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Abstract

The potential of passive acoustic monitoring (PAM) as a method to reveal the
consequences of climate change on the biodiversity that make up natural sound-
scapes can be undermined by the discrepancy between the low barrier of entry to
acquire large field audio datasets and the higher barrier of acquiring reliable species
level training, validation, and test subsets from the field audio. These subsets
from a deployment are often required to verify any machine learning models used
to assist researchers in understanding the local biodiversity. Especially as many
models convey promising results from various sources that may not translate to the
collected field audio. Labeling such datasets is a resource intensive process due
to the lack of experts capable of identifying bioacoustics at a species level as well
as the overwhelming size of many PAM audiosets. To address this challenge, we
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have tested different sampling techniques on an audio dataset collected over a two-
week long August audio array deployment on the Scripps Coastal Reserve (SCR)
Biodiversity located adjacent to sandstone cliffs and the Pacific Ocean in La Jolla,
California. These sampling techniques involve creating four subsets using stratified
random sampling, limiting samples to the daily bird vocalization peaks, and using
a hybrid convolutional neural network (CNN) and recurrent neural network (RNN)
trained for bird presence/absence audio classification. We found that a stratified
random sample baseline only achieved a bird presence rate of 44% in contrast with
a sample that randomly selected clips with high hybrid CNN-RNN predictions
that were collected during bird activity peaks at dawn and dusk yielding a bird
presence rate of 95%. The significantly higher bird presence rate demonstrates
how intelligent, machine learning-assisted selection of audio data can significantly
reduce the amount of time that domain experts listen to audio without vocalizations
of interest while building a ground truth for machine learning models.

1 Introduction

Passive acoustic monitoring (PAM) is a method of garnering an understanding of various ecosystems
that involves deploying a large amount of audio recorders that autonomously collect audio clips from
natural soundscapes over time. [11] Combining PAM with machine learning techniques has created a
niche to better understand the impacts of climate change on many noisy indicator species that are too
small for large scale monitoring via traditional biodiversity surveying techniques such as trapping,
monitoring feeding sites, and camera trap arrays [13, 9, 15, 16, 7, 2, 12, 14].

Due to the wider availability of low-cost hardware fit for PAM deployments [4] and open source
pre-trained machine learning models [10, 5, 3] the barrier of entry for researchers breaking into the
ecoacoustics [6] discipline is decreasing. However, it is very easy to be led on by promising results of
pre-trained models on publicly available datasets that may not translate well when applied to noisier
field audio recordings. [1] A crucial step towards understanding the biodiversity of an ecosystem
using PAM and machine learning requires generating species level ground truth labels on a subset of
audio recordings from the field for the purpose of testing and if necessary, validation and training
of promising models. Creating ground truth requires a lot of time from the limited pool of experts
capable of labeling audio data at a species level. For the sake of reducing the financial and temporal
costs of the research process, it is in the best interest of researchers to develop methods that make
sure that the audio being delivered to experts for labeling, have a higher probability of containing
vocalizations of interest.

To meet this challenge, we have explored various methods to increase the probability of extracting
bird vocalizations from a PAM field deployment we conducted on the California coast. These methods
involve a baseline stratified random sampling technique, sampling with knowledge of diurnal bird
vocalization trends, as well as using a neural network model designed for audio event detection with
low resource training sets [8] that has been encapsulated in the Github repository Microfaune with a
pre-trained model for binary bird classification. Microfaune can be decomposed into a convolutional
neural network (CNN) layer that computes features of audio that have been converted into a mel
spectrogram, a recurrent neural network (RNN) layer that computes features at each time step based
on the neighboring time steps, and a final max-pooling layer that finds the highest prediction across
an audio clip. The max-pooling layer for our purposes can be simplified down to Microfaune’s
prediction to the question: “what is the probability that at least one bird vocalization occurs in this
clip according to this neural network™.

These sampling methods were used to generate several subsets from our PAM deployment that were
labeled for bird presence/absence and high/low activity to compare and contrast how effective the
methods were in identifying audio recordings at the class level of the taxonomic tree to reduce the
overhead costs of having experts label at the species level.
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Figure 2: AudioMoth in official housing on Figure 3: AudioMoth in Ziploc bag on California
Lemonade berry bush sagebrush

2 Methodology

2.1 Field data collection

We deployed 10 AudioMoths (version 1.2.0) on the Scripps Coastal Reserve (SCR) Biodiversity
Trail, a private nature reserve in La Jolla, California (see figure 1). The reserve is managed by the UC
San Diego Natural Reserve System and is home to over 150 bird species including the threatened
California Gnatcatcher (Polioptila californica) according to the U.S. Fish and Wildlife Service. The
devices were housed in either official Audiomoth cases or Ziploc bags and were attached to coastal
sage scrubs such as Lemonade berry (Rhus integrifolia) bushes (see figure 2) and California sagebrush
(see figure 3) (Artemisia californica) at a height of 30 to 150 cm from the ground across the soft
chaparral environment.

