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Abstract—The success of graph neural networks (GNNs) in the
past years has aroused growing interest and effort in designing
the best models to handle graph-structured data. Meanwhile, the
neural architecture search (NAS) technique has been witnessed
to rival against human experts in discovering efficient network
topology. Most recently, it has been applied to the field of
GNN engineering. However, despite the growing interest in GNN
accelerator designs, existing works on graph neural architecture
search all concentrate on software (SW) and do not consider
hardware (HW) constraints at all, which often leads to sub-
optimal system performance when the resulting networks are
deployed on hardware accelerators. To address this problem, in
this paper we propose a SW-HW co-design framework, namely
FGNAS, for automating the search and deployment of GNNs on
FPGAs. Experimental results on common benchmark datasets
Cora, CiteCeer, and PubMed show that compared with a two-step
method built from the state-of-the-art graph NAS framework,
FGNAS achieves up to 4.8% improvement accuracy and 3x
speedup under the same hardware constraint.

I. INTRODUCTION

Graph neural networks (GNNs) are the state of the art in
solving machine learning problems represented in graph forms,
including social networking [1], [2], molecular interaction [3],
[4], and problems in Electronic Design Automation (EDA) [5],
etc. As a result, GNN has attracted a great deal of research
interest in deep learning community for both software (SW)
[6], [7] and hardware (HW) [8], [9].

Similar to many other neural networks, the performance
of GNN significantly depends on its neural architecture,
and hence considerable effort has been put into tuning its
computational components [10]. Among the existing algo-
rithms, message-passing has set the ground of spatial-based
convolutional graph neural networks, from which most recent
breakthroughs are derived [11]. As the algorithmic variation
increases, to identify better sub-structures of GNN tends to be
substantially challenging due to the design space exponentially
growing. On the other hand, however, the improvement of
feature-extracting ability is still highly demanded.

Soon after being proposed by [12], neural architecture
search has become a mainstream research topic of machine
learning. It has been demonstrated NAS is promising to sur-
pass the human experts and meanwhile liberate their laborious
effort [13]. Although the original NAS using reinforcement
learning method suffers from timing inefficiency problem that
following works strive to solve [14], [15], it is well established
thus adapted to be used for searching novel GNNs.

Quite lately, [16] has designed the first graph NAS frame-
work. Based on the state-of-art GNN methodology, Graph
NAS has formulated the layered design space that is preferred
to the controller. Besides, parameter sharing strategy is also
adopted. Coincidentally, [17] has also used reinforcement
learning to automate graph neural network design on similar
search space but with split controllers. The search process is
well guided in an incremental manner such that the sampling
efficiency is boosted. Both of these works have improved
the accuracy of GNN against existing hand-crafted networks,
indicating NAS is the future solution for graph-based learning.

However, the aforementioned works only focus on the neu-
ral architectures but not the associated hardware accelerators.
To facilitate the deployment of GNNs, hardware accelerators
such as Field Programmable Gate Arrays (FPGAs) are often
required to boost operational and computational efficiency
[18], [19]. A few e-commerce companies have also devel-
oped dedicated platforms in their data centers, maintaining
a gigantic graph of billions of nodes [20]. The importance
and benefits of hardware-awareness in NAS have already
been widely demonstrated for convolutional neural networks
(CNNs) [21]–[25]. Yet the exploration of hardware-aware
graph NAS remains a missing piece in the literature.

Extending hardware-awareness to graph NAS, however, is
not a straight-forward task. The structure of GNN is substan-
tially different from other DNN models with highly irregular
data dependency. Accordingly, the design for optimal hardware
accelerator is challenging with a large space to explore. On the
other hand, hardware-aware NAS typically requires a regular
hardware design space that can be easily parameterized. To
address this challenge, in this paper we use FPGA as the
hardware platform and first propose a linear design framework
for GNNs such that hardware parameters can be sampled
in a layered manner. We then propose a hardware/software
co-design framework to explore the best GNN architecture
and the associated FPGA design. Experimental results on
common GNN datasets such as Cora, CiteCeer and PubMed
show that compared with a two-step exploration method built
from the state-of-the-art graph NAS framework [17] our co-
desing framework can yield up to 4.8% higher accuracy and
3x speedup under the same hardware constraints. To the best
of our knowledge, this is the first hardware-software co-
exploration framework for GNNs.



