.23 23.80 28.92

w/ FREESEG v

Table 3. Analysis on different object segments ranking metrics.
Method Metrics AP AP, AP. APy

MosaicOS [26] - 2445 18.17 23.00 28.83
IoU 2474 19.04 23.58 28.53

IoB 24.69 1841 23.58 28.70

IoM 2456 18.62 23.14 28.74

FREESEG 25.19 20.23 23.80 28.92

w/ FREESEG

Table 4. Comparison of pasting ground-truth (GT) object seg-
ments [4] and FREESEG.

Method GT [4] FREESEG AP AP, AP. APy

22.58 12.30 21.28 28.55

v 24.06 17.00 22.62 28.77
v 24.28 17.68 22.79 28.83

v 4 24.74 18.80 23.38 28.86

24.45 18.17 23.00 28.83

v 24.57 18.63 23.31 28.59
4 25.19 20.23 23.80 28.92

v v 25.36 20.72 24.00 28.92

Mask R-CNN [6]¢

MosaicOS [26]}

pare pasting ground-truth [4] and FREESEG object seg-
ments in Table 4. FREESEG achieves consistently gains
against the baseline models and outperforms vanilla copy-
paste [4]. Note that FREESEG is more effective when the
baseline is already re-balanced (e.g., MosaicOS in Table 4
bottom), while GT-only can hardly improve upon it due to
the lack of training examples. Furthermore, by learning
with copy-paste from both sources, the gain can be even
larger. These demonstrate that the appearance diversity of
objects is also the key to improve instance segmentation.

Additional results. Please see supplementary material, in-
cluding the analysis on multi-stage training, effects of data
source, additional evaluation metric, qualitative results, etc.

4. Conclusion

We propose a scalable framework FREESEG to take the
best usage of object-centric images to facilitate long-tailed
instance segmentation. We show that, with the underlying
properties of object-centric images, simple co-segmentation
with proper ranking can result in high-quality instance seg-
ments to largely increase the labeled training instances. We
expect our approach to serve as a strong baseline for this
task: for future work to build upon and take advantage of.
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