The Audiomoths were set to record one minute every ten minutes at a 384 kilohertz sampling rate
from August 10th to August 24th, 2021.

2.2 Subset creation

In order to test out different methods for extracting audio clips with bird vocalizations from the
SCR dataset, we constructed four separate datasets of 240 audio clips. We constructed a baseline
stratified random sample subset by selecting one audio clip from every hour of the day from each
Audiomoth device. To test out the efficacy of neural network assisted sampling, we used the same
stratified random sampling technique as the baseline, with the added parameter that each of the 240
clips sampled had a Microfaune prediction of 50% or more (see figure 5). The audio clips had to
be downsampled from 384 to 44.1 kilohertz prior to being processed by the Microfaune prediction
pipeline. The third dataset involved us randomly sampling 240 clips that were recorded at dawn and
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Figure 4: Scripps coastal reserve August bird Figure 5: Intersection of Microfaune skew and
vocalizations trends dawn-dusk peak activity across all clips (blue dots)

Table 1: Bird presence (left) bird activity (right)

Not Skewed Skewed Not Skewed Skewed
Not Dawn-Dusk .4375 .6583 Not Dawn-Dusk .2458 3708
Dawn-Dusk 875 .95 Dawn-Dusk 6167 7583

dusk intervals known to exhibit high bird activity (see figure 4). We averaged together the Microfaune
predictions across each ten minute interval in the day to assist us in defining the dawn and dusk
intervals.

The fourth and final dataset combined the techniques used in the second and third sets by randomly
sampling clips within the dawn-dusk time intervals that were ranked as having a 50% or more chance
of containing a bird vocalization by Microfaune (see figure 5).

2.3 Dataset labeling

To label the audio, the clips were uploaded to a web-based audio labeling system (Pyrenote). Volun-
teers familiar with the birds native to the SCR then labeled bird vocalizations directly on spectrograms
of the audio. The annotations produced by the volunteers were post-processed down to whether or
not they heard a bird vocalization (Bird Present/Absent) and whether or not there was more than one
species in an audio clip (Heavy Activity/Low Activity) (see figure 6).

3 Results

At the end of the deployment, each device collected approximately 2000 audio clips amounting to
about 336 hours of audio recorded across all of the devices. This means that each subset contains
approximately 1% of the clips from the AudioMoth deployment. To compare and contrast the 4
subsets we divide the Bird Presence Count and the High Activity Count with respect to the Dataset
Size (see table 1). That way we can see which sampling technique was the most effective at extracting
bird vocalizations from the whole SCR audioset.

4 Conclusion

From the results, it appears that sampling from the dawn-dusk daily bird vocalization peaks was
a larger factor in acquiring a higher rate of audio clips with bird presence and heavy bird activity
compared to purely skewing the results based on Microfaune predictions.

We can see that combining the diurnal trends of bird vocalizations in our deployment region with
binary neural network predictions in the process of sampling can assist in achieving a higher rate of
audio clips with vocalizations of interest than each of the methods independently. Using these tools
to focus on audio with a higher probability of relevant bioacoustics can greatly reduce the amount of
time needed to acquire the necessary species focused training, validation, and testing sets that are
required to confidently garner an understanding of how climate change impacts the biodiversity of a
deployment region.
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Figure 6: Labeling results across the four subsets

Broader Impact

Our hope is that the methods demonstrated in this paper can be used to help fellow researchers reduce
the amount of time it takes to adequately process large audio datasets with critical biodiversity infor-
mation. There is the possibility of our work not generalising to all audio datasets, and consequently
working against the aforementioned goal. We chose the Scripps Coastal Reserve Biodiversity trail
partially due to the fact that it is currently closed to the public, reducing the chance of privacy invasion.
Our method of sampling from the dawn and dusk bird vocalization peaks reduces the chances of
acquiring samples of nocturnal species such as the Common Poorwill (Phalaenoptilus nuttallii) native
to the reserve. Furthermore, using a binary classifier such as Microfaune has the potential to skew
results away from species of interest.

Additional Materials

Relevant Github Repositories

Microfaune Classifier: https://github.com/microfaune/microfaune
Pyrenote Audio Labeling System: https://github.com/UCSD-E4E/Pyrenote
Code for figures and data processing: https://github.com/UCSD-E4E/AID_NeurIPS_2021
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