II. GNN DESIGN ON FPGA

To facilitate the search process, in this section we propose
a linear design framework for FPGAs such that hardware
parameters can be sampled in a layered manner. First, the
computations are carried by generic units with reusability for
all the layers. Second, the hardware parameters are used to
scale the parallelism degree of the processing units, facilitating
the area-timing tradeoff.

A. Modeling

We adopt a generic FPGA design model that is widely used for
CNN accelerators proposed by [26] and adapted it to the GNN
accelerator design. For each layer four stages are pipelined
consisting of the linear transform, attention coefficient com-
putation, aggregation, and nonlinear operation. The messages
in-between consecutive stages are registered. Two buffers are
employed to resolve the read/write conflict by alternately
accessing the main memory and serving the computational
units. As mentioned above, this model is fully scalable in the
dimension of the embedded features based on the parameters
defined.

B. Mixed Precision

We also consider the mixed-precision scenario in our design
where data are quantized using different bit width. Like the
other parameters, quantization parameters are also arranged
by layer so data in the same layer share the same format. As
the methods for quantizing are plentiful and have significant
impact on the model accuracy, we adopt the post-training
quantization (PTQ) and linear quantization as follows.

Given the quantization interval ∆ and range bounded by
Bmin and Bmax, the quantization of real number x is

x̂ = clip(⌊x/∆⌉ ×∆, Bmin, Bmax), (1)

where ⌊⌉ is rounding to integers. For the fixed-point format
with sign, ∆, Bmin and Bmax are determined by the number
of bits allocated to the integral (bi) and fractional (bf ) part as

∆ = 2−bf , Bmin = −2bi, Bmax = 2bi −∆. (2)

Consequently, in the mixed-precision design, four parameters
are added to the search space, namely wi, wf for the weights,
and ai and af for the activation. With the mixed precision, the
hardware space exponentially increases, and the components
in our FPGA model requires to be configured by bitwidth. We
rely on the HLS tool of Xilinx to synthesize all configurations
to profile the sizes and latency information. It is noted the
impact of quantization on hardware significantly vary among
operators.

III. FGNAS FRAMEWORK

In this section, we delve into the details of the soft-
ware/hardware co-exploration framework for GNNs based on
the GNN design in Section II. There are three main compo-
nents comprising FGNAS, namely the controller, the FPGA
model builder, and the GNN model trainer. For each layer of
the child network, our controller generates the parameters of

three types defining the network topology, hardware realiza-
tion, and the precision. With each sample of the controller,
a hardware model will be firstly constructed and evaluated
against the predefined constraints. Since most samples may
not be implementable, their training are circumvented and
rewards assigned to be 0; otherwise the network will be
built, trained and validated. Finally, when a mini-batch of
samples are evaluated, the parameters of the controller will
be updated once. The process terminates after a pre-defined
certain number of episodes.

A. Problem Formulation

The problem of jointly searching graph neural network ar-
chitectures and hardware design can be formulated as the
following. Given an architecture space A, each sample a ∈ A
characterizes a hardware space H(a). The objective is then to
find the optimal architecture and hardware design pair ⟨a∗, h∗⟩
such that a∗ ∈ A and h ∈ H(a∗). With the target dataset Dt

for training and Dv for validation, the accuracy of a design
can be measured as acct(a, h) and accv(a, h), respectively,
while the hardware performance hp(a, h) is independent of
the data. As the neural architecture sample is parameterized
by the weights w, we define the optimality point of the design
as

a∗ = argmax
a∈A

accv(a(w
∗), h∗)

s.t. : w∗ = argmax
w

acct(a(w), h
∗)

(3)

and at the same time

h∗ = argmax
h∈H(a∗)

hp(a∗, h)

s.t. : hp(a∗, h∗) ≥ spec
(4)

where spec is the hardware specification required to be satis-
fied by the design.

However, the above formulation is challenging to imple-
ment. In the case where the hardware specification relates
to multiple objectives, e.g. area and latency, the hardware
performance is not a scalar and hence the optimization is
ambiguous. In practice, the design is acceptable as long as
the hardware constraints are met. In order to optimize the
hardware design, one can set more and more strict constraints
to the aspect of interest. Therefore, we relax the optimization
of hardware performance to the hardware eligibility, and
reformulate the problem as

a∗ = argmax
a∈A

accv(a(w
∗), h)

s.t. : w∗ = argmax
w

acct(a(w), h)
(5)

and

∃h ∈ H(a∗)

s.t. : hp(a∗, h) ≥ spec.
(6)

It is worth mentioning when the hardware constraint has
multiple dimensions, the ≥ symbol applies to every dimension
simultaneously.



In this work, we rely one the recurrent neural network
(RNN) to jointly optimize both the GNN architecture and
its hardware design. As such, the reinforcement learning
NAS framework is restructured to co-explore the software
and hardware spaces. Based on the above formulation, our
framework aims to discover the best neural architectures which
are guaranteed to be implementable under specific constraints.

B. Search Space

We divide the search space into two sub-spaces: architecture
space and hardware space. For each layer of a GNN, the search
spaces are the same, so the same types of parameters are sam-
pled. For illustration convenience, we divide the parameters of
a single layer and describe them as follows.

1) architecture space: The architecture space contains the
parameters that define the operational mechanism of a graph
network. At the time of writing, the topologies of GNNs share
message-passing computational flow characterized by graph-
wise convolution, and only vary in the way embedded features
are generated and combined. In consequence, we define the
architecture space regarding the tuning of sub-structures.

Basically, three separate stages are cascaded in each layer:
(1) the embedding from last layer are linearly converted; (2)
messages between each connected pair of nodes are weighted;
and (3) new features of neighbouring nodes are aggregated to
produce new embedding. Following the three operations, five
parameters are included in the architecture space: embedding
dimension, attention type, aggregation type, number of heads
and activation function.

2) Hardware Space: Based on the design in Section II-A,
the computation of GNN for inference are all parallelizable
in terms of the features of the same embedding. As a large
dimension would require exponentially complex computation,
it is necessary to divide the vector-wise operation into sub-
tasks. Therefore, we choose the size for grouping the features
as a key parameter to scale the hardware.

Almost all the main tasks can be divided, and we summarize
them into four cases:

1) For the embedding to transform from Ti to To features,
two parameters ti and to are used for grouping them
separately.

2) The attention coefficients possibly also require linear
operation but the output is a scalar, so we only divide
the input by size of tattn.

3) The aggregation is similar to the above case. And we
assign parameter taggr for it.

4) Lastly, the nonlinearity requires one-to-one operation
on the feature vector. As this is probably the most
challenging operation for hardware, we also group the
features into size of tact.

In addition to the architectural and hardware space, we
also consider the mixed-precision design which play important
roles in both software and hardware performance. In this case,
the quantization space also needs to be explored and details
is discussed in Section II-B.

TABLE I: Basic information on the statistics of the datasets
and our configuration in usage.

Dataset Cora CiteSeer PubMed
# Training Nodes 140 120 60

# Validation Nodes 500 500 500
# Testing Nodes 1000 1000 1000
# Input Features 1433 3703 500

# Classes 7 6 3
learning rate 0.01 0.01 0.01
weight decay 0.0005 0.0005 0.001
Latency (ms) 0.8/0.9/1.0 0.8/0.9/1.0 7/8/9

#LUT/#FF 10k/100k 10k/100k 10k/100k
DSP 10/100 10/100 100/1000

TABLE II: Design space explored by our framework and the
actual values used in the experiment.

Space Symbol Value
Embedding Dimension d 4, 8, 12, 16, 32, 64

Attention Type attn “constant”, “gat”, “gcn”
Aggregation Type aggr “add”, “max”, “mean”
Number of Heads k 1, 2, 4, 8, 16

Activation Function act “relu”, “tanh”, “sigmoid”, “elu”
Linear Group Size tin/tout 1, 2, 3, 4, 5

Attention Group Size tattn 1, 2, 4, 8
Aggregation Group Size taggr 1, 2, 4, 8
Activation Group Size tact 1, 2, 3, 4, 5

Integer Bit Width ai/wi 1, 2, 3
Fraction Bit Width af /wf 0, 1, 2, 3, 4, 5, 6

C. Algorithm

Reinforcement learning is applied in our design as the search-
ing backbone. As we have parameterized the design of both
architecture and hardware and formatted these parameters by
layer, one RNN can be employed to sample the parameters
sequentially as actions from the respective list of options. For
the sampled design, the hardware performance is analyzed
using our FPGA model, under the constraints of computatonal
resources and latency. Only if the sample hardware design
meets the hardware specifications, will the software design be
trained and tested on the dataset. The reward for the sample
⟨a, h⟩ is:

R(a, h) =

{
0, hp(a, h) < spec

accv(a, h), otherwise (7)

This way, the training can be circumvented as possible and
the search can be faster than pure NAS.

Once the reward is obtained, the parameter θ of the con-
troller is updated following the policy gradient rule [27]:

∇J(θ) =
1

m

m∑
k=1

T∑
t=1

γT−t∇θ log πθ(at|a(t−1):1)(Rk−b) (8)

where J(θ) is the expected reward at the initial step.
The controller is configured as the following. The number of

steps T equals the total number of parameters to be sampled;
the batch size for updating θ is m = 5 episodes; the reward
is not discounted so γ = 1; and baseline b is the exponential
moving average of the reward with a decaying factor of 0.9.



IV. EXPERIMENTAL RESULTS

A. Datasets and Experimental Setups

In the experiments, three datasets are used for benchmarking
the performance on transductive learning, namely Cora, Cite-
Seer, and PubMed. The statistics and training configuration
is listed in Table I. The setting for training on these datasets
follows that of [17]. Since the volume and complexity of the
datasets vary largely, the hardware of the search is constrained
differently and accordingly.

The experiments are carried out using single Nvidia 1080Ti
graphic processing unit (GPU), and Intel 8700K CPU. We use
Xinlix FPGA devices with 100 MHz clock rate for profiling
the latency. It is noted that since we constrains the hardware,
comparing the accuracy to the state-of-art networks are not
quite sensible and instead we evaluate the searching efficiency
against the two baseline methods.

B. Baseline Methods

To evaluate the ability and efficiency of FGNAS, we involve
two methods for the comparison.

Random Search. We perform a random search approach as
a baseline for search efficiency. The random search results can
reflect the distribution of candidate solutions in specific design
space. As will be shown later, for certain data and hardware
constraints, the random search can render decent result already.

Disjoint Search. To show the advantages of HW/SW co-
design, we perform a graph NAS without hardware-awareness
using a state-of-the art framework [17], and then optimizes the
FPGA design for the identified GNN architecture.

TABLE III: The best accuacry result on different datasets.

Dataset Cora CiteCeer PubMed

Constraints
Latency 1 ms 1 ms 7 ms

#LUT/#FF 100k 100k 100k
#DSP 100 1000 1000

Accuracy
Random Search 69.9% 72.0% 80.0%
Disjoint Search 69.9% 68.5% 65.6%
FGNAS (Ours) 71.5% 72.4% 82.4%

We test the searching efficiency of our method using different
hardware parameters in latency, number of LUTs/FFs and
number DSPs. The result on Cora is shown in Table IV.

C. Searching Details

Table II demonstrates the search space used in the experi-
ments. During the search, the controller is updated with SGD
algorithm and the learning rate is set to 0.1. When a two-
layer child network is sampled and the hardware efficiency is
satisfied, the network will be trained using Adam optimizer
for 200 epochs to obtain accuracy. The accuracy will be then
feedback to update controller. The depth of the child networks
as two layers. The validation is performed after every epoch,
from which the highest will be taken as the reward to the
controller. By rule of thumb, we set the depth of the child
networks as two layers.

The search stops after sampling 2000 child networks. For
the joint and random search, due to the violation of hardware

constraints, most samples are invalid. For a fair comparison,
we use the total number of valid samples to guide the random
search such that the GPU hours would be on the same scale. In
the case of disjoint search, the GPU time is determined by the
number of episodes and we set 200 for the architecture search
and 800 for the hardware search. Each experiment is conducted
in 5 runs, and the one with the highest test accuracy is taken
for evaluation. Finally, we report the evaluated accuracy.

D. Performance

The results are summarized in Table III and Table ?? It
is generally observed that the joint search achieves the best
accuracy and/or shorter searching time.

1) Comparing with Random Search: The random search is
performant in the sense that the highest accuracy is discov-
erable at certain hardware constraints. For example, with the
setting of 1 ms latency, 100,000 LUTs/FFs and 100 DSPs,
the random search achieves the best accuracy among the
three methods. However, when the constraints are tighter, the
distribution of decent samples are sparser. As a result, the best
accuracy covered by searching a fixed number of samples is
lower than the other two methods.

The search time of random method is around 1x to 2x
of the joint search. The reasons are two-fold: Firstly, the
sampled networks are more scattered so their average size is
larger. Although the GPU calls are equal, the training time of
randomly sampled networks are higher. Another reason is that
in order to reach the same number of implementable samples
as joint search, much more episodes need to be inspected so
the CPU time adds up to a considerable level.

2) Comparing with Disjoint Search: The disjoint search
consumes highest time with our setting because 1) more
samples are actually trained due to the manual setup; and 2) the
architecture found in the first step is larger than average size. It
is observed that accuracy is slightly better than random search
and in some cases surpass the joint search. However, since
the pure architecture search are not aware of the hardware
constraints at all, the post-quantization accuracy may degrade
severely as decent bit width allocation hardly exists.

V. CONCLUSIONS

Neural architecture search is a promising solution for the
advancement of graph neural network engineering, but it lacks
hardware awareness. In this work we propose to an FPGA-
based HW/SW co-design framework, namely FGNAS, that
jointly explores the architectural and hardware spaces. Using
reinforcement learning, generic hardware model, and mixed
precision design, FGNAS performs more efficiently than the
random search and a state-of-the-art based disjoint methods.
Under different hardware constraints, FGNAS has the best
accuracy in majority of the test cases with up to 3x faster
runtime.
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TABLE IV: Performance of the proposed joint search framework under different hardware constraints. Best test accuracy and
search time on Cora are used to compare against the baselines.

Constraints FGNAS (ours) Random Search Disjoint Search
latency (ms) #LUT/#FF #DSP Acc. Time (h) Acc. Time (h) Acc. Time (h)

0.8
10,000 10 66.2% 0.56 61.8% 1.12 62.6% 1.87

100 62.9% 0.87 60.0% 1.22 63.8% 1.65

100,000 10 67.8% 0.88 62.9% 1.12 64.6% 1.55
100 68.7% 0.89 64.0% 0.95 68.5% 1.40

0.9
10,000 10 68.1% 0.69 68.0% 1.19 66.0% 1.32

100 69.2% 1.17 68.9% 1.20 69.0% 1.50

100,000 10 68.8% 0.99 69.0% 1.44 68.0% 1.69
100 70.2% 0.88 69.5% 1.44 69.6% 1.70

1.0
10,000 10 68.1% 0.72 67.8% 1.23 66.0% 1.38

100 70.1% 1.33 69.0% 1.40 69.9% 1.44

100,000 10 68.8% 1.19 69.2% 1.66 69.0% 1.77
100 71.5% 1.48 69.9% 1.55 69.9% 1.60
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